

A note before we begin

Blizzard Entertainment in no way endorses or condones
reverse engineering of our properties.

The exercises herein were conducted to understand the
methods used to create unlicensed behaviors.

About Me: Elias Bachaalany

* Anti-Cheat Engineer, Blizzard Entertainment
* Previously worked at Hex-Rays and Microsoft

e Technical writer:
* Practical Reverse Engineering, Antivirus Hackers
Handbook

e Batchography

* Passionate about reverse engineering and low-level
programming on MS-Windows

* Interested in debuggers, emulators, APl hooking,
dynamic binary instrumentation and virtualization
technologies

* Contact
* Email: ebachaalany at blizzard.com
 Twitter: @0Oxeb

Comrades on the adventure

My colleagues

e Guillaume Breuil, Yi Deng, Chris Genova, Mark
Chandler, James Touton, Pete Stilwell, Zak Bennett and
Grant Davies

Tools

* SCMDraft2 map editor - Henrik Arlinghaus

* trgk (Trigger King) - https://github.com/phu54321/

* MPQ tools — Ladislav Zezula

e BWAPI - Adam Heinermann

* |IDA Pro - Hex-Rays

e Diaphora —Joxean Koret

 EUDEnNabler and the EUDDB - Farty1Billion -
http://fartylbillion.dyndns.org/EUDDB/

South Korean map makers and tools community
 Kongzel004 — Random Tower Defense map author
e Sksljh2091 — Mario Exodus map author

* Jacksell12, Deation, Sato

Community Sites
e TeamlLiquid, StarEdit Network, Naver.com

Sorry if | missed anyone!

Backstory /1

e StarCraft is a science fiction RTS (real-time strategy)
* Released for PC and Mac on March 31, 1998

e StarCraft: Brood War - Expansion pack released on
November 30, 1998

* Significant patches to this talk:
 1.16.1-01/21/2009 — Last patch for 8 years
 1.18.0-04/18/2017 — First modern patch
e 1.20.0-08/14/2017 — StarCraft: Remastered
« 1.21.0-12/07/2017 — EUD reintroduced via

emulation

Backstory /2

StarCraft had various buffer overflow bugs, but one
was related to a particular trigger condition and
action:

* The Extended Unit Death trigger

» Or simply: EUD

Blizzard did not update StarCraft between 2009
and early 2017
* The community re-enabled the bug with
custom launchers and tools

Patch 1.17 was slated for release but was held back
because it would break mods, tools, and launchers:
» wMode
* wLauncher, ChaosLauncher
 BWAPI - Plugin to write Al bots that play
StarCraft

Backstory /3

e StarCraft maps based on EUD triggers thrived
among the South Korean map makers community

* The EUD triggers:
* Are encoded in the map file
e Allowed arbitrary memory read and write:

* The majority of the public EUD maps in
circulation have hardcoded addresses
compatible with StarCraft 1.16.1 on
Windows

» | am not aware of any EUD maps for the
MacOS version of the game

* The EUD exploit allowed modders to author maps
that modify the game radically:
* Random Tower Defense
* Mario Exodus Map
* Etc.

Marmal 2 E2F HMERL ol o L0}
Al U e S ol e

Random Tower Defense — EUD map

M ERL

Bouncing Ball EUD map (SC 1.16.1)

B2 L

ey M 88

He OR 0 HE GAN

Fil= Edit Selection Find Vi [oject Preferences Help

function Move(locationNum, PosX, PosY) {

SetMemoryEPD(3647 Locationtum, Add, PosX);
e The Mario Exodus map SetMemoryEPD(3647 + . 5 * LocationNum, Add, PosX);
author created a level
editor!
 The map was developed
using trgk’s epScript
language and compiler

Set]‘-’[emory EPD(3647 ; % 2 S Ackmexomap - MarioExodusMapMaker Yer 0.6
SetMemoryEPD(3647 IHF =3

| EEECOIEE = Wz [FEr SR
MoveLocation{LocationNum, _[ﬁ E;] ><‘ =
} S S

function SetSize({ocationMum, 30|
TXIIXIX]

N h W E®WYR -~

SetMemoryEPD{ 3647

SetMemoryEPD({ 3647 + r' -
SetMemoryEPD{ 3647 + . r}r[j [r_ H‘
SetMemoryEPD{ 3647

Movelocation{LocationNum,

}

function Set{{ocationhum, PosX

SetMemoryEPD{ 3647 + 5 * Lo
SetMemoryEPD(3647 + 2 + 5

-
-
-
-
-
-
-

SetMemoryEPD{ 3647 + 5
SetMemoryEPD{ 3647 + 3 + 5

Movelocation{LocationNum, 999, @, LocationHum);

] Line 8, Column 30

StarCraft map file format

e They are just MPQ archives
« The MPQ format has been extensively reverse
engineered and documented by the community

e They contain various files:
* They contain custom WAV audio used by the
map
* staredit/scenario.chk € The actual map chunk
file
e This file contains the triggers chunk
* |t contains strings table chunk
e It contains a chunk describing buildings
and units
* Etc.

Map file in MPQ Editor
* Ladik’s MPQ editor can be used to

view or modify the contents of an & | = | (BKilling Fields,scm - Ladik's MPQ Editor - o x
MPQ map file Operations Wiew Tools Help
http://zezula.net/en/mpg/download.html =1 B [=h ;. N =4 (&
Ok 8 = ¥ AF 8 E
MPOs | Open Files Capy Properties. Set Max Configure Add Sign Verify Compaft
e - s Mame File Counit [attributes) Listfile: Archive Signature Archive
Extras Archive
=g (8)Killing Fields.scm || File Name Type Locale Size Date/time

s

o | scenariouchk Recovered File Fragments Meutral B34 D07 /A

Note the chunk file: “staredit/scenario.chk” |staredit\scenario.chk

Scenario chunk file /1

e Made of one or more chunks:

typedef struct {
union {
BYTE FourC(C[4];
DWORD ckID;
I3 i
DWORD ckS1ize,
+ CK_HDR;

static const CHUNKTABLE

=3

{{ISI}ITI}IRI}I I]_J‘
{{M, T, X0, 0N,
{{'T",'H', 6", 2"],
{{'M°, A", S, 0K],
{00, N, T,]
{{IUI}IPI}IEI}I:{I}J‘
{{'T*,E","C, '],
[P, U, N, T,
A R
[P, T, E, XD,
{00, N, T, 0T,
{{'U",'P", "R, P,
{{'M°, 'R, PG, N,
{{ITIJIRIJIII}IEI}J
{{'C’,"0","L","R"],

Chunk header is followed by the chunk body
The game parses each chunk based onits ID:

Bwarl@@Pass2 MapSettings[]

maphdr_STR,
maphdr_MTXM,
maphdr_THG2,
maphdr_MASK,
maphdr_UNI5 Bwar,
maphdr_UPGS5_Bwar,
maphdr_TECS5_ Bwar,
maphdr_PUNI,
maphdr_PUPG_Bwar,
maphdr_PTEC_Bwar,
maphdr_UNIT,
maphdr_UPRP,
maphdr_MRGN_Ext,
maphdr_TRIG,
maphdr_COLR,

true},
true},
true},
true},
true},
true},
truel},
true},
truel},
true},
true},
true},
true},
true},
true},

1

h
rr
h

rr
H

A

Brood War
Erood War
Brood War

Brood War
BErood War

new chunk

handler
handler
handler

handler
handler

Scenario chunk file /2

e Some chunks might have their own sub-headers

* The strings chunk is such an example:

typedef struct TStrThl |
A0RD wStrCount; // number of strings in table
LAORD wStroffsets[1]} £ wariable number of :str pointers
J/ variable length string data follows: pointers

o TStrThl; * TPStrTbhlPriv;

..-"'."=$ EE S S s g e e S
f/ STR - MAP STRIMG TABLE
R R R R EF R R EF R R R EEREE
static BOOL CALLBACK maphdl‘_STRiH‘C‘l-ﬂ_FMK hChunk, DWORD dwSize, LPARAM data) |
gpMapStrs = (TPStrTh1)ALLOC(duSize):
if (!gpMapStrs)
return Talse;
gdwMapsStrSize = dwuSize}

if ([ReadChunk(hChunk, gpMapStrs))
return false;

return true;

—d

Scenario chunk file /3

e The strings chunk can be used to hide data not used by the game directly
* When CK_HDR.ckSize > (sizeof(the complete TStrTbl header) + Ystrlen(of all strings in the table))
 The modders hide additional triggers in the cave area of the string chunk
B " Hiew: scenario.chk - O ot
scenario.chk : JFRO -------- : _B@BQB?Q@ Hiew 8.6@ (c SEN_

1TAT FT<UTUAU
“\d]a]a]-]z

Scenario chunk file /4

This screenshot shows the last string in the strings table
That’s not the chunk’s end though, it is just the string table’s end

The remaining bytes are additional triggers inserted by the EUD trigger compiler
Hiew: Random Tower Defense 1.84-HELL.chk
Random Tower Defense 1.84-HELL.chk . _ Be8180D9 |Hiew 8.608

i BooF S B M=
il =

staredit\wav\Q.wav staredit\waviyama.wav

map requires [@iiEylabler to run

https://github.com/phu54321

What are triggers? /1

* They are a set of conditions and actions that get
evaluated during the game loop

e There are trigger conditions that tell you when:
* A certain time period has elapsed (timers)
* Player resources reached a certain amount
* A map location has been reached
* Etc.

* When all the trigger conditions are fulfilled, then
you can do actions such as:
e Play WAV file
* Display a message
* Create, kill, move a unit, etc.
e Change unit owner and health points
* Give player resources
* Etc.

typedef struct condition {

What are triggers? /2

DWORD dwPlayer; // stores a plaver slot or a _player_codes value

i Triggers are StOred inSide the map Chunk 7 ULONG 1Quantity: // guantity of whatever -- units, kills, rescurces, time
flle % UTYPE wlype; S/ stores a unit type or a _unit_codes value
e The triegers chunk is simplv an arrav of UBYTE bQualifier; /7 specifies the comparison operation (less than, greater than, etc.)
gg p y y UBYTE bOpCode ; S/ stores a _trigger_codes value

_trigger structs .
e Each trigger has an array of the . CONDITION, *PCONDITION:
CONDITION and ACTION structures

typedef struct _action |

* The dWPIayer and WType fields —==, DWORD dwPlayer; /7 a plaver slot or mission briefing portrait slot
ULONG 1Parm; S/ stores a switch #, timer modifications/value
are user controlled - _ ,
> h d d . _\:, UTYPE wiype; S/ stores a unit code, res code, score code
T ey are use tO rea /erte UBYTE bOpCode; /f stores a _action_codes value
. . T A Fies ; it
Out_of_bounds |nS|de an UBYTE bQualifier; f/ specifies the operation modifier
array + ACTION, *PACTION;
. . S/ trigger struct
* The bOpCode field dictates the Pyt S
. _ . typedef struct trigger |
trlgger Condltlon and aCtlon type CONDITION tConditions[MAX_CONDITIONS];
ACTION tActions[MAX_ACTIONS];
ULONG 1Flags;
UBYTE ubPlayer[NUM_PLAYER_CODES];
UBYTE bCurrfAction;

} TRIGGER, *PTRIGGER;

NODEDECL (TRIGGERNODE) {
TRIGGER t;
1 *PTRIGGERNODE

What are triggers? /3

ConditionFcn sgConditionFcns[MNUM CONDITION CODES] = |

The bOpCode field is used to select which condition or action to execute:

cond_always,|

cond_timer,
cond_control,

tﬂnd_ﬂppﬂnentsJ
cond_deaths,

cond_least control,
cond_least control _atloc,
cond_least kills,

cond _lowest score,

cond least. resource,

cohd_score,

cond_always,
cond never,

ActionFcn sgActionFcns[NUM_ACTION_CODES]

¥5

act_none,
act_victory,
act_defeat,

act_doodad,
act_invincible,
act_create_unit,

act_set_deaths,

act_set_unit_res,
act_set_hangar,

act_stop_timer,
act_start_timer,

act_draw,
act_alliance,

act_disable_escape,
act_enable_escape,

What are triggers? /4

* Each trigger condition is evaluated, then the actions are performed if all conditions succeed:

static void Trigger_|parse(LISTPTR{TRIGGERNODE) pTriglist) {
S/ parse the conditions for each trigger
ITERATELISTPTR(TRIGGERNODE, pTriglList, pTrigger) {

S/ has this trigger already executed?
if (pTrigger->t.1Flags & TF_COMPLETE) continue;

sgpCurrTrigger = pTrigger;
if (! (pTrigger->t.1Flags & TF_EXECUTING)) {
ff 1f the trigger isn't already executing, parse the conditions

(j_} if (! trigger_cond_parse(pTrigger))
: continue; Jf conditions were not met
pTrigger->t.bCurrfAction = 8; S/ start with action @

1
J

:E Jf execute the trigger's actions
(} trigger_execute(pTrigger);

1
.|

[

What are triggers? /5

static int Trigger_cond_parse(PTRIGGERNODE pTrigger) {

PCONDITION pCond;

for (int i = @3 i < MAX CONDITIONS; i++) {
pCond = &pTrigger- “t. tCDndltidhs[i];

/{ the map editor can be used to disable a conditicn
if (pCond->bFlags & CF_DISABLED)
continue;

Jf mod conmdition indicates the end of the list
if (pCond->bB0pCode == COND_NONE)
break ;

// call the function associated with the current condition
app_assert(plond->bOpCode < NUM_CGNDITION_CODES);
if (sgConditionFcns[pCond->blpCode](pCond))

continue;

Jf one condition Failed -- no need to check the rest
return FALSE:

T

#/ all conditions were met

return TRUE;

o BN TEIiggEr _cond _parse

static void Trigger_execule(PTRIGGERNCDE plrigger) {

ST Bxefute tﬁlgger acticns untll an attlﬁn doesit! t caw&lete

dint resylt = 1;

while {result &% (pTrigger->t.blurrAction ¢ #AX %ETI”HS}; i
pAct = &pTrigger- S thactions[pTrigger-2t. biurrﬂctlmn],

£ nb action indicates fhe end of the Iist

if {(pAct->bOpCode == ACT _RONE) {
pTrigger-3t. bCurriction = BLAS ACTTOHNS
break;

¥

M/ call the action *hﬂctluﬂ
app. . assert(pﬂct =bDptode L MR AET IO EFDFSJ
result = sgActionFons [phct- }b@p[ndehpﬂct)I
if (result)y {

pTrigger-3t . bCurrfAction++;
I

oo 2md triggar execute »

What are triggers? /6 T ————— S —

! ER X! 3 B | Zoom:|100% » | | Layer [Terrain ot [_Plaverl “ | Isometrical v| [o1 w

Help Bebuy

e Classic (visual) trigger editor
(SCMDraft 2.0 — by Henrik
Arlinghaus)

B Classic Trigedit (STINGRAY CONFIDENTIAL)
Flayers with trigoers:

Player &
Al Players

* Note the large values: |
° UnitID Overlay Setfings

lse Defaults ¥

e Death table index s

Terrain;

COMNDITIONS:
° Etc Show Creep Player 2 has suffered at most 5 deaths of UnitID: 15573,
° Memaory at Death Table + -122680 iz exactly 2
ACTIONS:
Display for current player:<13=¢
Modify memory at Death Table + 186877 Subtrac
finder Regions Prezerve trigger,
Microtile Gverlay: CONDITIONS:
Player 2 has suffered at least & deaths of UnitID: 15573,
MNarie Memary at Death Table + -122680 is exactly 2
ACTIONS:
Tile Overlay: Display for current playeri<13=¢
Noi Modify memory at Death Table + 186877 Add &
imis Preserve trigger,
Unite: Switches
Pai Radiis
Range Display:
[C1all Players
Morie

Terrain Symmetry

Mirror Symimetry ~

|:| Mirror-

166, 6 (6.0 Terrain Terran Farce 1 (Tester) |sometrical Terrain Badlands\Mud

What are triggers? /7
e Text trigger editor
e A private build of SCMDraft

shows the EUD overflow
addresses

T Trigedit Alpha 1 *public release”
File Edit View Help

=T -

rTreAe {buggy. dont Gse) x

Trigger | Switches [Unit Properties |

-] Root

=W | Playerf
] Player?
H-i 1 Player8
- Playerd
-1 Player10
] Player!
- Player12
B3 Al
L:i Forcel
| Force?
i Forced

-] Forced

faul

Trigger({"All plawverzs"){ - Trigger: 1

Conditions:
Alway=();

Actions:

Comment ("EUD cIATEOE® ®°A:iT Afe nEZupv);
Set Deaths("Player 4", "Int(169293" Set To, 0):## Addr = 0=x00650%A0: Valus = 0x000000
Set Deaths("Int:-111923", "Terran Marine". Set To, 1) ## Addr = 0x0051CE98; Valus = 0

Preserve Trigaexr():

¥

A

A

Trigger | "Player 1"}{ P Trigger:
Conditions:

2

CDDeaths(“Player 2", "Imt:15573", At most, 5):## Addr = 0x00640B58: Valu=s = 0=00000005

Memorw (4294844616, Ezxactly,

Actions:

0j;#4 Addr = 0=00512684; Values = O0=x00000000

Display Text Message(ilways Display. "s=013¢
Set Deaths('Player 2", "Int 15573", Subtract. 5) #4 Addr = 0=x00840B55. Valus = 0=z0000

Preserve Trigger():

b

o

e

Trigger{"Flayer 1"){ »+ Triggsr:
Conditions: i

3

<:> Death={"Player 2", "Int 15573", At least, 6} ## Addr = 0=00840B53. ¥Yalue = 0=x0000000&

Hemorwi{4294844616, Ezactly.

