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Abstract - -  Zusammenfassung 

A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems. We develop a 
shortest augmenting path algorithm for the linear assignment problem. It contains new initialization 
routines and a special implementation of Dijkstra's shortest path method. For both dense and sparse 
problems computational experiments show this algorithm to be uniformly faster than the best 
algorithms from the literature. A Pascal implementation is presented. 

AMS Subject Classifications: 90C08, 68E 10. 
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Ein Algorithmus mit kiirzesten alternierenden Wegen fiir dichte und diinne Zuordnungsprobleme. Wir 
entwickeln einen Algorithmus mit kiirzesten alternierenden Wegen ffir das lineare Zuordnungsproblem. 
Er enthfilt neue Routinen fiir die Anfangswerte und eine spezielle Implementierung der Kiirzesten- 
Wege-Methode von Dijkstra. Sowohl fi]r dichte als auch f/ir dfinne Probleme zeigen Testl~iufe, dab unser 
Algorithmus gleichm~ig schneller als die besten Algorithmen aus der Literatur ist. Eine Implementie- 
rung in Pascal wird angegeben. 

1. Introduction 

The linear assignment problem (LAP) is useful as a relaxation for difficult 
combinatorial optimization problems like quadratic assignment, and traveling 
salesman. Furthermore, theoretical developments for the LAP can often be 
extended to other problems, such as minimum cost flow and transportation. 

The first well known LAP algorithm, Kuhn's Hungarian method [22], was 
published in 1955. After 1977 several more or less new algorithms were proposed for 
example by Barr, Glover and Klingman [2], Hung and Rom [18], Bertsekas [3], 
and Balinski [-1]. None of these authors even mentioned the existence of the shortest 
augmenting path algorithm of Tomizawa [29] from 1971. Dorhout [10,111 
improved it to what was for years the fastest LAP algorithm available. Still earlier, in 
1969, Mack [24] developed an algorithm that is a forerunner of Tomizawa's. It is 
equivalent to the Hungarian method, but more comprehensible. 

After a review of assignment algorithms, we describe in Sections 4, 5 and 6 a new 
algorithm LAPJV, based on shortest augmenting paths. A Pascal code is presented 
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in Section 7. Its average computation times are uniformly lower than those of the 
other algorithms, as shown in the final section. 

An LAP with costs c [ i , j ]  ( i , j  = 1 .. .  n) can be formulated as a linear program: 

min Z, ij c [ i , j ] .  x [ i , j ]  

subject to 
Z j  x [ i , j ]  = 1 (i = 1 . . .  n), 

X i x [ i , j ]  = 1 (j = 1 . . .  n), 

x [ i , j ]  >-0 ( i , j  = 1 . . .  n). 

The dual problem is: 
max r i u [i] + 2;/v [ j ]  

subject to 

c [ i , j ]  - u [i] - v [j] _> 0 ( i , j  = 1 . . .  n). 

With the dual variables u [i] and v [j] the reduced costs are c [ i , j ] - u  [ i ] -  v [}] 
( i , j  = 1 . . .  n). So, the dual problem is to find a reduction of the costs matrix with 
maximum sum and non-negative reduced costs. 

In the following, indices i and j refer to rows and columns respectively; x [i] is the 
column index assigned to row i and y [j] the row index assigned to column j, with 
x [i1 =0  for an unassigned row i and y [j] =0  for an unassigned column j; the dual 
variable u [i] corresponds to row i and v [Jl to columnj. We denote the reduced costs 
by: cred [ i , j ]  = c [ i , j ]  - u [i] - v[j],  and sometimes we refer to the dual variables as 
"prices". 

2. A Review of Assignment Algorithms 

Methods to solve the LAP can be classified in three categories, that arc based on 
algorithms for 

a) maximum flow, 
b) shortest paths, 
c) linear programming. 

Most a l g o r i t h m s  based  on m a x i m u m  f l o w  are primal-dual methods. For an 
introduction to these methods we refer to Papadimitriou and Steiglitz [261. The 
Hungarian algorithm of Kuhn [22] actually served as the algorithm from which the 
general primal-dual algorithm was derived. The original method has computational 
complexity O (n4), but later 0 (n 3) versions were developed (Lawler [231). Jonker and 
Volgenant [20] give some simple, but effective improvements. 

Bertsekas [31 also presents a primal-dual algorithm. The method is Hungarian- 
type, and the best version even switches to the Hungarian algorithm itself as soon as 
the original method becomes less effective. We describe part of it in Section 4. 

The m e t h o d s  based  on shor tes t  pa th s  are dual algorithms: dual feasibility exists and 
primal feasibility has to be reached. This is achieved by considering the LAP as a 
minimum cost flow problem, solved by steps that involve finding shortest paths on 
an auxiliary graph. 



