Advertisement

Risks to mitigation potential of forests

Much recent attention has focused on the potential of trees and forests to mitigate ongoing climate change by acting as sinks for carbon. Anderegg et al. review the growing evidence that forests' climate mitigation potential is increasingly at risk from a range of adversities that limit forest growth and health. These include physical factors such as drought and fire and biotic factors, including the depredations of insect herbivores and fungal pathogens. Full assessment and quantification of these risks, which themselves are influenced by climate, is key to achieving science-based policy outcomes for effective land and forest management.
Science, this issue p. eaaz7005

Structured Abstract

BACKGROUND

Forests have considerable potential to help mitigate human-caused climate change and provide society with a broad range of cobenefits. Local, national, and international efforts have developed policies and economic incentives to protect and enhance forest carbon sinks—ranging from the Bonn Challenge to restore deforested areas to the development of forest carbon offset projects around the world. However, these policies do not always account for important ecological and climate-related risks and limits to forest stability (i.e., permanence). Widespread climate-induced forest die-off has been observed in forests globally and creates a dangerous carbon cycle feedback, both by releasing large amounts of carbon stored in forest ecosystems to the atmosphere and by reducing the size of the future forest carbon sink. Climate-driven risks may fundamentally compromise forest carbon stocks and sinks in the 21st century. Understanding and quantifying climate-driven risks to forest stability are crucial components needed to forecast the integrity of forest carbon sinks and the extent to which they can contribute toward the Paris Agreement goal to limit warming well below 2°C. Thus, rigorous scientific assessment of the risks and limitations to widespread deployment of forests as natural climate solutions is urgently needed.

ADVANCES

Many forest-based natural climate solutions do not yet rely on the best available scientific information and ecological tools to assess the risks to forest stability from climate-driven forest dieback caused by fire, drought, biotic agents, and other disturbances. Crucially, many of these permanence risks are projected to increase in the 21st century because of climate change, and thus estimates based on historical data will underestimate the true risks that forests face. Forest climate policy needs to fully account for the permanence risks because they could fundamentally undermine the effectiveness of forest-based climate solutions.
Here, we synthesize current scientific understanding of the climate-driven risks to forests and highlight key issues for maximizing the effectiveness of forests as natural climate solutions. We lay out a roadmap for quantifying current and forecasting future risks to forest stability using recent advances in vegetation physiology, disturbance ecology, mechanistic vegetation modeling, large-scale ecological observation networks, and remote sensing. Finally, we review current efforts to use forests as natural climate solutions and discuss how these programs and policies presently consider and could more fully embrace physiological, climatic, and permanence uncertainty about the future of forest carbon stores and the terrestrial carbon sink.

OUTLOOK

The scientific community agrees that forests can contribute to global efforts to mitigate human-caused climate change. The community also recognizes that using forests as natural climate solutions must not distract from rapid reductions in emissions from fossil fuel combustion. Furthermore, responsibly using forests as natural climate solutions requires rigorous quantification of risks to forest stability, forests’ carbon storage potential, cobenefits for species conservation and ecosystem services, and full climate feedbacks from albedo and other effects. Combining long-term satellite records with forest plot data can provide rigorous, spatially explicit estimates of climate change–driven stresses and disturbances that decrease productivity and increase mortality. Current vegetation models also hold substantial promise to quantify forest risks and inform forest management and policies, which currently rely predominantly on historical data.
A more-holistic understanding and quantification of risks to forest stability will help policy-makers effectively use forests as natural climate solutions. Scientific advances have increased our ability to characterize risks associated with a number of biotic and abiotic factors, including risks associated with fire, drought, and biotic agent outbreaks. While the models that are used to predict disturbance risks of these types represent the cutting edge in ecology and Earth system science to date, relatively little infrastructure and few tools have been developed to interface between scientists and foresters, land managers, and policy-makers to ensure that science-based risks and opportunities are fully accounted for in policy and management contexts. To enable effective policy and management decisions, these tools must be openly accessible, transparent, modular, applicable across scales, and usable by a wide range of stakeholders. Strengthening this science-policy link is a critical next step in moving forward with leveraging forests in climate change mitigation efforts.
Effective use of forests as natural climate solutions depends on accounting for climate-driven risks, such as fire and drought.
Leveraging cutting-edge scientific tools holds great promise for improving and guiding the use of forests as natural climate solutions, both in estimating the potential of carbon storage and in estimating the risks to forest carbon storage.
ILLUSTRATION: DAVID MEIKLE
OPEN IN VIEWER

Abstract

Forests have considerable potential to help mitigate human-caused climate change and provide society with many cobenefits. However, climate-driven risks may fundamentally compromise forest carbon sinks in the 21st century. Here, we synthesize the current understanding of climate-driven risks to forest stability from fire, drought, biotic agents, and other disturbances. We review how efforts to use forests as natural climate solutions presently consider and could more fully embrace current scientific knowledge to account for these climate-driven risks. Recent advances in vegetation physiology, disturbance ecology, mechanistic vegetation modeling, large-scale ecological observation networks, and remote sensing are improving current estimates and forecasts of the risks to forest stability. A more holistic understanding and quantification of such risks will help policy-makers and other stakeholders effectively use forests as natural climate solutions.

Get full access to this article

View all available purchase options and get full access to this article.

Already a subscriber or AAAS Member?

