10.1145/3266037.3266090acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
poster
Public Access

Gaze-guided Image Classification for Reflecting Perceptual Class Ambiguity

Online:11 October 2018Publication History

ABSTRACT

Despite advances in machine learning and deep neural networks, there is still a huge gap between machine and human image understanding. One of the causes is the annotation process used to label training images. In most image categorization tasks, there is a fundamental ambiguity between some image categories and the underlying class probability differs from very obvious cases to ambiguous ones. However, current machine learning systems and applications usually work with discrete annotation processes and the training labels do not reflect this ambiguity. To address this issue, we propose an new image annotation framework where labeling incorporates human gaze behavior. In this framework, gaze behavior is used to predict image labeling difficulty. The image classifier is then trained with sample weights defined by the predicted difficulty. We demonstrate our approach's effectiveness on four-class image classification tasks.

References

  1. A. Borji and L. Itti. 2014. Human vs. computer in scene and object recognition. In Proc. CVPR. 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. B.E. Boser, I.M. Guyon, and V.N. Vapnik. 1992. A training algorithm for optimal margin classifiers. In Proc. COLT. 144--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Bulling, C. Weichel, and H. Gellersen. 2013. EyeContext: Recognition of high-level contextual cues from human visual behaviour. In Proc. CHI. 305--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Y. Cui, F. Zhou, Y. Lin, and S. Belongie. 2016. Fine-grained categorization and dataset bootstrapping using deep metric learning with humans in the loop. In Proc. CVPR. 1153--1162.Google ScholarGoogle Scholar
  5. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In Proc. CVPR.Google ScholarGoogle Scholar
  6. J.A. Fails and D.R. Olsen Jr. 2003. Interactive machine learning. In Proc. IUI. 39--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Fogarty, D. Tan, A. Kapoor, and S. Winder. 2008. CueFlik: Interactive concept learning in image search. In Proc. CHI. 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R.C. Fong, W.J. Scheirer, and D.D. Cox. 2018. Using human brain activity to guide machine learning. Scientific reports 8, 1 (2018), 5397.Google ScholarGoogle Scholar
  9. K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proc. CVPR. 770--778.Google ScholarGoogle Scholar
  10. A. Karpathy, G. Toderici, S. Shetty ans T. Leung, R. Sukthankar, and L. Fei-Fei. 2014. Large-scale video classification with convolutional neural networks. In Proc. CVPR. 1725--1732. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Krizhevsky, I. Sutskever, and G.E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proc. NIPS. 1097--1105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. R.T. Pramod and S.P. Arun. 2016. Do computational models differ systematically from human object perception?. In Proc. CVPR. 1601--1609.Google ScholarGoogle Scholar
  13. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and L. Fei-Fei. 2015. ImageNet large scale visual recognition challenge . IJCV 115, 3 (2015), 211--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. H. Sattar, S. Muller, M. Fritz, and A. Bulling. 2015. Prediction of search targets from fixations in open-world settings. In Proc. CVPR. 981--990.Google ScholarGoogle Scholar
  15. W.J. Scheirer, S.E. Anthony, K. Nakayama, and D.D. Cox. 2014. Perceptual annotation: Measuring human vision to improve computer vision. IEEE TPAMI 36, 8 (2014), 1679--1686. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Shimojo, C. Simion, E. Shimojo, and C. Scheier. 2003. Gaze bias both reflects and influences preference. Nature Neuroscience 6, 12 (2003), 1317--1322.Google ScholarGoogle ScholarCross RefCross Ref
  17. Y. Sugano, Y. Ozaki, H. Kasai, K. Ogaki, and Y. Sato. 2014. Image preference estimation with a data-driven approach: A comparative study between gaze and image features. JEMR 7, 3 (2014).Google ScholarGoogle Scholar
  18. B. Zhou, A. Lapedrizaa, J. Xiao, A. Torralba, and A. Oliva. 2014. Learning deep features for scene recognition using places database. In Proc. NIPS. 487--495. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Gaze-guided Image Classification for Reflecting Perceptual Class Ambiguity

      Comments

      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!