A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems 327 

In this group two algorithms, both of complexity O (n3), stand out: Hung and Rom's 
[18] and Tomizawa's [29]. The former is the more ingenious, but the latter the 
fastest, as shown in Section 8. Tomizawa augments partial assignments into a 
complete solution by primal steps in each of which one shortest augmenting path is 
determined. Hung and Rom's initial solution is complete, but may be infeasible. 
They determine in each step a shortest path tree, which takes more effort, but may 
contain more disjoint augmenting paths. We consider shortest augmenting path 
LAP algorithms separately in Section 3. 

The so-called Bradford method of Mack [24] is also of interest, especially for its 
intuitively appealing presentation. As originally presented, it has computational 
complexity O (n4). The method is equivalent to the Hungarian algorithm; adapting 
it to obtain complexity O (n 3) results in an algorithm close to Tomizawa's (Jonker 
[19]). 

Good results on sparse LAPs are obtained by Carraresi and Sodini [7] with an 
algorithm based on the shortest path method of Glover et al. [15, 16]. 

The linear programming based algorithms in the third category are specialized 
versions of the simplex method. The best published results are from Barr, Glover 
and Klingman [2]. A major difficulty with these methods is the phenomenon of zero 
pivot steps. A drawback is their relatively complex implementation as compared to 
the other approaches. Computational experiments (Hung and Rom [ 18], M cGinnis 
[25]) show that these algorithms are outperformed by the best primal-dual and dual 
methods. 

The O (n 3) signature algorithm presented by Balinski [1] and analyzed by Goldfarb 
[17] also belongs to this category. It considers feasible dual solutions corresponding 
to trees in the bipartite graph of row and column nodes. The algorithm can be 
considered a variant of the Hungarian method. Nothing definite is known yet about 
its computational performance. 

3. Shortest Augmenting Paths Based Algorithms 

Linear assignment is a special case of minimum cost flow, for which an algorithm 
exists called "Buildup" in Papadimitriou and Steiglitz [26]. Ford and Fulkerson 
[14] attribute this method to Jewell (1959) and to Busacker and Gowen (1961). It 
uses flow augmentation along paths in an auxiliary network, that, depending on the 
current flow, can be constructed from the original one. 

Tomizawa [29] noted that shifting from the original costs of the assignment 
problem to the (non-negative) reduced costs allows the algorithm of Dijkstra [ 12] to 
solve the shortest path problems. With O (n) flow augmentations, this leads to an 
O (n 3) computational complexity of the algorithm. The theoretical improvements for 
minimum cost flow algorithms of Edmonds and Karp [ 13] can also be applied to the 
assignment problem. The resulting method is equivalent to that of Tomizawa. 

In the original version of Tomizawa an augmentation step consists of finding a 
shortest augmenting path with both initial row and final column specified. 

23 Computing 38/4 
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Following Tabourier [28], Dorhout  [10, 1L] shows computational advantages in 
leaving a choice for the final column. 

The following sections are devoted to the steps of shortest augmenting path LAP 
algorithms: 

Step 1 : Ini t ial izat ion 

Step 2: Terminat ion,  if all rows are assigned. 

Step 3: Augmen ta t ion  
Construct the auxiliary network and determine from an unassigned row i 
to an unassigned column j an alternating path of minimal total reduced 
cost, and use it to augment the solution. 

Step 4: Adjus t  the dual solution to restore complementary  slackness. 
Go to step 2. 

\ 
We discuss initialization strategies in the next section. How to modify shortest path 
algorithms for assignment augmentation :is the subject of Section 5. Section 6 
describes a simple way to adjust row and column prices after shortest path 
augmentation. 

4. The  In i t ia l i zat ion  P h a s e  

A standard method of initialization in LAP algorithms'is.column and row reduction. 
For each columnj a row index i* is determined with minimum c [i , j]  (i = 1 . . .  n), v [j] 
is set to c [ i* , j]  and, if i* is unassigned,j  is:assigned to i*. Next, one finds for every 
unassigned row i the column j* wifh c [ i , j ] - v ' [ j ]  (] = 1 ... n) minimum and assigns 
j*, if unassigned, to row i. 

In our assignment algorithm the initialization is primarily aimed at reaching a high 
initial reduction of the costs matrix. It  consists of three procedures, discussed below: 

- reduction of columns, 
- reduction transfer from unassigned to  assigned rows, 
- augmenting reduction of unassigned rows. 

The first procedure is standard column reduction.  An implementation detail is 
considering the columns in reverse order. So, the low indexed columns are most 
likely to remain unassigned. As a consequence, if minimum reduced costs in a row 
occur at an unassigned column, this column is automatically selected as the first in 
which the minimum occurs. 

The second procedure is reduction transfer. Its objective is to further reduce assigned 
rows, but it has no direct net effect on the reduction sum. Afterwards a higher 
reduction sum may be obtained when unassigned rows are reduced. 