References and Notes

1
P. Friedlingstein, M. W. Jones, M. O’Sullivan, R. M. Andrew, J. Hauck, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quéré, D. C. E. Bakker, J. G. Canadell, P. Ciais, R. B. Jackson, P. Anthoni, L. Barbero, A. Bastos, V. Bastrikov, M. Becker, L. Bopp, E. Buitenhuis, N. Chandra, F. Chevallier, L. P. Chini, K. I. Currie, R. A. Feely, M. Gehlen, D. Gilfillan, T. Gkritzalis, D. S. Goll, N. Gruber, S. Gutekunst, I. Harris, V. Haverd, R. A. Houghton, G. Hurtt, T. Ilyina, A. K. Jain, E. Joetzjer, J. O. Kaplan, E. Kato, K. Klein Goldewijk, J. I. Korsbakken, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, S. Lienert, D. Lombardozzi, G. Marland, P. C. McGuire, J. R. Melton, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S.-I. Nakaoka, C. Neill, A. M. Omar, T. Ono, A. Peregon, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rödenbeck, R. Séférian, J. Schwinger, N. Smith, P. P. Tans, H. Tian, B. Tilbrook, F. N. Tubiello, G. R. van der Werf, A. J. Wiltshire, S. Zaehle, Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019). 10.5194/essd-11-1783-2019
2
Y. Pan, R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, S. Piao, A. Rautiainen, S. Sitch, D. Hayes, A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011). 10.1126/science.1201609
3
T. A. M. Pugh, M. Lindeskog, B. Smith, B. Poulter, A. Arneth, V. Haverd, L. Calle, Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. U.S.A. 116, 4382–4387 (2019). 10.1073/pnas.1810512116
4
K. Thompson, Forests and climate change in America: Some early views. Clim. Change 3, 47–64 (1980). 10.1007/BF02423168
5
R. A. Birdsey, A. J. Plantinga, L. S. Heath, Past and prospective carbon storage in United States forests. For. Ecol. Manage. 58, 33–40 (1993). 10.1016/0378-1127(93)90129-B
6
G. B. Bonan, Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008). 10.1126/science.1155121
7
B. W. Griscom, J. Adams, P. W. Ellis, R. A. Houghton, G. Lomax, D. A. Miteva, W. H. Schlesinger, D. Shoch, J. V. Siikamäki, P. Smith, P. Woodbury, C. Zganjar, A. Blackman, J. Campari, R. T. Conant, C. Delgado, P. Elias, T. Gopalakrishna, M. R. Hamsik, M. Herrero, J. Kiesecker, E. Landis, L. Laestadius, S. M. Leavitt, S. Minnemeyer, S. Polasky, P. Potapov, F. E. Putz, J. Sanderman, M. Silvius, E. Wollenberg, J. Fargione, Natural climate solutions. Proc. Natl. Acad. Sci. U.S.A. 114, 11645–11650 (2017). 10.1073/pnas.1710465114
8
S. Roe, C. Streck, M. Obersteiner, S. Frank, B. Griscom, L. Drouet, O. Fricko, M. Gusti, N. Harris, T. Hasegawa, Z. Hausfather, P. Havlík, J. House, G.-J. Nabuurs, A. Popp, M. J. S. Sánchez, J. Sanderman, P. Smith, E. Stehfest, D. Lawrence, Contribution of the land sector to a 1.5° C world. Nat. Clim. Chang. 9, 817–828 (2019). 10.1038/s41558-019-0591-9
9
B. W. Griscom, J. Busch, S. C. Cook-Patton, P. W. Ellis, J. Funk, S. M. Leavitt, G. Lomax, W. R. Turner, M. Chapman, J. Engelmann, N. P. Gurwick, E. Landis, D. Lawrence, Y. Malhi, L. Schindler Murray, D. Navarrete, S. Roe, S. Scull, P. Smith, C. Streck, W. S. Walker, T. Worthington, National mitigation potential from natural climate solutions in the tropics. Phil. Trans. R. Soc. B 375, 20190126 (2020). 10.1098/rstb.2019.0126
10
J. E. Fargione, S. Bassett, T. Boucher, S. D. Bridgham, R. T. Conant, S. C. Cook-Patton, P. W. Ellis, A. Falcucci, J. W. Fourqurean, T. Gopalakrishna, H. Gu, B. Henderson, M. D. Hurteau, K. D. Kroeger, T. Kroeger, T. J. Lark, S. M. Leavitt, G. Lomax, R. I. McDonald, J. P. Megonigal, D. A. Miteva, C. J. Richardson, J. Sanderman, D. Shoch, S. A. Spawn, J. W. Veldman, C. A. Williams, P. B. Woodbury, C. Zganjar, M. Baranski, P. Elias, R. A. Houghton, E. Landis, E. McGlynn, W. H. Schlesinger, J. V. Siikamaki, A. E. Sutton-Grier, B. W. Griscom, Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018). 10.1126/sciadv.aat1869
11
W. R. Turner, K. Brandon, T. M. Brooks, R. Costanza, G. A. Da Fonseca, R. Portela, Global conservation of biodiversity and ecosystem services. Bioscience 57, 868–873 (2007). 10.1641/B571009
12
California Air Resources Board, Compliance Offset Program, https://ww3.arb.ca.gov/cc/capandtrade/offsets/offsets.htm [accessed 1 Jan 2020].
13
G. Simonet, A. B. Bos, A. E. Duchelle, I. A. P. Resosudarmo, J. Subervie, S. Wunder, in Transforming REDD+: Lessons and New Directions, A. Angelsen, Ed. (Center for International Forestry Research, 2018), pp. 117–130.
14
A. Roopsind, B. Sohngen, J. Brandt, Evidence that a national REDD+ program reduces tree cover loss and carbon emissions in a high forest cover, low deforestation country. Proc. Natl. Acad. Sci. U.S.A. 116, 24492–24499 (2019). 10.1073/pnas.1904027116
15
C. M. Anderson, C. B. Field, K. J. Mach, Forest offsets partner climate-change mitigation with conservation. Front. Ecol. Environ. 15, 359–365 (2017). 10.1002/fee.1515
16
S. Solomon, G.-K. Plattner, R. Knutti, P. Friedlingstein, Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. U.S.A. 106, 1704–1709 (2009). 10.1073/pnas.0812721106
