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Drug discovery involves decisions. We 
decide the likelihood that the development 
of a particular therapeutic candidate — for 
example, a putative drug target or chemical 
compound — will lead to a useful human 
drug. Some candidates then receive further 
investment and others are abandoned. The 
decisions often apply to a large number 
of candidates at successive stages of the 
research and development (R&D) process. 
Decisions often involve huge uncertainty. 
The challenges are immense. Indeed, a lack 
of sufficiently predictive methods for 
target validation, and for identifying and 
optimizing therapeutic candidates, is now 
seen as the main technical bottleneck  
in drug discovery1–5.

In this Perspective, we regard ‘decision 
tools’ (Table 1) as all the things that are used 
to score therapeutic candidates in a way that 
is believed to correlate with clinical utility, to 
help decide to optimize and advance some 
candidates and to abandon others. Decision 

on the probability of selecting a clinically 
useful drug candidate by using the decision 
tool (its positive predictive value (PPV); 
Table 1) than a 10× or sometimes a 100× 
change in the number of candidates tested6. 
If one takes an aggregate view and treats all 
the activity leading up to a phase I go/no-go 
decision as a meta-decision tool, the same 
small improvements in aggregate predictive 
validity could be worth tens, perhaps 
hundreds, of millions of dollars per phase I 
candidate (see later).

Thus, the thing that nearly everyone 
already believes is important is more 
important than nearly everyone already 
believes.

The aim of this Perspective is to set 
out what might be done practically to 
nudge predictive validity in the right 
direction; both for drug discovery and 
preclinical development technologies 
and for the management processes that 
aggregate evidence from them. It starts by 
summarizing the case for the importance  
of predictive validity by looking at historical 
trends in R&D productivity and cases in 
which changes in decision tool validity 
transformed the R&D enterprise. Next, 
we overview the decision-theoretical logic 
presented in the previous in-depth analysis6 
and its implications (including the financial 
implications for an archetypal7 big pharma 
pipeline), with the aim of making these 
accessible to a broad audience. We then 
consider the kind of education and training 
that could help organizations take a more 
validity-centric view, how to prospectively 
evaluate predictive validity, the implications 
for R&D management and investment,  
and finally, the problematic economics  
of decision tool-related innovation.

We largely avoid the pros and cons 
of specific technologies, except when 
illustrating our validity-related thinking. 
We are not going to speculate on the 
general prospects for AI8,9, biobanking 
and deep phenotyping10, patient or 
volunteer-derived models5, nor a host of 
other innovations. This is not because we 
think these technologies do not matter, 
nor because we think the pharma industry 
is locked into old-fashioned approaches. 
Our focus is for two reasons. First, we 
think that the R&D productivity debate 
is often too technology-centric, when 

tools include target-based and phenotypic 
screens, mechanistic physiological 
simulations, artificial intelligence (AI), 
tests in disease models, the ‘gut feel’ of 
experienced scientists and experimental 
medicine methods in human participants,  
as well as the documents and processes 
used by management teams to support their 
decisions to progress with drug R&D projects.

In this context, the predictive validity  
of a decision tool (Table 1) is the degree 
to which the scores it gives to a set of 
therapeutic candidates (for example, putative 
targets or drugs) correlates with clinical 
utility in people. With this formalism, it 
has been shown previously by two of the 
authors (Scannell and Bosley) that changes 
in predictive validity that appear trivially 
small and that are rarely practical to measure 
— for example, shifting the correlation 
coefficient from 0.5 to 0.6 — are surprisingly 
important in quantitative terms6. Such 
changes could often have a bigger impact 
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Table 1 | Glossary of terms and comments

Term Definition Comments

Decision tools Tools that inform R&D decisions by producing measures 
that are believed to correlate with therapeutic candidates’ 
clinical utility.

Our decision tool definition corresponds roughly to 
Sams-Dodd’s255 ‘screening system’ and to Scannell and 
Bosley’s6 ‘predictive model’.

Domains of validity The parameter space within which the decision tool is 
predictive

An important question when evaluating decision tools  
is whether the domains of validity include clinical utility  
in people; see Table 2 and boxes 1,2,3.

Predictive validity The degree to which the ordering of measures from 
a decision tool would match, across a population of 
therapeutic candidates, the ordering in terms of clinical 
utility in people. We operationalize predictive validity as 
the notional Pearson correlation coefficient between the 
decision tool output and the relevant measure of clinical 
utility. However, it would be reasonable to operationalize 
predictive validity in other ways6 (for example, Spearman’s 
rank correlation, or area under the ROC curve)

There is a difference in detail in the way we define 
predictive validity versus Scannell and Bosley6. Scannell 
and Bosley excluded sampling error from their treatment 
to formally separate the analysis of what they called 
predictive validity, which cannot be managed by increasing 
sample size, from that of reliability, which can. However,  
for practical R&D management, when considering whether 
or not to believe the results of a decision tool, or how  
to improve a decision tool, it makes little sense to ignore 
sampling error. Therefore, any de-correlating effect  
of sampling error would be included in the predictive 
validity definition we use in this article.

True positives (TP) Therapeutic candidates classified as ‘yes’ by the decision tool 
that are positives, having sufficient clinical utility in people

–

True negatives (TN) Therapeutic candidates classified as ‘no’ by the decision 
tool that are negatives, having insufficient clinical utility  
in people

–

False positives (FP) Therapeutic candidates classified as ‘yes’ by the decision 
tool that are negatives, having insufficient clinical utility  
in people

–

False negatives (FN) Therapeutic candidates classified as ‘no’ by the decision 
tool but are positives, which would have had sufficient 
clinical utility in people

–

True positive rate (TPR) TPR = #TP/(#TP + #FN) Often neglected in the discussion of drug R&D productivity, 
but, as with PPV, TPR is very sensitive to predictive validity.

False positive rate (FPR) FPR = #FP/(#FP + #TN) –

Positive predictive  
value (PPV)

PPV = #TP/(#TP + # FP) = 1 – FDR PPV is an important measure in drug R&D because unit costs 
tend to rise as candidates progress through the process.

False discovery rate (FDR) FDR = #FP/(#TP + #FP) = 1 – PPV –

Pearson correlation 
coefficient

Correlation = ρX,Y = cov (X,Y)/σXσY, where X and Y are a pair 
of random variables, cov is the covariance and σX σY are 
standard deviations

This is the ‘standard’ correlation coefficient that is most 
commonly used.

Spearman’s rank 
correlation coefficient

The Pearson correlation coefficient where X and Y are 
expressed as rank variables

This is a common measure of rank correlation.

Receiver operating 
characteristic (ROC) 
curve

A graph that shows the performance of a binary classifier 
as the decision threshold varies. It plots the FPR of the 
decision (from 0 to 1) against the TPR of the decision  
(from 0 to 1)

First developed to measure the performance of radar 
receivers in the Second World War, hence the term ROC 
curve. Now it is used to measure decision performance  
in a wide range of disciplines.

Area under the ROC 
curve

The area between the ROC curve and the FPR (horizontal) 
axis between FPR = 0 and FPR = 1

This measure considers decision performance across all 
possible decision thresholds. When decision performance 
is very good, TPR » FPR, so the area under the ROC curve 
approaches 1. When decision performance is the same as  
a random guess, TPR = FPR so the area under the ROC 
curve is 0.5.

Net present value (NPV) The sum of a time series of cashflows discounted to  
the present time at the prevailing time cost of money  
(for example, interest rate or required rate of return)

When NPV is positive, the discounted value of positive cash 
flows from successful drug(s) exceeds the discounted value 
of negative cash flows from the R&D investment. When 
NPV is negative, the converse is true.

Confusion matrix A simple 2 × 2 table with the structure shown below,  
where P = positive and N = negative

P

True P

False P

P

N

N

False N

True N

Predicted

Actual

When actual positives are rare (as is generally the case in 
drug discovery) and predictive validity is low, false positives 
are common.

R&D, research and development.
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really it should start from a position that is 
decision-centric and technology-agnostic. 
Second, the predictive validity of R&D 
technologies is domain-specific. This makes 
it hard to say much that is sensible about 
a range of technologies in an article of 
reasonable length. However, we do provide 
some decision-theoretical speculation 
on phenotypic versus target-based drug 
discovery and on the role of serendipity 
in pharmaceutical innovation in 
Supplementary Box 1.

Importance of decision tool validity

The decline in pharmaceutical R&D 
productivity that occurred between around 
1950 and 2010 is well known and has 
received considerable attention3,7,11–20. But it 
is still striking, in our view, when set against 
huge gains in scientific knowledge and the 
hundred-, thousand- or even billion-fold 
improvements in the brute force efficiency 
of many of the technologies that are believed 
to be important. Given such contrasting 
trends in input and output efficiency, the 
major causative factors presumably acted 
progressively over time and should account 
for orders of magnitude of efficiency 
change12.

Scannell and Bosley6 argued that the 
quantitative power of predictive validity is 
such that it could be a major causative factor. 
They hypothesized that the best assays 
and disease models identified good drugs, 
which succeeded in clinical trials, entered 
widespread clinical use, became generic, 
raised the commercial barriers to new R&D 
and so rendered the best models industrially 
redundant. Think, for example, of models 
of stomach acid secretion21,22 and the safe 
and effective H2 receptor antagonists and 
proton pump inhibitors that they identified. 
Poor assays and models, on the other hand, 
failed to identify enough good drugs so, 
ironically, remained in widespread use, 
sometimes for decades. Think, for example, 
of cancer-derived cell lines23–25, durably high 
attrition rates22,26,27 and the modest clinical 
benefit of most approved cytotoxic28–32 and 
oncogene-targeted cancer treatments33,34. 
The gradual decline in the predictive validity 
of the stock of models in widespread use 
could offset the brute force efficiency 
gains. Support for this line of thinking is 
evident in a paper by Shih et al. (2017)22, 
which looked at attrition rates across 
15,000 therapeutic-mechanism–indication 
pairs, drawn from the Cortellis pipeline 

database. They found, for example, very high 
mechanism–indication pair success rates for 
proton pump inhibitors and very low success 
rates in oncology, suggesting that “the lack 
of translatability from strong therapeutic 
evidence in animal models into human 
disease therapeutics [points to] the need  
to carefully evaluate the predictive power  
of such animal models.”