Consider a row i assigned to a column, say k. By sufficiently decreasing the price of 
column k, row i can be reduced by the current second minimum of the reduced costs. 
This additional reduction of assigned rows leads to an increase of some reduced 
costs in unassigned rows, so that these may later be reduced further. The effect of the 
procedure is twofold, as assigned columns are made more expensive relative to the 
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unassigned ones. Bertsekas [-3] calls this "ou,tpricing" of assigned columns. In 
general the shortest paths in the augmentation phase will now earlier reach some 
unassigned column. 

The straightforward procedure for reduction transfer is given in Fig. 1. For clarity 
we have not taken into account that at the start of the procedure all u [i] have value 
zero. Furthermore, one can keep track during the column reduction for which rows 
reduction transfer will certainly be useless. 

procedure REDUCTION TRANSFER; 
begin 

for each assigned row i do 
begin 

j l :=x[i];  # : = m i n  {c[i,j]-v[j] [ j = l  . . .n,j< >j l} ;  
v[ j l ] :=v[ j l ] - (y -u[ i] ) ;  u[i]:=# 

end 
end. 

Fig. 1. Procedure for reduction transfer 

Clearly, reduction transfer may also be applied in the course of the augmentation 
phase. Computational experiments showed that this does not improve the 
performance of the algorithm LAPJV (Section 7). 

Augmenting row reduction is the third initialization procedure. An attempt is made 
to find augmenting paths starting in unassigned rows, to which at the same time 
reduction is transferred. In the process assigned columns remain so, but rows may 
become assigned, unassigned or reassigned. 

procedure A U G M E N T I N G  ROW REDUCTION;  
begin 

LIST: = {all unassigned rows}; 
for all i �9 LIST do 
repeat 

u l : = m i n  {c[i,j]-v[f] I j = l  . . .n}; 
select j 1 with c [i,j 1] - v[j 1] = u I ; 
u2 :=min  {c[i,j]-v[fJ I j = l  . . .n , j< >jl} ; 
select j2  with c [i,j2] - v [j2] = u 2 and j2  < > j  1 ; 
u[i]:=u2; 
if u l  <u2  then v[ j l ] :=v[ j l ] - (u2 -u l )  

else i f j l  is assigned then j l  : = j2 ;  
k : = y  [ j l ] ;  if k > 0  then x [k ] :=0 ;  x[i]:=jl; y [ j l ] : = i ;  i:=k 

until u l  =u2  (* no reduction transfer *) or k = 0  i~* augmentation *) 
end. 

Fig. 2. Procedure for. augmenting row reduction 

The procedure is given in Fig. 2. In each step of the for-loop an alternating path is 
started up from an unassigned row, say i. Consider the columnj where the minimum 
reduced costs in row i occur. If j is unassigned, the alternating path leads to 
augmentation of the solution. If not, the path is extended by reassigning column j to 

23* 
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row i, thus unassigning the row k previously assigned to column j. Clearly, row i can 
now be reduced by its minimum reduced costs, but if the second minimum is higher, 
reduction transfer is possible by increasing the elements in column j. If so, we next 
consider row k, as for this row the minimum reduced costs may now occur in a 
column different fromj. If  this is the case, the alternating path is extended as before. 
If not, and furthermore the minimum is still unique, the path may even reverse 
direction, and be extended by rows and columns visited before. The process is 
continued until either an additional assignment is found, or no reduction transfer 
takes place. 

The two previous reduction procedures both have computational complexity O (nZ). 
It can be shown that for augmenting reduction at most O (n 2 . R) steps are taken, 
with R the range of the cost coefficients. With each step involving O (n) operations, 
the complexity is at most O (n 3 �9 R). A different argument is as follows. We determine 
O (n) alternating paths. Each extension of a path takes O (n) operations. So, an O (n 3) 
computational complexity is obtained by simply allowing no more than n path 
extensions. In practice the procedure never even approaches this number of 
extensions. 

Computational experiments show best results when the procedure of augmenting 
row reduction is performed twice. 

The advantages of this initialization strategy over standard column and row 
reduction amply compensate the additional computation time. On full density 
problems with n = 100 average total time has been decreased by 10~ (on cost range 
1 - 100) to 18~ (on 1 - 1000). This initialization phase takes 60~  to 70~  of total run 
time, whereas simple column and row reduction would take about 20~o. We expect 
the effect of these initialization routines to be larger on augmentation approaches 
less efficient than ours. Table 1 illustrates the advantages. It gives the average 
reduction sum (the value of the current dual solution) and the average number of 
assignments in the partial primal solution. These figures indicate how much effort 
must still be put in the augmentation phase of the algorithm. The increased average 
numbers of zero reduced costs coefficients suggest that this method is also useful for 
assignment algorithms based on maximal flow. 