17
W. A. Kurz, G. Stinson, G. J. Rampley, C. C. Dymond, E. T. Neilson, Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl. Acad. Sci. U.S.A. 105, 1551–1555 (2008). 10.1073/pnas.0708133105
18
W. R. L. Anderegg, J. M. Kane, L. D. L. Anderegg, Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 3, 30–36 (2013). 10.1038/nclimate1635
19
P. M. Brando, L. Paolucci, C. C. Ummenhofer, E. M. Ordway, H. Hartmann, M. E. Cattau, L. Rattis, V. Medjibe, M. T. Coe, J. Balch, Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis. Annu. Rev. Earth Planet. Sci. 47, 555–581 (2019). 10.1146/annurev-earth-082517-010235
20
C. D. Allen, A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, E. H. Hogg, P. Gonzalez, R. Fensham, Z. Zhang, J. Castro, N. Demidova, J. H. Lim, G. Allard, S. W. Running, A. Semerci, N. Cobb, A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010). 10.1016/j.foreco.2009.09.001
21
H. Hartmann, C. F. Moura, W. R. L. Anderegg, N. K. Ruehr, Y. Salmon, C. D. Allen, S. K. Arndt, D. D. Breshears, H. Davi, D. Galbraith, K. X. Ruthrof, J. Wunder, H. D. Adams, J. Bloemen, M. Cailleret, R. Cobb, A. Gessler, T. E. E. Grams, S. Jansen, M. Kautz, F. Lloret, M. O’Brien, Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28 (2018). 10.1111/nph.15048
22
L. E. Aragão, Y. E. Shimabukuro, The incidence of fire in Amazonian forests with implications for REDD. Science 328, 1275–1278 (2010). 10.1126/science.1186925
23
B. D. Amiro, A. G. Barr, J. G. Barr, T. A. Black, R. Bracho, M. Brown, J. Chen, K. Clark, K. J. Davis, A. R. Desai, S. Dore, V. Engel, J. D. Fuentes, A. H. Goldstein, M. L. Goulden, T. E. Kolb, M. B. Lavigne, B. E. Law, H. A. Margolis, T. Martin, J. H. McCaughey, L. Misson, M. Montes‐Helu, A. Noormets, J. T. Randerson, G. Starr, J. Xiao, Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J. Geophys. Res. 115, G00K02 (2010). 10.1029/2010JG001390
24
J. A. Hicke, C. D. Allen, A. R. Desai, M. C. Dietze, R. J. Hall, E. H. Hogg, D. M. Kashian, D. Moore, K. F. Raffa, R. N. Sturrock, J. Vogelmann, Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob. Change Biol. 18, 7–34 (2012). 10.1111/j.1365-2486.2011.02543.x
25
R. Seidl, D. Thom, M. Kautz, D. Martin-Benito, M. Peltoniemi, G. Vacchiano, J. Wild, D. Ascoli, M. Petr, J. Honkaniemi, M. J. Lexer, V. Trotsiuk, P. Mairota, M. Svoboda, M. Fabrika, T. A. Nagel, C. P. O. Reyer, Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402 (2017). 10.1038/nclimate3303
26
T. A. M. Pugh, A. Arneth, M. Kautz, B. Poulter, B. Smith, Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat. Geosci. 12, 730–735 (2019). 10.1038/s41561-019-0427-2
27
M. Reichstein, M. Bahn, P. Ciais, D. Frank, M. D. Mahecha, S. I. Seneviratne, J. Zscheischler, C. Beer, N. Buchmann, D. C. Frank, D. Papale, A. Rammig, P. Smith, K. Thonicke, M. van der Velde, S. Vicca, A. Walz, M. Wattenbach, Climate extremes and the carbon cycle. Nature 500, 287–295 (2013). 10.1038/nature12350
28
P. Friedlingstein, M. Meinshausen, V. K. Arora, C. D. Jones, A. Anav, S. K. Liddicoat, R. Knutti, Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks. J. Clim. 27, 511–526 (2014). 10.1175/JCLI-D-12-00579.1
29
K. Tokimatsu, R. Yasuoka, M. Nishio, Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use. Appl. Energy 185, 1899–1906 (2017). 10.1016/j.apenergy.2015.11.077
30
M. D. Hurteau, B. A. Hungate, G. W. Koch, Accounting for risk in valuing forest carbon offsets. Carbon Balance Manag. 4, 1 (2009). 10.1186/1750-0680-4-1
31
M. D. Hurteau, B. A. Hungate, G. W. Koch, M. P. North, G. R. Smith, Aligning ecology and markets in the forest carbon cycle. Front. Ecol. Environ. 11, 37–42 (2013). 10.1890/120039
32
D. Purves, S. Pacala, Predictive models of forest dynamics. Science 320, 1452–1453 (2008). 10.1126/science.1155359
33
J. P. Fisk, G. C. Hurtt, J. Q. Chambers, H. Zeng, K. A. Dolan, R. I. Negrón-Juárez, The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851–2000). Environ. Res. Lett. 8, 045017 (2013). 10.1088/1748-9326/8/4/045017
34
W. A. Kurz, C. C. Dymond, G. Stinson, G. J. Rampley, E. T. Neilson, A. L. Carroll, T. Ebata, L. Safranyik, Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008). 10.1038/nature06777
35
D. Baldocchi, J. Penuelas, The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob. Change Biol. 25, 1191–1197 (2019). 10.1111/gcb.14559
36
N. Andela, D. C. Morton, L. Giglio, Y. Chen, G. R. van der Werf, P. S. Kasibhatla, R. S. DeFries, G. J. Collatz, S. Hantson, S. Kloster, D. Bachelet, M. Forrest, G. Lasslop, F. Li, S. Mangeon, J. R. Melton, C. Yue, J. T. Randerson, A human-driven decline in global burned area. Science 356, 1356–1362 (2017). 10.1126/science.aal4108
37
E. Chuvieco, C. Yue, A. Heil, F. Mouillot, I. Alonso-Canas, M. Padilla, J. M. Pereira, D. Oom, K. Tansey, A new global burned area product for climate assessment of fire impacts. Glob. Ecol. Biogeogr. 25, 619–629 (2016). 10.1111/geb.12440