In parallel, we suspect that much of the 
pharmaceutical industry sometimes made 
the wrong technological trade-offs because  
it had not understood the quantitative power 
of predictive validity. It sometimes embraced 
discovery methods with measurably high 
throughput and low unit costs, whose 
benefits were offset by less measurable falls 
in predictive validity. A clear example is 
antibacterial R&D (box 1). In vivo phenotypic 
screens of a few hundred compounds, circa 
1930 (refs.35–37), were more productive than 
target-based screens of ~107 compounds  
in the late 1990s and early 2000s35,37–41.

If a fall in predictive validity can explain 
strong R&D headwinds, then marginal 
gains could provide a meaningful tailwind. 
Indeed, the creation of good decision tools 
has transformed therapy in some domains. 
R&D on direct-acting hepatitis C antiviral 

Box 1 | 1930s decision tool quality beat 1990s decision tool quantity in antibacterials

“Is it not peculiar that the first useful antibiotic, the sulphanilamide drug 

Prontosil, was discovered by Gerhard Domagk in the 1930s from a small 

screen of available dyes (probably no more than several hundred), 

whereas screens of the current libraries, which include ~107 compounds 

overall, have produced nothing at all?”35.

figure 3a suggests that it is not peculiar, provided Domagk’s decision 

tools had much higher predictive validity than those that were employed 

seven decades later. Using the conditions in fig. 3a, and sampling from 

the same population of compounds, the best molecule out of 200 chosen 

using a decision tool with a predictive validity of 0.8 is more likely to work 

in people than the best molecule out of ~107 from a decision tool with  

a predictive validity of 0.2.

Domagk tested drug candidates against Streptococcus hemolyticus in 

bacterial cultures and in vivo mouse models. In 1932, he found an azo dye 
(KL-695) that protected mice without in vitro activity (it is metabolized 
into its active form). Optimization led to KL-730, sulfanilamide (Prontosil), 
which found clinical use in streptococcal infections36. Less-successful 

discovery efforts in the late 1990s and early 2000s have been described  

by several authors35,38–41. By 1995, the industry had shifted to target-based 

discovery, often with high-throughput screening (HTS). The targets came 

from genes that were essential to the survival of a range of pathogens and 

that lacked close homologues in people35,38,39. GlaxoSmithKline (GSK) 

conducted 67 HTS campaigns, each with up to 500,000 compounds, and 

found 16 hits and 5 leads, but no broad-spectrum candidates that were 

worthy of clinical trials. Furthermore, “GSK was not the only company that 

had difficulty finding antibacterial leads from HTS… >125 antibacterial 

screens on 60 different antibacterial targets were run by 34 different 

companies… [but none] resulted in credible development candidates”38.

So why did Domagk’s mice outperform genomics and HTS more than  

six decades later? One possible explanation is chemistry. HTS collections 

circa 1995 were enriched for compounds that are unlikely to lead to good 

antibacterial drugs35,38–40,261,262. However, any chemical explanation must 

be held up against the limited chemistry available to Domagk circa 1930. 

A more plausible explanation is the increase in difficulty from the shift 

from narrow-spectrum sulfanilamide to broad-spectrum candidates. 

However, the drug industry had great success with broad-spectrum 

antibiotics from the 1940s to the 1960s, using decision tools that Domagk 

would have recognized.
We believe that the adoption of HTS and target-based discovery 

depressed both the congruence between the decision tool and the human 

disease state (biological recapitulation in Table 2) and the congruence 

between testing protocols and the human disease state (tests and 

endpoints in Table 2) such that the results were largely irrelevant for 

human disease. The decision tools’ domains of validity (Table 2) no  

longer included clinical utility in people. The main biological sources  

of de-correlation are probably bacterial efflux pumps and permeability 

barriers35. The compounds that scored well in HTS campaigns against 

isolated bacterial proteins were unlikely to accumulate in bacterial cells  

in sick people261. The de-correlation was probably compounded by  

a mismatch between the genes that were essential for survival in the 

bacteria in the genomic studies and the genetic and metabolic circuits 

that are important for bacterial survival in a mammalian host37,38,40. By 

contrast, drug candidates that appeared attractive in Domagk’s infected 

mice were already likely to enter bacterial cells and act on the relevant 

machinery.

Since the failures of the first wave of target-based methods, there  

has been a return to screening against live bacterial cells but in ways  

that provide mechanistic insights very early in the process37,40,262,263.  

This may provide the best of both worlds263: whole-cell activity to  

avoid compounds that fail to accumulate in live bacteria plus defined 

mechanisms to reduce the effort wasted on nonspecific toxins and for 

efficient optimization of any hits. Furthermore, much of this can now be 
done at very high throughput262,264, potentially offering both quality and 

quantity (see upper right quadrant of fig. 3a).

NATURE REVIEWS | DRUG DISCOVERY

P E R S P E C T I V E S



0123456789();: 

drugs was impractical until the invention 
of hepatitis C virus replicons42–44 (box 2) 
that made it possible to produce reliable, 
high-titre, viral RNA replication in cell 
cultures, and to screen and optimize drugs45. 
Recent industry-wide trends are also 
suggestive. Ringel et al.46 argued that the 
uptick in FDA drug approvals since 2010 
follows, in part, from genetic segmentation 
that matches targets, translational models 
and patient populations, a focus on 
genetically simple rare diseases that can 
be modelled with relatively high fidelity, 
and a stronger managerial focus on 
‘truth-oriented’ versus ‘progression-oriented’ 
activities1,3,47,48.

Decision theory applied to drug R&D

A common-sense model of drug R&D

Decision theory has a long history in 
drug R&D, but the foci have usually been 
technical problems, often related to clinical 
trial design49–57 at one end of the process,  
or chemistry and screening at the other58–68 
(but see, for example, ref.69).

Scannell and Bosley sought to make  
a broader application to the R&D process  
as a whole6. They were aware that the 
efficiency of search methods can be very  
sensitive to the details of the search task and 
it seemed reasonable to think of drug R&D 

as a kind of search. This approach led  
to a mathematical representation of R&D to 
explore the parameters that influence search 
efficiency, formalizing a common-sense 
view of R&D6 (fig. 1). It makes the following 
assumptions: first, that there are, or could be 
created, a great many therapeutic candidates. 
These could be the compounds that might 
be screened and the derivatives that could be  
synthesized during lead optimization,  
the antibodies that might be created or the  
universe of drug targets that might be 
relevant for a particular disease. Second, that 
randomly selected therapeutic candidates are 
unlikely to have enough clinical utility (on 
the basis of properties such as safety, efficacy 
and convenience) to work in people. For 
practical purposes, ‘unlikely’ means less than 
around 10%, so the results are more relevant 
for discovery and preclinical development 
and less relevant from phase I trials onwards 
in drug development. Third, that there 
are various methods for estimating the 
clinical utility of the candidates, before it is 
measured definitively in human trials, which 
we call decision tools (Table 1). Fourth, that 
decision tools vary in the degree to which 
their outputs correlate with clinical utility  
in people (that is, their predictive validity) 
and with the outputs of other decision 
tools. And fifth, that the performance of 

therapeutic candidates on the decision 
tools is set against performance thresholds, 
implicit or explicit, to decide which 
candidates progress. For a longer discussion 
on the assumptions and their relevance to 
real drug R&D, see Supplementary Box 2.

We operationalize predictive validity as 
the Pearson correlation coefficient (Table 1) 
between the output of the decision tool and 
clinical utility in people across a wide range 
of therapeutic candidates, but it could be 
operationalized in other ways (for example, 
Spearman’s rank correlation coefficient or 
area under a receiver operating characteristic 
(ROC) curve; Table 1). Predictive validity 
is an aggregate quantitative measure of 
the performance of a decision tool, so it 
subsumes factors such as reproducibility and 
replicability. One should also think about 
predictive validity in decision-making terms, 
not purely technical terms. A management 
committee’s go/no-go deliberations, or a 
venture capital firm’s investment process, 
count as decision tools because they estimate 
the utility of a set of opportunities, to invest 
in some and not in others. If decision-makers 
call for the wrong information, are biased70 
or are careless, then their predictive validity 
can fall far below the limit set by the 
information to which they have access71.

Key results from theory application

Scannell and Bosley explored the decision 
performance of a single R&D step involving 
a single decision tool. They also looked at 
more realistic situations by combining tools 
and steps in series and in parallel. They 
varied the degree to which decision tool 
outputs correlated with each other as well as 
with clinical utility. They explored a range of 
different distributions of clinical utility and 
decision tool scores. Across a wide range of 
conditions there was a consistent message: 
quality beats quantity. When good candidates 
are rare, changes in the predictive validity of 
decision tools that many working scientists 
would regard as small and/or unknowable 
(for example, an absolute 0.1 change in the 
correlation coefficient between decision tool 
output and clinical utility in people) can 
drive larger changes in the positive predictive 
value of a decision step (Table 1 and fig. 2) 
than testing ten times or even a hundred 
times as many candidates (fig. 3). This follows 
from fewer false positives when predictive 
validity is higher, but also from more true 
positives and fewer false negatives6 (compare 
the false negative and true positive quadrants 
in fig. 3a with those in fig. 3b).