Table 1. Column and row reduction compared to the initialization in L A P J V  
(averages for 25 problems of  each type with n -  100) 

column and initialization 
cost range row reduction in LAPJV 

reduction sum 1 - 100 87.2 96.6 
in ~ of optimum 1 - 1000 87.2 98.0 

number of 1 - 100 75 90 
assignments 1 - 1000 75 95 

number of zero reduced 1 - 100 188 205 
cost coefficients 1 - 1000 142 162 
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5. The Augmentation Phase 

Augmentation starts by finding an alternating path. This is a sequence of, 
alternately, row and column indices, with the first an unassigned row, the last a 
column, and the intermediate columns and rows assigned in successive pairs. If the 
final column is unassigned, augmentation of a partial solution can take place along 
such a path by assigning all rows in the path to their succeeding column, which 
results in one more assignment. 

Augmentation in shortest path based algorithms (step 3, in Section 3) can best be 
described without direct reference to the underlying minimum cost flow problem. It 
requires only a simple modification of the shortest path method of Dijkstra [12]. In 
Fig. 3 we give two procedures. Dijkstra's algorithm SHPATH1 determines a 
shortest path tree rooted in node kk and traceable in the pred-array. The set A [i] 
contains all nodes j for which arc (i , j)  exists. Procedure SHPATH-AUGMENT is 
its modification for the assignment problem, which determines the shortest 
augmenting path for one additional assignment in row kk. 

procedure SHPATH 1 (kk); 
begin 

T O S C A N : =  {1.. .  n} - {kk}; for j:  = 1. . .  n do d U] :=  oo; 
i :=kk;  d[kk]:=O; # : = 0 ;  
repeat 

for a l l j e A  [i] c~ T O S C A N  do 
if # + c [i,f] < d [j] then begin d []]: = # + c [i,j] ; pred [j]: = i end; 

# : = o 0 ;  
for all j e T O S C A N  do if d [j] </~ then begin # : =  d [j']; i: = j  end; 
TOSCAN:  = T O S C A N -  {i} 

until T O S C A N  = { } 
end. 

procedure S H P A T H - A U G M E N T  (kk); 
begin 

T O S C A N : =  {1 ... n}; for j : =  1 ... n do d I f ] :=  oo; 
i :=kk;  d[kk]:=O; # : = 0 ;  
repeat 

for all j e A  [i] c~ T O S C A N  do 
if # + cred [i,j] < d [3] then begin d [j]: = # + cred [i,j]; pred [[]: = i end; 

# : = o o ;  
for all j e T OS C AN do if d [j] < # then begin #: = d [j]; #j: = j  end; 
i: = y [#f]; TOSCAN:  = T O S C A N -  {/~j} 

until y [#j] =0 ;  
< augment  along the pa th  from column #j  to row kk > 

end. 

Fig. 3. A shortest path algorithm according to Dijkstra and a modified version for augmentat ion in 
assignment algorithms 

This procedure only describes the method. For the actual implementation an 
adapted version of Dijkstra's shortest path algorithm as in Fig. 4 is to be preferred. 
The shortest path algorithms in Figs. 3 and 4 differ in the use of a set SCAN, 
containing all rows that can be scanned for the current minimum d-value (the 
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variable /~). The set may be updated while scanning, and (relatively expensive) 
searching for a new value of the minimum does not take place until SCAN is empty. 
Especially for sparse networks this leads to substantially lower computation times. 

procedure S H P A T H 2  (kk); 
begin 

T O S C A N : =  {1 ,,. n) - {kk} ; for j : =  1. . ,  n do  d U] : = oo ; 
d [kk] : = 0; SCAN: = {kk} ; #: = 0; 
repeat 

select any i e SCAN;  SCAN: = SCAN - { i}; 
for alljeA[i] c~ T O S C A N  do if#+c[i,j~<d[j] then 
begin 

d [j] : = #  + c [ i , j ] ;  pred [j] : =  i; 
if d [/] = # then begin SCAN: = SCAN + {j} ; T O S C A N :  = T O S C A N -  {j} end 

end; 
if S C A N -  { } then 
begin 

# : = r a i n  {d[j]  I j e T O S C A N ;  d [ j ] > # ~ ;  
for ./e T O S C A N  do if d , ~  = # then SCAN-  = SCAN + {j}; 
T O S C A N :  = T O  SCAN - SCAN 

end 
until SCAN = { } 

end. 

Fig. 4. Modified version of Dijkstra 's  shortest  path  method,  basis for improved augmentat ion 

Augmentation in our LAP algorithm is given by the procedure AUGMENT in 
Fig. 5, which is based on SHPATH2. Some minor improvements have been made. 
Instead of a list SCAN containing rows, a list of columns facilitates updating of 
column prices. Furthermore, we do not keep and update row prices. These can be 
determined easily when needed due to complementary slackness. Updating of 
column prices takes place as will be discussed in Section 6. 

