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ABSTRACT

The group testing problem concerns discovering a small

number of defective items within a large population by

performing tests on pools of items. A test is positive if

the pool contains at least one defective, and negative if it

contains no defectives. This is a sparse inference problem

with a combinatorial flavour, with applications in medical

testing, biology, telecommunications, information technology,

data science, and more.

In this monograph, we survey recent developments in the

group testing problem from an information-theoretic per-

spective. We cover several related developments: efficient

algorithms with practical storage and computation require-

ments, achievability bounds for optimal decoding methods,

and algorithm-independent converse bounds. We assess the

theoretical guarantees not only in terms of scaling laws,

but also in terms of the constant factors, leading to the

notion of the rate of group testing, indicating the amount

of information learned per test. Considering both noiseless

and noisy settings, we identify several regimes where ex-

isting algorithms are provably optimal or near-optimal, as

Matthew Aldridge, Oliver Johnson and Jonathan Scarlett (2019), Group Testing:
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and Information Theory: Vol. 15, No. 3-4, pp 196–392. DOI: 10.1561/0100000099.
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well as regimes where there remains greater potential for

improvement.

In addition, we survey results concerning a number of vari-

ations on the standard group testing problem, including

partial recovery criteria, adaptive algorithms with a limited

number of stages, constrained test designs, and sublinear-

time algorithms.
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Notation

n number of items (Definition 1.1)

k number of defective items (Definition 1.1)

K defective set (Definition 1.1)

u = (ui) defectivity vector: ui = 1(i ∈ K), shows if item i is

defective (Definition 1.2)

α sparsity parameter in the sparse regime k = Θ(nα)

(Remark 1.1)

β sparsity parameter in the linear regime k = βn

(Remark 1.1)

T number of tests (Definition 1.3)

X = (xti) test design matrix: xti = 1 if item i is in test t;

xti = 0 otherwise (Definition 1.3)

y = (yt) test outcomes (Definition 1.4)

∨ Boolean inclusive OR (Remark 1.2)

K̂ estimate of the defective set (Definition 1.5)

P(err) average error probability (Definition 1.6)

P(suc) success probability = 1 − P(err) (Definition 1.6)

rate log2

(n
k

)
/T (Definition 1.7)

O, o, Θ asymptotic ‘Big O’ notation
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R an achievable rate (Definition 1.8)

R maximum achievable rate (Definition 1.8)

S(i) the support of column i (Definition 1.9)

S(L) the union of supports
⋃
i∈L S(i) (Definition

1.9)

q proportion of defectives (Appendix to Chapter

1)

k average number of defectives (Appendix to

Chapter 1)

p parameter for Bernoulli designs: each item is

in each test independently with probability p

(Definition 2.2)

L parameter for near-constant tests-per-item de-

signs: each item is in L tests sampled ran-

domly with replacement (Definition 2.3)

ν test design parameter: for Bernoulli designs,

p = ν/k (Definition 2.2); for near-constant

tests-per-item designs, L = νT/k (Definition

2.3)

h(x) binary entropy function: h(x) = −x log2 x−
(1 − x) log2(1 − x) (Theorem 2.2)

p(y | m, ℓ) probability of observing outcome y from a test

containing ℓ defective items and m items in

total (Definition 3.1).

ρ, ϕ, ϑ, ξ noise parameters in binary symmetric (Exam-

ple 3.1), addition (Example 3.2), dilution/Z

channel (Example 3.3, 3.4), and erasure (Ex-

ample 3.5) models

θ, θ threshold parameters in threshold group test-

ing model (Example 3.6)

∆ decoding parameter for NCOMP (Section 3.4)
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γ decoding parameter for separate decoding of

items (Section 3.5) and information-theoretic

decoder (Section 4.2)

Cchan Shannon capacity of communication channel

(Theorem 3.1)

m
(r)
i→t(ui), m̂

(r)
t→i(ui) item-to-test and test-to-item messages (Sec-

tion 3.3)

N (i), N (t) neighbours of an item node and test node

(Section 3.3)

XK submatrix of columns of X indexed by K (Sec-

tion 4.2.2)

XK a single row of XK (Section 4.2.2)

V = V (XK) random number of defective items in the test

indicated by X (Section 4.2.2)

PY |V observation distribution depending on the test

design only through V (Equation (4.3))

S0, S1 partition of the defective set (Equation (4.4))

ı information density (Equation (4.6))

X0,τ , X1,τ sub-matrices of X corresponding to (S0, S1)

with |S0| = τ (Equation (4.14))

X0,τ , X1,τ sub-vectors of XK corresponding to (S0, S1)

with |S0| = τ

Iτ conditional mutual information I(X0,τ ;Y |
X1,τ ) (Equation (4.16))
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Introduction to Group Testing

1.1 What is group testing?

The ‘group testing’ problem arose in the United States in the 1940s,

when large numbers of men were being conscripted into the army and

needed to be screened for syphilis. Since an accurate blood test (the

Wassermann test) exists for syphilis, one can take a sample of blood

from each soldier, and test it. However, since it is a rare disease, the vast

majority of such tests will come back negative. From an information-

theoretic point of view, this testing procedure seems inefficient, because

each test is not particularly informative.

Robert Dorfman, in his seminal paper of 1943 [65], founded the

subject of group testing by noting that, for syphilis testing, the total

number of tests needed could be dramatically reduced by pooling sam-

ples. That is, one can take blood samples from a ‘pool’ (or ‘group’) of

many soldiers, mix the samples, and perform the syphilis test on the

pooled sample. If the test is sufficiently precise, it should report whether

or not any syphilis antigens are present in the combined sample. If the

test comes back negative, one learns that all the soldiers in the pool

are free of syphilis, whereas if the test comes back positive, one learns

that at least one of the soldiers in the pool must have syphilis. One can

202
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use several such tests to discover which soldiers have syphilis, using

fewer tests than the number of soldiers. (The origins of the problem,

including the contributions of David Rosenblatt, are described in detail

in [66, Section 1.1].)

Of course, this idealized testing model is a mathematical convenience;

in practice, a more realistic model could account for sources of error – for

example, that a large number of samples of negative blood could dilute

syphilis antigens below a detectable level. However, the idealization

results in a useful and interesting problem, which we will refer to as

standard noiseless group testing.

Generally, we say we have n items (in the above example, soldiers)

of which k are defective (have syphilis). A test on a subset of items is

returned positive if at least one of the items is defective, and is returned

negative if all of the items are nondefective. The central problem of

group testing is then the following: Given the number of items n and

the number of defectives k, how many such tests T are required to

accurately discover the defective items, and how can this be achieved?

As we shall see, the number of tests required depends on various

assumptions on the mathematical model used. An important distinction

is the following:

Adaptive vs. nonadaptive Under adaptive testing, the test pools

are designed sequentially, and each one can depend on the previ-

ous test outcomes. Under nonadaptive testing, all the test pools

are designed in advance, making them amenable to being im-

plemented in parallel. Nearly all the focus of this survey is on

nonadaptive testing, though we present adaptive results in Sec-

tion 1.5 for comparison purposes, and consider the intermediate

case of algorithms with a fixed number of stages in Section 5.2.