Actions:

0):## Addr = 0=00512684; Value = 0x00000000

Display Text Hessage(ilways Displaw. "~=013e
Set Death=s("Player 2". "Int:15573". Add. &) ## Addr = 0=x00640B58: Valus = 0=00000006&

Preserve Trigger(};

¥
i

i

Trigaorr{ "Flavar 2"1f /7 Trigasr:-

<

Current Lines 0

The buffer overflow /1

* The buffer overflow bug in question is found in the “Extended Unit Death” trigger
code:

* The death_count() trigger condition
* > Read anywhere primitive

* The set/add/sub_death_count() trigger action
* > Write anywhere primitive

» Triggers are read as-is from the chunk file and stored in a doubly-linked list:

static Bo0L cairieack maphdr_TRIG(HCHUNK hChunk, DWORD dwSize, LPARAM data) |
if (dwSize % sizecof(TRIGGER)) return false;
PTRIGGER pTrigBuf = (PTRIGGER)ALLOCTEMP(dwSize):
if (!ReadChunk(hChunk, pTrigBu+)) {
FREE(pTrigBuf);
return false;

e 5
J

PTRIGGER pTrigger = pTrigBu+;
int aTriggers = dwSize / sizeof(TRIGGER);

for (int m = @, n < ATriggers; n++, pTrigger++) {
if({ |AddTrigger{pTrigger))
break;

-
- 3
-

FREE(pTrigBut);
return trueg;

The buffer overflow /2

* A death condition with out-of-bounds unit type (wType) or player number (dwPlayer) causes the read anywhere
primitive

uLone death_count(Ducrp dwPlayer, UWORD wType, ULONG) {
app._assert(duPlayer < NUM_PLAYER_CODES):
switch (dwPlaver) {
case PLYR THIS:
duPlayer = TriggerPlayer();
break ;

case PLYR_NAVA,

case PLYR_UNUSEDI:
case PLYR UNUSERZ:
case PLYR_UNUSEDS:
case PLYR _UNUSEDS:
return 4;

default:
/J dwPlayer is not a special code -- advance to next switch
break ;
3
switch (wType)
case UNITS ALL:
return s.glGameCounts[C0U_LOST_MEN][dwPlayer] + s.glGameCounts[COU_LOST _BLDGS][dwPlayer];

case UNITS MEMN:
return s.glGameCounts[CoOU_LOST MENT[dwPlayer];

case UNITS _BLDGS:

R e e T e e 00460446 loc_460446: ; CODE XREF: death_count+211]
case UNITS_FACTORIES: pa460446 lea eax, [eaxteax®2]
return s.glGameCounts[C0U_ LOST_FACTORIES] [dwPlayer]; PR168449 lea BCX, [ECK+EEK*4]
default: Badaadac mov eax, (g_s.glUnitCounts+8@48h)[ecx*4]
——3 return s.glUnitCounts[COU UNI_DEATH][wType]l[dwPlayer]; 28408453
- " 00460453 locret_468453:

Tiw end death ceunt w

28468453 retn 4

The buffer overflow /3

A set death action causes a write anywhere and pro
the following primitives:

* [mem] +=|Quantity
* [mem] -=IlQuantity

[mem] = lQuantity

static int act_set_deaths(raction pact) ¢
app-_assert{pict->hJuglitier <« MUM QUALTFIER CODES):
switch (pAct-¥bQualiFier) {
case RIAL SET:
set _deaths(pAct-*dwPlayer, pAct->wlype, pAct-:1Parm)i
break;

case QUAL_ADD TO
add _deaths{pAct->duPlayer, pAct->wType, plct->»1Parm);
break ;

case fRlAL SUB_FRON “
sub _deaths(pict- *dwPlayeér, pAct->wType, pAct-:1Parm)y
break;

~

4
return 1,

et

BB4CSEBD lea ecx, [ecx+ecx*2]

BBAC5ECE lea edx, [eaxtecx™4]

BB4C5ECT mov eax, [ebp+lQuantity]

BB4CSECE mov (g_s.glUnitCounts+8848h)[edx*4], eax

stat
Vic

)

41

« end -set o oe

ic utone set_deaths(ouoro duPlayer, UTYPE wType, ULONG lQuantity) {
app_assert{dwPlayer < NUM PLAYER.CODES):
switch (dwPlayer) {

case PLYR_MAVA; return nava_enum(dwFlayer, wlype, lQuantity, set_deaths);
case PLYR_FOES! returi foes_enum(dwPlayer, wTvpe, 10uantity, set_deaths);
case PLYR_ALLIES! return allies_enum{dwPlayver, wlvpe, l{uantity, set deaths);
case PLYR_NEUTRALS: return neutrals enum{dwPlayer,; wlype, 1Quantity, set_deaths);
case PLYR_A4LL: return all_enum{dwPlayer, wType, 1Quantity, set deaths);
case PLYR_GROUP_A&:
case PLYR_GROUP By
case PLYR _GROUP T
case PLYR_GROUP_D: return group enum(dwPlayer, wiyvpe, IQuantity, set deaths);
case PLYR_UNUSEDL
case PLYR_UNUSEDZ:
case PLYR _UNJSEDS:
case PLYR_UNMUSEDA: return 8;
case PLYR THIS!
dwPlayer = TriggerPlaver()};
break ;
default:
i/ dwPlayer is not a special code -- advance to next switch
break;
} & end switch dwPlayer
! dwPlayer is valid -- give resource tospecified player
if (duPlayer »= NET MAX_ NODES)
return 8}

switeh (wType) {

case UNITS BLDGS:
s.gloameCounts [COU_LGST_BLDGS] [dwFlayer]
break;

1Quantity;

case UNITS _FACTORIES:
z.gliameCounts[COU_LOST FACTORIES][dwPlayer] = lQuantity;

break;
default:
s glUnitCounts[COU_UNI_DEATH][wType] [duPlayer] = 1Quantity;
b!"Eak_‘, _———
} e]
return &,

b

gths:

The buffer overflow /4
e An example of EUD triggers found inside an EUD map:

Trigegeri{"All players"){ // Trigger: 187
Conditions:

Deaths("Player 11", "Terran Marine", At least, 134217728);## Addr = 8xB8S58A3BC; Value = 9x880009080

Actions:
Set Deaths("Player 11", “"Terran Marine", Subtract, 134217728);## Addr = @x@858A38C; Value = @x03000008
Set Deaths("Current Player", "Terran Marine", Add, 134217728);## Addr = 8xB8584398; Value = 8x@3828888
Iy
it bbb b Il
Trigger({"All players"){ // Trigger: 188
Conditions:
Deaths({"Player 11", "Terran Marine", At least, 67188864 ;## Addr = @x8858438C; Value = @xd4888888
Actions:
Set Deathsi{"Player 11", “"Terran Marine", Subtract, 67185864);## Addr = @x@858438C; Value = 8xd4008088
Set Deaths{"Current Player™, "Terran Marine", Add, G67188864);## Addr = @x@8584398; Value = @xd4088000
hy
S fmmmmmmm s e il
Triggeri{"All players"){ // Trigger: 189
Conditions:
Deaths("Player 11", "Terran Marine", At least, 33554432);## Addr = 9x@85B8A38C; Value = 8x@2080008
Actions:
set Deaths("Player 11", "Terran Marine", Subtract, 33554432):## Addr = @x@858438C; Value = 8x82982888
Set Deaths{"Current Player™, “"Terran Marine", Add, 33554432);## Addr = @x@8584395; Value = @x@2080088

EUD map emulation — Problem statement

e Given a StarCraft map that contains malformed
input that triggers a read/write anywhere:
e Isthereis a way to emulate the buffer overflow
in a newer game version where:
e The buffer overflow bug is fixed
* Some addresses no longer exist in the
new game version
* Some addresses refer to new/different
data structure format

* Can the emulator work on different
architectures and operating systems?

Three steps solution

1. Identify
» Identify / trace all the addresses used by an
EUD map

e Build a table of the addresses and identify
what they represent in the game source
code

2. Intercept
* Intercept all out-of-bounds access
* Redirect access using a translation table
* Old address > New address

3. Emulate
1. Missing memory addresses should be
handled by code
2. Dangerous memory changes should be
filtered / changed accordingly (pointers,
function callbacks, etc.)

Implementation challenges

1. Identify
e Unfortunately, we did not have private or

public symbols for StarCraft 1.16.1. | had to
start reversing the game executable from

scratch

* How can | tell what addresses the maps are
accessing?

* What is the goal/intent behind a memory
access?

2. Intercept
1. No problems here. Luckily, we can funnel all

the out-of-bounds read/writes to the
emulation layer

3. Emulate
1. Handle basic memory access emulation

2. Emulate addresses that are no longer present
3. Emulate incompatible structure types

|dentify — Reversing the game /1

1. Reverse engineering efforts were impeded by the
lack of debugging symbols:
* Reverse engineered the game client from
scratch
* Used the closest source code snapshot for
1.16.1
* Found the right compiler (VS 2003) and the
approximate optimization switches
» Now | have debugging symbols for a
binary that is very close to the public
build

2. lused binary diffing plugins for IDA Pro
1. PatchDiff2 - Tenable Network Security, Inc
2. Diaphora - http://diaphora.re/

|dentify — Reversing the game /2

e Binary diffing was limited:
* Mismatched functions between the diffed
binaries
* Global variables were not identified
* Optimized code and inlined functions made
diffing harder

* Resorted to manual reverse engineering to bridge
the limitations from BinDiffing

e Used scripting to automate the reversing task
e Lots of IDAPython scripting was involved

Source code vs D|sassembly V|ew

// returns TRUE if trigger is completed [-
R R R R R R R R R TR E R R = % IDA View-A m g Recent scrpts

static void trigger_execute(PTRIGGERNODE pTrigger

Ltext: 98489130 ; void usercall trigger execute(z_TRIGGERNODE *pTriggerfi<esi>
PACTION pAct; 5 — gger_ (z_ pTrigger@)

Ltext 00489138 public trigger execute
.text:808489130 trigger_execute proc near

pTrigger->t.1Flags |= TF_EXECUTING; Symbol .
b ||.text:88489138 ; CODE XREF: trigger parse:loc_489488lp
/f if this is a victory trigger, there may be a deli —=oeee o || 7 it tree desc a || pext:00489130 mov edx, [esi+z TRIGGERNODE.t.lFlags]
if (pTrigger->t.1Flags & TF_VICTORY) '3 ‘3 tree_desc .text:8@489136 or edx, TF_EXECUTING
sgbVictoryCodes[sgdwTriggerPlayer] = CODE_DELAYE - tree_desc Ltext: 80489139 mov eax, edx
, , , , , - tree_desc .text: 80459136
iiteﬁ::ﬁ: Erii’ger actions until an action doesn't « - tree_desc .text:@@489138 test al, TF_VICTORY
while (’ESUlt 2% (pTr‘igger‘-)t.bCur‘r‘Action < MAX_ACT: {_t TREPLAYI LText: 88489130 mov [esi+z_TRIGGERMODE.t.lFlags]_, edx
pAct = &pTrigger->t.tActions[pTrigger->t.bCurric it TREPULSE -text: 06453143
- &3 TResMNod Ltext: 00489143 jz short loc_489151
// the map editor can be used to disable actions - TResNod: Ltext: 88489143
if (pAct->bFlags & AF_DISABLED) { .text:00489145 mov eax, sgdwTriggerPlayer
//f skip this action ‘*$EESH°:' text:@R4E014A
plrgeer-st.blurrActions; Zg TRIGGER. .text:0848914A mov sgbVictoryCodes[eax], CODE_DELAYED VICTORY
! ’ 518 Lirigger .text:0048914A
- LText:ee489151
/7 no action indicates the end of the list o trigger:t .text:8@489151 loc_489151:; CODE XREF: trigger execute+131]
if (pAct->bOpCode == ACT_NONE) | o _trigger:| . text:08489151 mov eax, 1
pTrigger->»t.bCurrAction = MAX_ACTIONS; - _trigger:t .text:@@489156 jmp short @@loop_start
. break; - _trigger:t .text:@@489156
g o _trigger: SEEMEIOBARGASE § — - - === e
// call the action function -] TriggerPl; Ltext:88489158 align 18h
app_assert(pAct->b0OpCode < NUM_ACTION_CODES); -2 TriggerPli .text:@0439160
result = sgActionFcns[pAct->bOpCode](pAct); -] trigger_al .text:00489160 [@iloop_start:; CODE XREF: trigger_execute+261j
if (result) { . B trigger_al .text:0@489160 ; trigger execute+79)]
, PTrigger->t.bCurrAction++; & trigger_cc .text: 08489168 mov dl, [esi+z TRIGGERMODE.t.bCurrAction]
bl bt reetees (gt B trigger e -text:00489166 cmp dl, MAX_ACTIONS
= 2 trigger_fr .text: 88489169 jnb short @gret_z
//f are we done with this trigger? B trigger_fr -text: 00483163

if (pTrigger->t.bCurrfAction < M&X_ACTIONS) Ltext: 90489166 movzx ecx, dl

return; ! TBIGGER-_ .text:0@48916E shl ecx, 5
, , , il trigger_p: .text:@@489171 test [ecx+esi+z TRIGGERMODE.t.tActions.bFlags], AF_DISABLED
{4 if this trigger paused the game, but never unpaus - -~ i Gam text:80489179 lea ecx, [ecxtesi+z TRIGGERNODE.t.tActions]; act
if (pTrigger->t.1Flags & TF_PAUSED) - TrimGam .text:08489180 jz short loc_48918C
sgActionFens[ACT_UNPAUSE_GAME](NULL); AT oxt:BO4E15E -
/f reset the trigger appropriately - TrimGam .text:@@489182 inc dl
if (pTrigger->t.1Flags & TF_KEEP_TRIGGER) { -4 TRUE .text: 98489184 mov [esi+z_TRIGGERMNODE.t.bCurrAction], dl
pTrigger->t.bCurriction = 8; 4§ TRUE -text:88489184 jmp short loc_4891A7
// Tep.patch 1.85 begin) -4 TRUE .text:@048918A
” fgp.g;;‘éﬁgir.“égt;;lags &= ~(TF_EXECUTING | TF_ABORTE - TRY VEEXETBBABILBEC ; — - - - - mm o mm o m e
1 2] TryAbort! .text:8P48918C
else { B TryAbortl Ltext:0048918C loc_48918C:; CODE XREF: trigger_execute+581]
pTrigger->t.1Flags |= TF_COMPLETE; -l TRYFREE Ltext:8048918C mov al, [ecx+_action.bOpCode]
.) B TryMextO .text:8e48918F test al, al
b« end trigger e By TroMest(l Ltext: 808489191 jz short @@no_opcode

Source code vs Hex-Rays pseudo code

static ¢oid trlgger‘ ﬂXECUtE(PTRIGGERMGDE pTrigger]) {

PACTION pAct;
pTrigger->t,1Flags |= TF_EXECUTING:

/4 iF this i= a victory trigger, there may be a delaved victory whil
if (pTrigger->t.1Flags & TF_VICTORY)
sgbVictoryCodes[sgdwTriggerPloyer] = CODE_DELAYED VICTORY;

/{ execute trigger actions until an action doesn't complete

int result = 1;

while (result &2 (pTrigger->t.bCurrfction < MAX_ACTIGNS)) {
pAct = &pTrigger->t.tActions[pTrigger->t.bCurrAction];

// the map editor can be used to disable actions
if (pAct->bFlags & AF_DISABLED) {
/F skip this acticnm
pTrigger->t.bCurrfction++;
continue;

¥

// no action indicates the end of the list

if (phAct->bDpCode == ACT NONE) {
pTrigger->t.bCurrAction = MAX ACTICHS;
break;

1

/F call the action function
app_assert(pAct->b0plode < NUM_ACTION_CODES) |
result = sgActionFens[pAct->b0pCode] (pict);
if (result) §{

pTrigger->t.bCurrActicn++,

3} «end while resultZZ{sTrigger-»t..::
// are we done with this trigger?

if (pTrigger->t.bCurrhction < MAX%_ACTIONS)
return;

/¢ iF this trigger paused the ‘game; but never unpausad, we want te L ——

if (pTrigger-»t.1Flags & TF_P4UsSED)
sgActionFens [ACT_UNPAUSE GEAME](MULL}Y;

// reset the trigger appropriztely

if (pTrigger->t.1Flags & TF_KEEF_TRIGHER) {
pTrigger->t.bCurrAction = @,

fgp.patch 1.85 begin

pTrigger->t.1Flags &= ~(TF_EXECUTING | TF_ABORTED | TF_NC ABORT)

Tep.patch 1.B5 end
=
&
else {
pTrigger->t.1Flags |= TF_COMPLETE;

8

1t Lrigger execuie #

[

]
B I B O i S = N " YR

L0 LYy
(=]