If one treats all discovery and preclinical 
activity as an aggregate decision tool 
(see Supplementary Box 2, where we justify 

Box 2 | Decision tool innovation for HCV infection spurred therapeutic innovation

Hepatitis C was recognized as a distinct viral liver infection in the early 1970s, with the causative 
virus isolated in 1989. However, the hepatitis C virus (HCV) was extremely difficult to grow in cell 

culture43,44,265, which, in turn, made it impractical to develop useful decision tools for developing 

antiviral drugs. There were reports of HCV infection in cultured cells, but viral yields were so low 

and variable that it was often hard to distinguish between the RNA of the virus that was used for 

the infection and the RNA that resulted from the infection42. Transfection models, introducing 

isolated viral RNA into cells, also suffered from similar signal-to-noise ratio problems that rendered 

them of little use42. Some HCV proteins could be expressed and investigated, but models using 

isolated proteins tend to be much less predictive of clinical antiviral activity. The dearth of 

cell-based decision tools proved a real research and development roadblock42,43,265,266.

A decade after the cloning of HCV, after many false leads, and building on work in other RNA 

viruses267–269, Lohmann et al.270 reported the creation of HCV replicons. Replicons comprise a 

truncated viral genome. They lack code for the structural proteins of the full virus but retain genes 

for the machinery of viral RNA replication and sometimes non-viral reporter genes (for example, 

firefly luciferase) are added. The reporter genes identify cells in which viral RNA replication is 

underway and signal the quantity of viral RNA replication.

Parallel selection of cell-culture adaptive replicons and replicon-friendly cell clones led to 

measurable, reliable, high-titre, viral RNA replication in a range of cell lines. Replicons formed the 

basis of high-throughput phenotypic screens45, efficacy assays for lead optimization45 and antiviral 

drug resistance models. They were crucial for the discovery of most, and the optimization and 
preclinical development of all, of the first wave of direct-acting antiviral HCV drug classes42,45,265: 

NS4/4A protease inhibitors (such as boceprevir and asunaprevir), NS5B polymerase inhibitors  

(such as sofosbuvir and dasabuvir) and NS5A inhibitors (such as ledipasvir and daclatasvir).  

These drug classes transformed treatment, with a shift from relatively intolerable and ineffective 

interferon-based regimens, to regimens that are both tolerable and rapidly curative271.

In our terminology, replicons traded a decline in ‘biological recapitulation’ against other cell 

culture methods (Table 2) — losing some native viral machinery and the full viral replication process 

— for huge gains in statistical and experimental hygiene (Table 2). But, in contrast to isolated HCV 

proteins, replicons recapitulated enough of the relevant biology to support decision tools for which 

domains of validity (Table 2) included clinical utility in humans across several drug classes.
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this approach), then small changes in 
predictive validity can be worth tens or even 
hundreds of millions of dollars of expected 
net present value (NPV; Table 1) per drug 
candidate entering phase I (fig. 3); this is 
similar to the effect of a twofold change in the 
profit from each drug that R&D ultimately 
delivers (fig. 3). It is worth emphasizing this 
point. Statistics textbooks and primers72–74 
lump together correlation coefficients; for 
example, 0.7–0.9 is high, 0.5–0.7 is medium 
and 0.3–0.5 is low. This implies that there is 
not much practical difference within each 
group. In our experience, some biologists 
share this view. A 0.7 correlation coefficient 
does not really ‘feel’ so different from a 0.5, 
not least because sample sizes running into 
the hundreds would be needed to confidently 
distinguish between the two75. However, 
the R&D productivity difference resulting 
from the use of an ‘aggregate decision 
tool’ with a predictive validity for clinical 
utility of 0.7 instead of 0.5 could be worth 
hundreds of millions of dollars per phase I 
candidate (fig. 3).

Practical implications

Of course, people working in drug 
R&D already know that decision tool 
validity is extremely important22. Some 
industrial strategies have converged on 
a validity-centric approach3,76. There is 
obvious enthusiasm for human genetic 
validation of potential drug targets2,77–80. 
There is a plethora of work on, for example, 
translational strategies within companies1,76, 
assay development81, experimental 
reproducibility, reporting quality and 
bias82–91 and even on getting rid of the 
worst of the old disease models92. There is 
also some evidence that this has started to 
increase the number of drug approvals46.

However, both the decision-theoretical 
work and the real-world examples 
(boxes 1,2,3, and the oncology and mood 
disorder examples discussed later) suggest 
there will often be value in more rigorous 
and explicit consideration of the predictive 
validity of the decision tools being used 
during drug R&D programmes. In what 
follows, we consider several aspects of the 
challenge of achieving this goal — education 
and awareness, decision tool evaluation and 
approaches to R&D management and invest-
ment — before concluding with our thoughts 
on how to fund the creation of better  
decision tools.

Education and awareness

The training of most biological scientists  
is scant on validity-related and decision- 
theoretical ideas. We provide a reading list 

in Supplementary Box 3. In brief, however, 
we recommend that, first, there should 
be an understanding of the quantitative 
importance of decision tool validity6,86 and 
what this means for effective R&D.

Second, within organizations, there 
should be a lingua franca for important 
validity-related ideas. Current terminology 
is inconsistent and confusing (for an 
illustration, see Belzung and Lemoine93 
for five different definitions of ‘construct 
validity’ from the psychopharmacological 
literature). Converging on a lingua franca 
should force some clarity and make it easier 
to manage the R&D process.

Third, people should understand that 
conventional hypothesis testing and  
P values are problematic when applied 
in drug discovery and preclinical 
development94,95. They can be prolific false 
discovery generators94. Statistical concepts 
that apply to diagnostic testing96,97 are often 
more appropriate in our view. Biomedical 
scientists should perhaps be as familiar with 
ROC curves96, confusion matrices96, true 
positive rates, false positive rates, positive 
predictive values and false discovery rates 
(Table 1) as they are with P values and 
hypothesis tests.

And fourth, people should be trained in 
decision tool evaluation, to improve their 
ability to identify, create and exploit results 

from better decision tools and to discount 
results from worse tools98,99.

Decision tool evaluation

Those who have read up to this point 
may have started to think that predictive 
validity is to drug R&D as dark matter is 
to cosmology100. It is important. It has a 
strong theoretical basis. It explains a range 
of empirical observations (for example, 
those discussed in boxes 1,2,3), but it largely 
defeats direct measurement. If so, how can 
one evaluate it? And without evaluation, 
how can one manage it or invest on its basis?

Perhaps a useful analogy here is that 
of the difference between Bayesian and 
frequentist approaches to probability. 
Bayesian probability deals with degrees of 
belief about what will happen. Frequentist 
probability deals with historical counts 
of events. Choices about screens used in 
drug R&D usually have a Bayesian flavour 
because they are based on beliefs — often 
implicit and untested99 — that the outputs 
correlate with clinical utility. Without 
such beliefs, one might as well make R&D 
decisions via the toss of a coin or the roll  
of some dice.

We are not arguing for an impractically 
‘frequentist’ approach to the measurement  
of the predictive validity. The universe of  
therapeutic candidates is large. Only a 
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Fig. 1 | Pharmaceutical R&D depends on selections made using a set of decision tools. The expec-
tation is that the decision tools score therapeutic candidates (points in the scatter graphs, arbitrary 
units) in a way that correlates with clinical utility in human patients, so that candidates that score well 
on the decision tools are enriched for those that could succeed in the clinic (red dots). Of course, these 
correlations are rarely measured in practice, but for empirical examples of correlations between deci-
sion tools, or between decision tools and clinical utility in patients, see refs.146,147,260. Typically, 
less-expensive, higher-throughput decision tools are used early in the process to increase the number 
of candidates that can be tested (such as an in vitro potency assay to select candidates for animal 
testing shown in panel a) with the general assumption that these tools have lower predictive validity 
than the more expensive decision tools used later in the process (such as an animal efficacy assay 
shown in panel b). Panel c shows the conceptual basis of our decision-theoretical analysis. By repre-
senting therapeutic candidates in a ‘measurement space’ and by applying plausible decision rules to 
segment the space, one can explore the parameters to which research and development (R&D) per-
formance (for example, the ability to find the red dots) is sensitive. The parameters include throughput 
of decision tools, their predictive validity, the degree to which decision tools are statistically indepen-
dent of each other, the rarity of good clinical candidates, the candidate selection thresholds that are 
applied and the underlying distributions of clinical utility and decision tool scores. For a technical 
discussion, see Scannell and Bosley6 and Supplementary Box 2.
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tiny fraction are tested in people and that 
fraction contains only true positives and/or  
false positives from the discovery and 
preclinical stages. The false negatives 

and true negatives never enter the clinic. 
Therefore, one can rarely measure the 
correlation coefficient between human 
clinical utility and the output of any decision 

tool across a representative sample of 
therapeutic candidates.

We are arguing for evaluation, or 
measurement, to move the Bayesian  
view of decision tools a bit closer to the 
underlying reality. Recall that measurement 
concerns the reduction, not elimination,  
of uncertainty101–104. Decision tool evaluation 
makes practical sense if the improvement 
in decision performance from lower 
uncertainty is worth more than the cost 
of measurement101. figure 4 shows that 
small reductions in uncertainty regarding 
predictive validity can be worth a great 
deal. We may also need less measurement 
than we think. When uncertainty is high, 
it can be materially reduced with little 
information101. Uncertainty around decision 
tool validity is often high, and the effort 
expended on evaluation has often been 
low99. There are probably correlates of the 
predictive validity of decision tools that are 
observable77–79,93,98,105–112. There is a readable 
management literature101,104, reflecting 
a large technical literature102,103,113–119, on 
how to tackle difficult evaluation tasks 
and on how to decide whether the benefit 
of evaluation is likely to outweigh the 
costs101 (fig. 4). But this knowledge has been 
underused, perhaps because the value of 
measurement is not clear unless one runs the 
decision-theoretical maths6,86 (figs. 3,4).