Within nonadaptive testing, it is often useful to separate the design

and decoding parts of the group testing problem. The design problem

concerns the question of how to choose the testing strategy – that is,

which items should be placed in which pools. The decoding (or detection)

problem consists of determining which items are defective given the test

designs and outcomes, ideally in a computationally efficient manner.
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The number of tests required to achieve ‘success’ depends on our

criteria for declaring success:

Zero error probability vs. small error probability With a zero

error probability criterion, we want to be certain we will recover

the defective set. With a small error probability criterion, we

it suffices to recover the defective set with high probability. For

example, we may treat the k defective items as being generated

uniformly at random without replacement, and provide a tolerance

ǫ > 0 on the error probability with respect to this randomness. (In

other sparse recovery problems, a similar distinction is sometimes

made using the terminology ‘for-each setting’ and ‘for-all setting’

[94].) We will mostly focus on the small error probability case,

but give zero error results in Section 1.6 for comparison purposes.

Exact recovery vs. partial recovery With an exact recovery crite-

rion, we require that every defective item is correctly classified

as defective, and every nondefective item is correctly classified

as nondefective. With partial recovery, we may tolerate having

some small number of incorrectly classified items – perhaps with

different demands for false positives (nondefective items incor-

rectly classed as defective) and false negatives (defective items

incorrectly classed as nondefective). For the most part, this survey

focuses on the exact recovery criterion; some variants of partial

recovery are discussed in Section 5.1.

When considering more realistic settings, it is important to consider

group testing models that do not fit into the standard noiseless group

testing idealization we began by discussing. Important considerations

include:

Noiseless vs. noisy testing Under noiseless testing, we are guaran-

teed that the test procedure works perfectly: We get a negative

test outcome if all items in the testing pool are nondefective, and

a positive outcome if at least one item in the pool is defective.

Under noisy testing, errors can occur, either according to some

specified random model or in an adversarial manner. The first

two chapters of this survey describe results in the noiseless case
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for simplicity, before the noisy case is introduced and discussed

from Chapter 3 onwards.

Binary vs. nonbinary outcomes Our description of standard group

testing involves tests with binary outcomes – that is, positive or

negative results. In practice, we may find it useful to consider

tests with a wider range of outcomes, perhaps corresponding

to some idea of weak and strong positivity, according to the

numbers of defective and nondefective items in the test, or even

the strength of defectivity of individual items. In such settings, the

test matrix may even be non-binary to indicate the ‘amount’ of

each item included in each test. We discuss these matters further

in Sections 3.1 and 4.5.

Further to the above distinctions, group testing results can also

depend on the assumed distribution of the defective items among all

items, and the decoder’s knowledge (or lack of knowledge) of this

distribution. In general, the true defective set could have an arbitrary

prior distribution over all subsets of items. However, the following are

important distinctions:

Combinatorial vs. i.i.d. prior For mathematical convenience, we

will usually consider the scenario where there is a fixed number

of defectives, and the defective set is uniformly random among

all sets of this size. We refer to this as the combinatorial prior

(the terminology hypergeometric group testing is also used). Al-

ternatively (and perhaps more realistically), one might imagine

that each item is defective independently with the same fixed

probability q, which we call the i.i.d. prior. In an Appendix to

this chapter, we discuss how results can be transferred from one

prior to the other under suitable assumptions. Furthermore, in

Section 5.6, we discuss a variant of the i.i.d. prior in which each

item has a different prior probability of being defective.

Known vs. unknown number of defectives We may wish to dis-

tinguish between algorithms that require knowledge of the true

number of defectives, and those that do not. An intermediate
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class of algorithms may be given bounds or approximations to the

true number of defectives (see Remark 2.3). In Section 5.3, we

discuss procedures that use pooled tests to estimate the number

of defective items.

In this survey, we primarily consider the combinatorial prior. Further,

for the purpose of proving mathematical results, we will sometimes

make the convenient assumption that k is known. However, in our

consideration of practical decoding methods in Chapters 2 and 3, we

focus on algorithms that do not require knowledge of k.

1.2 About this survey

The existing literature contains several excellent surveys of various

aspects of group testing. The paper by Wolf [198] gives an overview of the

early history, following Dorfman’s original work [65], with a particular

focus on adaptive algorithms. The textbooks of Du and Hwang [66,

67] give extensive background on group testing, especially on adaptive

testing, zero-error nonadaptive testing, and applications. The lecture

notes of D’yachkov [53] focus primarily on the zero-error nonadaptive

setting, considering both fundamental limits and explicit constructions.

For the small-error setting, significant progress was made in the Russian

literature in the 1970s and 80s, particularly for nonadaptive testing in

the very sparse regime where k is constant as n tends to infinity – the

review paper of Malyutov [144] is a very useful guide to this work (see

also [53, Ch. 6]).

The focus of this survey is distinct from these previous works. In

contrast with the adaptive and zero-error settings covered in [66, 53,

198], here we concentrate on the fundamentally distinct nonadaptive

setting with a small (nonzero) error probability. While this setting was

also the focus of [144], we survey a wide variety of recent algorithmic

and information-theoretic developments not covered there, as well as

considering a much wider range of sparsity regimes (that is, scaling

behaviour of k as n → ∞). We focus in particular on the more general

‘sparse regime’ where k = Θ(nα) for some α ∈ (0, 1), which comes with

a variety challenges compared to the ‘very sparse regime’ in which k is
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constant. Another key feature of our survey is that we consider not only

order-optimality results, but also quantify the performance of algorithms

in terms of the precise constant factors, as captured by the rate of group

testing. (While much of [67] focuses on the zero-error setting, a variety

of probabilistic constructions are discussed in its Chapter 5, although

the concept of a rate is not explicitly considered.)

Much of the work that we survey was inspired by the re-emergence

of group testing in the information theory community following the

paper of Atia and Saligrama [17]. However, to the best of our knowledge,

the connection between group testing and information theory was first

formally made by Sobel and Groll [181, Appendix A], and was used

frequently in the works surveyed in [144].

An outline of the rest of the survey is as follows. In the remainder

of this chapter, we give basic definitions and fix notation (Section 1.3),

introduce the information-theoretic terminology of rate and capacity

that we will use throughout the monograph (Section 1.4), and briefly

review results for adaptive (Section 1.5) and zero-error (Section 1.6)

group testing algorithms, to provide a benchmark for other subsequent

results. In Section 1.7, we discuss some applications of group testing in

biology, communications, information technology, and data science. In

a technical appendix to the current chapter, we discuss the relationship

between two common models for the defective set.

In Chapter 2, we introduce a variety of nonadaptive algorithms for

noiseless group testing, and discuss their performance. Chapter 3 shows

how these ideas can be extended to various noisy group testing models.

Chapter 4 reviews the fundamental information-theoretic limits of

group testing. This material is mostly independent of Chapters 2 and 3

and could be read before them, although readers may find that the

more concrete algorithmic approaches of the earlier chapters provides

helpful intuition.