=

S Y R ST R v T B TS S U ST Y e G S

=

=

| o o

i U S R o
T S S~ LY o s

TT)
B

EXR Y R V]

wodd

1

_ usercall trigger execute(z TRIGGERMODE *pTrigger@<esi:)
unsigned _ int32 trig flag; // =ax

int ok; // =an

unsigned intd bCurAction; // di

int iAction:. [/ ecx

bool b_disabled; // =7

_action *ack; J/ ecx

unsigned _ int8 bOpCode; [/ =l
unsigned int fl; // eax

trig flag = pTrigger-»t.1Flags | TF_EXECUTING;

pirigger-»t.1Flags = trig flag;

if (trig flag & TF_VICTORY)
gbVlctoryCodesLSgdwTr1ggerP13yer] CODE_DELAYED VICTORY;

A

gl =115

do

i

BCurAction = pTrigger-3t.blurrAction;
R

= (unsigned IntS)MAX ACTIONS)

if (bCurActio
break;

r-r»t.tActions[iAction].bFlags & AF _DISABLED) =
ctions[ifcticn];

pTrigger-»t.bfurrAction = MAX ACTIONS;
hreak;
1
ok = sghActionFens[bOpCode]();
iff tok)
break;
+HpTrigger-st.bfurrAction;
;
else

r=»t.bCurrAction = bCurfction + 13

InESYMAX ACTIONS O

= offsetof(z_TRIGGERMODE; m_link};

Automating data structure recovery

[E DA View-A

] [
3

B @

Pseudocode-A

Execute script n
Snippet list Please enter script body
Name names = [“gubUnitFlingy", “guwaAttachedunit™, #
2 Dump all units “gu\f;Defaul?Powerup", “guwInfEstedType 2
&, sHADOW: enerate workspaces guilnitBuildImage", "gubUnitFaceAngle",
‘g "gbUnitHasShields™, "guwUnitEnergy",
. Srippet_1 "gxUnitLife", "gubUnitPriorityPlane”,
| temp: addresses from the web "gubUnitMoveClass™, "gubUnitBaseRank",
. sHaDOwW: generate blocks "gubUnitOrderAI”, "gubUnitOrderInitialize”,
[Dump selected unit types "gubUnitOrderGuard”,
[test unpack "gubUnitOrderAttackUnit",
@ Give minerals "gubUnitOrderAttackTile”, “gubUnitwWeaponGnd”,
] . "gnUnitWeapGndLaunches", "gubUnitWeaponAir”,
F SHADOW: Dump cards to shadow "gnUnitwWeapAirLaunches™, "gubUnitAIData",
2 test.drdsl 4 "gulUnitTypeFlags™, "gubUnitFindEnemy",
gen dummy cards "gubUnitUnmaskTbl™, "gubUnitArmorType",
[o Dump a string table "gubUnitArmorClass”, "gubUnitArmer”,
Load shadow "gubRClickActionType”, “guwReadysSnd”,
[i "guwFirstWhatsnd", "guwLastWhatsnd™,
Analyze triggers B B
- "guwFirstPissedSnd™, "guwlastPissedSnd",
Dump TransWire Buwrl Ef
@ Dump Multselwi "guwFirstAcksnd”, "guwlLastAcksnd",
2 DE:pir'u :rs res "gUnitPlaceboxSize", "gUnitAddOnOffset”,
- P rigg "gUnitBoundBox", “"guwUnitPortrait",
fixup stmts addresses "guwlinitMineralsCost”, “guwUnitGasesCost™,
. bpt: print storm opened file "guwlnitTimeToBuild"”, "guwUnitDepIndex”,
e Detect repeating enum "gubUnitCountInfo™, "gubUnitFoodMade",
& fnc get_symbol() "gubUnitFoodUsed", "gubUnitWolume",
@ func: is_trigger_addr() "gubUnitCargoHold”, "guwUnitScoreMake”,
"guwUnitScoreKill™, "guwUnitCustomName",
| SetFnumComments o Prod ", *gFEditFlags"]
@ refs -bot gbProduct™, EditFlags
p
. Dump StatTbl
start = 0x513C30
. CondTable overfiow
[o DumplLastTrigger def make_table(start):
e TArrayTbl i=e0
qunITSArayDataThl = while True:
@ GFLINGYArrayDataTbl ?‘;s ; idc.Dword(start)
. GPORTDATAArTayDataTbl . °biE;;
@ GTECHDATAArrayDataThl
3 gWEAPONSArrayDataTbl sz = idc.Dword(start + 4)
. QUPGRADESArrayDataTbl cnt = idc.Dword(start + 8)
@ Unit names name = names[i] if i < len(names)
L GetFlags else 'x'
| Import stubs print "[%82d] ('®s' @ %x, %d, ¥d)" ¥
2 flush triggers (i, name, ofs, sz, cnt)
) .)
¥ bpt: dump lst_trigger idc.MakeUnknown(ofs, sz * cnt,
StormImports idc.DOUNK_DELNAMES)
. ActionTable overflow
make dec_test() routine if sz == 1:
L DumpNMames idc.MakeByte(ofs)
< elif sz == v
Line 31 of 43 Line:30 Column:1

Scripting language Python ~ Tab size

[t S EIRAIRRN o LS s L

Run Export | Import

.data:ees513c23 db a

1@8513C38 ; DATA XREF:

@8513C30 TArrayDataThl
188513038 TArrayDataTbl
66513C38 TArrayDataTbl
@513C3@ TArrayDataThl
@513C3@ TArrayDataTbl
188513038 TArrayDataTbl
12513038 TArrayDataThl
1@@513C38 TArrayDataTbl
188513038 TArrayDataTbl
:BA513C38 TArrayDataTbl
88513C32 TArrayDataTbl
@@8513C3@ TArrayDataTbl
TArrayDataThl
TArrayDataTbl
TArrayDataTbl
TArrayDataTbl
:@@513C38 TArrayDataTbl
:@8513C38 TArrayDataTbl
18@513C38@ TArrayDataTbl
188513038 TArrayDataTbl
.data:@8513C3@ TArrayDataTbl
.data:8@513C38 TArrayDataTbl
TArrayDataThl
TArrayDataTbl
@ TArrayDataTbl
TArrayDataThl
.data:@@513C38 TArrayDataTbl
.data:8@8513C38 TArrayDataTbl
.data:8@513C38 TArrayDataTbl
1@@513C38 TArrayDataTbl
188513038 TArrayDataTbl
B@513C38 TArrayDataTbl
1@8513C32 TArrayDataTbl
@@8513C3@ TArrayDataTbl
@513C38 TArrayDataTbl
2513C3@ TArrayDataTbl
188513032 TArrayDataTbl
18@8513C3@ TArrayDataTbl
:@@513C38 TArrayDataTbl
:@8513C38 TArrayDataTbl
18@513C38@ TArrayDataTbl
188513038 TArrayDataTbl
188513038 TArrayDataTbl
#513C3@ TArrayDataTbl
@513C3@ TArrayDataThl
@513C3@ TArrayDataTbl
#513C38 TArrayDataTbl
@8513C38@ TArrayDataThl
.data:@@513C38 TArrayDataTbl
.data:8@8513C38 TArrayDataTbl

.data:8@513C38 TArrayDataTbl

<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset
<offset

80513024 byte_513C24 db 1, 3, 5, 6, 7, &, 3 dup(9), 3 dup(®)
@@513C24 ; DATA XREF: sai_setup_choke_points+lAtr

188513038 public gUNITSArrayDataTbl

:B8513C38 gUNITSArrayDataTbl TArrayDataTbl <offset gubUnitFlingy, 1, 228>
briefing_|

port_init+Eto run_slow_aitr
guwAttachedunit, 2, 228>
guwDefaultPowerup, 2, 228>
guwInfestedType, 2, 96>
guilnitBuildImage, 4, 228>
gubUnitFaceAngle, 1, 228>
gbUnitHasShields, 1, 228>
guwUnitEnergy, 2, 223>
gxUnitLife, 4, 228>
gubUnitPriorityPlane, 1, 228>
gubUnitMoveClass, 1, 228>
gubUnitBaseRank, 1, 228>
gubUnitOrderAaI, 1, 228>
gubUnitOrderInitialize, 1, 228>
gubUnitOrderGuard, 1, 228>
gubUnitOrderAttackUnit, 1, 228>
gubUnitOrderAttackTile, 1, 228>
gubUnitWeaponGnd, 1, 228>
gnUnitWeapGndLaunches, 1, 228>
gubUnitWeaponAir, 1, 228>
gnUnitWeapAirLaunches, 1, 228>
gubUnitAIData, 1, 223>
gulUnitTypeFlags, 4, 228>
gubUnitFindEnemy, 1, 228>
gubUnitUnmaskTbl, 1, 228>
gubUnitArmorType, 1, 228>
gubUnitArmorClass, 1, 228>
gubUnitArmor, 1, 228>
gubRClickActionType, 1, 228>
guwReadysSnd, 2, 186>
guwFirstWhatsnd, 2, 228>
guwLastWhatsSnd, 2, 228>
guwFirstPissedSnd, 2, 186>
guwLastPissedsnd, 2, 1@6>
guwFirstAckSnd, 2, 1@6>
guwLastAckSnd, 2, 186>
gUnitPlacebox5Size, 2, 456>
gUnitAddonoffset, 2, 192>
gUnitBoundBox, 2, 912>
guwUnitPortrait, 2, 228>
guwUnitMineralsCost, 2, 228>
guwUnitGasesCost, 2, 228>
guwUnitTimeToBuild, 2, 228>
guwUnitDepIndex, 2, 228>
gubUnitCountInfo, 1, 228>
gubUnitFoodMade, 1, 228>
gubUnitFoodUsed, 1, 228>
gubUnitVolume, 1, 223>
gubUnitCargoHold, 1, 228>
guwUnitScoreMake, 2, 228>
guwUnitScoreKill, 2, 228>
guwUnitCustomName, 2, 228>

00113C30 00513C30: .data:gUNITSArrayDataTbl

|dentify — Statically identify all addresses /1

StarCraft Remastered collects game telemetry (including map
information, etc.)

As of October 2017, we had around ~603,773 total unique maps played

Of which 17,916 were EUD maps (i.e. contained out of bounds
indices)

After | managed to reverse engineer enough of the game, | wrote a tool

to process all the maps, identify EUD maps and dump the out-of-bounds
EUD addresses

BN Command Shell

|_—" - AII!

s:\All-EUD-Maps

— O
»EUDDuUmp . exe
Usage:

= Do not parse again, just read the he file.
--input map_file Specify the input map file

- -workdir Specify the work directo
--hidden-trigger

ctory whn

[hexofs] Specify the hidden tri

-
>

|_-" - AII!

caches and report files will be generated
gger t within the strings table
s:\All-EUD-Maps>

|dentify — Statically identify all addresses /2

s:\All-EUD-Maps>EUDDump.exe --input % 14d77c3 8b4733.map --workdi

$WALl-EUD-Maps»

View

(S » Al-EUD-Maps » temp » 94d77c3bf291e9e3956d13be350b4733.map v Search 94d77c3bf891e923956... 0O
Mame B Date modified Type Size

| errortt Text Document O KB

) scenario.chk 1/9/ Recovered File Fra... 14,632 KB

=| strings.tet 1/9/ Text Document 44 KE

-| summary.tet 1/9/20 Text Document 7 KB

=| triggers.bd 1/9/2018 10:3 Text Document 251 KB

=] S\Al-EUD-Maps\temp\34d77c3bf891e9e5956d13be350b4733. map\summary.txt - Viewer

File Edit Search View Convert Options Help

Total EUD triggers: 23M1
Unique EUD triggers: 276

-> 8858A364 : 2 hit(s)

-> BO58DCA&L - 38 hit(s)
-> BO58DDBB : 38 hit{s)
-> BO58DDBC : 38 hit(s)
-> BO58DDDB : 38 hit(s)
-> BO58DDDC : 38 hit{s)
-> BO58DDFB : 38 hit(s)

|dentify — Statically identify all addresses /3

* After aggregating the unique EUD
addresses across all of the 17k EUD
maps, | ended up with around ~800
variables used by popular EUD maps

* | wrote an IDAPython script to emit a
table for all the unique addresses,
their names and sizes

1 "addr":
1 "addr":
{"addr":
{"addr":
{'addr":
1 "addr':
{"addr":
{'addr":
{'addr':
1'addr':
1 "addr":
1 "addr":
{"addr":
{"addr":
{'addr":
1 "addr':
{"addr":
{'addr":
{'addr':
1'addr':
1 "addr":
1 "addr":
{"addr":
{"addr":
{'addr":
1 "addr':
{"addr":
{'addr":
{'addr':
1'addr':
1 "addr":
1 "addr":
{"addr":
{"addr":
{'addr":
1 "addr':
{"addr":
{'addr":
{'addr':

gxBaoolaga,
@xB86616ES,
@x8a66l7Ca,
awxBaob2lea,
axB88662268,
dwaaon235a,
dxBa662568,
dxBBo62898,
@x8a661518,
gxBaoo47Ea,
@x8aa5rCla,
@xBas5FDaa,
ax8aa5FFEa,
@x8ao06alva,
dx8e66a26a,
dxaaooad2s,
axBaooacha,
dxdBoearca,
@x8a606a98a,
gxBaooaavTa,
gxBaneacsa,
@x8866aE8a,
ax8a66arca,
gwdaooldda,
axB8a661EES,
dw@aoblrCa,
dxBaob626Ea,
dxBBo62EFa,
dxBa6063483,
@xBaca3sDa,
@xB86063888,
@xB8663638,
aweance3Cla,
awaaoo3DDa,
axB8a663EES,
dwiddonddla,
dwBaond5Ea,
dwdBoe4eCE,
dwBaon4908a,

'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':
'size':

dxaaaaassa,
axaaa8aaEs,
dxaaaaar2a,
dwiaaa8aatcs,
dx8a88aaEs,
dwiaaaaasag,
dwaaaaasoa,
dxB8aaaaEs,
dwaae8alcs,
ax8a88aaEs,
gxaaa8aacs,
axaeaaalcs,
dxaaaaalcs,
dwiaaa8aatcs,
dx8aaealcs,
dwiaaeaalcs,
dwaaaaascs,
dxBeaaalcs,
dwaae8aatEs,
dx8aa88alcs,
dxaaeaalcs,
axaeaaalcs,
dwaaaaasEs,
dwiaaaaaaidd,
dxaaaaaaid,
dwiaaaaaaidd,
dwaaaaalsa,
dxBeaaalcs,
dwaae8alcs,
ax8a88aaEs,
dxaaeaalcs,
dxaaaaaaid,
dwaaaaaaidd,
dwiaaa8aatcs,
dx8aaealcs,
dwiaaaaaatcs,
dwaaaaascs,
dxB8aaaaEs,
dwaaaoaaaca,

"ida_name":
"ida_name":
"ida_name":
"ida_name":
"ida_name"':
"ida_name":
"ida_name"':
"ida_name"':
"ida_name":
"ida_name":
"ida_name":
"ida_name":
"ida_name":
"ida_name":
"ida_name"':
"ida_name":
"ida_name"':
"ida_name"':
"ida_name":
"ida_name":
"ida_name":
"ida_name":
"ida_name":
"ida_name":
"ida_name"':
"ida_name":
"ida_name"':
"ida_name"':
"ida_name":
"ida_name":
"ida_name":
"ida_name":
"ida_name":
"ida_name":
"ida_name"':
"ida_name":
"ida_name"':
"ida_name"':
"ida_name":

"guiUnitBuildImage", 'flags': @},
"gubUnitWeaponair”®, 'flags': @},
"glUnitBoundBox"™, 'flags': @},
"gubUnit&rmorClass", 'flags': @},
"gublUnitOrderInitialize”, 'flags': 8},
"gxlnitLife", 'flags': @},
"gUnitPlaceboxSize"™, 'flags': @},
"gubRClickActionType", 'flags': @},
"gfEditFlags", 'flags': @},

'ghlUnitHas5hields', 'flags': @},
‘gnUnitWeapsirLlaunches', 'flags': 8},
'guwlUnitGasesCost', 'flags': @},
'guwFirstWhatsnd', 'flags': @},

‘gubUnitAIData', 'flags': @},
'guwlnitCustomName', 'flags': @},
'guwlnitTimeToBuild', 'flags': @},
'gbProduct', 'flags': 8},

'guwhttachedUnit', 'flags': @}

1

J ¥
'gubUnitCargoHold', 'flags': @},
'guwUnitDepIndex', 'flags': @},
'guwbeftaultPowerup', 'flags': @},

'guwUnitEnergy', 'flags': 8%},
'gubUnitMoveClass', 'flags': @},
'guwlastAckSnd', 'flags': 8},
'guwlastPissedsnd', 'flags': @},
'guwReadySnd', 'flags': @3},
'gUnitAddOnOffset", 'flags': @},
'guwlastWhatsnd', 'flags': @},
'guwlnitScoreMake', 'flags': @},
'gubUnitArmorType', 'flags': @},
'guwUnitMineralsCost', 'flags': @3},
'guwFirstPissedsnd', 'flags': @3,
'guwFirstaAcksnd', 'flags': @3},
‘gubUnitBaseRank', 'flags': @},
'guwlnitScorekill', ‘flags': @},
'gubUnitVolume', 'flags': @},
'gnlUnitWeapGndLaunches', 'flags': @},
'gubUnitFoodMade', 'flags': @},
'guwlInfestedlype’, 'flags': 83},

|dentify — Statically identify all addresses /4

» Static address discovery was not enough:
 Some EUD maps were dereferencing
pointers and reaching into the heap
* Some structures are complicated and
linked to other structures (linked lists,
TCtrl*, TDialog™*, etc.)