38
G. R. van der Werf, J. T. Randerson, L. Giglio, T. T. van Leeuwen, Y. Chen, B. M. Rogers, M. Mu, M. J. E. van Marle, D. C. Morton, G. J. Collatz, R. J. Yokelson, P. S. Kasibhatla, Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697–720 (2017). 10.5194/essd-9-697-2017
39
L. Giglio, J. T. Randerson, G. R. van der Werf, Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013). 10.1002/jgrg.20042
40
J. A. Hicke, A. J. Meddens, C. D. Allen, C. A. Kolden, Carbon stocks of trees killed by bark beetles and wildfire in the western United States. Environ. Res. Lett. 8, 035032 (2013). 10.1088/1748-9326/8/3/035032
41
B. M. Rogers, A. J. Soja, M. L. Goulden, J. T. Randerson, Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015). 10.1038/ngeo2352
42
G. R. van der Werf, J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, T. T. van Leeuwen, Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010). 10.5194/acp-10-11707-2010
43
F. Mouillot, C. B. Field, Fire history and the global carbon budget: A 1× 1 fire history reconstruction for the 20th century. Glob. Change Biol. 11, 398–420 (2005). 10.1111/j.1365-2486.2005.00920.x
44
A. P. Williams, J. T. Abatzoglou, Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Curr. Clim. Change Rep. 2, 1–14 (2016). 10.1007/s40641-016-0031-0
45
R. Dutta, A. Das, J. Aryal, Big data integration shows Australian bush-fire frequency is increasing significantly. R. Soc. open sci. 3, 150241 (2016). 10.1098/rsos.150241
46
J. C. White, M. A. Wulder, T. Hermosilla, N. C. Coops, G. W. Hobart, A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 194, 303–321 (2017). 10.1016/j.rse.2017.03.035
47
M. Flannigan, A. S. Cantin, W. J. De Groot, M. Wotton, A. Newbery, L. M. Gowman, Global wildland fire season severity in the 21st century. For. Ecol. Manage. 294, 54–61 (2013). 10.1016/j.foreco.2012.10.022
48
M. A. Moritz, M.-A. Parisien, E. Batllori, M. A. Krawchuk, J. Van Dorn, D. J. Ganz, K. Hayhoe, Climate change and disruptions to global fire activity. Ecosphere 3, 1–22 (2012). 10.1890/ES11-00345.1
49
W. Knorr, A. Arneth, L. Jiang, Demographic controls of future global fire risk. Nat. Clim. Chang. 6, 781–785 (2016). 10.1038/nclimate2999
50
F. Li, M. Val Martin, M. O. Andreae, A. Arneth, S. Hantson, J. W. Kaiser, G. Lasslop, C. Yue, D. Bachelet, M. Forrest, E. Kluzek, X. Liu, S. Mangeon, J. R. Melton, D. S. Ward, A. Darmenov, T. Hickler, C. Ichoku, B. I. Magi, S. Sitch, G. R. van der Werf, C. Wiedinmyer, S. S. Rabin, Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 19, 12545–12567 (2019). 10.5194/acp-19-12545-2019
51
D. M. Bowman, B. P. Murphy, G. J. Williamson, M. A. Cochrane, Pyrogeographic models, feedbacks and the future of global fire regimes. Glob. Ecol. Biogeogr. 23, 821–824 (2014). 10.1111/geb.12180
52
C. D. Allen, D. D. Breshears, N. G. McDowell, On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015). 10.1890/ES15-00203.1
53
J. Zscheischler, M. D. Mahecha, J. von Buttlar, S. Harmeling, M. Jung, A. Rammig, J. T. Randerson, B. Schölkopf, S. I. Seneviratne, E. Tomelleri, S. Zaehle, M. Reichstein, others, A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014). 10.1088/1748-9326/9/3/035001
54
B. M. Sleeter, D. C. Marvin, D. R. Cameron, P. C. Selmants, A. L. Westerling, J. Kreitler, C. J. Daniel, J. Liu, T. S. Wilson, Effects of 21st-century climate, land use, and disturbances on ecosystem carbon balance in California. Glob. Change Biol. 25, 3334–3353 (2019). 10.1111/gcb.14677
55
A. M. Schwantes, J. J. Swenson, M. González-Roglich, D. M. Johnson, J.-C. Domec, R. B. Jackson, Measuring canopy loss and climatic thresholds from an extreme drought along a fivefold precipitation gradient across Texas. Glob. Change Biol. 23, 5120–5135 (2017). 10.1111/gcb.13775
56
N. Brouwers, G. Matusick, K. Ruthrof, T. Lyons, G. Hardy, Landscape-scale assessment of tree crown dieback following extreme drought and heat in a Mediterranean eucalypt forest ecosystem. Landsc. Ecol. 28, 69–80 (2013). 10.1007/s10980-012-9815-3
57
A. Dai, Drought under global warming: A review. WIREs Clim. Change 2, 45–65 (2011). 10.1002/wcc.81
58
W. R. Anderegg, T. Klein, M. Bartlett, L. Sack, A. F. Pellegrini, B. Choat, S. Jansen, Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl. Acad. Sci. U.S.A. 113, 5024–5029 (2016). 10.1073/pnas.1525678113
59
S. Greenwood, P. Ruiz-Benito, J. Martínez-Vilalta, F. Lloret, T. Kitzberger, C. D. Allen, R. Fensham, D. C. Laughlin, J. Kattge, G. Bönisch, N. J. B. Kraft, A. S. Jump, Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 20, 539–553 (2017). 10.1111/ele.12748
60
W. R. L. Anderegg, L. D. L. Anderegg, K. L. Kerr, A. T. Trugman, Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019). 10.1111/gcb.14771
61