The column sets READY, SCAN and TODO are mutually disjoint, and 
READY u SCAN u TODO = {1 ... n}. So in the code one array COL of length n is 
sufficient, with the elements of READY kept in front, just before the elements of 
SCAN. This set is scanned first-in-first-out. So, its elements transfer automatically 
to READY. The remaining places in the array are used for TODO. 

Just like the initialization, the augmentation phase has computational complexity 
O (n3). So this also holds for the entire algorithm. As for the memory requirements : 
the full density version uses a costs matrix and eight arrays of n elements. 

Derigs and Metz [8] investigated implementations of Dijkstra's shortest path 
algorithm in assignment methods. The fastest implementation turned out to be very 
similar to ours. They discovered that in their algorithms it is advantageous to 
determine complete shortest path trees, so that more than one augmenting path per 
iteration may be found. Our algorithm is faster when in each iteration only one 
augmenting path is determined, which is probably due to the extensive initialization 
procedures. 
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procedure A U G M E N T ;  
begin 

for all unassigned i* do 
begin 

for j :  = 1 ... n do begin d [j] : = c [i*,j]  - v [j] ; pred [j] : = i* end; 
READY:  = { ) ; SCAN:  = { } ; T O D O :  = { 1 ... n} ; 
repeat  

if SCAN = { } then 
begin 

# = min {d [j] [j ~ T O D O }  ; SCAN: = {j [ d [3] = p} ; T O D O :  = T O D O  - SCAN; 
for all j e  SCAN do if y [3] = 0  then go to augment 

end; 
select any j* ~ SCAN;  i: = y [ j*];  SCAN:  = S C A N -  {j*} ; READY:  = R E A D Y  + {j*} ; 
for all j e T O D O  do if #-F cred Fi,j] < d [3];then 
begin 

d [j] : = # + cred [i,j]; pred [3] : = i; 
if d [j] = # then 

if y [j] = 0 then go to augment else 
begin SCAN: = SCAN + {j} ; T O D O :  = T O D O  - {j} end 

end 
until false; (* repeat always ends with go to augment  *) 

augment: 
(* price upda t ing  *) 
for all k 6 R E A D Y  do v [k]:  = v [k] + d [k] - #; 
(* augmenta t ion *) 
repeat 

i: = p r e d  [j];  y [ j ] : = i ;  k: = j ;  j :  = x  [i] ;  x [ i ] : =  k 
until i = i* 

end 
end. 

Fig. 5. The procedure A U G M E N T  for augmentat ion in the algorithm LAPJV 

We experimented with augmentation based on the new shortest path methods from 
Glover et al. [15, 16]. However, we did not find a faster procedure than one based on 
SHPATH2. Carraresi and Sodini [73 report very good results with an algorithm 
based on these shortest path methods. It must be noted that this LAP algorithm 
performs well only on (very) sparse problems. Karp [21] also improved shortest 
path based algorithms, but his modifications are more theoretically interesting than 
practically. By using priority queues, he reduced expected running time for the LAP 
to O (n 2 �9 log n). 

6. Adjustment of the Dual Solution 

After augmentation of a partial assignment the values of the dual variables must be 
updated to restore complementary Slackness, that is, 

c [i, k] - u [i] - v [k] = 0, if x [-i] = k (i = 1...  n), (1) 

c [ i , j ]  - u [i] - v[ j ]  >_ 0 ( i , j  = 1 . . .  n ) .  (2) 

Substituting the values u [i] from (1) in (2) leads to: 

c [i, k] - v [k] <_ c [ i , j ]  - v [ j ]  (] = 1 . . .  n) .  
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So, all assignments in the (partial) solution must correspond to row minima in the 
reduced costs matrix. This simple observation is useful in the update step of shortest 
path based algorithms. The price v [k] of every assigned column k (with y [k] = i) 
must be adjusted so that 

c [ i , k ] - v [ k ]  =min  { c [ i , j ] - v [ j ]  l j - 1  ... n}. 

In the procedure A U G M E N T  (Fig. 5) this is achieved just before augmentation 
actually takes place. Where necessary, column entries in the reduced costs matrix 
are increased by decreasing the current column prices v[j]  (j--1 ... n) by # -  d [j] if 
d [j] <# ,  so that # is the minimum value in row kk.  The corresponding values ofu [i] 
with i = y  [j] must be increased by the same amount. The d-values and /z are 
obtained from the modified shortest path procedure, clarifying the role of the d [j] 
(j = 1 ... n) in the procedures S H P A T H - A U G M E N T  and AUGMENT.  