* Need more tools:
* |realized the need for a dynamic EUD
address tracer
* | also needed a way to single step / debug
triggers

* |ldeveloped an EUDTracer, a DLL that hooks the
game and instruments all the relevant trigger
handling code

|dentify — Dynamic tracer /1

* The instrumented game binary calls into the tracer DLL upon each read/write

-text:BO4CSEBC 98 nop L text: 09460446
.text:@H4CSEBD 8D BC 49 lea BCX, |E’ck+e.f:='<*2| Jtext: pEdaR44E loc 458446: ; CODE XREF: death cou
rext:Pe460446 BD 84 40 lea gax, [eaxteax*2] 3 Jumptable @@4683A7 d

el et B8 L) g, lekaeloueneling]

text:80460449 8D oC 81 lea ecx, [ecxteax*4 ; bpt cond deaths:addr

-tewt: BBAC5ECE

.text:884C5ECD 7 " aths: SymbEks
- text:8B4CSECD loc. 4C5ECD: 3 CODE XREF: set death| |3 i ..o . :
. text:B84CSECD _ ; St depthstEbty w.. | | IoELi0MWS0ES =N loc_460453:
.text:@BACSECD E8 FE 61 22 BB call hook set_deaths .text:@@460453 E8 F8 BC 28 @8 gall trace death count
ffl=mmmmmmmm - - - - - - ettt ittt
static void install_tracer_hooks()
1

HOOK_PTR(EHI_COND_PARSE)
HOOK_PTR(EHI_TRIG_EXEC)
HOOK_PTR(EHI_SET_DEATHS)
HOOK_PTR(EHI_SUB_DEATHS)
HODK_PTR(EHI_ADD DEATHS)
HOOK_PTR(EHI_COND_DEATH_COUNT)
HODK_PTR(EHI_TRIGGERS_LDOP)

(DWORD)trigger_cond_parse;
(DWORD)trigger_execute;
(DWORD)eud_act_set_deaths;
(DWORD)eud_act_sub_deaths;
(DWORD)eud_act_add_deaths;
{DWORD)eud_cond_deaths;
(DWORD)eud_triggers_loop;

|dentify — Dynamic tracer /2

* The Python table containing EUD
addresses is passed to a source code
generator to emit C code and tables

* The tracer uses that table to account for
memory access

eud_itemdef t eud_items[EUD_ITEM_COUNT] =

1

DEF_EUD_ITEM(@x8es8C1Fa,
DEF_EUD_ITEM{@xBes8C234,
DEF_EUD_ITEM(@x@@59CE5C,
DEF_EUD_ITEM(@x8853C148,
DEF_EUD_ITEM({@x@868C148,
DEF_EUD_ITEM{@x@868C224,
DEF_EUD_ITEM(@xB8666578,
DEF_EUD_ITEM{@x28528458,
DEF_EUD_ITEM(@xBecs45E8,
DEF_EUD_ITEM{@x@865FC1E,
DEF_EUD_ITEM{@xB@cCEFFS,
DEF_EUD_ITEM{@x28:D126@,
DEF_EUD_ITEM{@x8esCA24a,
DEF_EUD_ITEM{@x@8cD5ECE,
DEF_EUD_ITEM(@x88525444,
DEF_EUD_ITEM{@x88528494,
DEF_EUD_ITEM{@x@e4FFoea,
DEF_EUD_ITEM(@x@e41E80D@,
DEF_EUD_ITEM(@x88655C58,
DEF_EUD_ITEM{@x@8555E88,

Bxoooaabed ,
Bxaagaabad,
Bxeaaaasad ,
Bxea0aaead,
Bxaaaaasaq,
dxaaaaasad,
Bxeaeaazas,
Bxeaaeasad,
Bxe8e0astes,
Bxeae0astEs,
8xegeeadse,
Bxeooabad,
axeaaaaadl,
axaaaaasaa,
Bxooeagaad,
Bxeaoaabad,
axeaaaasac,
axaaaaasasa,
B8x80ee8a8lEs,
Bxe0eealss,

sgpStatDatabDlg),
sgp5tatResDlg),
sgpMinimapDlg),
sgpTextBoxDlg),
sgpStatCmdDlg),
sgp5tatMiscDlg),
gubSpriteCanBeHit),
gfpMtxset),
gnunitWeapGndLaunches),
gnUnitWeapfirLaunches),
gbInvalMap),
gpsquareMap),
gubFlingyMinBank),
gpMtxInfol,
gfpCellBuf),
gfpCellMap),
szlastReplayDesc),
addr_@eed41EeDa),
gzszFidgetSmk),
gsrTalksmk),

|dentify — Dynamic tracer /3

When the game loads an EUD map, the tracer
DLL intercepts all out-of-bounds access

Any unknown address triggers a breakpoint for
further analysis and identification

After | identify an unknown address, | add it to
the Python table which is used to update the
tracer’s EUD items table

vold __stdcall eud_act_set_deaths(
uint3z_t wval,
uint3z_t idx)

N
=y

inc_perf_counter(CT_SET_DEATH);

DWORD addr = MAKE_EUD_ADDR_IDX{idx);
auto eud = eud_get_item{addr, val, 1);

if (eud == nullptr)
DBG_QUT("<Addr %B8x: set_deaths; wal: %@8X:\n", addr, vall;

BPT_ONCE;

[
v

vold _ stdcall eud _cond_deaths(
uint32_t wval,
uint3Z_t didwx)

==

inc_perf_counter(CT_COND_DEATHS);

DWORD addr = MAKE_EUD_ADDR_IDX(idx);
auto eud = eud_get_item(addr, wal, -2};
ff (eud == nullptr)

L

DBG_OQUT("<Addr %@8x: cond_deaths; wval: %@8X>\n", addr, wval);
BPT_ONCE;

[
v

|dentify — Dynamic tracer /4

The tracer’s main role is to guarantee that all
the addresses referred to from the EUD map
are accounted for

vold eud_init_dynamic_items()

x
L

£ Get Storm base
g _storm_base = {(uint3Z_t)GetModuleHandled("storm.dll™);

DBEG_OUT("Initializing dynamic EUD items....\n");

init_stringmap();
init_stattxt();
init_repulse_mapi);
init_triggers_list();

init_mpg_freeze(EUD_ITEM_DBG_MPQ_FREEZE);
init_storm(EUD_ITEM_DBG_STORM_FLAGS):
init_scripts();

init_groups();

init_graphicsi);

init_overlaytrans();

vold init_triggers_list()

s
L

et

std::set<TRIGGERNODE *» visited;

TsList_TRIGGERMODE *pTriggerlist = sc_p_sgTriggers;

for (int iPlayer = @; iPlayer <« NET_MAX_MNODES; ++iPlayer, ++pTriggerlist)
r

1

DBG_OQUT("trigger list %d: %@x\n", iPlayer, pTriggerlList);

TRIGGERMNODE *next = pTriggerlList-:m_terminator.m_next;
for (int iTrig = 8;; ++iTrig)
1

uint32_t trig_addr = uint32_tinext);

/ Terminal?
if ((trig_addr & 8x1) != 8)
break;

* Detect circular
if (visited.find(next) != std::end{visited))
i
DBEG_QUT("found circular dependency for %p in %d.®%d\n", next, iPlayer, iTrig);
break;

* Format the trigger name
char trig_str[92];
_snprint¥ _s{trig_str, _countofitrig_str), "trigh@2d_%esd", iPlayer, iTrig);

-__'—':E, auto trig = eud_insert_item{trig_addr, trig_str, sizeof(TRIGGERNODE));

trig-»>flags |= EIF_SRC_TRIGGERS | EIF_IS_DYNAMIC | EIF_DYNAMIC_NAME;
visited.insert{next);

next = next->m_link.m_next;

=

ldentify — More debugging tools

* Having a way to record all accessed EUD addresses
was not enough to understand the intent behind
the access

e | had no real way to debug an EUD map:
* | needed a way to nicely represent an EUD
address
* | needed to single step after each trigger
* | needed a way to convert a series of
read/write primitives to pseudo-code

ldentify — EUD address to symbolic name /1

Ca:B@@5187ES

.data:
.data:
.data:

If | wanted to trace triggers, | needed to have a way to convert an address
to a nice variable representation
So what is the symbolic representation of:
e O0x5187E8 + (OxC * 3) + 47
» gCards[3].pBtns

1BB5187ES

tBB5187ES
:Ba5137ES
1Ba5187ES
18a5187E
(Bas187
18as187
1Bas187
:BB5187ES
1Ba5187ES
1Ba5187ES
18a5187ES
BB5187ES
BB5187ES
B@a5137ES
1Ba5187ES

O 0o C0 Ca

A

Ca:8a5187ES

18a5187E

ES
(BBs18/ES

a6
D&
FF
@9
B&
FF
a6
la
FF

38785

@7
88
FF

77
FF

TA
FF

7C
FF

5D

FF

FF

7C
FF

SELTITSILSILETLEIZES

3 struct TCard gCards[258]

ee+gCards
aa+

"""" struc ; (sizeof=8xC, align=@x4, mappedto 225)

; XREF: .data:gCards/r

TCard <6, offset sgTMarineCard, @FFFFh>; @

TCard
TCard
TCard
TCard
TCard
TCard
TCard
TCard
TCard
TCard
TCard
TCard
TCard
TCard
TCard
TCard

<3,
<6,
<5,
<@,
<7,
<@,
<9,
<7,
<8,
<6,
<7,
<6,
<@,
<@,
<5,
<8,

affset
offset
offset

pEeeEeaa wBtnCount dd ? ; base 18
boaaaead pBtns dd ? ; offset
BBeaae08 wSecondaryCard dd ?
geeaeeaC TCard ends

; DATA XREF: statomd _set action_btns+1Dtc

; CUnit SetOwner+91ftr ...
sgTGhostCard, @FFFFh>; 1
sgTVultureCard, @FFFFh»; 2
sgCombatCard, @FFFFh>; 3

@, OFFFFh>; 4

offset

sgTTankCard, @FFFFh>; 5

@, @FFFFh>; B

offset
offset
offset
offset
offset
offset

sgTSCVCard, @FFFFh»; 7
sgTWraithCard, @FFFFh>; 2
sgTVesselCard, @FFFFh>; 9
sgTMarineCard, @FFFFh»; 18
sgTransportCard, @FFFFh»>; 11
sgTCruiserCard, @FFFFh»; 12

@, BFFFFh»; 13
@, BFFFFh>; 14

offset
offset

sgCombatCard, @FFFFh»; 15
sgTkerriganCard, 1>; 16

|dentify — EUD address to symbolic name /2

address into a nice symbolic name

» If the array’s indices are
based on enums, then “R”
will properly show the
enum name instead of a
numeric index

With the help of the Hex-Rays decompiler and other
metadata, | wrote the function “R” to resolve an

Please enter script body

Output window

print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print

R(@xe058C348)[1]
R(@x0O58C378) [1]
R(@x@058C3A8) [1]
R(@x0058C3D8) [1]
R(@x0058C408) [1]
R(@x0058C474) [1]
R(@x0058C478)[1]
R(@x@058C498) [1]
R(Ox@O58C4CE)[1]
R(@x@O58C4F8)[1]
R(@x0O58C528) [1]
R(@x@058C558) [1]
R(@x@058C56C) [1]
R(@x@058CE28) [1]
R(@x00580280) [1]
R(@x@0580284)[1]
R(@xEO580288) [1]
R(@x00580314) [1]
R(@x00580338) [1]
R(@x00580340) [1]
R(@x00580368) [1]
R(@x0058D36C) [1]
R(@x00580370) [1]
R(@x00580394)[1]
R(@x0O58039C) [1]
R(@x@O58D3CC)[1]
R(@x@e58D3F8) [1]
R(@x0O58DCE0) [1]

g s.glUnitCounts[COU_UNI_DEATH][UNI_P TRIBUNAL][PLYR_TWO
& 1Uni
%g s.glUnitCounts[COU_UNI_DEATH][UNI_P_ROBOTICS BAY][PLYR_TW0]
&g s.glUnitCounts[COU_UNI_DEATH][UNI_P SHIELD BATTERY][PLYR TwO]
&g s.glUnitCounts[COU_UNT_DEATH][UNT_P_KHAY FORMATION][PLYR_TW0]
&g s.glUnitCounts[COU_UNI_DEATH][UNI_P_TEMPLE][PLYR_TWO]
&g s.glUnitCounts[COU_UNI_DEATH][UNI_MINE_V1][PLYR _FIVE]
&g s.glUnitCounts[COU_UNI_DEATH][UNI_MINE V1][PLYR SIX]
&g s.glUnitCounts[COU_UNI_DEATH][UNI_MINE_V2][PLYR_TWO]
&g s.glUnitCounts[COU_UNI_DEATH][UNI_MINE V3][PLYR TWO]
&g s.glUnitCounts[COU_UNI_DEATH][UNI_CAVE][PLYR_TWO]
2z s.glUnitCounts[COU_UNI_DEATH][UNI_CAVEIN][PLYR_TwW0]
&g s.glUnitCounts[COU_UNI_DEATH][UNI_CANTINA][PLYR_TWO]
&g s.glUnitCounts[COU_UNT_DEATH][UNT_CANTINA][PLYR_SEVEN]
unsigned int *)&g s.gubTechAllowed[@][4
& E_=-8
{unsigned int *)g_s.gublUpgradelevels
{unsigned int *)&g s.gubUpgradelLevels[@][4]
{unsigned int *)&g s.gubUpgradelevels[8][3]
{unsigned int *)&g s.gubUpgradelLevels[2][8]
(unsigned int *)&g s.gubUpgradelevels[2][44]
(unsigned int *)&g s.gubUpgradelevels[3][6]
(unsigned int *)g_s.gublUpgradelevels[4]
{unsigned int *)&g s.gubUpgradelevels[4][4]
{unsigned int *)&g_ s.gubUpgradelevels[4][8]
{unsigned int *)&g s.gubUpgradelevels[4][44]
{unsigned int *)&g s.gubUpgradelevels[5][6]
{unsigned int *)&g s.gubUpgradelevels[6][8]
(unsigned int *)&g s.gubUpgradelevels[7][6]
{unsigned int *)g_s.gExtMapRegions[@]

Python

|dentify — Static pseudocode generator /1

SCMDraft trigger editor textually represents the trigger script:

Tl‘iggﬁl""i“ 't Team 1 |;",™ |; Team 2 |;"){ // Trigger: 1822
Conditions:

Deaths({"Current Player"™, "Right Wall Flame Trap", Exactly, 1);## Addr = @xB858CEE8; Value = @xPaasaasl
Deaths({"Current Player", "Right Upper Lewvel Door™, Exactly, 2);## Addr = 8x@858CA38; Value = @x@a8888a2
Deaths({"Current Player"™, "Mineral Field (Type 1)}", Exactly, 11);## Addr = 8xBE53C4958; Value = 9x@288288E
Bring("Current Player"™, “"Terran Science Vessel", "Inwvalid Location"™, At least, 1);

Bring("Current Player", “"Terran Science Vessel", "Invalid String", At least, 1);

Actions:

set Deaths("Current Player", "Floor Missile Trap™, Set To, @);## Addr = @xBE58C948; Value = 8xP2828888

set Deaths({"Current Player", "Right Wall Flame Trap", Set To, 188);## Addr = 8xB@58CESE8; Value = 8xeReReaL4
set Deaths{"Current Player”, "Right Wall Missile Trap", Subtract, 25);## Addr = 8w@853CESE8; Value = @x@8a8aals
set Deaths("Current Player™, “"Terran Valkyrie™, Add, 58);## Addr = 8w88584ETE; Value = @ue0aR8832

Set Deaths("Current Player", "Right Upper Level Door"™, Set To, @);## Addr = @x@858CA3E8; Value = @x8e888808
set Deaths("Current Player", "Protoss Shield Battery™, Set To, 144);## Addr = @xBAS5EC3IDE; Value = 8xB8a28894
Move Location{"Current Player™, "Terran Science Vessel™, "Invalid Location®™, "Invalid Location™);

Remove Unit{"Current Player", “"Terran Science Wessel");

set Deaths("Player 7", "Protoss Arbiter™, Set To, 12);## Addr = @x@858E8CC; Value = @xoas8a8aC

set Deaths("Player 12", "Int:18768", Add, 28985954):## Addr = 8xB86R6298; Value = @x@13FRE88

set Deaths("Player 4", "Int:27278", Add, 1473);## Addr Ax@aeCoCod; Value AxaaaaasCl

set Deaths({"Player 2", "Int:27284", Add, 1287);## Addr dx@aeCoF28; Value axaaaaasai

set Deaths("Player 11", "Int:27278", Add, 48);## Addr = @x886C9E2C; Value = @xPR088825

Create Unit with Properties("Current Player", "Yggdrasill (Qverlord}", 1, “"Invalid String", 3);

set Deaths({"Player 12", "Int:18768", Subtract, 28985984);## Addr = BxBBEREZ9E; Value = BxA13FaRER

set Deaths{"Player 4", "Int:27278", Subtract, 1473);## Addr dxa8acCoC98,; Value = @x88a8a85C1

set Deaths("Player 2", "Int:27284", Subtract, 12&87);## Addr dx@acC9F28; Value = @xaa82a5a7

set Deaths("Player 11", "Int:27278", Subtract, 48);## Addr = @x@86C9E2C; Value = @xo@800828

set Deaths("Current Player", "Right Wall Flame Trap"™, Set To, @);## Addr = @xBASECEEE; Value = @xPaaaaaaa
Play WAV("soundi‘\Bulleth\zdeAtt®&.wav", @);