B. M. Rogers, K. Solvik, E. H. Hogg, J. Ju, J. G. Masek, M. Michaelian, L. T. Berner, S. J. Goetz, Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Glob. Change Biol. 24, 2284–2304 (2018). 10.1111/gcb.14107
62
M. L. Goulden, R. C. Bales, California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019). 10.1038/s41561-019-0388-5
63
A. T. Trugman, M. Detto, M. K. Bartlett, D. Medvigy, W. R. L. Anderegg, C. Schwalm, B. Schaffer, S. W. Pacala, Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018). 10.1111/ele.13136
64
W. R. L. Anderegg, J. A. Berry, D. D. Smith, J. S. Sperry, L. D. L. Anderegg, C. B. Field, The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc. Natl. Acad. Sci. U.S.A. 109, 233–237 (2012). 10.1073/pnas.1107891109
65
H. D. Adams, M. J. B. Zeppel, W. R. L. Anderegg, H. Hartmann, S. M. Landhäusser, D. T. Tissue, T. E. Huxman, P. J. Hudson, T. E. Franz, C. D. Allen, L. D. L. Anderegg, G. A. Barron-Gafford, D. J. Beerling, D. D. Breshears, T. J. Brodribb, H. Bugmann, R. C. Cobb, A. D. Collins, L. T. Dickman, H. Duan, B. E. Ewers, L. Galiano, D. A. Galvez, N. Garcia-Forner, M. L. Gaylord, M. J. Germino, A. Gessler, U. G. Hacke, R. Hakamada, A. Hector, M. W. Jenkins, J. M. Kane, T. E. Kolb, D. J. Law, J. D. Lewis, J.-M. Limousin, D. M. Love, A. K. Macalady, J. Martínez-Vilalta, M. Mencuccini, P. J. Mitchell, J. D. Muss, M. J. O’Brien, A. P. O’Grady, R. E. Pangle, E. A. Pinkard, F. I. Piper, J. A. Plaut, W. T. Pockman, J. Quirk, K. Reinhardt, F. Ripullone, M. G. Ryan, A. Sala, S. Sevanto, J. S. Sperry, R. Vargas, M. Vennetier, D. A. Way, C. Xu, E. A. Yepez, N. G. McDowell, A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291 (2017). 10.1038/s41559-017-0248-x
66
B. Choat, T. J. Brodribb, C. R. Brodersen, R. A. Duursma, R. López, B. E. Medlyn, Triggers of tree mortality under drought. Nature 558, 531–539 (2018). 10.1038/s41586-018-0240-x
67
M. T. Tyree, J. S. Sperry, Vulnerability of Xylem to Cavitation and Embolism. Annu. Rev. Plant Phys. Mol. Bio. 40, 19–36 (1989). 10.1146/annurev.pp.40.060189.000315
68
A. J. Meddens, J. A. Hicke, C. A. Ferguson, Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecol. Appl. 22, 1876–1891 (2012). 10.1890/11-1785.1
69
C. Senf, M. A. Wulder, E. M. Campbell, P. Hostert, Using Landsat to assess the relationship between spatiotemporal patterns of western spruce budworm outbreaks and regional-scale weather variability. Can. J. Rem. Sens. 42, 706–718 (2016). 10.1080/07038992.2016.1220828
70
M. Kautz, A. J. Meddens, R. J. Hall, A. Arneth, Biotic disturbances in Northern Hemisphere forests–a synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Glob. Ecol. Biogeogr. 26, 533–552 (2017). 10.1111/geb.12558
71
J. U. Jepsen, S. B. Hagen, R. A. Ims, N. G. Yoccoz, Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: Evidence of a recent outbreak range expansion. J. Anim. Ecol. 77, 257–264 (2008). 10.1111/j.1365-2656.2007.01339.x
72
D. A. Herms, D. G. McCullough, Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annu. Rev. Entomol. 59, 13–30 (2014). 10.1146/annurev-ento-011613-162051
73
B. J. Bentz, J. Régnière, C. J. Fettig, E. M. Hansen, J. L. Hayes, J. A. Hicke, R. G. Kelsey, J. F. Negrón, S. J. Seybold, Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects. Bioscience 60, 602–613 (2010). 10.1525/bio.2010.60.8.6
74
T. E. Kolb, C. J. Fettig, M. P. Ayres, B. J. Bentz, J. A. Hicke, R. Mathiasen, J. E. Stewart, A. S. Weed, Observed and anticipated impacts of drought on forest insects and diseases in the United States. For. Ecol. Manage. 380, 321–334 (2016). 10.1016/j.foreco.2016.04.051
75
C. C. Dymond, E. T. Neilson, G. Stinson, K. Porter, D. A. MacLean, D. R. Gray, M. Campagna, W. A. Kurz, Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems 13, 917–931 (2010). 10.1007/s10021-010-9364-z
76
R. N. Sturrock, S. J. Frankel, A. V. Brown, P. E. Hennon, J. T. Kliejunas, K. J. Lewis, J. J. Worrall, A. J. Woods, Climate change and forest diseases. Plant Pathol. 60, 133–149 (2011). 10.1111/j.1365-3059.2010.02406.x
77
K. F. Raffa, B. H. Aukema, B. J. Bentz, A. L. Carroll, J. A. Hicke, M. G. Turner, W. H. Romme, Cross-scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions. Bioscience 58, 501–517 (2008). 10.1641/B580607
78
S. Trumbore, P. Brando, H. Hartmann, Forest health and global change. Science 349, 814–818 (2015). 10.1126/science.aac6759
79
J. Huang, M. Kautz, A. M. Trowbridge, A. Hammerbacher, K. F. Raffa, H. D. Adams, D. W. Goodsman, C. Xu, A. J. H. Meddens, D. Kandasamy, J. Gershenzon, R. Seidl, H. Hartmann, Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytol. 225, 26–36 (2020). 10.1111/nph.16173
80
T. L. Shore, L. Safranyik, J. P. Lemieux, Susceptibility of lodgepole pine stands to the mountain pine beetle: Testing of a rating system. Can. J. For. Res. 30, 44–49 (2000). 10.1139/x99-182
81
P. C. Buotte, S. Levis, B. E. Law, T. W. Hudiburg, D. E. Rupp, J. J. Kent, Near-future forest vulnerability to drought and fire varies across the western United States. Glob. Change Biol. 25, 290–303 (2019). 10.1111/gcb.14490