In Chapter 5, we discuss a range of variations and extensions of

the standard group testing problem. The topics considered are par-

tial recovery of the defective set (Section 5.1), adaptive testing with

limited stages (Section 5.2), counting the number of defective items (Sec-

tion 5.3), decoding algorithms that run in sublinear time (Section 5.4),

the linear sparsity regime k = Θ(n) (Section 5.5), group testing with
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more general prior distributions on the defective set (Section 5.6), ex-

plicit constructions of test designs (Section 5.7), group testing under

constraints on the design (Section 5.8), and more general group testing

models (Section 5.9). Each of these sections gives a brief outline of the

topic with references to more detailed work, and can mostly be read

independently of one another. Finally, we conclude in Chapter 6 with a

partial list of interesting open problems.

For key results in the survey, we include either full proofs or proof

sketches (for brevity). For other results that are not our main focus, we

may omit proofs and instead provide pointers to the relevant references.

1.3 Basic definitions and notation

We now describe the group testing problem in more formal mathematical

language.

Definition 1.1. We write n for the number of items, which we label as

{1, 2, . . . , n}. We write K ⊂ {1, 2, . . . , n} for the set of defective items

(the defective set), and write k = |K| for the number of defectives.

Definition 1.2. We write ui = 1 to denote that item i ∈ K is defective,

and ui = 0 to denote that i 6∈ K is nondefective. In other words, we

define ui as an indicator function via ui = 1{i ∈ K}. We then write

u = (ui) ∈ {0, 1}n for the defectivity vector. (In some contexts, an

uppercase U will denote a random defectivity vector.)

Remark 1.1. We are interested in the case that the number of items

n is large, and accordingly consider asymptotic results as n → ∞.

We use the standard ‘Big O’ notation O(·), o(·), and Θ(·) to denote

asymptotic behaviour in this limit, and we write fn ∼ gn to mean that

limn→∞
fn

gn
= 1. We consider three scaling regimes for the number of

defectives k:

The very sparse regime: k is constant (or bounded as k = O(1)) as

n → ∞;

The sparse regime: k scales sublinearly as k = Θ(nα) for some spar-

sity parameter α ∈ [0, 1) as n → ∞.
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The linear regime: k scales linearly as k ∼ βn for β ∈ (0, 1) as

n → ∞.

We are primarily interested in the case that defectivity is rare, where

group testing has the greatest gains, so we will only briefly review the

linear regime in Section 5.5. A lot of early work considered only the very

sparse regime, which is now quite well understood – see, for example,

[144] and the references therein – so we shall concentrate primarily on

the wider sparse regime.

The case α = 0, which covers the very sparse regime, usually behaves

the same as small α but sometimes requires slightly different analysis

to allow for the fact that k may not tend to ∞. Hence, for reasons of

brevity, we typically only explicitly deal with the cases α ∈ (0, 1).

We assume for the most part that the true defective set K is uni-

formly random from the
(n
k

)
sets of items of size k (the ‘combinatorial

prior’). The assumption that k is known exactly is often mathematically

convenient, but unrealistic in most applications. For this reason, in

Chapters 2 and 3 we focus primarily on decoding algorithms that do not

require knowledge of k. However, there exist nonadaptive algorithms

that can estimate the number of defectives using O(logn) tests (see Sec-

tion 5.3 below), which could form the first part of a two-stage algorithm,

if permitted.

Definition 1.3. We write T = T (n) for the number of tests performed,

and label the tests {1, 2, . . . , T}. To keep track of the design of the test

pools, we write xti = 1 to denote that item i ∈ {1, 2, . . . , n} is in the

pool for test t ∈ {1, 2, . . . , T}, and xti = 0 to denote that item i is not

in the pool for test t. We gather these into a matrix X ∈ {0, 1}T×n,

which we shall refer to as the test matrix or test design.

To our knowledge, this matrix representation was introduced by

Katona [119]. It can be helpful to think of group testing in a channel

coding framework, where the particular defective set K acts like the

source message, finding the defective set can be thought of as decoding,

and the matrix X acts like the codebook. See Figure 1.1 for an illustration.

See also [144] for a related interpretation of group testing as a type of

multiple-access channel.
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Encoder Channel Decoder
K XK Y K̂

Message Codeword Output Estimate

Figure 1.1: Group testing interpreted as a channel coding problem. The notation
XK denotes the T × k sub-matrix of X obtained by keeping only the k columns
indexed by K, and the output Y is the ‘OR’ of these k columns.

Similarly to the channel coding problem, explicit deterministic ma-

trix designs often fail to achieve even order-optimal performance (see

Sections 1.6 and 5.7 for discussion). Following the development and

successes of randomized channel codes (discussed further below), it is

therefore a natural development to consider randomized test designs.

We will use a capital Xti to denote the random entries of a random

testing matrix. Some designs of interest include the following:

Bernoulli design In a Bernoulli design, each item is included in each

test independently at random with some fixed probability p. That

is, we have P(Xti = 1) = p and P(Xti = 0) = 1 − p, i.i.d. over

i ∈ {1, 2, . . . , n} and t ∈ {1, 2, . . . , T}. Typically the parameter

p is chosen to scale as p = Θ(1/k). See Definition 2.2 for more

details.

Constant tests-per-item In a constant tests-per-item design, each

item is included in some fixed number L of tests, with the L

tests for each item chosen uniformly at random, independent from

the choices for all other items. In terms of the testing matrix

X, we have independent columns of constant weight. Typically

the parameter L is chosen to scale as L = Θ(T/k). In fact, it

is often more mathematically convenient to analyse the similar

near-constant tests-per-item (near-constant column weight) design,

where the L tests for each item are chosen uniformly at random

with replacement – see Definition 2.3 for more details.

Doubly regular design One can also consider designs with both a

constant number L of tests-per-item (column weight) and also a
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constant number m of items-per-test (row weight), with nL = mT .

The matrix is picked uniformly at random according to these

constraints. One can again consider ‘near-constant’ versions, where

sampling is with replacement. Again, L = Θ(T/k) (or equivalently,

m = Θ(n/k)) is a useful scaling. We will not focus on these designs

in this monograph, but mention that they were studied in the

papers [149, 193], among others.

As hinted above, these random constructions can be viewed as analogous

to random coding in channel coding, which is ubiquitous for proving

achievability bounds. However, while standard random coding designs

in channel coding are impractical due to the exponential storage and

computation required, the above designs can still be practical, since

the random matrix only contains T × n entries. In this sense, the

constructions are in fact more akin to random linear codes, random

LDPC codes, and so on.

We write yt ∈ {0, 1} for the outcome of test t ∈ {1, 2, . . . , T}, where

yt = 1 denotes a positive outcome and yt = 0 a negative outcome.

Recall that in the standard noiseless model, we have yt = 0 if all items

in the test are nondefective, and yt = 1 if at least one item in the test

is defective. Formally, we have the following.

Definition 1.4. Fix n and T . Given a defective set K ⊂ {1, 2, . . . , n}
and a test design X ∈ {0, 1}T×n, the standard noiseless group testing

model is defined by the outcomes

yt =





1 if there exists i ∈ K with xti = 1,

0 if for all i ∈ K we have xti = 0.
(1.1)

We write y = (yt) ∈ {0, 1}T for the vector of test outcomes.