Comment { "+a%0XAA0") ;

Preserve Trigger();

« end Trigeger

|dentify — Static pseudocode generator /2

class stmt_t(object):

def _Ii.l‘l:i.’l:_(seCIlFJ func,
stmt="",
generic=True, addr=8,
sym=None, compare=Hone,
value= @, wvar=HNone,
is_cond=Falsze,
eud_idx=MNone,
parent=None):

* | wrote a converter from the triggers text to C pseudo-code
(convert triggers to an AST and then emit as C pseudo-code)

self.func = func
merstatement Function name
self.stmt = stmt

"""Raw statement"”""
self.addr = addr

"""Target or source gddress"""
zelf.eud_idx = eud_idx

erarer

def trigchpcm, dbg_output_file=Falsze):

try: \ \ \ """EYD index os coptured by trocer”""
Check if IDA is running self.sym = sym
R Trrsymbol ot oddressttt

¥ Convert all addresses to names
out_fn = fn + '".tmp’'
trig_to_trigaddr(fn, out_+n)

Switch input file
t=Ffn + ".cpp’

self.compare = compare

" Comparator or operotor™”™
self.value = value

" "Target or source value
self.generic = generic
"UrGeneric stotement U
self.var = var
mrrdarigble name from stotement”"™
zelf.is_cond = is_cond

ererer

fn = out_fn "e*Is this an action or condition™""
out_fn = t
except: zelf.parent = parent

No address conversion
out_fn = fn + '.cpp’

f = openifn, 'r')
lines = f.readlines()

f.closel) self.expr = expr sym = self.sym if self.sym is not None else self.var
: stmt = self.stmt
% EFEEFE 3 parser N _ ‘S'E:!;'F-i:ddr = addr o if (sym is not None) and (self.value is not None) and (self.compare is not None):
p = triglang.parser_t(lines, False) Trigger node oddress value if sym.startswith('&")
sym = '_ " + sym[1l:]
Parse input file self.id = id .
p.parse(dbg_output_file) U Trigger serigl number™™™ -itf Treat wvalue as number or string
- - ry:
f = open({out_fn, "w') self.conditions = [] stmt = "%s ¥s @x%@8X" % (sym, self.compare, self.value)
= Ty . - except:
for trigger in p.triggers: self.actions L] stmt = "%s %s %s" % (sym, self.compare, self.value)

f.write{str(trigger) + "\n")
f.closel)
Expose the parsed triggers

global ptriggers
ptriggers = p.triggers

class trigger_t(object):
def _init_(self, expr =

zel¥.in_conditions = False
zelf.in_actions = False

self.raw_body = None
"URow trigger body”""

self.obj_body = None
" Trigger body as a Python object™™™”

"', id = @, addr=2):

def

"r"Porent. Usuolly the trigger”™"

__str__(se1s):

"rrRender stotement to stringtt”

if self.is_cond:

stmt = "(%s)" % (stmt.replace(';', ''))

else:

stmt = "%s; // %@8x " % (stmt, self.

return stmt

addr)

i

|dentify — Static pseudocode generator /3

Trigger text converted to C pseudo-code (trig2cpp()):

I ,ar

i1 Team 1 |;"," |i Team 2 |;

void trigger _1@22()

1

if ((

(-
(
(
(
(

g s.glUnitCounts[COU_UNI_DEATH][UNI_STARTLOC][PLYR_TWD] == @xB000a881)) &%
(g =.glUnitCounts[COU_UNI_DEATH][UNI_INSTALL_ SPIKED DOOR1]J[PLYR_TWO] == @x88088082)) &
(_ g _s.glUnitCounts[COU_UNI_DEATH][UNI_MINE_V2][PLYR_TWO] == @x88880080E5)) &&
Bringi{"Current Player™, “"Terran Science Wessel™, "Invalid Location", At least, @x98888881)) &%
Bringi{"Current Player", "Terran Science Wessel", "Invalid 5tring", At least, @x888888a81)))

g =.glUnitCounts[COU_UNI_DEATH][UNI_INSTALL _HATCH][PLYR_TWO] = @x@0000808, // @858c9asd
g _=.glUnitCounts[COU_UNI_DEATH][UNI_STARTLOCI[PLYR_TWO] = @x@@0@09s4; // @@58chss

g s.glUnitCounts[COU_UNI_DEATH][UNI_INSTALL WALL_ FLAMERF][PLYR_TWO]

g_s.glUnitCounts[COU_UNI_DEATH][UNI_Z_COCOON][PLYR_TWQ] += 8x28888432,

g_s.glUnitCounts[COU_UNT_DEATH][UNI_INSTALL_SPIKED_DOOR1][PLYR_TWO]

-= @xaeaasala,; ;7 8as53ch53
S5 eB5BacTa
= @x@80aaaaa; s/ BB55cais

g_s.glUnitCounts[COU_UNI_DEATH][UNI_P_KHAY_FORMATION][PLYR_TWO] = @x80022298; // @858c3d3

Move Location{"Current Player", “Terran Science Vessel", "Invalid LDcatiun“, "Invalid Location");

Remove Unit("Current Player", "Terran Science Vessel");

_ g s.glUnitCounts[COU_UNI_DEATH][UNI_P_ARBITER][PLYR_SEVEN] = 8x@888888C; // 8853b8cc

_ guwSpriteImage[SPR_Z_MUTALID DEATH] += @x@13F@8e8; // ©B666298
_ gxFlingyAccel [FLI_7_OVERLORD] += @x@888as5Cl; // 886c9c9d

_ gxFlingyMaxVel[FLI_Z_OVERLORD] += 9x@0088587; // ©86c9f218

_ gubFlingyMaxTurn[FLI_Z_OVERLORD] += @x@8888828; 7/ @86cIelc

Create Unit with Properties("Current Playver", “"Yggdrasill (Overlord)™, 1

_ guwSpriteImage[SPR_Z_MUTALID_DEATH] -= @x@13F@e28; // ©B665290
_ gxFlingyvAccel [FLI_Z_OVERLORD] -= @x@888asCl; // 8Bec9coe

_ gxFlingyMaxVel[FLI_Z_OVERLORD] -= @x98808587; // @86cIf28

_ gubFlingyMaxTurn[FLI_Z OVERLORD] -= @x@e@88a82s8; // @8aclec

¥

"Invalid String", @xea8288a83);

= =.glUnitCounts[COU_UNI_DEATH][UNI_STARTLOCI[PLYR_TWO] = ©x@0000008; // 0858chss

Play WAV ("sound‘\\Bullet\\zdeAttel.wav", Sx08808888),;
Comment ("+3X0XAAL") ;
Preserve Trigger();
¥ « end if ({_g s.glinitCounts[C...
¥ « end trigger_1822

|dentify — Dynamic pseudocode generator /1

([[T T T T 5 T O [(- T |

With IDA’s conditional breakpoints and the Appcall feature,
| wrote a dynamic pseudocode generator:

It helps debug the map trigger logic during runtime

It helps in the discovery and understanding of
dynamic triggers (generated by the EUD compiler

from trgk)

Conditional breakpoints are set at strategic entrypoints
(pre, in and post trigger execution)

Abs
Abs
Abs
Abs
&bs
Abs
Abs
Abs
Abs
Abs
&bs
Abs
Abs
Abs

Ox42CEEC
0x42CET1
Ox40044C
Ox45891E8
Ox4891F2
0x459478
(x4 5BEC
(4 5EFA,
Ox4C5075
Ox4C5ECE
Ox4CaCCo
Ox4CaCDF
O 4CaCFS
Ox4CaD0B

bpt_cond_deaths(stage=0)
bpt_cond_deaths(stage=2)
bpt_cond_deaths(stage=1)
bpt_trigger_parse(stage=2)
bpt_trigger_parse(stage=2)
bpt_trigger_parse(stage=0)
bpt_act_set_deaths(stage=1, reg="ecx")
bpt_act_set_deaths(stage=1, reg="ecx")
bpt_act_set_deaths(stage=1, reg="eax’)
bpt_act_set_deaths(stage=1, reg="edx")
bpt_act_set_deaths(stage=0)
bpt_act_set_deaths(stage=2)
bpt_act_set_deaths(stage=2)
bpt_act_set_deaths(stage=2)

Break
Break
Break
Break
Break
Break
Break
Break
Break
Break
Break
Break
Break
Break

cond_deaths: start
bpt_cond_deaths:flush
cond_deaths: symbols
flush trig

flush trig

trigger: start one

loc_4C5BFA

act_set_deaths: capture
act_set_deaths: flush (sub)
act_set_deaths: flush (add)
bpt_act_set_deaths:flush

EUD frace
EUD frace
EUD frace
ELID trace
EUD frace
EUD frace
EUD frace
EUD frace
EUD frace
ELID trace
EUD frace
EUD frace
EUD frace
EUD frace

|dentify — Dynamic pseudocode generator /2

* Conditional breakpoints dynamically build the AST on access

der bpt_trigger parse(stage-s, reg=lione): d=r bpt_act_set_deaths(stage-s, reg-ione):
"Colled to hondle o trigger Lifetime""™" ""“Called to handle the set death action Lifetime™""
global last_trig global last_action
bpt_ret = val_resume_bpt
% (Capture
¥ if stage == @ and last_trig:
¥ Capture if not reg:
if stage == reg = 'Ecx’
if not reg:
reg = 'esi' ok, _act = tp_action.retrieve(getattr{cpu, reg))
if not ok:
trig_addr = getattr(cpu, reg) print(“Failed to deserialize condition!™)
last_trig = triglang.trigger_t(# Suspend
return 1

id=len(triggers),

addr=trig_addr) value = _act.1Parm & OxFfFEFFFFf
last_trig.expr = "Trigger address %x ; %s" % (trig_addr, get_symbol(trig_addr)) last_action = triglang.stmt_t(
func = 'Set Deaths',
is_cond = False,
Flush . stmt = 'Set Deaths(%@8X, %08X, %d, %08X)' % (_act.dwPlayer, _act.wType, _act.bQualifier, value),
elif stage == 2 and last_trig: value = value,
4 Only remember non empty triggers compare = triglang.OPERATORS_TABLE[_ act.bQualifier])
if not last_trig.empty(): # Extract address
triggers.append(last_trig) elif stage == 1 and last_action:
L . last_action.eud_idx = getattr(cpu, reg)
1f single_step triggers > @: last_action.addr = E(last_action.eud idx)
print triggers[-1] last_action.sym = get_symbol(last_acticn.addr)
if single_step triggers == 1; # Fluzh
bpt_ret = 1 elif stage == 2 and last_action:

last_trig.add_stmt(last_action)
last_action = None
last_trig = None
Always resume
return bpt_ret return val_resume_bpt

Demo — Dynamic pseudocode generator /1

 The debug script has a ‘Single step’ switch to break after each trigger
* Pseudocode is emitted on the fly

\tm‘t 'Set Dnath)" (T e APt File Edit Jump Search View Debugger Options Windows Help
value - value, o Ok wd 3000 EH AFF/ S D EY 8
trigl .OPERATORS_TABLE[_act lifier]) |
- last action: EmaviewaB | Fereakpoints £ = Recent seripts [oy General registers B = Output window a8
@ exi.004891D8 // Resot - S CUTTS TEMet— e JSEPrapstrs— = AR ==
.text: 88489108 and eax, not (TF_EXECUTING or TF_ABOF }
File Edit View VM Tabs Help .text:884891DB mov [esi+z_TRIGGERNODE.t.bCurrActicn]

(=} Win7x86Pro

.text:@84891E2
-text:884891E8
-text:ee4891E8

mov

-text:8e4891E9

.text:984891E9
.text:984891E9
.text:984891E9
Ltext:884891EC
.text:8e4891EC
.text:884891F2

.text:084891F2 @0

.text:
.text:
-text:
-text:

BB4591F2
BB4591F2
BB4891F2

Ltext:

loc_4891E9:; CODE XREF

[esi+z TRIGGERNODE.t.lFlags], ea>
retn; flush trig

eax,

trigger execute+!
TF_COMPLETE

[esi+948h], eax

er execute+8BTJ

// Trigger address 7837ze8 ; (unsigned int *)&unk_7837Ac8
void trigger_19()

{
if (((_ g_s.glUnitCounts[COU_UNI_DEATH][UNI_T_MARINE][PLYR_NEUTRAL SLOT] >= @x2ee188ea)))
r
1
_ g s.glUnitCounts[COU_UNI_DEATH][UNI_T MARINE][PLYR_NEUTRAL SLOT] -= @x00018000; // 08583300
(unsigned int *)&gpMapStrs += @xeeeleess; // 685993d4
b
}
// Trigger address 7842558 ; (unsigned int *)&unk_7842558
void trigger_20()
r
1
if (((_ g_s.glUnitCounts[COU_UNI_DEATH][UNI_T_MARINE][PLYR_NEUTRAL SLOT] >= @x@0e88480)))
{

_ g s.glUnitCounts[COU_UNI_DEATH][UNI_T_MARINE][PLYR_NEUTRAL_SLOT] -=
unsigned int *)&gpMapStrs += @x8@BEE4B8; // BB5993d4
= gpHap

8x60600400; // BB582390

.text: 8489200 ;| =============== SUEB OuUTI E == 1 }
- text: 00489200 !
.text:ee459280 - . - - P
.text:8848920@8 ; signed int _ usercall trigger cond par: izi;rtgsere:dgziis ZESEEY-R(un=znedhinti)Sunk 7830608
.text:884892608 public trigger cond parse 7 BEET
.text:884892008 trigger cond_parse proc near i -
= — 5 I TH N M N PLYR_NEUTI T] »=
.text:B6480200 ; CODE XREF: trigger parset28ip } (((_ g_s.glunitCounts[COU_UNI_DEATH][UNI_T_MARINE][PLYR_NEUTRAL_SLOT] Bxeapesssa)))
‘:E:tfggigggg? pus: = _ g_s-glunitCounts[COU_UNI_DEATH][UNI_T_MARINE][PLYR_NEUTRAL_SLOT] -= @x@@eeeaie; // 8853a390
- Lexts pus sdL (unsigned int *)&gpMapStrs += @x@@AEEE48; // B85993d4
.text: 884892602 mov esi, eax }
.text:88489284 xor edi, edi }
MENL .text:88489206 add esi, z TRIGGERNODE.t.tConditions.
':ez:igg:ggggg e i [// Trigger address 784b36@ ; (unsigned int *)&unk_784B36@
-rets void trigger_22()
Ltext:e8489218 { -
.text:00489210 loc_48921@:; CODE XREF: trigger_cond_par: - -
- - = f .glunitC ts[COU_UNI_DEATH][UNI_T_ MARINE][PLYR_NEUTRAL SLOT] »= @x@aseas2e
.text:@9489210 test [esi+(_condition.bFlags-8Fh)], 2 1 W& EeE T (W LA [T IRRE S0 x)
loiduectinputiothisVMiclickinsidelonpiessiCtriiG. 'teztfggi:ggii i short loc_489220 _ g s.glUnitCounts[COU_UNT_DEATH][UNI_T MARINE][PLYR NEUTRAL SLOT] -= @x@@800020; // 0@53a398
. srexts . (unsigned int *)&gpMapStrs += @x8@eee0208; // 885993d4
.text:80489216 mov [esi] 1
[_cond.delayer"_. _con .text:88489218 test al, al)
000291ES 004851E5: trigger execute+BE W
pare=triglang.OPERATORS_TABLE[_ cond.bQualifier]) < > Python

Demo — Dynamic pseudocode generator /2

 The “Single step” switch can be configured to print the pseudocode on the fly as the map triggers executes
without suspending the game

single step trﬂlgﬂerﬂs

File Edit Jurnp Search View Debugger Options Windows Help

> ook “F 300w @F @ 400 8Y B
N R IIIlll||H\I!|l||I|H\|||I\|!|H|||\I\|l| AT ﬂl||!Hl\llllll!||lIIII|ﬂHI||\IIIlll||!|\|I|l||IIII\||II\|!lH|||\|\|l||||!|\l\|l||||!||l|

Illlllll!I\II|l||||H\IIII\Illl||||\I\|ﬂlﬂ!|\l||l||||!||l|||\|ﬂ|||||\|l

Ij_.] DA View-A [Eﬂ] Breakpoints [,_) Recent scripts [o General registers (%] Output window
&) vinTis6Reo - Viware Workstation « | [text:ep4assins // Reset ~
S —— E— - .text:884891D8 and sax, not (TF_EXECUTING or TF_ABOF
File Edit View VM Tabhs: Help 11 i sl T Ll Faly .text:884891DE mov [esitz TRIGGERMODE.t. btu“"hc’ucm~
— .text:B84891E2 mov [esi+z TRIGGERMNGDE.t.1Flags], ea>

‘text:PB4891ER retn; fiush trig
Ltext:084891E8

Ch e i R0 0 TR B R S S e o e e
.text:684891E9
text:8B4891EY
text:BB4891ES
.text :B84891EC
LEext:BB4391EC
-text:8e4591F2
Stext:@B4891F2 @dret:; CODE XREF: trigger execute+s8BTj