Of course, what is known about validity, 
the value of additional information and the 
practicality of obtaining it, varies enormously, 
so the measurement approach should vary 
enormously too. However, it is possible to 
make some evidence-based generalizations: 
evaluation tends to be more effective when 
information is structured101, consistently 
presented, attempts are made to calibrate 
the measurement (whether subjective or 
objective)104,117,120, the exercise is iterative121 
and care is taken to involve the right mixture 
of experts113,116 and to reduce bias122.

Evaluation structure

There are often gains from breaking down 
the main question (that is, ‘how valid is 
this decision tool?’) into a hierarchical set 
of subsidiary questions. This structure 
makes it easier to provide the background 
information that is required. It makes it 
harder for evaluators to forget features  
that might be important123. It also makes  
it easier to explain to others why the  
decision tool is believed to be good, bad  
or indifferent102. Disaggregation can force  
a degree of common understanding,  
or overt disagreement, on the features 
of the decision tool that are important. 
It can also highlight differences between 
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Fig. 2 | Predictive validity, throughput and research and development decision performance.  
Panels a and b illustrate the relationship between hypothetical decision tool scores (x-axes) and clinical 
utility (y-axes) for two different decision tools applied to the same set of therapeutic candidates. Panel a  
shows a decision tool with high predictive validity (correlation coefficient between decision tool score 
and clinical utility = 0.95). Panel b shows a decision tool with low predictive validity (correlation coeffi-
cient between decision tool score and clinical utility = 0.4). The shading (z-axis) represents the probability 
density of candidates (red shades indicate a high probability of finding a candidate, whereas blue or 
indigo shades indicate a low probability). Suppose we use the decision tools to identify the candidates 
to advance into clinical trials. True positives (TP; upper right quadrant) are candidates that exceed our 
selection threshold (that is, lie to the right of the solid vertical line) and that have sufficient clinical utility 
to work in people (that is, are above the dotted horizontal line). False positives (FP; lower right quadrant) 
exceed the selection threshold, but have insufficient clinical utility and so fail in clinical trials. False neg-
atives (upper left quadrant) have sufficient clinical utility but are rejected before being tested in clinical 
trials. For any given selection threshold and clinical utility threshold, the high-validity decision tool 
selects more true positives, fewer false positives and fewer false negatives than the low-validity tool, and 
hence leads to fewer clinical trial failures and more drug approvals. Panel c shows how positive predictive 
value (PPV = TP/(TP + FP); left axis) increases as the selection threshold rises for the high-validity decision 
tool (solid black line) and low-validity decision tool (dashed black line). Think of PPV as the expected 
clinical development success rate. We assume that 0.1% of therapeutic candidates have sufficient clinical 
utility to work in people (that is, before the selection step, ~0.1% of the probability mass lies above the 
horizontal dotted line in panels a and b). Of course, higher selection thresholds require more candidates 
to be tested to find the same number of the ever-rarer candidates that exceed the rising selection thresh-
old. This is shown by the gold ‘Number of candidates tested’ line in panel c (logarithmic right axis; this 
line is the same for both decision tools). However, decision tool quality tends to beat screening quantity. 
With the high-validity decision tool (panel a), one can expect a ~20% PPV when testing 200 candidates 
and selecting the best-scoring candidate for clinical trials. With the low-validity decision tool (panel b), 
one can expect a mere ~5% PPV when testing 30,000 candidates and selecting the best-scoring one for 
clinical trials. For what appears to be a real-world illustration of this general phenomenon, see box 1. 
For details of the analysis and the associated code, see Supplementary Boxes 2 and 4.
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decision tools that would otherwise appear 
similar. For these reasons, disaggregation 
is a common approach to subjective or 
quasi-subjective evaluation, with evidence 
to support its effectiveness in certain 
situations, particularly when uncertainty 
is high101,118,123–126.

There is good starting material. The 
reproducibility crisis127,128 and failed 
translation85,129–132 have spawned a liter-
ature that disaggregates good practice 
with respect to experimental conduct and 
reporting83,87–91,132–135. There are break-
downs to assess the utility of models of 
disease93,98,105–108,111 and conceptually similar 
breakdowns on the translatability of projects 
into the clinic106,110,136,137 and the quality  
of drug targets4.

We have been influenced by the 
framework to identify models of disease 
(FIMD)98, which was developed by one of 
the authors of this paper. FIMD is oriented 
towards animal models, but we think the 
principles are applicable to other kinds  
of model. FIMD assesses the fit between the 
model and the human clinical state across 
eight domains: epidemiology, natural history 
and symptomatology, genetics, biochemistry, 
aetiology, histology, response to known 
pharmacology (positive and negative) 
and experimental endpoints. FIMD also 
separately considers reporting quality and 
the risk of experimental bias.

To give a sense of the effort required to 
apply FIMD, in the case of Alzheimer disease 
it would take an established Alzheimer 
model expert several weeks to tailor the 
evaluation criteria to the specific features 
of the human disease state, and then about 
a week or two of work per model evaluated, 
depending on data availability.

For ease of communication, we 
condensed the FIMD domains under 
three general categories (Table 2). The first 
category is biological recapitulation, or the 
extent to which the decision tool captures 
relevant aspects of the biology of the clinical 
state. We are not arguing that more complex 
models are necessarily better. A simplified 
system can have excellent performance if 
it recapitulates the relevant biology (box 2). 
However, it is important to know which 
aspects are captured and which are not.  
The second category is tests and endpoints,  
or the extent to which testing and scoring 
the therapeutic candidates is relevant to the 
way candidates will be tested and scored in 
clinical trials. This also considers the score 
the candidates need to achieve to be ‘hits’  
or ‘yeses’ and proceed to the next stage  
of the R&D process. The third category is 
statistical and experimental hygiene, which 
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Fig. 3 | R&D productivity is very sensitive to predictive validity. In panel a the numbered contours 
show how positive predictive value (PPV = TP/(TP + FP)) varies as the predictive validity and number of 
candidates evaluated using the decision tool vary. Calculation methods follow Scannell and Bosley6. 
As with fig. 2, we assume that one candidate out of 1,000 (0.1%) has sufficient clinical utility (that is, is 
a true positive). For much of the parameter space, an absolute 0.1 change in predictive validity (hori-
zontal axis) has a bigger effect on PPV than a 10× change in the number of candidates tested (log10 
scale on the vertical axis). For example, increasing predictive validity from 0.4 to 0.5 with 104 candi-
dates tested raises PPV from 5% to 10%; about the same effect as increasing the number of candidates 
tested by a factor of 40 while holding predictive validity constant at 0.4 (highlighted with dotted 
arrows). Panel b treats all activity up to phase I as an aggregate decision tool that delivers a fixed 
number of candidates into phase I trials. We use the PPV parameter (from panel a, where PPV contours 
range from 0.3% to 33%) to vary the proportion of drug candidates entering phase I that have sufficient 
clinical utility in people. The contours then show the expected net present value (NPV) of lifecycle 
cashflows per phase I candidate in millions of US$ ($m), discounted to the time of FDA approval. NPV 
increases with PPV because more of the phase I candidates are eventually approved and sold. An 
Excel-based financial model that shows the calculation in detail is provided in Supplementary Table 1.  
We base our analysis on the archetypal ‘big pharma’ research and development (R&D) lifecycle set out 
by Paul et al.7 that conventionally leads to a single drug approval. The clinical trial costs vary (higher 
with more candidates that have clinical utility), as do post-approval profits (in proportion to the num-
ber of drug approvals). The profit per approved drug is set so that the financial return on R&D invest-
ment using the Paul et al.7 parameters — which lead to a single approval — is 11%. For comparison, 
the aggregate NPV of R&D costs leading up to each phase I candidate in the Paul et al. model averages 
around −$100 million. The NPV figures in the bottom left hand of panel b are lower than this figure 
because poor candidates enter clinical trials and incur clinical trial costs that are not offset by 
post-approval profits. Panel c takes parameters along the red dotted line in panel b (Base case) and 
applies a multiplier to the profit per launched drug while holding the costs of R&D constant. It then 
calculates lifecycle NPV per phase I candidate. A 0.1 absolute change in predictive validity has nearly 
as big an effect on the lifecycle NPV per phase I candidate as a twofold change in the profit per launch. 
The example of the impact of an increase in predictive validity from 0.5 to 0.6 is shown on the graph 
(arrows). Panel d shows the increase in lifecycle NPV per phase I candidate from an incremental  
0.1 increase in the aggregate predictive validity of the R&D activities that deliver candidates into 
phase I. The baseline predictive validity, on which the incremental increase is made, is shown on the 
horizontal axis.
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considers factors such as experimental 
conduct, reporting quality, managed 
heterogeneity138–140, bias, reproducibility  
and statistical power.

There is then a fourth category, often 
missing from evaluation frameworks, which 
is qualitatively different, and which aims to  
assess and explain the kind of decisions that 
a decision tool can reasonably support: the 
decision tool’s domains of validity6,108 or 
the parameters within which decision tool 
output is likely to be predictive. The idea 
that models have specific domains of validity 
is common in science. FIMD, for example, 
considers ‘context of use’98. However, this 
is too rarely made explicit in drug R&D in 
our view. In physics, for example, classical 
mechanics has excellent predictive validity 
for the motion of objects that are not hugely 
massive, that are not approaching the speed 
of light and that are bigger than atoms. 
When things are too massive and too fast, 
general relativity is a better model. When 
things are too small, quantum mechanics 
has higher predictive validity. Explicit 
consideration of domains of validity helps 
one understand a decision tool’s strengths 
and weaknesses. It can also help one 
assemble a combination of models to plug 
evidential gaps.

There will be further breakdowns 
under each of these headings, tailored 
to the specific evaluation task in hand. 