Remark 1.2. A concise way to write (1.1) is using the Boolean inclusive

OR (or disjunction) operator ∨, where 0 ∨ 0 = 0 and 0 ∨ 1 = 1 ∨ 0 =

1 ∨ 1 = 1. Then,

yt =
∨

i∈K

xti; (1.2)

or, with the understanding that OR is taken component-wise,

y =
∨

i∈K

xi. (1.3)
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Outcome

1 1 1 1 0 0 0 0 Positive

0 0 0 0 1 1 1 1 Positive

1 1 0 0 0 0 0 0 Negative

0 0 1 0 0 0 0 0 Positive

0 0 1 0 1 1 0 0 Positive

0 0 0 0 1 0 0 0 Positive

Figure 1.2: Example of a group testing procedure and its outcomes. Icons for
defective individuals (items 3 and 5) are filled, and icons for nondefective individuals
are unfilled. The testing matrix X is shown beneath the individuals, where elements
xti are circled for emphasis if xti = 1 and individual i is defective. Hence, a test is
positive if and only if it contains at least one circled 1.

Using the defectivity vector notation of Definition 1.2, we can rewrite

(1.2) in analogy with matrix multiplication as

yt =
∨

i

xtiui. (1.4)

Note that the nonlinearity of the ∨ operation is what gives group testing

its specific character, as opposed to models based on exclusive OR, or

mod-2 addition. Indeed, we can consider (1.4) to be a nonlinear ‘Boolean

counterpart’ to the well-known compressed sensing problem [95].

We illustrate a simple group testing procedure in Figure 1.2, where

the defective items are represented by filled icons, and so it is clear that

the positive tests are those containing at least one defective item.

Given the test design X and the outcomes y, we wish to find the

defective set. Figure 1.3 represents the inference problem we are required

to solve – the defectivity status of particular individuals is hidden, and

we are required to infer it from the matrix X and the vector of outcomes

y. In Figure 1.3, we write 1 for a positive test and 0 for a negative test.

In general we write K̂ = K̂(X,y) for our estimate of the defective set.
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y

1 1 1 1 0 0 0 0 1

0 0 0 0 1 1 1 1 1

1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1

0 0 1 0 1 1 0 1 1

0 0 0 0 1 0 0 0 1

Figure 1.3: Group testing inference problem. We write 1 for a positive test and 0

for a negative test, but otherwise the matrix X is exactly as in Figure 1.2 above. The
defectivity status of the individuals is now unknown, and we hope to infer it from
the outcomes y and matrix X.

Definition 1.5. A decoding (or detection) algorithm is a (possibly ran-

domized) function K̂ : {0, 1}T×n × {0, 1}T → P ({1, 2, . . . , n}), where

the power-set P ({1, 2, . . . , n}) is the collection of subsets of items.

Under the exact recovery criterion, we succeed when K̂ = K, while

under partial recovery, we succeed if K̂ is close to K in some predefined

sense (see Section 5.1). Since we focus our attention on the former, we

provide its formal definition as follows.

Definition 1.6. Under the exact recovery criterion, the (average) error

probability for noiseless group testing with a combinatorial prior is

P(err) :=
1(n
k

)
∑

K : |K|=n

P
(K̂(X,y) 6= K), (1.5)

where y is related to X and K via the group testing model and the

probability P is over the randomness in the test design X (if randomized),

the group testing model (if random noise is present), and the decoding

algorithm K̂ (if randomized). We call P(suc) := 1 − P(err) the success

probability.

We note that this average error probability refers to an average over

a uniformly distributed choice of defective set K, where we can think of
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this randomness as being introduced by nature. Even in a setting where

the true defective set K is actually deterministic, this can be a useful

way to think of randomness in the model. Since the outcomes of the

tests only depend on the columns of the test matrix X corresponding

to K, the same average error probability is achieved even for a fixed K
by any exchangeable matrix design (that is, one where the distribution

of X is invariant under uniformly-chosen column permutations). This

includes Bernoulli, near-constant tests-per-item, and doubly regular

designs, as well as any deterministic matrix construction acted on by

uniformly random column permutations.

1.4 Counting bound and rate

Recall that the goal is, given n and k, to choose X and K̂ such that T

is as small as possible, while keeping the error probability P(err) small.

Supposing momentarily that we were to require an error probability

of exactly zero, a simple counting argument based on the pigeonhole

principle reveals that we require T ≥ log2

(n
k

)
: There are only 2T combi-

nations of test results, but there are
(n
k

)
possible defective sets that each

must give a different set of results. This argument is valid regardless of

whether the test design is adaptive or nonadaptive.

The preceding argument extends without too much difficulty to the

nonzero error probability case. For example, Chan et al. [33] used an

argument based on Fano’s inequality to prove that

P(suc) ≤ T

log2

(n
k

) , (1.6)

which they refer to as ‘folklore’, while Baldassini et al. gave the following

tighter bound on the success probability [20, Theorem 3.1] (see also

[113])

Theorem 1.1 (Counting bound). Any algorithm (adaptive or nonadap-

tive) for recovering the defective set with T tests has success probability

satisfying

P(suc) ≤ 2T(n
k

) . (1.7)
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In particular, P(suc) → 0 as n → ∞ whenever T ≤ (1 − η) log2

(n
k

)
for

arbitrarily small η > 0.

From an information-theoretic viewpoint, this result essentially

states that since the prior uncertainty is log2

(n
k

)
for a uniformly random

defective set, and each test is a yes/no answer revealing at most 1 bit

of information, we require at least log2

(n
k

)
tests. Because the result is

based on counting the number of defective sets, we refer to it as the

counting bound, often using this terminology for both the asymptotic and

nonasymptotic versions when the distinction is clear from the context.

With this mind, it will be useful to think about how many bits

of information we learn (on average) per test. Using an analogy with

channel coding, we shall call this the rate of group testing. In general, if

the defective set K is chosen from some underlying random process with

entropy H, then for a group testing strategy with T tests, we define the

rate to be H/T . In particular, under a combinatorial prior, where the

defective set is chosen uniformly from the
(n
k

)
possible sets, the entropy

is H = log2

(n
k

)
, leading to the following definition.

Definition 1.7. Given a group testing strategy under a combinatorial

prior with n items, k defective items, and T tests, we define the rate to

be

rate :=
log2

(n
k

)

T
. (1.8)

This definition was first proposed for the combinatorial case by

Baldassini, Aldridge and Johnson [20], and extended to the general case

(see Definition 5.2) in [121]. This definition generalizes a similar earlier

definition of rate by Malyutov [143, 144], which applied only in the very

sparse (k constant) regime.

We note the following well-known bounds on the binomial coefficient

(see for example [48, p. 1186]):

(
n

k

)k
≤
(
n

k

)
≤
(

en

k

)k
. (1.9)

Thus, we have the asymptotic expression

log2

(
n

k

)
= k log2

n

k
+O(k), (1.10)
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and in the sparse regime k = Θ(nα) for α ∈ [0, 1), we have the asymp-

totic equivalence

log2

(
n

k

)
∼ k log2

n

k
∼ (1 − α)k log2 n =

(1 − α)

ln 2
k lnn. (1.11)

Thus, to achieve a positive rate in this regime, we seek group testing

strategies with T = O(k logn) tests. In contrast, in Section 5.5, we will

observe contrasting behaviour of the binomial coefficient in the linear

regime k ∼ βn, expressed in (5.8).