(5 Win7x86Fro

r_executets

-textiee4591r2

.text:084891F2 trigger execute endp

<text:Be489IF2

AEeXTI0BABIIFZ | oo e
pnt

.text:eﬁ#BQZBB

Ltext 8489200 ===s==========='5 U B 0O U 7T
-text:0@489208

.text: 66489200

Ltext:80489280 ; signed int _ usercall trigger cond_par:

text:88489200 public trigger cond parse

-text:88489200 trigger cond_parse proc near

-text:884539208 ; CODE XREF: trigger parss+284p

.text:@B489200 push esi

.text:98489201 push edi

.text: 08489202 mov esi, eax

Ltext:8e489284 xor edi, edi

Ltext:88489286 add esi, z TRIGGERMODE.t.tConditions.
.text:88489289 lea esp, [esp+@]

-text: 02489209
Ltext: 88439218

.text:09439216 loc 48921@:; CODE 1 trigg ||
! -text:e8489210 test [esi+(ccndl’clon bFlags-oFh)], 2
To direct input to this VM, click inside or press Crl+G.)] i -text: 08489214 jnz short loc_ 485220
= : 2 .textiBB459214
opCode cpu.Eax .:ext:ggﬁ:zgi: mov ai, [isi]
- a 2 3 test
opCode Appcall .Consts.NUM_CONDITION CODES: =% i =g =
print("0Overflowing condition code opCode) 0008515 004851E8: trigger execute+BS v

1 < > Python | |single_set

Intercept /1

In the first step (identify):
1. We built all the required static and dynamic tracers

2. We created the EUD table with all known addresses
and their symbolic names

3. We have enough tools to identify any address and
trace where it came from

Now we need to intercept the out-of-bounds access in
the new code base

Intercept /2

Read primitives interception

switch (wType)
{

case UNITS_ALL:

return bOverflow ? @ : s->glGameCounts[COU_LOST_MEN][dwPlayer] + s->»glGameCounts[COL
case UNITS_MEN:

return bOverflow ? @ : s->glGameCounts[COU_LOST_MEN][dwPlaver];
case UNITS_BLDGS:

return bOverflow ? @ : s->glGameCounts[COU_LOST_BLDGS][dwPlayer];
case UNITS_FACTORIES:

return bOverflow 2 @ : s->glGameCounts[COU_LOST_FACTORIES][dwPlayer];

default:
if (b _eud is eud_map)
i
auto pCond = (PCONDITION)1Param;
return eud_cond_deaths(
dwPlayer,
wType,
pCond) ;

¥
app_assert(wlype < NUM_UNITS);
return bOverflow 2 @ : s->glUnitCounts[COU_UNI_DEATH][wType][dwPlayer];
} « end switch wType »
} « end death_count »

Write primitives interception

1

o Bnd
S = R F

I

default:

if (b_eud_is_eud _map)

{
eud_set_deaths{dwPlayer, wType, lQuantity, @);
return @;

hy

if (bOverflow || wType >= NUM_UNITS)
return 2;

g-»glUnitCounts[COU_UNI_DEATH] [wType][dwPlayer] =
break;

end switch wType
return 2;

2

et_deaths »

1Quantity;

Intercept /3

* From the emulator’s perspective, all EUD map logic boils down to two actions:

1. Read anywhere - value = read_vmem(eud_addr)
2. Write anywhere - write_vmem(eud_addr, value)

// Base of the EUD overflow in SC 1.6.1
#define EUD_OVERFLOW_BASE .
{Ex582324 + (3 /*COU_UNI_DEATH*/ #* 228 /*NUM_UNITS*/ * 12 /*MAX_PLAYER_SLOTS*/ * 4 f*sizeo?fﬂWﬁRD)*f})

S/ Helper macro to return a 5C 1.6.1 address from dwPlaver and wlype
#define EUD_MAKE_ADDR(dwPlayer, wlype)

(EUD_OVERFLOW_BASE + ((dwPlaver) + 12 * (uintlé_t)(wType)) * 4)

uint3z_t eud_cond_deaths bool @Ud set deaths:
uint3z_t dwPlayer, uint32_t dwPlayer
unsigned short wlype, unsigned M}F\TTQEE
vold *pcond) . - - g
r glntBa_t 1Quantity,
GET_EUD_ADDR ; int q)
1
.'Ir* ll.":k
;?tur‘ﬂ s.glUnitCounts[COU_UNI_DEATH][wType][dwPlayer]; s.glUnitCounts[COU_UNI_DEATH][wType][dwPlayer] = 1lQuantity;
+
!
eud_value_type value; .) .
bool ok = eud emu->read_vmem{addr, value); if (!eud_emu->write_vmem(addr, lQuantity, q))
if (lok) eud_fail(addr);
{ return false;
eud_fail(addr); B

1 return @; return true;

I
return value;
T « end eud_cond_deaths =

el

Emulate

In basic scenarios, the emulation is very simple:

1. Compute the full virtual address (EUD
address) from the dwPlayer and wType
indices

2. From the EUD address, find the equivalent
new address (backing data) in the current

game version

3. Compute the offset and read or write from/to
the new address

Emulate — Variables mapping /1

¥ statport.cpp
{'src_file': r'SWAR\lang\statport.cpp',
'addr': @x@86B4ACT4, 'size': @x2P908881, 'ida_name': 'sgbstatPortUpdate', 'flags': 8%,

* Let’s extend the previous Python
Flingy

table and attach the source file ['src_file': r'SWAR\RetailGenerated\lang\FLINGY.CPP', 'group': 'Flingy',
‘addr': @w88BC9858, 'size’': @w8@9888801, 'ida_name': "gubFlingyMoveType®, 'flags': @},

name were each variable is {'addr': @xP@ECI938, 'size': 0x000EO344, 'ida_name': "gxFlingySlow", 'flags': @},
{'addr': @x@86C2C78, 'size': 9x@988A8142, 'ida_name': "gxFlingyfccel™, 'flags': 8%,
|Ocated {'addr': 9x@86C2E28, 'size': @x988888D1, 'ida_name': "gubFlingyMaxTurn", 'flags': @},

{'addr': 9w@86C9EFE, 'size':@ 9xB0808344, 'ida_name': "gxFlingyMaxWel", 'flags': 8},
{'addr': @x@86CA318, 'size': @x@8888142, 'ida_name': "guwFlingySprite", 'flags': @},
{'addr': @x@8aCAZ48, 'size': @x888888D1, 'ida_name': 'gubFlingyMinBank', 'flags': @},

* The table defines: virtual # Glues
. . . {'src_file': r'SWARMlang\glues.cpp',
addreSS, |tem S|Ze, source flle "addr': @x@858E864, 'size': 9x9P000884, 'ida_name': 'sgnPrevPalld', 'flags': 8%,
name, emulation flags, and ¢ reoiee
uls
1 1 {'src_file': r'SWARNlang\repulse.cpp', 'group': 'Repulse’,
baCklng Varlable name "addr': @x@86D5CD8, 'size': 8x800288884, 'ida_name': “"sgpRpMap", 'flags': 'EIF_SRC_REPULSE_PTR | EIF_IS_PVOID',

'const_size': 'REPULSE_MAP_SIZE', 'gen_opt': GEN_NO_SASSERT | GEN_FORCE_EXTERN?,

¥ Net_data
{'src_file': r'SWAR%lang\net_data.cpp',

'addr': @x@857EEE®, 'size': @x888881E8, 'ida_name': “"gPlayerData", 'flags': 'EIF_SRC_PLAYER_DATA'ZY,
{'addr': 9x@8512678, 'size': 9x00808884, 'ida_name': 'g ActiveNationID', 'flags': 'EIF_SRC_NATION_ID'Z,
{'addr': 9x@8512684, 'size': @u00E08884, 'ida_name': 'g LocalNationID', 'flags': 'EIF_SRC_NATION_ID'Z,
{'addr"': 8x@851267C, 'size': Ox@2888884, 'ida_name': 'g_ActiveHumanID', 'flags': "EIF_SRC_NATION_ID'Z},

{'addr': @x@@857FaE4, 'size': @x88088881, 'ida_name': 'gbMultiPlayerMode’, 'flags': 'EIF_READ ONLY'},
{'addr': 9x@857F898, 'size': 9x89800884, 'ida_name': 'gdwDefTurnsInTransit','flags': "EIF_READ_ONLY'},

Emulate — Variables mapping /2

Running the EUD table generation script patches the source code and exports all referenced variables:

sc_eud _gen.py ® X sc_eud_data.py

src_grp.append(item)

~ src_file, items in source_files.items():
if not patchin_eud_itew(cs.path.jcin(SDURCE_pPDCESSing

print(“[!] Failed to patch-in EUD %d i:éppocessing
Processing
Processing
Processing
Processing
Processing
Processing
os.path. join(SOURCE_CODE BASE DIR, Tlprocessing

y: _ Processing
f = open(src_file, 'w') Processing

src_file =

Processing
EXTErn processing

Processing

VAN AUTOGENERATED. MATpbrocessing

f.write(" THIS FILE IS
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing

#include <cstdint:

% EUD_IFDEF_COND)

~ item in EUD ITEMS TABLE:
if item should gen extern_decl(item):
ida_name = item['ida name']

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

D

:\Projectsi\Bli
\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\langiselect.cpp
:\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\lang\event.cpp
:\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\lang\CUnitCombat.cpp
:\Projectsi\Bli
:\Projectsi\Bli
:\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\lang\TechTree.cpp
:\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\RetailGenerated\lang\IMAGES.CPP
:\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\langinet time.cpp
:\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\langieud table.cpp
:\Projects\Blizzard\Games\game-starcraft\Starcraft
:\Projects\Blizzard\Games\game-starcraft)
:\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\lang\gamesnd.cpp
:\Projectsh\Blizzard\Games\game-starcraft\Starcraft\SWAR\lang\CUnitInit.cpp
:\Projects\Blizzard\Games\game-starcraft
:\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\lang\victory

:\Projectsi\Bli
:\Projects\Blizzard\Games\game-starcraft)
:\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\1lang\TAI_AreaStrength.cpp
:\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\lang\repulse.cpp

:\Projectsi\Bli
:\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\lang\Allowed.cpp

:\Projects\Blizzard\Games\game-starcraft\Starcraft\SWAR\RetailGenerated\lang\TECHDATA.CPP

ard\Games\game-starcraft\Starcraft\SWAR\lang\cellscrl.cpp
ard\Games\game-starcratt\Starcraft\SWAR\lang\SAI_Scripts.cpp

ard\Games\game-starcraft\Starcraft\SWAR\lang\statdata.cpp
ard\Games\game-starcraft\Starcraft\SWAR\RetailGenerated\lang\SPRITES.CPP

WAR\lang\cheat.cpp
tarcraft\SWAR\lang\statcomd. cpp

tarcraft\SWAR\lang\Gamemap.cpp

.cpp
ard\Games\game-starcraft\Starcraft\SWAR\lang\CSprite.cpp
ard\Games\game-starcratt\Starcraft\SWAR\RetailGenerated\lang\UPGRADES.CPP
Starcraft\SWAR\lang\gameloop.cpp

ard\Games\game-starcraftt\Starcratt\SWAR\RetailGenerated\lang\ORDERS.CPP

b undd e Foeln' ¥ f i
f.write("extern void *%s %s;\n' % (EXTEkppgcc any key to continue

const_size = item.get(' const_size', -1)

if const_size != -1:
if type(const_size) types.stringType

3 days ago | 2 authors, 24 changes | 3 work items

{ Elias Bachaalan

Emulate — Variables mapping /3

Exported variables example:

JrEEEEEREEr kR kbR Rk kR Rk kR Rk kR kR kR kR
7 data tables

I.."II.'$$=3=$$$$$$*$$=3=$33*$$$$$$*$$$$$$*$$3$$$*

UWORD guwFlingySprite[MUM_FLINGIES];
ULONG gxFlingyMaxVel[NUM_FLINGIES];
UWORD gxFlingyAccel[NUM_FLIMNGIES]:
ULONG gxFlingySlow[MUM_FLINGIES];
UEYTE gubFlingyMaxTurn[NUM_FLIMNGIES];
UBYTE gubFlingyMinBank[NUM_FLINGIES];
UBYTE gubFlingyMoveType[MUM_FLINGIES];

SAF EUD EXTERNS - AUTOGENERATE BEGINM ///

Stﬂtiﬂ_asser‘t{sizEDF(guth'i‘ngyMﬂveTypE]I == @xdl, “EUD size mismatch for gubFlingyMoveType™);
vold #*eud_ptr_gubFlingyMoveType = reinterpret_cast<void*>(&gubFlingyMoveType);
Statiﬂ_ESSEl‘t{sizen-F(ngLingyS[aw) == @x344, "EUD size mismatch for gxFlingySlow");

vold *eud_ptr_gxFlingySlow = reinterpret_cast<void*>(&gxFlingySlow);
StﬂtiC_ESSEl‘t{sizEDF(ngL*ingyAccel]l == @xla2, "EUD size mismatch for gxFlingyfAccel™);

vold *eud_ptr_gxFlingyAccel = reinterpret_cast<void*>({&gxFLingyAccel);
Statiﬂ_aSSEl‘t{zizen-Fl:guth ingyMaxTurn) == @xdl, "EUD size mismatch for gubFlingyMaxTurn");
vold *eud_ptr_gubFlingyMaxTurn = reinterpret_cast<void*>(&gubFLingyMaxTurn);
StﬂtiC_ESSEl‘t{sizEDF(ngL‘ingyMuxVEljl == @x344, "EUD size mismatch for gxFlingyMaxVel");
vold #eud_ptr_gxFlingyMaxVel reinterpret_cast<void*>(&gxFlingyMaxVel);
Stﬂtic_aSSEl‘t{sizED-Fl:guwFtingySpr‘itE]I == @xla2, "EUD size mismatch for guwFlingySprite");
vold *eud_ptr_guwFlingySprite = reinterpret_cast<void*:(&guwFlingysSprite);
Stﬂtic_ESSEl‘t{sizeoFEguth ingyMinBank) == @xdl, "EUD size mismatch for gubFlingyMinBank");
vold *eud_ptr_gubFlingyMinBank reinterpret_cast<vold*>(&gubFLingvMinBank)

Emulate — Variables mapping /4

No need to make static variables global:
 The generator has an option that lets you pick a name for the exported variable

JS EUD table.py
CImage
{'src_file': r'SWAR\lang\CImage.cpp', 'group': 'CImage’,

{'addr': @x@857EERE, 'size': 9x0AE88884, 'ida_name': 'images_sgpFreeHead', 'name': "sgpFreeHead™, 'flags':
{'addr': @x@857EE78, 'size': 8x00088884, 'ida_name': 'images_sgpFreeTail', 'name': "sgpFreeTail®™, 'flags':

S/ Clmage.cpp

static CLists *sgpFreeHead;
static ClLists *sgpFreeTail;

/// EUD EXTERNS - AUTOGENERATE BEGIN ///

#if EUD_EMABLED

Stﬂtic_asser‘t{EizED-Fl:sgpFr‘EEHead} == @x4, "EUD size mismatch for sgpFreeHead");
vold *eud_ptr_images_sgpFreeHead = reinterpret_cast<vold*:(&sgpFreeldead) ;
StatiC_ESSEI‘t{si:ED-FI:sgpFPEETui[]l == @ud, "EUD size mismatch for sgpFreeTail");
void *eud_ptr_images_sgpFreeTail = reinterpret_cast<void*>(&sgpFreeTail);

f#tendif // (EUD_ENABLED)

SrF EUD EXTERNS - AUTOGENERATE END 777

"EIF_READ ONLY'7F,
"EIF_READ ONLY"'7F,

Emulate — The EUD table /1

* The “eud_table.cpp” is autogenerated from
the Python table. It refers to all the

exported variables from various source
COde ﬁles eud_itemdef_t __static_eud_items[__STATIC_EUD_ITEMS_COUNT] =

xr

L
DEF_EUD_ITEM(@x9968C14C, Ox00000002, eud_ptr sgCard, @x00000080),
DEF_EUD_ITEM(@x®@8513B68, @w88088831, eud _ptr_sgnScrollRates, @x80000084),

° H ’ H DEF_EUD_ITEM(@x8868C144, 9x800800881, eud ptr gbInMsgMode, 8x280088888),
It IS Used tO pOpUIate the emU|at0r 5 Vlrtual DEF_EUD_ITEM(@x98a5C1leC, @woe98a832, eud ptr_sgszToPlayerPrompt, @x@0008889),
memory |ayout DEF_EUD_ITEM(8x@885967F8, ©w8888088D, eud_ptr_ gGomeHeader, 8x288808888),

DEF_EUD_ITEM(@x88597288, 9x@0ee0034, nullptr, EIF_SRC_STAT_UNITS), // gpStatUnits
DEF_EUD_ITEM(@x8863ACT4, 9xPeEEEEAL1, eud ptr sgbStatPortUpdate, 8x88000008),
DEF_EUD_ITEM(8x886C9858, @xPPeeeeDl, eud ptr gubFlingyMoveType, BxB8888008),

. 1 DEF_EUD_ITEM(@x886C9938, 9x88800344, eud_ptr_gxFlingy5low, @x90888004),
Items also have aSSOCIated ﬂags that DEF_EUD_ITEM{8x@8605CD8, @x09882884, eud ptr_sgpRpMap, EIF_SRC_REPULSE_PTR | EIF_IS_PWO
H H DEF_EUD_ITEM(@x88R56248, AxPAR0A858, eud ptr_guwTechStr, 9x80080008),
InStrUCt the emUIator WhICh EUD adapter DEF_EUD_ITEM(@x88a56358, 8x08e0a82C, eud_ptr_gubTechAlwaysAllowed, @x28808088a),
hand|es WhICh addreSS DEF_EUD_ITEM(@x8862843C, 9x80000884, eud ptr sgpFreeTail CUnit, EIF_SRC_CUNIT_PTR),