Table 2 is oriented towards animal models. 
However, we illustrate the framework 
with both in vitro and animal-based 
models (boxes 1,2,3 and later). With 
high-throughput screening early in the 
discovery process, there might be fewer and 
different criteria for tests and endpoints. 
Statistical and experimental hygiene, 
although important, should be relatively 
unambiguous. The main cognitive effort 
would focus on the sufficiency of biological 
recapitulation and the extent to which 
the decision tool’s domains of validity 
include clinical utility in people (box 1). 
Historical studies using animal models of 
ischaemic stroke, which led to a slew of 
failed development programmes, would 
often have benefited from more scrutiny 
of tests and endpoints, among other things 
(box 3). A recent study of the translatability 
of pharmacokinetic and pharmacodynamic 
results from animals to humans141 points 
to challenges around tests and endpoints. 
Failed translation from mouse studies in 
amyotrophic lateral sclerosis highlighted 
problems with statistical and experimental 
hygiene85.

Calibrating subjective judgements. 
Disaggregation yields, in effect, a checklist. 
Deciding the relative importance of the 
items on the checklist, and how a decision 
tool scores on each item, will usually have 

a large subjective component. Fortunately, 
there is a large body of experience on 
subjective evaluation101–104,113,115.

For example, training can help evaluators 
understand the ratings scales and their 
own biases122. There are various methods, 
which could be delivered via case studies 
on established decision tools, whose 
performance is regarded as good (for 
example, the spontaneously hypertensive 
rat142 for antihypertensive drugs), bad (for 
example, mouse amyloidosis as a model of 
moderate to advanced Alzheimer disease143) 
or indifferent (for example, rodent swim 
tests for antidepressants112).

Where practical, evaluators should be 
given ‘base rate’ information117,120,144, that 
is, information that bears on the historical 
performance of similar decision tools in 
similar contexts. It may be important to 
know, for example, that projects supported 
by human genetic validation are roughly 
twice as likely to succeed as those that are 
not79, but that not all genetic validation is 
equal78. Mendelian genetic evidence appears 
much more predictive than evidence from 
genome-wide association studies (GWAS)78. 
And Mendelian evidence is much more 
predictive when the trait closely resembles 
the putative drug indication78.

Quantitative point estimates plus 
confidence intervals are generally better 
than ordinal ratings even if the person doing 

Box 3 | Translation failures in ischaemic stroke

Reviewing the field in 2007, Sena et al.130 wrote: “At least 883 candidate 

thrombolytic and neuroprotective drugs have been tested in animal 

models of stroke and shown […] some evidence of efficacy; 97 of these 

drugs have been tested in human ischemic stroke. To date, there is 

unequivocal evidence for efficacy of only 2 drugs, aspirin and tPa 

[Alteplase].”

This should be a surprise. After all, we know with a high degree of 

confidence what causes ischaemic strokes and can, in principle at least, 

replicate the cardiovascular consequences in animals.

There is now a large body of work, much related to what has become  

the CAMARADES collaboration, that bears on the translation 

failure129–131,134,272–278. First, animal studies often used tests and endpoints 

(Table 2) that failed to map onto clinical practice in humans. For example, 

most animal studies have taken a volumetric approach to lesions, whereas 

pivotal human trials focus on functional recovery130,276. There have been 

problematic dosing differences between animals and humans130 as 

drugs276 that damp down excitatory toxicity in oxygen-starved neurons 

often have cardiac and/or neurological toxicity276. Strokes strike rapidly, 

and there were often vast differences in the timing of the pharmacologi-

cal intervention with respect to the ischaemic injury in animal models 

compared with what could be achieved in clinical practice. For example, 

across 19 published animal studies of the drug candidate tirilazad130, the 

median delay between the ischaemic event and the start of drug treat-

ment was 10 min. In failed human trials of the same drug, the median 

delay was 5 h. Of course, it is possible that the domains of validity 

(Table 2) of some preclinical tirilazad models would extend to human 
stroke treatment in the unlikely event that people could be treated within 

10 min of the onset of ischaemia. In fact, we now know that for the 

clot-buster, tPa, the window of therapeutic opportunity in well-conducted 

mouse studies is within 3 h of the ischaemic event279, similar to the ~4.5 h 

window for treatment in patients with stroke280.

Second, like antimicrobials in the 1990s (box 1), the field was dominated 

by test systems that were relatively convenient and inexpensive, in this 

case rodent-based models, but at the cost of questionable biological 

recapitulation276,277 (Table 2). Glucose and oxygen metabolism and 

cerebral blood flow are three times higher, per unit volume of brain tissue, 

in rats than they are in people276. White matter is less than 10% of the  

rat brain but ~50% of the human brain277. Rodent studies focused on  

grey matter lesions, while patients in trials typically have substantial white 

matter involvement277. Rodent grey matter is also different from that  

of humans in terms of the neuron to glia ratio (1:2 in rodents, 1:10 in 

humans)277, and ischaemia has different effects on neurons and glia.  

Then, there are major species differences in cerebral vasculature276. 

Furthermore, some of the anaesthetics used in rodent stroke models 

appear themselves to be neuroprotective274. It now seems likely that 

non-diabetic normotensive274 rodents respond better to a range of 

neuroprotective drugs than do the bulk of elderly human patients with 

stroke276,277.

Third, statistical and experimental hygiene (Table 1) was often poor;  

at least in published animal studies of ischaemic stroke130,273–275. This 

generates false positives in at least two ways95. First, it introduces random 

noise, some of which is positive94,95 (for example, inadequate sample 

size130,274). Second, it introduces systematic bias via an unwarranted focus 

on the positive component of the random noise (for example, publication 

bias273) and/or by artificially inflating effect sizes (for example, via unblinded 
assessment of animal outcomes274).

www.nature.com/nrd

P E R S P E C T I V E S



0123456789();: 

the rating is highly uncertain about their 
quantitative estimates101,103. A response of 
the type “I believe that the scores from this 
decision tool would correlate 0.7 with the 
human clinical outcome across the drug 
candidates of interest, with a correlation of 
0.4 as the lower boundary of my subjective 
90% confidence interval, and a correlation 
of 0.8 as the upper boundary.” is much more 
useful than one of the type “I believe that the 
score from the decision tool is a 4 on a scale 
that runs from 1 (useless) to 5 (excellent).”

The ordinal ‘4’ can mean a wider range 
of things to different people than can the 
0.7 correlation coefficient. The 0.4–0.8 
confidence intervals summarize subjective 
uncertainty. The ordinal ‘4’ does not. It is 
easier to sense-check quantitative estimates 
that, in turn, can improve evaluation. After 
all, some assays, when repeated, do not 
correlate with themselves at the 0.7 level, let 
alone with human clinical utility. Where one 
is stuck with ordinal scales, ranks should be 
well defined and illustrated with real-world 
examples.

Reducing bias: evaluate against a target 

profile. The drug industry has huge 
experience in minimizing bias in some of its 
activities. The primary endpoints of pivotal 
trials are pre-specified, as is the performance 
standard that is required to declare success. 
Treatment allocation and evaluation are 
often blinded.

Were one to apply similar principles to 
important decision tool evaluations, one 
would assemble a disinterested group of 
experts and run a decomposition exercise106 
to produce a tailored version of FIMD or 
Table 2. Against each subsidiary question, 
one would elicit a working definition of 
good decision tool performance. Think of 
this as the decision tool equivalent of a target 
product profile. Any given decision tool 
could then be compared against the profile, 
preferably by the same experts, before 
deciding how much to invest in believing its 
results. Throughout the process, one would 
take care to minimize the well-documented 
biases117,122 that reduce the quality of 
subjective evaluation.

People who routinely scrutinize 
opportunities in a particular therapy area 
might want to use this kind of process to 
derive a set of target decision tool profiles 
(for example, venture capital firms and 
drug companies’ business development 
teams). However, in our experience, things 
that resemble target profiles are rare. One 
example comes from an industry-led 
consortium that is developing standards 
for microphysiological systems145 (such as 

organs-on-a-chip and organoids). Their 
work on drug-induced liver injury (DILI) 
approaches a target profile105 against which 
in vitro DILI models can be, and now 
have been146, evaluated. It specifies target 
urea and albumin production per million 
hepatocytes, gene expression profiles, several 
biomarkers of normal liver function, certain 
histological features and performance 
against a set of drugs that are either positive 
controls (that is, known to cause DILI in 
people) or matched negative controls (drugs 
from the same classes that are less toxic). 
An evaluation against these specifications 
would, in our terminology, mainly be an 
evaluation of biological recapitulation 
(Table 2). But even this impressive example105 
lacks the detail that is required to put it into 
practice, particularly with respect to tests 
and endpoints (Table 2). It has little guidance 
on dosing the positive and negative controls. 
Nor does it specify the methods one should 
use to decide the extent to which output is 
congruent with the known toxicity of the 
test compounds. Even known toxicity is a 
slippery concept, with a range of operational 
definitions147.

Of course, it will usually be impractical 
to assemble groups of experts to do the 
decomposition, pre-specification and 
decision tool scoring. R&D project teams 
will generally be the ones who set standards 
and do the evaluation. But even here, there 
are ways of improving performance through 
training and calibration, through the design 
of incentives, by including decision tool 
evaluation in project progression decisions 
or by occasional third-party audits of teams’ 
evaluation activity.

A scorecard or a score? Across a range 
of domains, from NASA’s project risk 
assessment to forecasting students’ exam 
grades, numerical decision algorithms 
generally beat human experts101,104,148. 
However, when we are trying to evaluate 
decision tools, scorecards will often be more 
useful than single validity scores, produced 
by aggregating across the various evaluation 
criteria (Table 2).