7. A Pascal  Implementation 

In Fig. 6 we present a Pascal code for the algorithm from the previous sections. We 
suppose integer valued costs c [i , j]  (i , j  = 1 ... n), but the code is easily adapted for a 
real valued costs matrix. The type "mat"  is an integer n x n matrix, and the type 
"vec" an integer array of length n. 

Listings of the Fortran code for dense LAPs and of the Pascal and Fortran code for 
sparse LAPs can be obtained from the authors on request, 

function LAPJV (n: integer; c: mat; vat x, y, u, v: vec): integer; 

{n: problem size; 
c: costs matrix; 
x: columns assigned to rows; 
y: rows assigned to columns; 
u: dual row variables; 
v: dual column variables} 

label augment; 
const inf= 1000000; {inf is a suitably large number} 
vat f ,h , i , j ,k ,  fO, i l , j l , j 2 ,u l ,u2 ,min ,  last, low, up: integer; 

col, d, free, pred: vec; 

{col: array of columns, scanned 
labeled and unscanned 
unlabeled 

d: shortest path lengths; 
free: unassigned rows (number f0 ,  index f) ;  
pred: predecessor-array for shortest path tree; 
i, il : row indices; j, j l ,  j2: column indices; 
last: last column in col-array with d [j] <min.} 

begin 
for i :=1  to n do x [ i ] : = 0 ;  

(k = 1 ... l o w -  1), 
(k = low. . .  u p -  1), 
(k = up... n); 
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for j :  = n  downto  1 do { 4~ #e 4~ 41: C O L U M N  R E D U C T I O N }  
begin 

c o l [ j ] : = j ;  h:=c[1,y~; i 1 : = 1 ;  
for i : = 2  to n do i f c [ i , j ] < h  then  begin h:=c[ i , j ] ;  i 1 : = i  end;  
vU]:=h;  
if x [i 1] = 0 then  begin x [i 1] : = j ;  y [j] : = i i end 

else begin  x [i] : = - abs  (x [-i]); y [j] : = 0 end  
end;  

f :  = 0 ;  { ~: 4t: 4t= 4t= R E D U C T I O N  T R A N S F E R }  
for i : = 1  to n do 
if x [i] = 0  then  { 4t: ~ unass igned  row in free-array} 

begin f :  = f +  1 ; free I f ]  : = i end  else 
if x [-i] < 0  then  { ~: 4t: no  reduct ion t ransfer  possible} 

x [ i ] : =  - x  [i] else { 4t: ~ reduct ion t ransfer  f rom ass igned row} 
begin 

j l  : = x  [i] ; rain: = i n f ;  
for j : = l  to n do if j <  ~ : j l  then  

if c [i,j] - v[ j ]  < min  then min :  = c [i,j] - v [j] ; 
v[ j  1 ] : =  v [ /1]  - m i n  

end;  

cnt:  = 0 ;  { 4~ :~ ~ 4~ A U G M E N T I N G  R O W  R E D U C T I O N }  
repeat  

k : = l ; f 0 : = f ; f : = 0 ;  
while k < = f 0  do 
begin 

/ : = f r e e [ k ] ;  k : = k + l ;  u l : = c [ i ,  1 ] - v [ 1 ] ; j l : = l ;  u 2 : = i n f ;  
for j : = 2  to n do 
begin 

h:=c  [ i , j ] -  v [j] ; 
if h < u2  then  

if h >  = u l  then  begin u 2 : = h ; j 2 : = j  end 
else begin u 2 : = u l ;  u l : = h ; j 2 : = j l ; j l : = j  end 

end;  
i l : = y [ j l ] ;  
if u l < u 2  then  v [ j l ] : = v [ j l ] - u 2 + u l  

else if i 1 > 0 then  begin  j 1 : =j2;  i 1 : = y [j 1 ] end;  
if i 1 > 0 then 

if u 1 < u2 then  begin k: = k - 1 ; free [k] : = i l  end  
else begin f :  = f +  1 ; free I f ] : =  i l end ;  

x [ i ] : = j l ;  y [ j l ] : = i  
end;  
cnt :  = c n t  + 1 

unti l  cnt  = 2 ;  { 4# ~ rout ine  applied twice} 

f 0 : = f ;  { 4t= @ 4t= :~ A U G M E N T A T I O N }  
for f :  = 1 to f 0  do 
begin 

i l  := f r ee  [jr] ; low: = 1 ; up:  = 1 ; { @ ~+ initialize d- and  pred-array} 
for j : = l  to n do begin d [ . l ] : = c [ i l , j ] - v [ j ] ;  pred [ / ] : = i l  end;  
repeat  

if up  = low then  { @ @ find co lumns  with new value for m i n i m u m  d} 
begin 

last:  = l o w  - 1; rain: = d [col [up ] ]  ; up:  = up + 1 ; 
for k : = u p  to n do 
begin 