Definition 1.8. Consider a group testing problem, possibly with some

aspects fixed (for example, the random test design or the decoding

algorithm), in a setting where the number of defectives scales as k = k(n)

according to some function (e.g., k(n) = Θ(nα) with α ∈ (0, 1)).

1. We say a rate R is achievable if, for any δ, ǫ > 0, for n sufficiently

large there exists a group testing strategies with a number of tests

T = T (n) such that the rate satisfies

rate =
log2

(n
k

)

T
> R− δ, (1.12)

and the error probability P(err) is at most ǫ.

2. We say a rate R is zero-error achievable if, for any δ > 0, for

n sufficiently large, there exists a group testing strategy with a

number of tests T = T (n) such that the rate exceeds R− δ, and

P(err) = 0.

3. Given a random or deterministic test matrix construction (design),

we define the maximum achievable rate to be the supremum of all

achievable rates that can be achieved by any decoding algorithm.

We sometimes also use this terminology when the decoding algo-

rithm is fixed. For example, we write RBern for the maximum rate

achieved by Bernoulli designs and any decoding algorithm, and

R
COMP
Bern for the maximum rate achieved by Bernoulli rates using

the COMP algorithm (to be described in Section 2.3).

4. Similarly, the maximum zero-error achievable rate is the supremum

of all zero-error achievable rates for a particular design.
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5. We define the capacity C to be the supremum of all achievable

rates, and the zero-error capacity C0 to be the supremum of

all zero-error achievable rates. Whereas the notion of maximum

achievable rate allows test design and/or decoding algorithm to

be fixed, the definition of capacity optimizes over both.

Note that these notions of rate and capacity may depend on the

scaling of k(n). In our achievability and converse bounds for the sparse

regime k = Θ(nα), the maximum rate will typically vary with α, but

will not depend on the implied constant in the Θ(·) notation.

Remark 1.3. Note that the counting bound (Theorem 1.1) gives us a

universal upper bound C ≤ 1 on capacity. In fact, it also implies the

so-called strong converse: The error probability P(err) tends to 1 when

T ≤ (1 − η) log2

(n
k

)
for arbitrarily small η > 0, which corresponds to a

rate R ≥ 1/(1 − η) > 1.

We are interested in determining when the upper bound C = 1

can or cannot be achieved, as well as determining how close practical

algorithms can come to achieving it. (We discuss what we mean by

‘practical’ in this context in Section 2.1.)

We will observe the following results for noiseless group testing in

the sparse regime k = Θ(nα), which are illustrated in Figure 1.4:

Adaptive testing is very powerful, in that both the zero-error and

small-error capacity equal C0 = C = 1 for all α ∈ [0, 1) (see

Section 1.5).

Zero-error nonadaptive testing is a significantly harder problem

requiring a much larger number of tests, in the sense that the

zero-error capacity is C0 = 0 for all α ∈ (0, 1) (see Section 1.6).

Small-error nonadaptive testing is more complicated. The capac-

ity is C = 1 for α ∈ [0, 0.409]; this is achievable with a Bernoulli

design for α < 1/3 (Theorem 4.1), and with a (near-)constant

column weight design for the full interval (Theorem 4.2). The

capacity is unknown for α ∈ (0.409, 1), for which the best known

achievable rate is (ln 2)1−α
α (Theorem 4.2). Finding the capac-

ity of small-error nonadaptive group testing for α ∈ (0.409, 1) is
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a significant open problem. We discuss these results further in

Chapter 4, and discuss rates for practical algorithms in Chapter 2.

This survey is mostly concerned with nonadaptive group testing with

small error probability, starting with the noiseless setting (Chapter 2).

Later in the monograph, we will expand our attention to the noisy

nonadaptive setting (Chapter 3), partial recovery criteria (Section 5.1),

‘semi-adaptive’ testing with limited stages (Section 5.2), and the linear

regime k = Θ(n) (Section 5.5), among others.

It will be useful to compare the results to come with various well-

established results for adaptive testing and for zero-error nonadaptive

testing (in the noiseless setting). The next two sections provide a brief

review of these two models.

0 0.5 1

0.5

1

Sparsity parameter α

Rate

Adaptive

Nonadaptive small-error:

       Bernoulli design

       Near-constant col. wt.

Nonadaptive zero-error

Figure 1.4: Achievable rates for noiseless group testing with k = Θ(nα) for a
sparsity parameter α ∈ (0, 1): the adaptive capacity C = 1; the nonadaptive zero-
error capacity is C0 = 0; and the achievable rates for nonadaptive small-error group
testing are given in Theorem 4.1 for Bernoulli designs and Theorem 4.2 for near-
constant column weight designs. These achieve the capacity C = 1 for α ≤ 1/3 and
α < 0.409 respectively.
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1.5 A brief review of noiseless adaptive group testing

Much of the early group testing literature focused on adaptive pro-

cedures. Dorfman’s original paper [65] proposed a simple procedure

where items were partitioned into sets that undergo primary testing:

A negative test indicates that all the items in that set are definitely

nondefective, whereas for within the positive tests, all items are sub-

sequently tested individually. It is easily checked (see, for example,

[128], [78, Ex. 26, Section IX.9]) that the optimal partition (assuming

that k is known) comprises
√
nk subsets, each of size

√
n/k. Dorfman’s

procedure therefore requires at most

T =
√
nk + k

√
n

k
= 2

√
nk (1.13)

tests.

Sterrett [185] showed that improvements arise by testing items in a

positive test individually until a defective item is found, and then re-

testing all remaining items in the set together. Li [128] and Finucan [79]

provided variants of Dorfman’s scheme based on multi-stage adaptive

designs.

The work of Sobel and Groll [181] introduced the crucial idea of

recursively splitting the set, with their later paper [182] showing that

such a procedure performs well even if the number of defectives is

unknown. We will describe the procedure of binary splitting, which lies

at the heart of many adaptive algorithms. Suppose we have a set A of

items. We can test whether A contains any defectives, and, if it does,

discover a defective item through binary splitting as follows.

Algorithm 1.1 (Binary splitting). Given a set A:

1. Initialize the algorithm with set A. Perform a single test containing

every item in A.

2. If the preceding test is negative, A contains no defective items,

and we halt. If the test is positive, continue.

3. If A consists of a single item, then that item is defective, and we

halt. Otherwise, pick half of the items in A, and call this set B.

Perform a single test of the pool B.
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4. If the test is positive, set A := B. If the test is negative, set

A := A \B. Return to Step 3.

The key idea is to observe that even if the test in Step 3 is negative,

we still gain information from it; since A contained at least one defective

(as confirmed by Steps 1 and 2), and B contained no defective, we can

be certain that A \B contains at least one defective.