This is for at least three reasons. 
First, the pattern of a decision tool’s 
strengths and weaknesses is probably itself 
informative98, particularly when thinking 
about its domains of validity or combining 
information. Second, the data will not 
support easy aggregation. Evaluations are 
likely to use ordinal ratings (for example, 
from 1 = useless to 5 = excellent). An ordinal 
‘4’ is not the sum of two ordinal ‘2’s. This 
makes numerical aggregation difficult, 
and bad aggregation can be worse than 

no aggregation101. Third, a lot of data 
are required to train and test numerical 
algorithms. Even with a mere three 
numerical scores (for example, for biological 
recapitulation, tests and endpoints, and 
statistical and experimental hygiene), one 
would need to evaluate in the order of 
70 different decision tools, and have an 
independent objective measure of how 
good or bad each one was, to produce a 
regression-based decision model (see the 
sample size calculator in Related links).

Tackling the difficult problem of feedback. 
Evaluation performance is more likely to 
improve if there is a feedback loop so that 
those who are judging the models can 
find out whether they were right or wrong 
and understand why104,121. The drug R&D 
process presents unusual problems here. 
First, there is a great deal of project attrition 
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Fig. 4 | Financial value of decision tool evalua-
tion in pharmaceutical R&D. The graph is 
derived from points along the dotted red line base 
case in fig. 3d and illustrates the financial value of 
the ability to discriminate between discovery and 
preclinical development activities with higher or 
lower aggregate predictive validity with regard to 
clinical utility in humans. One can also regard 
these lines as representing the maximum amount 
that an economically rational actor would invest 
in evaluations to allow them to make the discrim-
ination. Imagine that a large drug company is 
evaluating two smaller firms, both potential 
acquisition candidates, with similar archetypical 
portfolios of discovery and preclinical projects; 
again based on the Paul et al. parameters7. One of 
the target firms used screening and disease mod-
els with higher predictive validity. The lines show 
the expected increase in net present value (NPV) 
per phase I candidate as the acquirer’s ability to 
correctly discriminate between the target firms 
varies, and as the spread in predictive validity 
between the target firms varies (shown for 0.75 
versus 0.5, 0.65 versus 0.5 and 0.55 versus 0.5). For 
scale, the NPV of research and development 
(R&D) spending to deliver a phase I candidate is 
roughly $100 million (m), including the cost of fail-
ure. The underlying financial assumptions and 
analysis are the same as in fig. 3 and are set out in 
detail in an Excel spreadsheet available as 
Supplementary Table 1.
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that has nothing to do with the decision 
tools in question. Second, it takes years, 
sometimes decades, to find out if a decision 
tool was sufficiently predictive. Third, the 
incentives to perform adequate post-mortem 
investigations may be too weak.

We have three suggestions to help.  
The first suggestion is to fund retrospective 
studies to understand why some decision 
tools give us the right answer and why 
others get it wrong. For example, use 
one set of archival data to design an 
evaluation process and then a matched 
but previously unseen set of archival data 
to test evaluation performance. Can one 
distinguish features of the decision tools 
that were more likely to lead to correct 
decisions? A historical approach has been 
used to show the positive influence of human 
genetic validation on likelihood of success 
in clinical development78,79, to help design 
AstraZeneca’s 5Rs framework for improving 
R&D productivity3 and to look at the  
origin of first-in-class drugs with a view  
to understanding the relative contributions 
of various discovery strategies149,150.

A starting point could be the paper noted 
earlier by Shih et al.22, which assessed R&D 
failure and success rates across pairs of ther-
apeutic mechanisms and therapeutic indi-
cations: ~10,000 drugs representing ~2,400 
therapeutic mechanisms tested in ~1,400 
indications. For some mechanism–indication  
pairs, drug candidates had 100% success 
rates (for example, proton pump inhibitors 
for duodenal ulcers, gonadotropin-releasing 
hormone agonists for breast cancer and 
VEGF inhibitors for renal cell carcinoma), 
while for others, the failure rate was 100% 
(for example, NMDA receptor antagonists 
for cerebrovascular disease and ACAT inhib-
itors for atherosclerosis). What was different 
about the decision tools22? We are also struck 
that some failures of translation see public 
post-mortem investigations so that lessons 
can be learnt (for example, ischaemic stroke 
in box 3, antimicrobials in box 1), while 
other major campaigns fail spectacularly  
but quietly fade away (for example, IGF1 
receptor blockers in oncology151,152).

The second suggestion is forward  
looking and concerns institutional learning.  

This is an argument for starting decision tool 
evaluation soon, for revisiting the historical 
evaluations as projects succeed or fail, and 
then using what is learned to train scientists, 
improve decision tools, and to inform 
technology choices and project progression 
decisions. We understand that this kind of 
learning led to Lipinski’s Rule of Five for 
small-molecule oral bioavailability62.

The third suggestion is to invest to 
structure, capture and share detailed 
protocols, calibration methods, 
calibration results, decision tools’ contexts 
of use and associated ‘craft skills’102 
across organizations. There are some 
pre-competitive and some commercial 
offerings that are reminiscent of what we 
are suggesting here (see the Collaborative 
Adverse Outcome Pathway, DataFAIRy 
Bioassay Annotation Wiki and Springer 
Nature Experiments in Related links).

Oncology and decision tool evaluation.  
In this section we illustrate some evaluation 
ideas with two examples from oncology: 
cytotoxic drugs, which dominated the R&D 

Table 2 | Four dimensions for decision tool evaluation

Examples of evaluation criteria Overlapping 
terminology

Examples in this article Selected references, resources 
and comments

Biological recapitulation

To what extent does the decision tool resemble the human 
clinical state in terms of epidemiology, symptoms and 
natural history, genetics, biochemistry, aetiology, histology, 
biomarkers and response to known human pharmacology 
(including positive and negative controls)?

External validity, 
face validity, 
construct validity

boxes 1,2, 3, depression 
(main text), oncology 
(main text)

refs.98,105–107,111,255

Tests and endpoints

To what extent is the experimental protocol similar to the 
likely clinical treatment regimen; does drug dosing and tissue 
exposure match the likely clinical situation; are the endpoints 
used in the preclinical studies translatable to the likely 
clinical endpoints; are the methods used to measure preclinical 
endpoints comparable to the likely clinical measures; is there 
confidence in the go/no-go thresholds that we will apply to 
the measures that the decision tool yields?

External validity, 
face validity, 
construct validity

boxes 1,2, oncology 
(main text)

refs.98,106,132,141,255

Experimental and statistical hygiene

To what extent is testing implemented with animals derived 
from trusted sources, confirmed genotype, randomized and 
blinded animal allocation and assessment, and appropriate 
sample size?

Internal validity, 
reproducibility, 
replicability, bias, 
reporting quality

box 3, depression  
(main text)

refs.88–91,94,106,107,111,132,138–140,256,257, 
see also the CAMARADES 
collaboration, ARRIVE guidelines87, 
PREPARE guidelines135

To what extent are results repeatable, consistent with 
historical results derived from the same animal strain,  
and robust to modest changes in experimental conditions  
(for example, animal strain)?

To what extent is the statistical treatment pre-planned, 
methodologically appropriate, sufficiently powerful, and 
considering false discovery rates?

Domains of validity

For which disease states, treatment regimens and clinical 
endpoints is decision tool output likely to correlate well with 
drug performance in people?

Context of use boxes 1,2,3, oncology 
(main text)

The idea of models’ domains 
of validity is common in some 
disciplines but is rarely used 
explicitly in biology and medicine. 
However, see refs.6,108,258,259
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effort from the 1940s until the 1990s, and 
oncogene-targeted drugs, which became 
widespread from around 2000. We do not 
consider immuno-oncology because it has 
only become a major field recently and it 
also lies further from the direct experience 
of the authors. We note, however, that the 
successes that led to immuno-oncology’s 
current prominence in cancer R&D owe 
little to the mainstream oncology discovery 
technologies of the time.

The first effective systemic therapy 
for cancer followed the observation that 
exposure to mustard gas caused leukopenia 
in people153–155. This led, in 1942, to the 
first encouraging treatment of a patient 
with leukaemia. Chemical refinement 
created a portfolio of alkylating agents153 
(for example, chlorambucil, melphalan and 
cyclophosphamide). The refinement of the 
alkylating agents, and subsequent cytotoxic 
drugs, depended on fast-growing cell 
lines that were adapted to grow in culture 
or as grafts in rodents. The US National 
Cancer Institute (NCI) routinely screened 
compounds in two murine leukaemia  
cell lines from 1955 (refs.23,25) shifting  
to 60 human-derived cancer cell lines  
in 1985 (ref.24).

How well did the decision tools perform? 
Well, cytotoxic cancer drugs had among 
the highest clinical trial failure rates of any 
major therapy area27,155, and the drugs that 
emerged gave little benefit to most patients 
with advanced cancer28–32: “it is clear that 
cytotoxic chemotherapy only makes a 
minor contribution to cancer survival”29. Yet 
there were some triumphs such as curative 
treatments in rare cancers30; for example, 
childhood leukaemias, Hodgkin lymphoma 
and testicular cancer.

A shift in the cancer research paradigm 
began around 1976 (ref.156) with the 
emergence of the oncogene concept157,158, 
but oncogenes remained a minority 
interest in the drug industry until the early 
2000s. Then, the landmark approvals of 
the HER2-targeted antibody trastuzumab 
(Herceptin) for HER2-positive breast cancer 
in 1998 and the BCR–ABL kinase inhibitor 
imatinib (Gleevec) for chronic myelogenous 
leukaemia (CML) in 2001 (both barely 
emerging from battles for institutional 
support159,160) catalysed a major change 
in the focus of anticancer R&D. Cancer 
was now often viewed through the lens of 
‘oncogene addiction’161,162, with the products 
of oncogenes amenable to targeted therapy.

However, the cancer models in academic 
and industrial use shifted less than the 
paradigm. Rapidly growing cell lines 
in culture and in xenografts remained 

important, later supplemented with 
genetically engineered mouse models163 
(GEMMs) with switchable on–off expression 
of oncogenes, and with xenografts of human 
tumour tissue grafted into immune-deprived 
mice164,165 (PDX models). Outcome measures 
continued to focus on short-term (for 
example, 35-day) tumour growth166,167.