DEF_EUD_ITEM(8x88628438, @xP0e00084, eud ptr sgpFreeMead CUnit, EIF_SRC_CUNIT_PTR),
DEF_EUD_ITEM({8x88662EF8, ©9x@0eealCs, eud_ptr_guwlastWhatSnd, 9x28888088),
DEF_EUD_ITEM(8x88515E68, @xP0eeeees, eud ptr MapHops, 0x0080888088),

° N ‘the “e nothing” vari | r DEF_EUD_ITEM{8x88648E68, @x89888E12, eud _ptr_sgszMsgThl, EIF_SRC_MSG_TEL),
ote: the & ot 8 ariables are DEF_EUD_ITEM(2x88648E58, @x89a88881, eud ptr sgbNextMsg, 8x2028808248),
lienmen in 1.16.1. The m DEF_EUD_ITEM(8x88514288, @x88a80888C, nullptr, EIF_SRC_TRIGSERS_LIST), // sgTriggersé
allg € tbytes SC 6 € map DEF_EUD_ITEM(8x8851423C, @x8888888C, nullptr, EIF_SRC_TRIGSERS_LIST), // sgTriggersl
makers use that space fOI’ storing variables DEF_EUD_ITEM(8x29664894, @xe8e88884, &g _nothing_19, 9x88888888

.
DEF_EUD_ITEM(8x@@66497C, OxP88888084, &g nothing 20, 8x0@ee8883),
DEF_EUD_ITEM(8x886646C4, ©9xPPppeeed, &g nothing_21, 9xPeeeeess),

A “nullptr” backing data almost always
indicates that the variable is to be handled
purely by an adapter code

Emulate — The EUD table /2

e The “eud_extern.h” is autogenerated from the

Python table
/f '1 THIS FILE IS AUTOGENERATED. MANUAL MODIFICATION WIL

* It exposes all the known EUD variables #include <cstdint>
e Very handy for accessing static variables from
¥pragma once

anYWhere in the code when needed extern vold *eud_ptr_sgCard;
extern void *eud_ptr_sgnScrollRates;
extern vold *eud_ptr_gbInMsgMode;
extern void *eud_ptr_sgszToPlayerPrompt;
extern volid *eud_ptr_gGameHeader;
extern void *eud_ptr_gpIlconsGrp;
extern vold *eud_ptr_sgbSelectionUpdate;
extern vold *eud_ptr_sgbStatPortUpdate;
extern void *eud_ptr_gubFlingyMoveType;
extern vold *eud_ptr_gxFlingySlow;
extern void *eud_ptr_gxFlingyAccel;
extern vold *eud_ptr_gubFlingyMaxTurn;
extern vold *eud_ptr_gxFlingyMaxVel;
extern vold *eud_ptr_guwFlingySprite;
extern volid *eud_ptr_gubFlingyMinBank ;
extern void *eud_ptr_sgnPrevPalld;
extern vold ¥*eud_ptr_sgpRpMap;
extern uint32_t eud_export_REPULSE_MAP_SITE;
extern void *eud_ptr_g ActiveNationID;
extern vold ¥feud_ptr_g LocalNationID;

Emulator architecture /1

StarCraft Remastered

Real game memory
|] | | |] L] | |] | | |] | | |] |

Virtual SC 1.16.1 memory

EUD Emulator

EUD Adapters
Data structure #1 Data structure #n
adapter adapter ...

Due to the nature of the overflow, the following restrictions apply:

 An EUD address is always 4 bytes aligned
 An EUD value is a 32bits integer

Emulator architecture /2

Shadow table
* It contains the needed memory contents
from the SC 1.16.1 binary

Virtual memory

* |t uses the address-to-handlers lookup table

* |t maps an EUD address range to an EUD
table entry = EUD handler/adapter

* The table entry for an EUD item describes:
* The backing data (the new variable
address, if present)
* The flags which tell the emulator which
EUD adapter (handler) to use for
emulation

Emulator architecture /3

A specialized EUD adapter is needed when:
* Handling non-standard data types

* When dealing with EUD addresses that no longer map ' S
to anything in the new game client : S e

The following 5 virtual methods are exposed

* read_vmem() = Return a 32bits value
 write_vmem() - Write a 32bits value

e backup() - Item specific backup code
* restore() - Item specific restore code

* deferred_write() - Invoked after all the triggers
have executed. Gives a chance
to batch process writes

EUD adapters — Basic /1

The basic EUD adapter (eud_vmemitem_t class) handles basic data types:

1. The emulator computes the full EUD address

2. Finds the new variable’s base address and converts the EUD address to an offset

3. The appropriate adapter is then called with the desired offset to read/write from/to

bool eud_emu_t::read_vmem(bool eud vmemitem_t: :l"‘E-EId_VI'I’IEITI(
eud_addr_type addr, eud_emu_t *emu,
eud_value_type Zvalue) void *backing_data,

=

eud_addr_type offs,
eud_wvalue_type &value)

eud_vmemitem_t *wvitem = find_range(vmem, addr);
if (vitem == nullptr)
T

1
L
set_not_supported(false); value = *(eud_value_type *)((char *)backing_data + offs);
return false; return true;
; }
return vitem-zread_vmem(
this,
addr - vitem-zaddr,
value);

(-]

This simple translation approach works nicely for basic types

.data:886CA316 db ? ; .data:BBACE31b align 1@h
.data:eesCA317 db - 1.16.1 .data:@8ACE328 ; unsigned intlé guwFlingySprite[289] NEW b ||d5
.data:@esCA318 ; _ intle guwFlingySprite[2e9] ||.data:@BACE328 unsigned short * guwFlingySprite db @D1h dup()
data:@@6CA31E guwFllngySprltE dw @D1h dup(?) |[|-data:@@ACE326 ; DATA XREF: AllocFlingy
-@B6CA318 : DATA XREF: CUnit DisplaylLandd|-data:@eAC8326 ;3 CFlingy::Init{ushort,sh
ta 3 : sub 468280+14Dr ... ' .data:@BACE3FL db @
S [T Aata-BAACRIED dh a

EUD adapters — Basic /2

The basic (pass-thru) adapter is good for most cases:

e Byte, Word, Dword

* The emulator can cross boundaries between two items
* Basic types arrays are also supported

UWORD a[2] UWORD b[4]

Wait a minute, we need one more primitive!
 We covered two primitives:
1. *mem asg_op = const

* asg.op=>+=,=,-=

2. if (*mem cmp_op const) { actions ... }
* cmp_op > ==, >=, <=

* How do we get the following primitive?
* *memlasg_op *mem?2

Using binary search!

vold trigger_...()

The *a = *b primitive voia trigger_eo()

. . 1 {
i Trlgger condition: var_copy = @; if ({(src_var >= @x80800188))
dst_wvar = @; i
1. Probes the value of src_var . Src_var -- 8x60800108;
vold trigger_1() dst_war += 8x@88888188;
1 var_copy += @x@aasalaa;
. Trigger action: ? {(src_var >= 9x30000000)) } }-
1. Increments the value of dst_var src_var -= 9x30000008; void trigger_...()
- dst_wvar += 8x5823322a,; 1
2. Decrement the value of src_var var_copy += BxB0000008; if ((src_var >= @x20000004))
3. src_var’s value eventually reaches . / { SrC_var -- Bx0e000004;
vold trigger_2() dst_wvar += @x888888a4 ;
Z€ro i var_copy += 8x88888084 ;
4. Backup changes into var_copy if ((sre_var >= €x40000000)) 7
' src_wvar -= @x498888888; ¢Gid trigger_...()
dst_wvar += @x488808064; 1
var_copy += @x48888884; if ((src_var >= @x00800002))

1 I
.| L

The same primitive is repeated to copy
var_copy back to dst_var

o

srC_var -= axaggg9aaz,;
vold trigger_3() dst_war += 8x@Bpaaaaz;

ES

1 var_copy += 8xB88888082,;
if ((src_var >= 8x20000808)) +
r 1
1 I
src_var -= 8x20808008 ; vold trigger_...()
dst_wvar += 8x28888283,
. e . . var_copy += 8x28880000; if ((src_var >= 8x80800881))
This primitive is expensive and generates 1 [
. ¥ src_var -= @xa82a88al,
lots of triggers dst_var += 9x00092001,
var_copy += @xaa2888al,
s

¥ = end trigger @ »

EUD adapters — Pointers /1

Pointers are 32bits in SC 1.16.1

Obviously, we cannot just use the pass-
thru basic emulation
* Pointers have to be translated from
EUD virtual addresses to real
addresses

The primitive “*ptrl = *ptr2” invoked from
the EUD triggers will spoil the pointer
value until the binary search is over
 What to do with incomplete pointer
values?

EUD adapters — Pointers /2

e Changes to a physical pointer value should not take effect unless the
virtual pointer value passes a “pointer validity check function”
- Does the virtual pointer have a proper real pointer equivalent?

* Rely on the shadow pointer value when working with incomplete
virtual pointer values for future reads / writes:

Real memory EUD virtual memory

void *game_ptr; uint32_t game_ptr;

uint32_t game_ptr_shadow;
bool game_ptr_dirty;

EUD adapters — Pointers /3

* The eud cobject ptr _adapter_t is constructed with backing data pointing to a
reference to a real pointer that we want to expose to the EUD emulator

Jf e m e L virtual bool NPitE_VITIE'ITI{

template <class T:> eud_emu_t *emu,

class eud_cobject_ptr_adapter‘_t: public eud vmemitem_t eud_addr_type offs,
eud_wvalue_type wvalue,

protected: int g) override

'

eud_addr_type shadow_ptr; { (})
if (!is_dirty
r

public: {
T *.aptr‘n:) const { return #(T **)backing_data; } shadow_ptr = get_vptriemu);
- - set_dirty();
/f Convert an physical pointer to an EUD pointer h
eud_value_type phySical_tG_EUdaddr‘(eud_emu_t *emu) // Update the shadow value
i set_pval(&shadow_ptr, walue ;
S/ Read the liwve wvalue... —F (—PE > ks
auto obj = (T *)ptr(); . // Allow nullptr assignment
ff ...and translate 1t to a wvirtual address if (shadow ptr == 8)
return obj == nullptr * @ : emu->get_cobject_vptriohi); - -
1 L
. ptr() = nullptr;
virtual beol read_vmem ilse
eud_emu_t *emu, {
eud_addr_type offs, . // Update the real pointer only if it gets translated
_ eud_value_type &value) override // from an EUD addr to a physical pointer
T o . , . T *unit;
' h??d not q%rty, read the live value emu->get_cobject_ptr(shadow_ptr, true, &unit);
if (lis_dirty())] if (unit !'= nullptr)
shadow_ptr = physical_to_eudaddr{emu); I

ptr{) = unit;

value = shadow_ptr; clear_dirty();

return true;

el

¥
¥
return true;
g " T S
¥ « end write_vme

end eud_cobject _ptr_adapter_t » ;

=)

EUD adapters — Function pointers /1

* What about EUD logic that does function pointer arithmetic?

// "Player 8" epaaepae TButton struc ; (sizeof=8xl4, glign=8x4, mappedto_224) _
L1 g 8 : XREF: ata:sgR ay ayLard,/r ata:sg AV zeCard,/r
void tr:tgger‘ 497() eeenaaed ; XRE : .data:sgReplayPlayCard/r .data:sgReplayPauseCard,
- goaaeaae wLocation dw ?

1 if ((always();)) pappEEE2 wPortrait dw ?

I epeeepes pfCanDisplay dd ?; offset

_ sgTEngineeringCard[5].pfBtnAction += 8x8P8800C8; // @@5184ec |00000005 pfBtnAction dd ?; offset

h goeeepal bCanDisplayParm db 2

Hy geepaaad db ? ; undefined
BeeRAREE BtnActionParm dw ?
—— . AeeRea1e wstrIndex dw ?; XREF: statomd set ctrl+6D/r; base 18

.data: 88518458 public ngEnginE?ringEard 8EEEA812 wReqStr dw ? -
.dat::BBS}S4EB H TBut?on ngEnglneerlngCard[?] . BeAEEE14 TButton ends
.data: 88518488 sgTEngineeringCard dw 1; [@].wlLocation
.data:@e518436 ; DATA XREF: .data:gCardsilo
.data: 88513488 dw BE4h; [@].wPortrait L text:@84232F@ ; =============== S UB R O U T I N E =s==============c====cc=cooooooooooooos
.data: 00518480 dd offset bf_is ship; [@].pfCanDisplay text:BRd4232F0
.data: 88518488 dd offset order_move; [@].pfBtnActicon . text:@84232F0 ; Attributes: bp-based frame
.data: 88518488 db @; [@].bCanDisplayParm .text:B884232F0
-data:@es1s4se db @; o .text:@84232F@ public order_cancel upgrade P Evaluate expression
jaza:gggigigg j“ :é4[egé?t”25ticgpa’” .text:884232F6 order_cancel upgrade proc near

ata: : W 3 [2].witrindex A . F@ - F: +) -
dota:00515450 du 0 [0].wReqstr laneasare | oirn e dea oz ey Doressen | NN

ata:@a518480 dw 1; [1].wLocation text:@B4232E8
- .text:@84232F8 Cmd= byte ptr -1 Hex: 42 3230 (order_bldg_liftoff)
.data:@e518480 dw @; [4].wReqStr text:004232F0 Dedmal: 4 338 224
.data: 88518488 dw 9; [5].wlLocation Ltext:884232F0 push ebp Octal: 20 431 060
.data: 885184808 dw 11Ah; [5].wPortrait .text:884232F1 mov ebp, es A
.datz:00513450 dd offset bf 1iftoff ok: [S5].pfCanDisplay .text:B884232F3 push i Binary: 0000 0000 01000010 00110010 G011 0000
.data:@8518488 dd offset order_bldg liftoff; [5].pfBtnActicn .text:@84232F4 mov edx, 1; dwBytes Character: '028."
.data:@8518480 db @; [5].bCanDisplayParm .text:@84232F9 lea ecx, [ebp+Cmd]; lpCmd |T| ‘ cancel ‘ ‘ Help
.data:@8518438 db @; 5 text:884232FC mov [ebp+Cmd], 33h
.data: 885184808 dw @; [5].BtnActionParm Ltext: 88423300 call netmgr_gqueue_cmd
.data: 88518488 dw 671; [5].wStrIndex .text:08423300
.data:@e518480 dw @; [5].wReqStr Ltext:@e4233085 mov esp, ebp

.text:88423307 pop ebp

dext:ead23388 retn

EUD adapters — Function pointers /2

Pointer arithmetic make sense only in the EUD virtual memory addressing space

For the real pointer addressing we have to translate to proper pointers and account for
function prototype compatibility

Basic implementation idea:

1.
2.
3.

vaddr += voffs
paddr = find_real_fptr(vaddr, function_prototype_id)
if (paddr != nullptr) = struct.pFn = paddr;

In the emulator, such cases are handled with the eud struct with _ptr_adapter t

Virtual function pointers and their prototypes table

TButtons function pointers: pfCanDisplay and pfBtniction
r'SWARYlang\statbtn.cpp',
'size':
‘size’:
‘size’:
‘size’:
'size':
‘size':
‘size’:

{'src_file":
"addr':
‘addr '
‘addr':
"addr '
'addr':
‘addr '
‘addr':

R

@xaad282d8,
@xaad424448,
@xead2331a,
axaad2ar3ia,
BxB88424388,
@xd8424148,
@xwBad423378,

dxagaanaasd ,
dxaaaaaaad ,
dxaaaaaaad
@xaaaanaas ,
@xaaaaaaad ,

'group’:

'ida_name':
'ida_name':
‘ida_name"':
‘ida_name"':
'ida_name':
'ida_name':
‘ida_name" :

"Card/Buttons function pointers',

'bf _always', 'name': 'bf_always', 'flags': 'EIF_FUNC_PTR | EIF_SRC_TBUTTON'?},
‘order_move', 'name': 'order_mowve', 'flags': "EIF_FUNC_PTR | EIF_SRC_TBUTTON'?},
'order_stop', 'name': 'order_stop', 'flags': 'EIF_FUNC_PTR | EIF_SRC_TBUTTON'},

'bf _can_attack', 'name': 'bf _can_attack', 'flags': 'EIF_FUNC_PTR | EIF_SRC_TBUTTON'},
'order_attack', 'name': 'order_attack', 'flags': 'EIF_FUNC_PTR | EIF_SRC_TBUTTON'},
'order_patrol', 'name': 'order_patrol', 'flags': 'EIF_FUNC_PTR | EIF_SRC_TBUTTON'},
‘order_hold_pos', 'name': ‘order_hold_pos', ‘flags': 'EIF_FQNC_PTR | EIF_SRC_TBUTTON'ZE,

EUD adapters — Incompatible structures /1

Various data structures have changed between SC 1.16.1 and SC:R

Pass-thru adapters are not helpful in this case
struct CUnit

struct eud_CUnit

r
L

o
W

int wnit_id;

char unit_name[58];
eud_CUnit *linked_unit;
eud_CImage *linked_Sprite;

A specialized adapter is needed to convert between both structures:

i*
¥ Bwad *f
i*
F* BuEE */f

G

B 54

I
L

[
W

char unit_name[88];

int field1i;

int field2;

int wnit_id;

eud_CUnit #*linked_unit;
eud_CImage *linked_Sprite;