In Step 3, when picking the set B to be half the size of A, we can

round |A|/2 in either direction. Since the size of the set A essentially

halves on each loop through the algorithm, we see that binary splitting

finds a defective item in at most ⌈log2 |A|⌉ adaptive tests, or confirms

there are no defective items in a single test. We conclude the following.

Theorem 1.2. We can find all k defectives in a set of n items by repeated

rounds of Algorithm 1.1, using a total of k log2 n+O(k) adaptive tests,

even when k is unknown. In the sparse regime k = Θ(nα) with α ∈ [0, 1),

this gives an achievable rate of 1 − α.

Proof. In the first round, we initialize the binary splitting algorithm

using A = {1, 2, . . . , n}, and find the first defective (denoted by d1)

using at most ⌈log2 n⌉ tests.

In subsequent rounds, if we have found defectives {d1, . . . , dr} in the

first r rounds, then the (r + 1)-th round of Algorithm 1.1 is initialized

with A = {1, 2, . . . , n} \ {d1, d2, . . . , dr}. We perform one further test to

determine whether {1, 2, . . . , n} \ {d1, d2, . . . , dr} contains at least one

defective. If not, we are done. If it does, we find the next defective item

using at most ⌈log2(n− r)⌉ ≤ ⌈log2 n⌉ tests. We repeat the procedure

until no defective items remain, and the result follows.

Note that for α > 0, this rate 1 − α fails to match the counting

bound C ≤ 1. However, we can reduce the number of tests required

to k log2(n/k) + O(k), thus raising the rate to 1 for all α ∈ [0, 1), by

using a variant of Hwang’s generalized binary splitting algorithm [107].

The key idea is to notice that, unless there are very few defectives

remaining, the first tests in each round of the repeated binary splitting

algorithm are overwhelmingly likely to be positive, and are therefore

very uninformative. A better procedure is as follows:
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Algorithm 1.2. Divide the n items into k subsets of size n/k (rounding

if necessary), and apply Algorithm 1.1 to each subset in turn.

Note that each of these subsets contains an average of one defective.

Using the procedure above, if the i-th subset contains ki defectives,

taking k = ki and n = n/k in Theorem 1.2, we can find them all using

ki log2(n/k) +O(ki) tests, or confirm the absence of any defectives with

one test if ki = 0. Adding together the number of tests over each subset,

we deduce the result.

Combining this analysis with the upper bound C ≤ 1 (Remark 1.3),

we deduce the following.

Theorem 1.3. Using Algorithm 1.2, we can find the defective set with

certainty using k log2(n/k) +O(k) adaptive tests. Thus, the capacity of

adaptive group testing in the sparse regime k = Θ(nα) is C0 = C = 1

for all α ∈ [0, 1).

This theorem follows directly from the work of Hwang [107], and

it was explicitly noted that such an algorithm attains the capacity of

adaptive group testing by Baldassini et al. [20].

The precise form of Hwang’s generalized binary splitting algorithm

[107] used a variant of this method, with various tweaks to reduce the

O(k) term. For example, the set sizes are chosen to be powers of 2

at each stage, so the splitting step in Algorithm 1.1 is always exact.

Further, items appearing at any stage in a negative test are removed

completely, and the values n and k of remaining items are updated as

the algorithm progresses. Some subsequent work further reduced the

implied constant in the O(k) term in the expression k log2(n/k) +O(k)

above; for example, Allemann [13] reduced it to 0.255k plus lower order

terms.

We see that algorithms based on binary splitting are very effective

when the problem is sparse, with k much smaller than n. For denser

problems, the advantage may be diminished; for instance, when k is

a large enough fraction of n, it turns out that adaptive group testing

offers no performance advantage over the simple strategy of individually

testing every item once. For example, for adaptive zero-error combina-

torial testing, Riccio and Colbourn [158] proved that no algorithm can
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outperform individual testing if k ≥ 0.369n, while the Hu–Hwang–Wang

conjecture [105] suggests that such a result remains true for k ≥ n/3.

We further discuss adaptive (and nonadaptive) group testing in the

linear regime k = Θ(n) in Section 5.5. Meanwhile, the focus of this

survey remains the sparse regime, k = Θ(nα) with α ∈ [0, 1), where

group testing techniques have their greatest effect.

1.6 A brief review of zero-error nonadaptive group testing

In this section, we discuss nonadaptive group testing with a zero error

criterion – that is, we must be certain that any defective set of a given

size can be accurately decoded. In particular, we examine the important

concepts of separable and disjunct matrices. The literature in this area

is deep and wide-ranging, and we shall barely scratch the surface here.

The papers of Kautz and Singleton [120] and D’yachkov and Rykov

[54] are classic early works in this area, while the textbook of Du and

Hwang [66] provides a comprehensive survey.

The following definitions for test matrices are well known – see for

example [66, Chapter 7] – and are important for studying zero-error

nonadaptive group testing.

Definition 1.9. Given a test matrix X = (xti) ∈ {0, 1}T×n, we write

S(i) := {t : xti = 1} for the support of column i. Further, for any subset

L ⊆ {1, 2, . . . , n} of columns, we write S(L) =
⋃
i∈L S(i) for the union

of their supports. (By convention, S(∅) = ∅.)

Observe that S(i) is the set of tests containing item i, while S(K)

is the set of positive tests when the defective set is K.

Definition 1.10. A matrix X is called k-separable if the support unions

S(L) are distinct over all subsets L ⊆ {1, 2, . . . , n} of size |L| = k.

A matrix X is called k̄-separable if the support unions S(L) are

distinct over all subsets L ⊆ {1, 2, . . . , n} of size |L| ≤ k.

Clearly, using a k-separable matrix as a test design ensures that

group testing will provide different outcomes for each possible defective

set of size k; thus, provided that there are exactly k defectives, it is

certain that the true defective set can be found (at least in theory – we
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discuss what it means for an algorithm to be ‘practical’ in Section 2.1).

In fact, it is clear that k-separability of the test matrix is also a necessary

condition for zero-error group testing to be possible: If the matrix is not

separable, then there must be two sets L1 and L2 with S(L1) = S(L2)

which cannot be distinguished from the test outcomes. Similarly, a

k̄-separable test design ensures finding the defective set provided that

there are at most k defectives.

Thus, given n and k, we want to know how large T must be for a

k-separable (T × n)-matrix to exist.

An important related definition is that of a disjunct matrix.

Definition 1.11. A matrix X is called k-disjunct if for any subset L ⊆
{1, 2, . . . , n} of size |L| = k and any i 6∈ L, we never have S(i) ⊆ S(L).

In group testing language, this ensures that no nondefective item

appears only in positive tests. This not only guarantees that the defective

set can be found, but also reveals how to do so easily: Any item that

appears in a negative test is nondefective, while an item that appears

solely in positive tests is defective. (We will study this simple algorithm

under the name COMP in Chapter 2.)

We briefly mention that the notions of k-separability, k̄-separability,

and k-disjunctness often appear in the literature under different names.

In particular, the columns of a k-disjunct matrix are often said to form a

k-cover free family, and the terminology superimposed code is often used

to refer to the columns of either a k̄-separable matrix or a k-disjunct

matrix (see, for example, [120, 66, 55]).