How well did the assays perform? 
Between 2000 and 2015, oncology had the 
highest clinical trial failure rate of any major 
therapy area26. The drugs that emerged 
from trials failed to yield the predicted168 
therapeutic revolution for cancer in 
general33,34,169–176. As of 2018, around 5% of 
patients34 diagnosed with advanced cancer 
in the USA could expect to benefit from an 
FDA-approved oncogene-targeted therapy, 
and among those patients, resistance to 
treatment generally evolves177. But again 
there were some real triumphs (such as 
imatinib178,179) and a range of major advances 
in subsets of cancers (such as ALK180 and 
EGFR181 inhibitors in subsets of patients  
with lung cancer).

How might more formal decision tool 
evaluation have helped? At least it could 
have made it more obvious where R&D 
would fail. Turning to cytotoxic drugs, work 
to develop a target decision tool profile 
would have recognized that cancers vary 
hugely in their doubling times and cellular 
growth fractions182–184. Some haematological 
malignancies double in mass every 1–4 days.  
Some colon cancers double in 10 weeks 
or more. That this predicts response to 
cytotoxic therapy has been clear since the 
1960s183,184. Growth kinetics also affect  
the therapeutic index of cytotoxic drugs, 
which tend to be more poisonous to normal 
tissues with high-growth fractions than to 
cancers with low growth fractions. Cancers 
also vary in their resistance to programmed 
cell death (apoptosis) following the DNA 
damage that cytotoxic drugs cause; a fact 
whose clinical relevance was spotted in the 
1970s185, but which was largely ignored until 
the 1990s186,187.

Decision tools were generally 
short experiments in fast-growing, 
high-growth-fraction cell lines that did not 
recapitulate the biology of slow-growing 
or apoptosis-resistant cancers. It should 
be no surprise, therefore, that the drugs 
the tools identified worked well in the 
rare cancers dominated by fast-growing, 
high-growth-fraction populations of cells 
with low apoptosis resistance (for example, 
childhood leukaemias) and had only limited 
use in most other cancers. The models 
recapitulated the biology of a small subset 
of cancers and their domains of validity 

extended little further than the small subset 
of cancers whose biology they recapitulated.

Turning to oncogene-targeted therapies, 
it has been known since the 1970s188 that 
very few cancers are monoclonal, in which 
one event drives uncontrolled proliferation. 
Most are polyclonal, with different subclones 
carrying different oncogenic drivers. We 
have learned that genetic instability makes 
cancers less treatable189, about their complex 
evolution190,191, about multiple drivers of 
malignancy192,193, and about topographic 
genetic heterogeneity within single cases  
of advanced cancer192.

These features are missing in most 
oncology models. Cell lines are genetically 
homogeneous in 2D growth or when used 
to construct 3D models such as spheroids 
and tumour organoids, and none of these 
models captures the self-sculpted complexity 
of, and reciprocity between, a tumour and 
its microenvironment194. GEMMs have 
lacked the genetic heterogeneity necessary 
to evolve resistance to drug treatment188,192, 
although recent models strive to capture the 
complex genomic damage that characterizes 
an advanced tumour195. In fact, when, in 
2010, a GEMM was engineered to have 
more realistic genetic heterogeneity, via 
engineered chromosomal instability, the 
anticancer benefit of suppressing expression 
of its classical oncogenic driver mutation 
largely vanished196. Human tumour-derived 
xenografts appear more realistic in several 
important respects111,165 but still suffer 
constraints111,164, not least their tiny volume. 
Small early-stage, surgically resectable 
tumours in people have a volume of several 
cubic centimetres197, about 1,000 times larger 
than the 2–3 mm3 (ref.198) of patient-derived 
tissue that would be grafted into a mouse. 
This means individual grafts are unlikely to 
capture the genetic heterogeneity192,193 that 
tends to make advanced cancer resistant  
to treatment. Of course, it is possible to 
make multiple grafts into multiple mice,  
but this in turn raises other problems, not 
least ‘propagation bias’ as many — often  
the overwhelming majority — of human 
tumour fragments fail to grow111,164 in their 
new host. There is also bias at the level of  
the individual graft, as minor clones from the 
original tumour often come to populate  
the model199,200.

As with the cytotoxic drugs, the 
prevalent decision tools found good 
oncogene-targeted therapies for the 
relatively small proportion of cancers whose 
biology the decision tools recapitulated: 
cancers with dominant driver mutations 
and relatively stable and homogeneous 
genetics. But as with the cytotoxic drugs, 
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most advanced cancers fall outside the 
decision tools’ domains of validity, so 
relatively few patients benefited from the 
oncogene-targeted drugs the decision tools 
selected34. This is illustrated by imatinib 
in CML. As long as CML resembles a 
monoclonal hyperplasia, not an advanced 
cancer201, imatinib is typically effective. Once 
CML evolves into a typically genetically 
heterogeneous cancer (for example, during 
blast crisis), imatinib becomes ineffective201.

Could decision tool evaluation have 
done more than help avoid failed oncology 
trials? We see two possible opportunities. 
The first is that such an evaluation could 
have provided support for a simpler 
approach to cancer R&D. The EMA202 and 
FDA203 permit phase I cancer trials with 
relatively limited preclinical efficacy data, 
with drug candidate selection based on 
“the target and mechanisms of action”, plus 
safety pharmacology, pharmacokinetics 
and toxicology to support a human dosing 
plan203. In our experience, some companies 
are reluctant to take a light-touch approach, 
preferring to invest heavily in poorly 
predictive animal efficacy data. This may be 
because review boards and clinicians expect 
such data before recruiting patients into 
trials, even though the efficacy data they see 
often carry little useful information141,204. 
However, when there is no opportunity to 
substantially improve decision performance, 
minimizing cost is the best policy69.

The second opportunity could have  
been to focus decision tool development  
at a different point on the trade-off between 
unit cost and predictive validity (analogous 
to box 1, see also fig. 3) by investing more to  
produce tumour models that capture 
native growth kinetics, complexity and 
genetic heterogeneity. There has been some 
progress with human tumour slices205,206 and 
cancers-on-a-chip207, but there are technical 
challenges. Tumour slices in static culture, 
without vasculature, have limited durability. 
Chips mimic vasculature and some aspects 
of tissue structure, but cancer chips have 
generally been produced with genetically 
homogeneous cancer-derived cells207.

R&D management and investment

Predictive validity should carry due weight 
in decision-making on project progression 
and investment98,101,102,106,110. Estimates of 
the attrition rate of subsequent R&D steps 
should be flexed up or down depending on 
the validity of the preceding decision tools 
(see the financial analyses in Supplementary 
Table 1). Management should encourage 
evaluation-based decision tool choice 
and discourage choice via tradition and 

availability bias99,208. Decision tool quality 
will often beat quantity6 (fig. 3). There should 
be particular focus on early steps in the 
R&D process, as improvements in predictive 
validity when good drug candidates are 
rare have a bigger impact on productivity 
than improvements of a similar magnitude 
later in the process when good candidates 
are more common. Decision processes 
should be designed to minimize the loss 
of information between those who have 
practical craft knowledge of the decision 
tools and those who make major spending 
and progression decisions.

Several of the authors have seen major 
funding decisions that depended on 
decision tool results where validity-related 
information was not merely insufficient, 
it was entirely absent from the documents 
provided to the decision-making group.  
A recent review of 25 investigator brochures 
for compounds entering phase I trials found 
that fewer than one-third contained any  
text that sought to justify the choice of 
animal efficacy models141. None discussed 
the animal efficacy model choice versus 
other options that would have been available. 
Wieschowski et al.204 observed similar 
results.

Given the financial sensitivities (figs. 3,4), 
drug companies’ audit and risk management 
committees should scrutinize the decision 
tool evaluation process when it bears on 
major acquisitions. Institutional investors 
(for example, pension funds and sovereign 
wealth funds) should understand the 
decision tool evaluation methods of  
the biotech venture capital firms that invest 
on their behalf. Perhaps institutional review 
boards and clinical investigators should 
also make similar demands before enrolling 
patients into phase I and phase II trials141,204.

Pharmacological calibration and 

cross-calibration. For important decision 
tools, the likely costs and benefits101 of 
pharmacological calibration should be 
estimated (fig. 4) and then, where it is 
cost-effective, a set of compounds should be 
put through the tools.

The most obvious case is to measure 
predictive validity by testing the decision 
tools with a sample of drugs for which 
known clinical utility varies widely. 
We know of examples using toxicology 
models108,146,147,209 and cancer cell lines210–213, 
and it should be practical, if often expensive, 
in therapy areas where a large number of 
drugs have gone into human trials. This 
provides a quantitative measure of predictive 
validity and helps to set the decision 
threshold: the score on the model that best 

corresponds to a go or no-go decision on 
a candidate. Models with high predictive 
validity may give the wrong decisions 
because of untested, yet easily testable, 
assumptions about the optimal go/no-go 
threshold146.

As the practice of counter-screening214,215 
shows, one can also make better decisions if 
one knows whether the results of different 
decision tools are highly correlated, 
and thus redundant, or orthogonal, and 
thus potentially synergistic with each 
other6,216. Therefore, there can be value in 
cross-calibrating different decision tools 
using the same set of compounds108,147.  
To give an example, the lack of congruence 
between certain cancer cell line-based 
models has been presented in the academic 
literature as a problem210–213, with critics 
arguing that congruence is low, and 
supporters arguing that congruence is 
high. In fact, pooled results from the 
various models would be more useful for 
decision-making6 if the critics are correct.