j : = c o l  [k] ;  h : = d  [j];  
if h < = rain then  
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begin 
if h<min then begin up:=low; min:~h end; 
col [k] : = col [up] ; col [up] : --j; up: = up + 1 

end 
end; 
for h:=low to u p - 1  do 
begin j: = col [h]; if y [j] = 0 then goto augment end 

end; {up = low} 

j l :=co l  [low]; low:=low+ 1; i :=y [ j l ] ;  
u l : = c  [i,j l l  - v  [jl] -min ;  
for k:= up to n do 
begin 

j :=col  [k]; h: =c [i,j] - v  [j] - ul ;  
if h < d [j] then 
begin 

d W : = h ;  pred [j] :=i;  
if h = rain then 

if y [j] =0 then goto augment 
else begin col [k] : = col [up] ; col [up]: =j;  up: = up + 1 end 

end 
end 

until false; {repeat ends with goto augment} 

augment: 
for k: = 1 to last do { 4b ~ updating of column prices} 

begin j l :=c o l  [k]; v [ j l ] :=v  [jl] +d [jl] - m i n  end; 
repeat { @ ~ augmentation} 

i:=pred [j]; y[j]:=i; k:=j; j:=x[i]; x[iq:=k 
until i = i 1 

end; {of augmentation} 

h: =0; { @ ~ :I# :~ DETERMINE ROW PRICES AND OPTIMAL VALUE} 
for i := I  to n do beginj:=x[i]; u[~:-c[i , j]-v[j];  h:=h+u[i]+v[j] end; 
lapjv:=h 

end. 

{ ~ # scan a row} 

Fig. 6. Pascal function for the linear assignment algorithm LAPJV 

8. Computational Results 

W e  c o m p a r e  our  a l g o r i t h m L A P J V  with  several  o the r  me thods ,  b o t h  on  dense  a n d  
o n  sparse  p rob lems .  Th e  c o m p u t a t i o n a l  results  are  for F o r t r a n  codes r u n  o n  a C D C  
C ybe r  750 (with O P T  = 2), bo t  the  a lgo r i t hms  were deve loped  in  Pasca l  o n  pe r sona l  
compu te r s  (Apricot  P C  a n d  F 1, Ol ive t t i  M24) .  R u n n i n g  t imes on  these com pu te r s  
are typica l ly  be tween  2 a n d  4 seconds  for full dense  p r o b l e m s  of size 100, u s ing  
B o r l a n d ' s  T u r b o  Pasca l  compi le r  (version 3.0). 

The  classical  H u n g a r i a n  code of Silver [27] is a n  i n t e r m e d i a r y  for a c o m p a r i s o n  wi th  
the shor tes t  p a t h  based  a l g o r i t h m of H u n g  a n d  R o m  [18].  T h e y  give the ra t io  of 
their  c o m p u t i n g  t imes to those  of the Silver code t r ans l a t ed  in to  F o r t r a n .  D i v i d i n g  
the s ame  ra t ios  for L A P J V  by  those  pub l i shed  by  H u n g  a n d  R o m  shows tha t  o n  
p r o b l e m s  of full dens i ty  o u r  a l g o r i t h m is a b o u t  twice as fast (Table  2). 



A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems 

Table 2. Computation times of LAPJV divided by those of Hung and Rom 

337 

range of cost coefficients 
problem size 1 - 100 1 - 1000 1 - 10000 

50 .34 .44 .72 
100 .31 .41 .52 

We left p r imal  simplex me thods  out  of cons idera t ion ,  as the l i tera ture  shows tha t  
these are ou tper fo rmed  by  several  o ther  methods .  The  a lgor i thm of Hung  and  R o m  
is " abou t  twice as fast" as tha t  of Barr ,  G love r  and  K l i n g m a n  [2],  which is one of the  
best  p r imal  simplex methods .  Glover  conf i rmed this in a pr iva te  communica t ion .  
C a r p a n e t o  and  Toth  [6] compa re  the same p r ima l  simplex me thod  with their  
H u n g a r i a n  code for sparse  p rob lems  SPASS and  with a Tomizawa  based  method ,  
a d a p t e d  f rom a code in Bu rka rd  and  Derigs  [4].  Both  a lgor i thms are faster by  some 
margin .  F ina l ly ,  the H u n g a r i a n  m e t h o d  as imp lemen ted  by  M c G i n n i s  [25] is 
" roughly  compa rab l e  in solut ion speed" ,  but  in an a d d e n d u m  he improves  his 
m e t h o d  to a much  faster one. 