82
A. M. Jönsson, L. M. Schroeder, F. Lagergren, O. Anderbrant, B. Smith, Guess the impact of Ips typographus—An ecosystem modelling approach for simulating spruce bark beetle outbreaks. Agric. For. Meteorol. 166–167, 188–200 (2012). 10.1016/j.agrformet.2012.07.012
83
J. Q. Chambers, J. I. Fisher, H. Zeng, E. L. Chapman, D. B. Baker, G. C. Hurtt, Hurricane Katrina’s carbon footprint on U.S. Gulf Coast forests. Science 318, 1107 (2007). 10.1126/science.1148913
84
L. R. Iverson, F. R. Thompson III, S. Matthews, M. Peters, A. Prasad, W. D. Dijak, J. Fraser, W. J. Wang, B. Hanberry, H. He, M. Janowiak, P. Butler, L. Brandt, C. Swanston, Multi-model comparison on the effects of climate change on tree species in the eastern US: Results from an enhanced niche model and process-based ecosystem and landscape models. Landsc. Ecol. 32, 1327–1346 (2017). 10.1007/s10980-016-0404-8
85
T. Zhang, Ü. Niinemets, J. Sheffield, J. W. Lichstein, Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556, 99–102 (2018). 10.1038/nature26152
86
A. T. Trugman, L. D. L. Anderegg, J. D. Shaw, W. R. L. Anderegg, Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proc. Natl. Acad. Sci. U.S.A. 117, 8532–8538 (2020). 10.1073/pnas.1917521117
87
M. J. Duveneck, J. R. Thompson, E. J. Gustafson, Y. Liang, A. M. de Bruijn, Recovery dynamics and climate change effects to future New England forests. Landsc. Ecol. 32, 1385–1397 (2017). 10.1007/s10980-016-0415-5
88
G. Tang, B. Beckage, B. Smith, Potential future dynamics of carbon fluxes and pools in New England forests and their climatic sensitivities: A model-based study. Global Biogeochem. Cycles 28, 286–299 (2014). 10.1002/2013GB004656
89
L. A. Brandt, P. R. Butler, S. D. Handler, M. K. Janowiak, P. D. Shannon, C. W. Swanston, Integrating science and management to assess forest ecosystem vulnerability to climate change. J. For. 115, 212–221 (2017). 10.5849/jof.15-147
90
C. Swanston, L. A. Brandt, M. K. Janowiak, S. D. Handler, P. Butler-Leopold, L. Iverson, F. R. Thompson III, T. A. Ontl, P. D. Shannon, Vulnerability of forests of the Midwest and Northeast United States to climate change. Clim. Change 146, 103–116 (2018). 10.1007/s10584-017-2065-2
91
K. M. Miller, B. J. McGill, Compounding human stressors cause major regeneration debt in over half of eastern US forests. J. Appl. Ecol. 56, 1355–1366 (2019). 10.1111/1365-2664.13375
92
K. T. Davis, S. Z. Dobrowski, P. E. Higuera, Z. A. Holden, T. T. Veblen, M. T. Rother, S. A. Parks, A. Sala, M. P. Maneta, Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. U.S.A. 116, 6193–6198 (2019). 10.1073/pnas.1815107116
93
C. D. Allen, Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes. Ecosystems 10, 797–808 (2007). 10.1007/s10021-007-9057-4
94
J. M. Kane, J. M. Varner, M. R. Metz, P. J. van Mantgem, Characterizing interactions between fire and other disturbances and their impacts on tree mortality in western US Forests. For. Ecol. Manage. 405, 188–199 (2017). 10.1016/j.foreco.2017.09.037
95
W. R. Anderegg, J. A. Hicke, R. A. Fisher, C. D. Allen, J. Aukema, B. Bentz, S. Hood, J. W. Lichstein, A. K. Macalady, N. McDowell, Y. Pan, K. Raffa, A. Sala, J. D. Shaw, N. L. Stephenson, C. Tague, M. Zeppel, Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 208, 674–683 (2015). 10.1111/nph.13477
96
N. L. Stephenson, A. J. Das, N. J. Ampersee, B. M. Bulaon, J. L. Yee, Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107, 2383–2401 (2019). 10.1111/1365-2745.13176
97
F. Krausmann, K.-H. Erb, S. Gingrich, C. Lauk, H. Haberl, Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecol. Econ. 65, 471–487 (2008). 10.1016/j.ecolecon.2007.07.012
98
M. Gren, A. Z. Aklilu, Policy design for forest carbon sequestration: A review of the literature. For. Policy Econ. 70, 128–136 (2016). 10.1016/j.forpol.2016.06.008
99
S. M. Hood, S. Baker, A. Sala, Fortifying the forest: Thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience. Ecol. Appl. 26, 1984–2000 (2016). 10.1002/eap.1363
100
D. A. Peltzer, R. B. Allen, G. M. Lovett, D. Whitehead, D. A. Wardle, Effects of biological invasions on forest carbon sequestration. Glob. Change Biol. 16, 732–746 (2010). 10.1111/j.1365-2486.2009.02038.x
101
J. T. Abatzoglou, A. P. Williams, Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. U.S.A. 113, 11770–11775 (2016). 10.1073/pnas.1607171113
102
E. Marland, G. Domke, J. Hoyle, G. Marland, L. Bates, A. Helms, B. Jones, T. Kowalczyk, T. B. Ruseva, C. Szymanski, Understanding and Analysis: The California Air Resources Board Forest Offset Protocol (Springer, 2017).
103
California Air Resources Board, Compliance Offset Protocol U.S. Forest Offset Projects (2014); https://ww3.arb.ca.gov/cc/capandtrade/protocols/usforest/usforestprojects_2014.htm.
104
California Air Resources Board, Q4 2019 Compliance Instrument Report (2019); https://ww2.arb.ca.gov/compliance-instrument-report.