Read operation: translates from physical structure to virtual

structure

Write operation: translates from virtual structure to physical

structure

Ly

BB

F7oaxsa

Ly

B 54

F7 axss

Ly

B s C

7 8xed

EUD adapters — Incompatible structures /2

bool eud_csprite_adapter_t: :I‘Eﬂd_VI'I'IEﬂ‘I(
eud_emu_t *emu,
eud_addr_type offs,
eud_value_type &value)

switch (offs)
{

[/ axoaea
case offsetof(eud_CSprite, ptr_CSprite_pPreviode):
{
EUD_FIELD_READ_VPTR{
CSprite,
pPrevNode,
csprite()-»prop_ClLists_PrevNode(),
emu- »sprites->get_addr);
break;
H
/i Bxpad

case offsetof(eud_Csprite, ptr_CSprite_pNextNode):

EUD_FIELD_READ_VPTR(
Csprite,
pNextNode,
csprite{)-»prop_CLists_NextMNode(),
Emu->sprites—>get_addr);

break;
T
// Bx98as
case offsetof(eud_CSprite, uwlype):
{
uwType_ubCreator_union_t u;
u.ubSelectedNdx = csprite()->prop_ubSelectedNdx();
EUD_FIELD_READ_PARTIAL_VAL(
uwType,
cspritel)-rprop_uwType(),
u.uwType);
EUD_FIELD_READ_PARTIAL_VAL(
ubCreator,
csprite()-»prop_ubCreator(),
u.ubCreator);
value = u.val;
break;
¥
default:

return false;
} « end switch offs
return true;
} « end read_vmem

bool eud_csprite_adapter_t: :write_\nnem(
eud_emu_t *emu,
eud_addr_type offs,
eud_value_type value,
int g)

switch (offs)

[/ exeaa
case offsetof(eud_CSprite, ptr_CSprite_pPrevNode):

EUD_FIELD_UPDATE_VPTR(
CSprite,
pPreviode,
csprite()-»prop_Clists_PrevNode(),
emu->sprites->get_addr,
emu-)sprites—)get_ptr);

break;

by
[/ exead
case offsetof(eud_CSprite, ptr_CSprite_pNextNode):

EUD_FIELD_UPDATE_VPTR(
CSprite,
phextNode,
csprite()-»prop_CLists_NextNode(),
emu->sprites->get_addr,
emu-)sprites—)get_ptr);

break;

T
[8xeas
case offsetof(eud_CSprite, uwType):

EUD_FIELD_UPDATE_BATCH({
uwType_ubCreator_union_t,

csprite()-»prop_ubSelectedNdx() = u.ubSelectedNdx);

EUD_FIELD_UPDATE_PARTIAL_VAL(
ubCreator,
u.ubCreator,
csprite()-»prop_ubCreator(),
check_owner_bounds);

EUD_FIELD_UPDATE_PARTIAL_VAL({
uwType,
u.uwType,
csprite()->prop_uwType(),
check_utype_bounds};

break;

by
default:
return false;
} « end switch offs
return true;
} « end write_vmem »

EUD adapters — Linked lists

* InSC1.16.1
* Triggers were stored in a Storm linked
list data structure
e Storm is a library that provides
containers and platform independent
functionality

* InSC.R
» Triggers are stored as blz::list<_trigger>
* ‘blz’ is the equivalent of STLs std
namespace

e QOther structures in the old game also use
Storm lists while the new game uses
different containers

EUD adapters — Triggers /1

Because triggers are hard to program, the South
Korean hacker (nicknamed Trigger King / trgk) wrote
a trigger compiler:

1. You write proper logicin a
JavaScript/Python like language called
epScript

2. The epScript gets compiled into a bunch of
triggers and is then injected into the
appropriate map chunks

3. Map containing triggers compiled with
epScript can be identified using the
bootstrap code that links regular triggers
into the dynamic triggers (inside the strings
table)

EUD adapters — Triggers /2

* epScriptis a very powerful language:
 The Mario Exodus EUD map was written
in that language

* Its compiler hides additional triggers in the
cave area of the strings chunk:
» Making it hard to reverse-engineer
compiled triggers
» One needs to write a triggers
decompiler to recover the logic

 Compiled triggers are self-modifying and
very optimized:

» Loops, function calls and other
control flow related functionality
are implement using self-modifying
triggers that change the trigger
node links (next and prev links)

EUD adapters — Triggers /3

EUD maps locate the pointer to the string table (gpMapStr)
and adds a constant offset pointing to the additional
dynamic triggers inside the string table (see slide 17)

EUD maps then patch the m_prevlink and m_next links as
needed to introduce as many triggers as needed
* Inserting new triggers dynamically was never
supported in StarCraft. Only the EUD emulator allows
such activity.

Compiled/dynamic triggers are the basis of complex and
elaborate EUD maps
* Therefore, supporting dynamic triggers was the first
thing added to the EUD emulator

struct TSLink TRIGGERNODE

T

L
SLink_TRIGGERMODE *m_prevlink;
TRIGGERMODE *m_next;

T
I ¥

struct _trigger

r
!

_condition tConditions[l16];
_action tActions[&4];
unsigned int 1Flags;

char ubPlayer[27];

char bCurrAction;

Y
I ¥

struct TRIGGERNODE

1
TS5Link_TRIGGERMODE m_link;
_trigger t;

Y -
NI]

EUD adapters — Triggers /4

* From the emulator’s perspective, there are two kinds of triggers:
e Initial triggers originating from the triggers chunk
e Dynamic triggers linked to the triggers list by patching their node links

 When StarCraft needs to execute triggers after each game loop:
* The emulator knows how to serve both static triggers and dynamic EUD triggers
 The emulator does not replicate the backing data (the trigger node data) whenever

possible
SC:R =2 blz::list<_trigger> : _trigger0 _triggerl .. || _triggerN
SC1.16: stormlist<_trigger> : _triggerO _triggerl .. || _triggerN
shadow: prev|next shadow: prev|next shadow: prev| ney/
String table: Strings chunk data /
v

the end of the strings table) U U U

EUD adapters — Triggers /5

The Storm node EUD adapter hosts the node links as shadow variables

virtual bocl Write_wmem(

template <class T>
class eud_stom_nade_adapter_t: public eud_vmemitem_t

1

template <class TT>

friend class eud_storm_list_adapter_t;
private:

eud_STORM_TSLink shadow_link;

Sf Returns nullptr if offset is outside the shadow link bounds, the caller
/f then knows how to read the node data in that case

eud_value_type *gEt_pVﬂl(eud_addr_type offs)

i
if (offs == offsetof(eud_STORM_TSLink, m_prevlink))
return &shadow_link.m_prevlink;
else if (offs == offsetof(eud_STORM_TSLink, m_next))
return &shadow_link.m_next;
else
return nullptr;
T
public:
enum |
NODE_SIZE = sizeof(eud_STORM_TSLink) + sizeof(T)
T

static eud_storm_node_adapter_t *C r‘eatec
eud_emu_t *emu,
T *data)

auto vitem = new eud_storm_node_adapter_t();
vitem->addr = emu->reserve_addr(NODE_SIZE);
vitem-»flags = EIF_DYNAMIC | EIF_IS_STORM_LIST_NODE;
vitem-»size = NODE_SIZE;

vitem-rbacking_data = data;

emu->set_item(vitem);
return vitem;

¥ o«

eud_emu_t *emu,
eud_addr_twvpe offs,
eud_value_type wvalue,
int g = @) override

FF Accessing node link structure?
eud_addr_twvpe *pwal = get_pwvall{offs);
if (pval != nullptr)

F S5 Update node structure
set_pval({pwval, wvalue, gql;
return true;

Hy

return sud_vmemitem_t::write_wvmem(
emu,
offs - sizeof(shadow_link),
value,

a);

end write_wmem

m

virtual bool read_wvmem(

eud_emu_t *emu,
eud_addr_twvpe offs,
eud_wvalue_type &walue) override

eud_addr_twvpe *pwal = get_pwvali{offs);

if (pval != nullptr)
i
value = Fpwal;
return true;
¥
return eud_umemitem_t::read_umem{
emu ,
offs - sizeof(shadow_link),
valuel;

iterator zOperator++()

i
eud_addr_type next = m_cur + offsetof(eud STORM_TSLink, m_next);

. Ff Return a terminal iterator if it is not possible to read the next link
EUD adapters — THggerS /6 i/ or the link is negative (terminal by nature)
if {!container->emu->read_wvmem(next, m_cur) || Finished{))
*this = container->end();

return *Fthis;
!
¥

* The Storm list adapter iterator Ope@rator++(int)
i

implements an STL compatible EESTERAT faa — SEEAL
iterator }

return tmp;

reference Operator¥*()

* From the iterator’s perspective, PP S T T S ST Ty e

. . eud_vmemitem_t *Fwitem = container->emu->find_item{m_cur);
any node pointers outside the R e
IISt has thelr nOde Ilnks and data . EUD_ASSERT{ ("Failed to dereference storm list iterator!"™, false));

. . =tatic autoc empty_node = wvalue_twvpe();
in the virtual memory return empty_node;
¥

ff I= that an adapted trigger node?
eud_addr_type offs;
if {((wvitem->flags & EIF_IS_STORM_LIST_NODE) != @)
i
FF The backing data is used as-is
ofFfs = @;
T
F¢ Is that another host type?
else
1
FS This trigger node exists in arbitrary memory,
ff Use the backing data and the current node as offset
offs = (m_cur - wvitem->addr + sizeof(eud_STORM_TSLink});

¥

return *pointer{{(char *)vitem-»*backing data + offs);

¥ « end operator®

pointer Operator->()
{

13
4

return &**this;

EUD adapters — Partial buffers

* Partial buffers adapters are used whenever the virtual item size is greater than the physical item size:

SC:R item (physical): unmapped

 The adapter serves the mapped data when the access offset is within the mapped range

* It will serve zeros w/o failing when the unmapped area is accessed

EUD adapters — Deferred writes /1

1. Certain adapters resort to using deferred writes as
means to speed-up the emulation

2. The EUD map writes in chunks of 4 bytes at a time
» We don’t want to re-construct real game data
while the EUD map is still writing the changes

3. Instead, a write handler simply passes-thru the writes
to a temporary buffer and marks the adapter as dirty
* (Reads from dirty offsets are served from the
temporary buffer for consistency)

4. After all triggers are executed in that game loop, the
emulator invokes all the dirty adapters’ deferred write
callbacks

5. Inside the deferred write callback, the temporary buffer
is then used to reconstruct the real structures used by
the game. The adapter dirty flag is then cleared.

class eud_stattxt_adapter_t: public cud_vmemitem_t
i

size_t orig_tbl_size;

UWORD orig_str_count;

blz::string prev_hotkey_profile;

EUD adapters — Deferred Writes /2 v wncrior wastes tne encosing cormat or stot text

bool Fix_hotkeys(void #buf, uvint32_t tbl_size);

virtual bool Write_wvmem(
eud_emu_t *emu,
eud_addr_type offs,
eud_value_type wvalue,
int g) override

Deferred write example adapter: ¢

emu- >set_dirty_and_defer_write(this);
return eud_vmemitem_t::write_vmem({emu, offs, value, q);
h

virtusl bool deferred_write_vmem(

1. The status text adapter lets the aadr type otes,
. gud_walue_tyge value,
EUD maps write to a temporary (1ot @ override
if (lis_dirty())
bUffer Elser'e'tl.lr‘n true;

clear_dirty();

// Fix the hotkeys from 1.16.1 EUD map to work with SCR

2. Afterwards, the adapter re- e chorkeys(backing data, =ize))
constructs the proper status text st e - jc‘ Sgnugyston) using the extended size (and not the original size)
. B if (str_tbl == nullptr
structures that are compatible with return false;

the neW game (SC:R) Code str_allow_kr_cp_conv(str_tbl, true);

extern StringTable gpStatstrs;

/¢ Let's patch existing strings and add new ones (if EUD string count is bigger than original string table contents)
for (UWORD istr = @, c = MIN{orig_str_count, str_tbl->priv->wStrCount);

istr < c;

++1str)

/¢ Update the string table from the T5trTblPriv (and convert to UTF-8)
auto str = str_get_string_kor_eud(str_tbl, istr + 1);
eud_dbgprint("%84d - %s\n", istr, str);

gpStatStrs . UpdateString(istr, str);

1
J

str_unload_table_from_memory(str_thl);

// Select the no hotkeys profile for this map
prev_hotkey_profile = CHotkeyManager::Get().SetNoHotkeysProfile();

EUD adapters — Bounded array elements /1

e Various game data variables are integer arrays

 Sometimes, the elements in the array must have
bounded values
* Naturally, the pass-thru (basic) adapter is not
suitable (because no validation takes place)

 The bounded array adapter also leverage a
shadow array table for all the elements that have
incomplete / invalid values

e Only after the written values are valid (within the
specified bounds) then changes are reflected into
the backing data

EUD adapters — Bounded array elements /2

* The Unit Flingy array’s values have an upper bound of 209

else if (src_id == EIF_SRC_UNIT_FLINGY) virtual bool write vmem(
{ ’ -
vitem = new eud_number_array_adapter_t<sizeof(UBYTE), EUD_NUM_FLINGIES>(eud_emu_t *emu,
‘f:'h:i.s, eud_addr_type offs,
item); eud_value_type value,
! . ; int g = @)
template <int WIDTH, uint32_t MAX_VAL> I
class eud_number_array_adapter_t: public eud_vmemitem_t size_t idx = offs / sizeof(eud_value_type);
{ EUD_ASSERT({ "Writing out of bounds!™, idx < shadow_vals.size()));
protected:
struct shadow_vals_t /4 5till not dirty at the first write, read the live value first
. if (!shadow_vals[idx].dirty)
uint32_t wval; 1
bool dirty; // Read the live walue directly intc the shadow value
Shadw_vals_t()l dirty(false), val(e) { } if (leud_vmemitem_t::read_vmem{emu, offs, shadow_vals[idx].val))
Ti return false;
blz::vector<shadow_vals_t> shadow_vals; // Mark as dirty
public: , shadow_wvals[idx].dirty = true;
eud_number_array_adapter_t
sud_emu_t *emu, // Compute the final wvalue
const eud_ 1temde¥ t *item): eud_vmemitem_t(emu, item) set_pval(&shadow_vals[idx].val, value, g);
{
flags |= EIF_BACKUP_DATA; /f On overflow, just update the shadow value
size_t arr_size = item-»size / sizeof(eud_value_type); uiniazotaftew val = shadow_vals[idx].val;
if ((item->size ¥ sizeof(eud_value_type)) != 8) 'éise if (WIDTH == 1)
++arr_size; { —
// Create @& parallel shadow table if ((new_val wFF) »= MAX_VAL
shadow_vals.resize(arr_size); [{({new_wal »> 8) & EX:F} >= MAX_ VAL
h [{{new_val >> 16) & @xff) >= MAX_VAL
w_wval »> 24) & @uff »= MAX_VAL
virtual bool r‘ead_vmemu: I I ((new_va) XFF) ———)
eud_emu_t *emu
| - poLLL ¥ t t 3
eud_addr_type offs, ; return true;
eud_value_type Svalue) 1
{
size_t idx = offs / sizeof(eud_value_type); // Einall . - e 1 - dirt ’ it 1 backs dat
. = = .) . . inally, we have a full complete wvalue. ear dirty and update real backing data
EUD_ASSERT Read t of b ds!", 1id had 1s. H 5 o
. (("Reading out of bounds idx < shadow_vals.size())) shadow vals[idx].dirty = false:
// Not dirty? Just read the live value Fetqrp_eudTvmemltem_t::wrlte_umem(emu, offs, new_val, q = 8);
if (!shadow_vals[idx].dirty) } « end write_vmem

return eud_vmemitem_t::read_vmem(emu, offs, value);

// Read the shadow value when dirty
value = shadow_vals[idx].wal;
return true;

EUD adapters — Full adapters list /1

Throughout the creation of the EUD emulator, various
adapters were devised whenever a new problem is
encountered:

 eud_adapter_cards
e Supports total customization of units
command cards

 eud_adapter_csprites and eud_adapter_cunit
e Allows controlled modifications into the
CSprite and CUnit structures

 eud_adapter_group
e Allows bitmap shuffling inside certain game
animation frames

 eud_adapter_keytable
e Allows EUD maps to intercept key presses (‘@

(7 (..,

s, ‘W', ‘d’, key up and key down for example)

EUD adapters — Full adapters list /2

eud _adapter_mpq
e Allows support for protected maps.
* Refer to MPQ frozen maps:
ithub.com/phu54321/euddraft/tree

master/freeze

eud_adapter_msgtbl
e Read access into the in-game chat messages
(“Chatting War” EUD maps)

eud _adapter_partial _buffer
e Various non-emulated or no longer existent
variables are handled with this adapter

eud_adapter_playerdata
* Lets EUD maps read player information
(name, race, color, etc.)

EUD adapters — Full adapters list /3

 eud_adapter_pointers
e All pointer related adaption code
e Supports partial pointers (backed by shadow
values)

 eud_adapter_stattxt
e Unit status text and hotkeys manipulation

 eud_adapter_stormlist
e Allows high-level emulation of Storm lists

 eud_adapter_structwithptr
* Used to emulate structures that contain a mix of
basic types (pass-thru) and pointers (incomplete
pointers + virtual <-> physical conversion)

 eud_adapter_triggers
e Supports dynamic triggers emulation