It is clear that the implications

k-disjunct ⇒ k̄-separable ⇒ k-separable (1.14)

hold. Furthermore, Chen and Hwang [37] showed that the number of

tests T required for separability and disjunctness in fact have the same

order-wise scaling, proving the following.

Theorem 1.4. Let X be 2k-separable. Then there exists a k-disjunct

matrix formed by adding at most one row to X.

Because of this, attention is often focused on bounds for disjunct

matrices, since such bounds are typically easier to derive, and these
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results can be easily converted to statements on separable matrices

using (1.14) and Theorem 1.4.

The following result, which D’yachkov and Rykov [54] attribute to

Bassalygo, was an important early lower bound on the size of disjunct

matrices.

Theorem 1.5. Suppose there exists a k-disjunct (T × n)-matrix. Then

T ≥ min

{
1

2
(k + 1)(k + 2), n

}
. (1.15)

There have been many improvements to this result on bounds

for disjunct matrices to exist, of which we mention a few examples.

Shangguan and Ge [174] improve the constant 1/2 in front of the k2

term of Theorem 1.5 with the bound

T ≥ min

{
15 +

√
33

24
(k + 1)2, n

}
≈ min

{
0.864(k + 1)2, n

}
. (1.16)

Ruszinkó [160] proves the bound

T ≥ 1

8
k2 logn

log k
(1.17)

for n sufficiently large, provided that k grows slower than
√
n,1 while

Füredi [83] proves a similar bound with 1/8 improved to 1/4. In the

sparse regime k = Θ(nα) with α ∈ (0, 1), we have logn/ log k →
1/α, which means that (1.17) and Füredi’s improvement give improved

constants compared to Theorem 1.5 and (1.16) for sufficiently small

α. In the very sparse regime k = O(1), (1.17) gives roughly a logn

factor improvement, which D’yachkov and Rykov [54] improve further,

replacing 1/8 by a complicated expression that is approximately 1/2

for large (but constant) values of k.

In the case that k = Θ(nα) with α > 1/2, the bound T ≥ n of

Theorem 1.5 can be achieved by the identity matrix (that is, testing

each item individually), and the resulting number of tests T = n is

optimal.

1The first line of the proof in [160] assumes k2 divides n; this is not true when
k2 > n, but can be accommodated with a negligible increase in n if k grows slower
than

√
n.
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For α < 1/2, the T ≥ Ω(k2) lower bounds of Theorem 1.5 and

related results are complemented by achievability results of the form

T ≤ O(k2 logn), just a logarithmic factor larger. For example, using a

Bernoulli random design with p = 1/(k+1), one can prove the existence

of a k-disjunct (T × n)-matrix with

T ≤ (1 + δ)e(k + 1) ln

(
(k + 1)

(
n

k + 1

))
∼ (1 + δ)e(k + 1)2 lnn

for any δ > 0 [66, Theorem 8.1.3]. (Du and Hwang [66, Section 8.1]

attribute this result to unpublished work by Busschbach [31].) Kautz and

Singleton [120] give a number of constructions of separable and disjunct

matrices, notably including a construction based on Reed–Solomon

codes that we discuss further in Section 5.7. Porat and Rothschild [156]

give a construction with T = O(k2 logn) using linear codes.

Note that in the sparse regime, the lower bound from Theorem 1.5 is

on the order of min{Ω(k2), n} which is much larger than the order k logn

of the counting bound. Thus, nonadaptive zero-error group testing has

rate 0 according to Definition 1.7.

Theorem 1.6. The capacity of nonadaptive group testing with the

zero-error criterion is C0 = 0 in the case that k = Θ(nα) with α ∈ (0, 1).

Remark 1.4. In the context of zero-error communication [175], a mem-

oryless channel having a zero-error capacity of zero is a very negative

result, as it implies that not even two distinct codewords can be distin-

guished with zero error probability. We emphasize that when it comes

to group testing, the picture is very different: A result stating that

C0 = 0 by no means implies that attaining zero error probability is a

hopeless task; rather, it simply indicates that it is insufficient to take

O
(
k log n

k

)
tests. As discussed above, there is an extensive amount of

literature establishing highly valuable results in which the number of

tests is O(k2 logn) or similar.

In contrast with Theorem 1.6, in Chapters 2 and 4 of this survey, we

will see that under the small-error criterion (i.e., asymptotically vanish-

ing but non-zero error probability), we can achieve nonzero rates for all

α ∈ [0, 1), and even reach the optimal rate of 1 for α ∈ [0, 0.409]. This
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demonstrates the significant savings in the number of tests permitted

by allowing a small nonzero error probability.

An interesting point of view is provided by Gilbert et al. [92], who

argue that zero-error group testing can be viewed as corresponding to an

adversarial model on the defective set; specifically, the adversary selects

K as a function of X in order to make the decoder fail. Building on this

viewpoint, [92] gives a range of models where the adversary’s choice

is limited by computation or other factors, effectively interpolating

between the zero-error and small-error models.

1.7 Applications of group testing

Although group testing was first formulated in terms of testing for

syphilis [65], it has been abstracted into a combinatorial and algorithmic

problem, and subsequently been applied in many contexts. The early

paper of Sobel and Groll [181] lists some basic applications to unit

testing in industrial processes, such as the detection of faulty containers,

capacitors, or Christmas tree lights. Indeed, solutions based on group

testing have been proposed more recently for quality control in other

manufacturing contexts, such as integrated circuits [115] and molecular

electronics [184] (though the latter paper studies a scenario closer to

the linear model discussed in Section 5.9).

We review some additional applications here; this list is certainly

not exhaustive, and is only intended to give a flavour of the wide range

of contexts in which group testing has been applied. Many of these

applications motivate our focus on nonadaptive algorithms. This is

because in many settings, adaptive algorithms are impractical, and it is

preferable to fix the test design in advance – for example, to allow a

large number of tests to be run in parallel.

Biology

As group testing was devised with a biological application in mind,

it is no surprise that it has found many more uses in this field, as

summarised, for example, in [21, 36, 67]. We list some examples here:
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DNA testing As described in [66, Chapter 9], [173] and [178], modern

sequencing methods search for particular subsequences of the genome

in relatively short fragments of DNA. As a result, since samples from

individuals can easily be mixed, group testing can lead to significant

reductions in the number of tests required to isolate individuals with

rare genetic conditions – see, for example, [21, 52, 96]. In this context,

it is typical to use nonadaptive methods (as in [67, 73, 74, 137, 178]),

since it is preferable not to stop machines in order to rearrange the

sequencing strategy. Furthermore, the physical design of modern DNA

testing plates means that it can often be desirable to use exactly T = 96

tests (see [74]). Macula [137] describes combinatorial constructions that

are robust to errors in testing.

Counting defective items Often we do not need to estimate the de-

fective set itself, but rather wish to efficiently estimate the proportion

of defective items. This may be because we have no need to distinguish

individuals (for example, when dealing with insects [187, 195]), or wish

to preserve confidentiality of individuals (for example, monitoring preva-

lence of diseases). References [35, 180, 186] were early works showing

that group testing offers an efficient way to estimate the proportion of

defectives, particularly when defectivity is rare. This testing paradigm

continues to be used in recent medical research, where pooling can pro-

vide significant reductions in the cost of DNA testing – see for example

[122], [188].