105
Certification Center on Climate Change, Japan, Forest Carbon Sink Becomes Carbon Offsetting Credit (2009); www.env.go.jp/en/earth/ets/mkt_mech/fcsb-coc.pdf.
106
D. Diaz, “Moving Beyond the Buffer Pool” (Ecosystem Marketplace, 2010); www.ecosystemmarketplace.com/articles/moving-beyond-the-buffer-pool/.
107
Y. Malhi, O. L. Phillips, J. Lloyd, T. Baker, J. Wright, S. Almeida, L. Arroyo, T. Frederiksen, J. Grace, N. Higuchi, T. Killeen, W. F. Laurance, C. Leaño, S. Lewis, P. Meir, A. Monteagudo, D. Neill, P. Núñez Vargas, S. N. Panfil, S. Patiño, N. Pitman, C. A. Quesada, A. Rudas-Ll, R. Salomão, S. Saleska, N. Silva, M. Silveira, W. G. Sombroek, R. Valencia, R. Vásquez Martínez, I. C. G. Vieira, B. Vinceti, An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13, 439–450 (2002). 10.1111/j.1654-1103.2002.tb02068.x
108
K. J. Anderson-Teixeira, S. J. Davies, A. C. Bennett, E. B. Gonzalez-Akre, H. C. Muller-Landau, S. J. Wright, K. Abu Salim, A. M. Almeyda Zambrano, A. Alonso, J. L. Baltzer, Y. Basset, N. A. Bourg, E. N. Broadbent, W. Y. Brockelman, S. Bunyavejchewin, D. F. R. P. Burslem, N. Butt, M. Cao, D. Cardenas, G. B. Chuyong, K. Clay, S. Cordell, H. S. Dattaraja, X. Deng, M. Detto, X. Du, A. Duque, D. L. Erikson, C. E. N. Ewango, G. A. Fischer, C. Fletcher, R. B. Foster, C. P. Giardina, G. S. Gilbert, N. Gunatilleke, S. Gunatilleke, Z. Hao, W. W. Hargrove, T. B. Hart, B. C. H. Hau, F. He, F. M. Hoffman, R. W. Howe, S. P. Hubbell, F. M. Inman-Narahari, P. A. Jansen, M. Jiang, D. J. Johnson, M. Kanzaki, A. R. Kassim, D. Kenfack, S. Kibet, M. F. Kinnaird, L. Korte, K. Kral, J. Kumar, A. J. Larson, Y. Li, X. Li, S. Liu, S. K. Y. Lum, J. A. Lutz, K. Ma, D. M. Maddalena, J.-R. Makana, Y. Malhi, T. Marthews, R. Mat Serudin, S. M. McMahon, W. J. McShea, H. R. Memiaghe, X. Mi, T. Mizuno, M. Morecroft, J. A. Myers, V. Novotny, A. A. de Oliveira, P. S. Ong, D. A. Orwig, R. Ostertag, J. den Ouden, G. G. Parker, R. P. Phillips, L. Sack, M. N. Sainge, W. Sang, K. Sri-Ngernyuang, R. Sukumar, I.-F. Sun, W. Sungpalee, H. S. Suresh, S. Tan, S. C. Thomas, D. W. Thomas, J. Thompson, B. L. Turner, M. Uriarte, R. Valencia, M. I. Vallejo, A. Vicentini, T. Vrška, X. Wang, X. Wang, G. Weiblen, A. Wolf, H. Xu, S. Yap, J. Zimmerman, CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015). 10.1111/gcb.12712
109
B. M. Sanderson, R. A. Fisher, A fiery wake-up call for climate science. Nat. Clim. Chang. 10, 175–177 (2020). 10.1038/s41558-020-0707-2
110
R. A. Fisher, C. D. Koven, W. R. L. Anderegg, B. O. Christoffersen, M. C. Dietze, C. E. Farrior, J. A. Holm, G. C. Hurtt, R. G. Knox, P. J. Lawrence, J. W. Lichstein, M. Longo, A. M. Matheny, D. Medvigy, H. C. Muller-Landau, T. L. Powell, S. P. Serbin, H. Sato, J. K. Shuman, B. Smith, A. T. Trugman, T. Viskari, H. Verbeeck, E. Weng, C. Xu, X. Xu, T. Zhang, P. R. Moorcroft, Vegetation demographics in Earth System Models: A review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018). 10.1111/gcb.13910
111
H. Bugmann, A review of forest gap models. Clim. Change 51, 259–305 (2001). 10.1023/A:1012525626267
112
D. Medvigy, S. C. Wofsy, J. W. Munger, D. Y. Hollinger, P. R. Moorcroft, Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. J. Geophys. Res. 114, G01002 (2009). 10.1029/2008JG000812
113
H. Bugmann, R. Seidl, F. Hartig, F. Bohn, J. Brůna, M. Cailleret, L. François, J. Heinke, A.-J. Henrot, T. Hickler, L. Hülsmann, A. Huth, I. Jacquemin, C. Kollas, P. Lasch-Born, M. J. Lexer, J. Merganič, K. Merganičová, T. Mette, B. R. Miranda, D. Nadal-Sala, W. Rammer, A. Rammig, B. Reineking, E. Roedig, S. Sabaté, J. Steinkamp, F. Suckow, G. Vacchiano, J. Wild, C. Xu, C. P. O. Reyer, Tree mortality submodels drive simulated long-term forest dynamics: Assessing 15 models from the stand to global scale. Ecosphere 10, e02616 (2019). 10.1002/ecs2.2616
114
K. Yu, W. K. Smith, A. T. Trugman, R. Condit, S. P. Hubbell, J. Sardans, C. Peng, K. Zhu, J. Peñuelas, M. Cailleret, T. Levanic, A. Gessler, M. Schaub, M. Ferretti, W. R. L. Anderegg, Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proc. Natl. Acad. Sci. U.S.A. 116, 24662–24667 (2019). 10.1073/pnas.1821387116
115
N. G. McDowell, D. J. Beerling, D. D. Breshears, R. A. Fisher, K. F. Raffa, M. Stitt, The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011). 10.1016/j.tree.2011.06.003
116
X. Xu, D. Medvigy, J. S. Powers, J. M. Becknell, K. Guan, Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol. 212, 80–95 (2016). 10.1111/nph.14009
117
D. Kennedy, S. Swenson, K. W. Oleson, D. M. Lawrence, R. Fisher, A. C. Lola da Costa, P. Gentine, Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019). 10.1029/2018MS001500
118
J. S. Sperry, M. D. Venturas, H. N. Todd, A. T. Trugman, W. R. L. Anderegg, Y. Wang, X. Tai, The impact of rising CO2 and acclimation on the response of US forests to global warming. Proc. Natl. Acad. Sci. U.S.A. 116, 25734–25744 (2019). 10.1073/pnas.1913072116