The  compu ta t i on  t imes of L A P J V  in Table  3 are averages for ten full densi ty  
problems,  c o m p a r e d  to those of the a lgor i thms:  

- A S S C T :  0 (n 4) H u n g a r i a n  m e t h o d  coded  by  C a r p a n e t o  and  Toth  [5],  mak ing  
extensive use of po in te r  techniques to locate  zero valued reduced costs, 

- L S A P :  Dorhou t ' s  improved  version of  Tomizawa ' s  a lgor i thm [10, 11] t rans la ted  
into F o r t r a n  and  publ i shed  by  Burka rd  and  Derigs  [4],  

- A S S I G N :  the a lgor i thm of  Bertsekas [3],  as made  avai lable  by  the au thor  and  
adap t ed  for full densi ty  costs matr ices .  

Table 3. Computation times for assignment problems of full density (in ms) 

cost problem LAP algorithm 
range size ASSCT LSAP ASSIGN LAPJV 

1 - 100 50 51 32 22 15 
100 149 168 114 64 
150 283 535 256 179 
200 420 1363 520 323 

1 - 1000 50 121 30 24 17 
100 637 165 123 77 
150 1447 456 364 225 
200 2217 850 665 406 

1 - 10000 50 145 31 28 25 
100 1085 168 134 103 
150 3562 453 410 259 
200 6989 919 779 456 



338 R. Jonker and A. Volgenant: 

As usual with pure Hungarian methods, ASSCT turns out to be very sensitive to cost 
range. Only for small cost ranges the use of pointer techniques makes the algorithm 
competitive. LSAP performs strangely on the cost range 1 - 100 with relatively large 
computation times, also observed by Derigs and Metz [9]. LAPJV is clearly faster 
than ASSIGN, and less sensitive to the range of the cost coefficients. 

For a comparison on sparse problems we adapted the data structure of LAPJV, 
yielding LAPJVsp. Average computation times (for ten problems) are compared in 
Table 4 with those of two algorithms for sparse LAPs: 

- SPASS: Lawler's O (n 3) Hungarian method [23] coded by Carpaneto and 
Toth [6], 

- ASSIGN: again Bertsekas' algorithm [3] as provided to us (ASSIGN requires 
too much memory for LAPs with n = 400 and 20~ density of the costs matrix). 

An indirect comparison may be made with the code SPTM from Carraresi and 
Sodini [7] for sparse LAPs. The SPTM computation times in Table 4 have been 
obtained by multiplying the SPASS times with the ratios calculated from [7]. 
ASSIGN and LAPJVsp clearly outperform the Hungarian method. The margin in 
speed of LAPJVsp over ASSIGN is about the same as on full density problems. 

Table 4. Computation times for sparse assignment problems (in ms) ("." indicates not run or not known) 

density and problem LAP algorithm 
cost range size SPASS ASSIGN SPTM LAPJVsp 

5 ~ / 1  - 100 100 65 38 19 
200 211 110 67 62 
400 713 451 335 253 

5~  / 1 - 1000 100 82 50 25 
200 361 174 113 81 
400 1553 688 356 333 

2 0 ~ / 1  - 100 100 71 54 26 
200 304 290 234 154 
400 1046 1029 657 

2 0 ~ / 1  - 1000 100 119 69 33 
200 576 384 253 188 
400 2123 1039 788 

We may also compare results with the shortest augmenting paths algorithms for 
sparse LAPs of Derigs and Metz [8]. Their best code SAPM3 is faster than SPASS: 
40~ to 50~o on problems with n = 200, about 5~  density, and on cost ranges 1 - 100 
and 1 - 1000. This is substantially slower than LAPJVsp. Consequently, the code 
LAPJVsp will provide a better basis for an in-core-out-of-core algorithm for full 
density LAPs as proposed by Derigs and Metz [9]. Such a code solves a sparse 
version of full density problems that cannot be entirely contained in memory. It 
contains a procedure to check whether the not considered assignments price out 
correctly, and a reoptimization procedure for use if they do not. An in-core-out-of- 
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core code can  also be used  as a n  all in -core  code.  The  a d v a n t a g e s  of so lv ing  on ly  
sparse  p r o b l e m s  has  to be  weighed  aga ins t  the  effort to cons t ruc t  the  sparse  
p rob lems .  U n f o r t u n a t e l y  this  t ask  is c o m p u t a t i o n a l l y  non- t r iv i a l ,  l ead ing  to a b o u t  
the  s ame  to ta l  c o m p u t a t i o n  t imes  as for L A P J V .  

9. Conclusions 

The  c o m p u t a t i o n a l  resul ts  show tha t  the  average  c o m p u t a t i o n  t imes of  the  
a l g o r i t h m  L A P J V  are  u n i fo rml y  lower  t h a n  the best  of  o the r  a lgor i thms .  The  code is 
of  m o d e r a t e  size, a n d  the  m e m o r y  r e q u i r e m e n t s  are  small .  The  a l g o r i t h m  is sui ted 
for b o t h  dense  a n d  sparse  a s s i g n m e n t  p rob lems ,  a n d  its sensi t iv i ty  to cost  r ange  is 
re la t ive ly  low. 
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