Plausibly higher predictive validity as a 

trigger for R&D investment. Human genetic 
validation of a potential drug target is an 
obvious example of something that raises 
predictive validity2,77–80. It has become a 
trigger, and for some firms a prerequisite, 
for R&D investment. However, it is hard to 
find genetically validated targets that are not 
obvious to other people. This encourages 
competitive crowding in oncology217 and 
rare diseases, offsetting the financial benefits 
to the firms involved46,218.

It should be possible to avoid the  
crowds by looking for correlates of 
predictive validity for which competitive 
pressure is lower; perhaps in human 
tissue collections5, microphysiological 
systems145,207,219, mechanistic simulation220–224 
and comparative physiology225,226. The 
projects for which the model systems 
promise the most reliable prediction could 
then be funded.

We illustrate this line of thinking with 
the Fast-MAS programme in mood and 
anxiety disorders227–229, a response to the 
withdrawal of much of the drug industry 
from psychiatric R&D, which is funded 
by the US National Institute of Mental 
Health. It is an example of a larger body of 
work that is aiming to improve predictive 
validity in psychiatry via better pathological 
taxonomy230–232 (which makes it easier 
to map screening and disease models 
onto psychiatric symptoms) and via new 
experimental medicine methods (which 
eliminate the species gap between some 
model systems and the patient).
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From a commercial perspective, mood 
disorders have become a difficult place to 
allocate R&D capital. Many widely used 
antidepressants are available as cheap generic 
versions, which reduces demand for new 
and more expensive drugs. R&D is difficult. 
Human genetics has not yet helped much233. 
Preclinical models are often poor112, hence 
the crucial role of serendipitous clinical 
observations (akin to phenotypic screening 
in people) — which have low throughput 
but high validity — in the discovery of 
the major antidepressant classes17,234 (see 
Supplementary Box 1 for further discussion 
of serendipity). Conventional clinical trial 
economics are further undermined by high 
placebo response rates (which reduce the 
signal to noise ratio), by high drop-out rates, 
by treatment responses that can take up to 
8 weeks to emerge, plus a range of practical 
problems around patient selection235,236. 
In our terminology, even pivotal trials in 
depression have struggled with statistical 
and experimental hygiene235.

Fast-MAS began by defining the criteria 
for a high-validity development programme 
and only then searched for therapeutic 
candidates, targets and compounds to which 
the criteria could be applied. The idea was 
that by defining better models — in this case, 
experimental medicine methods — targets 
and compounds become investible228.

Fast-MAS is tackling anhedonia, or 
the inability to enjoy normally pleasurable 
activities. Anhedonia is a common 
component of mood and anxiety disorders. 
Perhaps the first validity-related innovation 
here was the choice of clinical problem. 
Conventional psychiatric diagnosis is 
problematic, based on collections of 
symptoms and not necessarily aligned 
with underlying pathobiology230,231. This 
de-correlates disease models, which often 
assume a particular mechanism, from 
clinical utility within a conventional 
diagnostic group230,231. Anhedonia, on the 
other hand, appears to be something of a 
coherent pathobiological entity227,229.

Tools to show target engagement were 
also a prerequisite for target and drug choice. 
In this case, there was a PET tracer available 
for the κ-opioid receptor (KOR), for which 
activation had been implicated in anhedonia 
in animals. The PET tracer had already 
revealed good target engagement in humans 
by a KOR antagonist, JNJ-67953964; a drug 
candidate that also appeared to be acceptably 
safe for clinical use.

Methods to show proof of mechanism 
were the next prerequisite: something with a 
high signal to noise ratio, hence measurable 
in a small phase IIa trial, and directly linked 

to the therapeutic mechanism. In this 
case, several strands of evidence from the 
neurobiology of reward and punishment led 
to a functional MRI (fMRI)-based approach 
focused on part of the brain known as the 
ventral striatum. Around 90 patients with 
anhedonia were randomized to receive 
JNJ-67953964 or placebo and were, near 
the start and end of treatment, placed in an 
fMRI scanner. Once there, they were given 
three alternative cues before being required 
to press a button with, depending on the cue, 
the button press either earning them money, 
avoiding a loss or having no consequence227. 
The fMRI outcome measure depended  
on the difference in striatal blood flow 
between the states of financial anticipation, 
fear or indifference. JNJ-67953964 normalized 
the fMRI measurements of anhedonic patients 
compared with placebo227.

The validity-related innovations in 
Fast-MAS do seem to have triggered new 
investment by others228. Takeda adopted 
a similar fMRI approach to anhedonia in 
patients with schizophrenia. Janssen put 
JNJ-67953964 into a more conventional 
phase II trial as an adjunctive treatment in 
major depressive disorder.

There are, of course, some challenges. 
By drug industry standards, the meticulous 
Fast-MAS project was anything but 
fast, partly owing to the statistical and 
experimental hygiene challenges for a new 
fMRI-based endpoint collected across many 
different trial sites. Furthermore, anhedonia, 
although perhaps reflecting underlying 
biological reality, does not map neatly 
onto the diagnoses with which the FDA is 
comfortable. This means that companies 
must either take a regulatory risk on a new 
indication, or else run trials in conventional 
diagnostic categories, such as major 
depressive disorder or schizophrenia, in 
which treatment may have only a weak effect 
on conventional rating scales.

Nonetheless, better pathological 
taxonomy plus behavioural biomarkers may 
make psychiatric R&D more tractable, as 
genetic taxonomy and molecular biomarkers 
have done in other therapy areas. The 
broader point is that human genetics is 
merely one route to the higher predictive 
validity that tends to raise returns on R&D 
investment.

A wider economic context

We have argued that the sensitivity of 
R&D productivity to small changes in 
the predictive validity of decision tools is 
underappreciated. We have discussed things 
that might nudge predictive validity in the 
right direction, via education and decision 

tool evaluation, and by giving predictive 
validity an overt role in project progression 
and investment. But decision tool-related 
innovation suffers from a general economic 
problem: weak incentives for investment 
when the inventor cannot capture enough 
of the wider value that the invention 
creates237,238.

At least for the diseases of the rich, 
the pharmaceutical R&D knowledge 
bottleneck has arguably shifted over time 
from chemistry to biology1–5. Some of 
the most predictive decision tools may be 
commercially exhausted6. Chemical space, 
on the other hand, is hardly scratched by 
the past 100 years of drug discovery239,240. 
Yet it is easier to capture financial value 
from novel drug structures than from novel 
decision tools. The value of compounds 
can be captured via composition-of-matter 
patents, even with relatively little241 evidence 
that the compounds will be clinically useful. 
By contrast, if one invests in better decision 
tools to prove the worth of a new target or to 
identify the tiny proportion of compounds 
that have clinical utility against that target, 
much of the value of the innovation can 
spill over to other firms at low cost; for 
example, when results from early human 
trials become public or when staff move 
between firms. This weakens incentives 
for decision tool-related innovation versus 
compound-related innovation.

Our view is based on several strands  
of evidence. It is suggested by economic 
analysis by Billette de Villemeur and 
Versaevel242. It is exemplified in hepatitis C,  
where the profitability of novel chemistry  
— Gilead’s oral antiviral drug sofosbuvir  
(Sovaldi) — caused political controversy243,244. 
Few politicians have heard of the replicons 
that made the novel chemistry possible 
(box 2). It is shown by investors’ beliefs  
about future profits, which drive company 
valuations. As of March 2022, the market 
capitalization of the top ten global contract 
research organizations was around 7.5%  
of the market capitalization of the top ten 
global pharmaceutical companies; investors 
expect companies that produce or acquire 
novel chemical matter to be able to capture 
far larger future profits than companies  
that supply the services that help decide 
whether the chemical matter is useful  
or not. It is apparent in biotechnology- 
related capital flows and in the compound- 
oriented innovation that those capital flows 
support245,246.

This is a difficult problem to fix. The 
first step, of course, is to characterize 
the problem in more detail. We think that 
changing intellectual property laws would be 
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ferociously difficult and, perhaps, not very 
effective. There is an argument for a shift 
in public sector R&D funding. However, 
academic science is not generally set up 
to perform the expensive, often mundane, 
long-term work needed to build, calibrate 
and maintain decision tools.

One class of solution is R&D 
collaboration between drug companies to 
fund work to improve the predictive validity 
of the suite of decision tools. The authors of 
this paper have some experience of public–
private partnerships and pre-competitive 
consortia. Arguably, the biggest collaborative 
achievements have been in generating, 
managing and sharing mechanistic 
knowledge and data, producing research 
tools and in setting standards5,13,247–253. 
There has been some, but less, emphasis 
on developing better decision tools. 
However, provided anti-trust concerns253,254 
are managed, groups of companies that, 
collectively, have a large share of the pipeline 
in a given therapy area or technology class 
could collaborate to transfer more value 
to organizations that invent, develop and 
maintain screening and disease decision 
tools in the area of interest (for example, 
toxicology decision tools for new therapeutic 
modalities, or preclinical oncology decision 
tools). That way, the industry could get 
better decision tools and benefit from 
knowledge spill-overs without individual 
firms bearing the full cost of innovation.

Concluding remarks

This Perspective is an overt attempt to 
help institutions, comprised of people with 
diverse expertise and divergent interests, 
to improve the decision tools they apply in 
drug discovery and preclinical development. 
It marshals evidence from decision theory 
and the history of drug R&D to make the 
intellectual case for a focus on predictive 
validity. It introduces financial frameworks 
to assign dollar values to better decision 
performance, to help make the commercial 
case. It sets out practical methods for 
evaluating decision tools and reflecting those 
evaluations in R&D investment decisions.  
It also describes some of the economic 
barriers to private sector investment in better 
decision tools. Few, if any, of the individual 
ideas in the Perspective are new. However, we  
do think the conjunction of ideas is new. 
We hope the conjunction will help to shift 
predictive validity in the right direction.

Code availability

The Mathematica code used to generate the 
decision-theoretical analyses shown in figs. 2 
and 3 is available in Supplementary Box 4.
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