119
S. Kloster, N. M. Mahowald, J. T. Randerson, P. E. Thornton, F. M. Hoffman, S. Levis, P. J. Lawrence, J. J. Feddema, K. W. Oleson, D. M. Lawrence, Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosci. 7, 1877–1902 (2010). 10.5194/bgd-7-565-2010
120
M. C. Dietze, J. H. Matthes, A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems. Ecol. Lett. 17, 1418–1426 (2014). 10.1111/ele.12345
121
Y. Luo, T. F. Keenan, M. Smith, Predictability of the terrestrial carbon cycle. Glob. Change Biol. 21, 1737–1751 (2015). 10.1111/gcb.12766
122
D. N. Huntzinger, A. M. Michalak, C. Schwalm, P. Ciais, A. W. King, Y. Fang, K. Schaefer, Y. Wei, R. B. Cook, J. B. Fisher, D. Hayes, M. Huang, A. Ito, A. K. Jain, H. Lei, C. Lu, F. Maignan, J. Mao, N. Parazoo, S. Peng, B. Poulter, D. Ricciuto, X. Shi, H. Tian, W. Wang, N. Zeng, F. Zhao, Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci. Rep. 7, 4765 (2017). 10.1038/s41598-017-03818-2
123
M. C. Dietze, A. Fox, L. M. Beck-Johnson, J. L. Betancourt, M. B. Hooten, C. S. Jarnevich, T. H. Keitt, M. A. Kenney, C. M. Laney, L. G. Larsen, H. W. Loescher, C. K. Lunch, B. C. Pijanowski, J. T. Randerson, E. K. Read, A. T. Tredennick, R. Vargas, K. C. Weathers, E. P. White, Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proc. Natl. Acad. Sci. U.S.A. 115, 1424–1432 (2018). 10.1073/pnas.1710231115
124
M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, J. R. G. Townshend, High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342, 850–853 (2013). 10.1126/science.1244693
125
R. Dubayah, J. B. Blair, S. Goetz, L. Fatoyinbo, M. Hansen, S. Healey, M. Hofton, G. Hurtt, J. Kellner, S. Luthcke, J. Armston, H. Tang, L. Duncanson, S. Hancock, P. Jantz, S. Marselis, P. L. Patterson, W. Qi, C. Silva, The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020). 10.1016/j.srs.2020.100002
126
D. Schimel, F. D. Schneider, JPL Carbon and Ecosystem Participants, Flux towers in the sky: Global ecology from space. New Phytol. 224, 570–584 (2019). 10.1111/nph.15934
127
J. Miller, Building a better dialogue between energy research and policy. Nat. Energy 4, 816–818 (2019). 10.1038/s41560-019-0483-2
128
B. Haya, “Policy brief: The California Air Resources Board’s U.S. Forest offset protocol underestimates leakage” (2019); https://gspp.berkeley.edu/assets/uploads/research/pdf/Policy_Brief-US_Forest_Projects-Leakage-Haya_2.pdf.
129
J.-F. Bastin, Y. Finegold, C. Garcia, D. Mollicone, M. Rezende, D. Routh, C. M. Zohner, T. W. Crowther, The global tree restoration potential. Science 365, 76–79 (2019). 10.1126/science.aax0848
130
J. W. Veldman, J. C. Aleman, S. T. Alvarado, T. M. Anderson, S. Archibald, W. J. Bond, T. W. Boutton, N. Buchmann, E. Buisson, J. G. Canadell, M. S. Dechoum, M. H. Diaz-Toribio, G. Durigan, J. J. Ewel, G. W. Fernandes, A. Fidelis, F. Fleischman, S. P. Good, D. M. Griffith, J.-M. Hermann, W. A. Hoffmann, S. Le Stradic, C. E. R. Lehmann, G. Mahy, A. N. Nerlekar, J. B. Nippert, R. F. Noss, C. P. Osborne, G. E. Overbeck, C. L. Parr, J. G. Pausas, R. T. Pennington, M. P. Perring, F. E. Putz, J. Ratnam, M. Sankaran, I. B. Schmidt, C. B. Schmitt, F. A. O. Silveira, A. C. Staver, N. Stevens, C. J. Still, C. A. E. Strömberg, V. M. Temperton, J. M. Varner, N. P. Zaloumis, Comment on “The global tree restoration potential”. Science 366, eaay7976 (2019). 10.1126/science.aay7976
131
A. K. Skidmore, T. Wang, K. de Bie, P. Pilesjö, Comment on “The global tree restoration potential”. Science 366, eaaz0111 (2019). 10.1126/science.aaz0111
132
S. L. Lewis, E. T. A. Mitchard, C. Prentice, M. Maslin, B. Poulter, Comment on “The global tree restoration potential”. Science 366, eaaz0388 (2019). 10.1126/science.aaz0388
133
P. Friedlingstein, M. Allen, J. G. Canadell, G. P. Peters, S. I. Seneviratne, Comment on “The global tree restoration potential”. Science 366, eaay8060 (2019). 10.1126/science.aay8060
134
R. G. Anderson, J. G. Canadell, J. T. Randerson, R. B. Jackson, B. A. Hungate, D. D. Baldocchi, G. A. Ban-Weiss, G. B. Bonan, K. Caldeira, L. Cao, N. S. Diffenbaugh, K. R. Gurney, L. M. Kueppers, B. E. Law, S. Luyssaert, T. L. O’Halloran, Biophysical considerations in forestry for climate protection. Front. Ecol. Environ. 9, 174–182 (2011). 10.1890/090179
135
L. Schneider, A. Kollmuss, Perverse effects of carbon markets on HFC-23 and SF 6 abatement projects in Russia. Nat. Clim. Chang. 5, 1061–1063 (2015). 10.1038/nclimate2772
136
M. Cames, R. O. Harthan, J. Füssler, M. Lazarus, C. M. Lee, P. Erickson, R. Spalding-Fecher, How additional is the clean development mechanism (DG CLIMA report, 2016); https://ec.europa.eu/clima/sites/clima/files/ets/docs/clean_dev_mechanism_en.pdf.
137
K. Hamrick, M. Gallant, Fertile Ground: State of Forest Carbon Finance 2017 (2017); www.forest-trends.org/publications/fertile-ground/.