Specific applications are found in works such as [118, 186, 187, 195],

in which the proportion of insects carrying a disease is estimated; and in

[90, 190], in which the proportion of the population with HIV/AIDS is

estimated while preserving individual privacy. Many of these protocols

require nonadaptive testing, since tests may be time-consuming – for

example, one may need to place a group of possibly infected insects with

a plant, and wait to see if the plant becomes infected. A recent paper

[75] gives a detailed analysis of an adaptive algorithm that estimates

the number of defectives. We review the question of counting defectives

using group testing in more detail in Section 5.3.
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Other biological applications We briefly remark that group testing

has also been used in many other biological contexts – see [67, Section

1.3] for a review. For example, this includes the design of protein–protein

interaction experiments [152], high-throughput drug screening [116],

and efficient learning of the Immune–Defective graphs in drug design

[87].

Communications

Group testing has been applied in a number of communications scenarios,

including the following:

Multiple access channels We refer to a channel where several users

can communicate with a single receiver as a multiple access channel.

Wolf [198] describes how this can be formulated in terms of group

testing: At any one time, a small subset of users (active users) will

have messages to transmit, and correspond to defective items in this

context. Hayes [102] introduced adaptive protocols based on group

testing to schedule transmissions, which were further developed by

many authors (see [198] for a review). In fact, Berger et al. [23] argue

for the consideration of a ternary group testing problem with outcomes

‘idle’, ‘success’ and ‘collision’ corresponding to no user, one user or

multiple users broadcasting simultaneously, and develop an adaptive

transmission protocol.

These adaptive group testing protocols for multiple access channels

are complemented by corresponding nonadaptive protocols developed

in works such as [125] (using random designs) and [63] (using designs

based on superimposed code constructions). Variants of these schemes

were further developed in works such as [64], [199] and [200]. The paper

[191] uses a similar argument for the related problem of Code-Division

Multiple Access (CDMA), where decoding can be performed for a group

of users simultaneously transmitting from constellations of possible

points.

Cognitive radios A related communication scenario is that of cognitive

radio networks, where ‘secondary users’ can opportunistically transmit
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on frequency bands which are unoccupied by primary users. We can

scan combinations of several bands at the same time and detect if any

signal is being transmitted across any of them, and use procedures

based on group testing to determine which bands are unoccupied – see

for example [16, 177].

Network tomography and anomaly discovery Group testing has been

used to perform (loss) network tomography; that is, to detect faults in

a computer network only using certain end-to-end measurements. In

this scenario, users send a packet from one machine to another, and

check whether it successfully arrives. For example, we can view the

edges of the network as corresponding to items, with items in a test

corresponding to the collection of edges along which the packet travelled.

If (and only if) a packet arrives safely, we know that no edge on that

route is faulty (no item is defective), which precisely corresponds to the

OR operation of the standard noiseless group testing model.

As described in several works including [39, 101, 134, 201], and

discussed in more detail in Section 5.8, this leads to a scenario where

arbitrary choices of tests cannot be taken, since each test must corre-

spond to a connected path in the graph topology. This motivates the

study of graph-constrained group testing, which is an area of interest

in its own right.

Goodrich and Hirschberg [99] describes how an adaptive algorithm

for ternary group testing can be used to find faulty sensors in networks,

and a nonadaptive algorithm (combining group testing with Kalman

filters) is described in [132].

Information technology

The discrete nature of the group testing problem makes it particularly

useful for various problems in computing, such as the following:

Data storage and compression Kautz and Singleton [120] describe

early applications of superimposed coding strategies to efficiently search-

ing punch cards and properties of core memories. Hong and Ladner

[103] describe an adaptive data compression algorithm for images, based
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on the wavelet coefficients. In particular, they show that the standard

Golomb algorithm for data compression is equivalent to Hwang’s group

testing algorithm [107] (see Section 1.5). These ideas have been ex-

tended, for example by [104] in the context of compressing correlated

data from sensor networks, using ideas related to the multiple access

channel described above.

Cybersecurity An important cybersecurity problem is to efficiently

determine which computer files have changed, based on a collection of

hashes of various combinations of files (this is sometimes referred to

as the ‘file comparison problem’). Here the modified files correspond

to defective items, with the combined hash acting as a testing pool.

References [98] and [139] demonstrate methods to solve this problem

using nonadaptive procedures based on group testing.

Khattab et al. [123] and Xuan et al. [202] describe how group testing

can be used to detect denial-of-service attacks, by dividing the server

into a number of virtual servers (each corresponding to a test), observing

which ones receive large amounts of traffic (test positive) and hence

deducing which users are providing the greatest amount of traffic.

Database systems In order to manage databases efficiently, it can

be useful to classify items as ‘hot’ (in high demand), corresponding to

defectivity in group testing language. Cormode and Muthukrishnan [49]

show that this can be achieved using both adaptive and nonadaptive

group testing, even in the presence of noise. A related application is

given in [196], which considers the problem of identifying ‘heavy hitters’

(high-traffic flows) in Internet traffic, and provides a solution using

linear group testing, where each test gives the number of defective items

in the testing pool (see Section 5.9).

Bloom filters A Bloom filter [25] is a data structure that allows one

to test if a given item is in a special set of distinguished items extremely

quickly, with no possibility of false negatives and very rare false positives.

The Bloom filter uses L hash functions, each of which maps items to

{1, 2, ..., T}. For each of the items in the distinguished set, one sets up
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the Bloom filter by hashing the item using each of the L hash functions,

and setting the corresponding bits in a T -bit array to 1. (If the bit

is already set to 1, it is left as 1.) To test if another item is in the

distinguished set, one hashes the new item with each of the L hash

functions and looks up the corresponding bits in the array. If any of the

bits are set to 0, the item is not in the distinguished set; while if the

bits are all set 1, one assumes the item is in the set, although there is

some chance of a false positive.

The problem of deciding how many hash functions L to use, and

how large the size of the array T is, essentially amounts to a group

testing problem. For instance, when L is large enough for the outcomes

to be essentially noiseless, the analysis is almost identical to that of

the COMP algorithm with a near-constant tests-per-item design (see

Section 2.7). We also mention that [204] makes a connection between

Bloom filters and coding over an OR multiple-access channel, which is

also closely related to group testing.

Data science

Finally, group testing has been applied to a number of problems in

statistics and theoretical computer science.

Search problems Du and Hwang [66, Part IV] give an extensive review

of applications of group testing to a variety of search problems, including

the famous problem of finding a counterfeit coin and membership

problems. This can be seen as a generalization of group testing; a

significant early contribution to establish order-optimal performance

was made by Erdős and Rényi [72].

Sparse inference and learning Gilbert, Iwen and Strauss [95] discuss

the relationship between group testing and compressed sensing, and

show that group testing can be used in a variety of sparse inference

problems, including streaming algorithms and learning sparse linear

functions. Reference [141] builds on this idea by showing how group

testing can be used to perform binary classification of objects, and [68]

develops a framework for testing arrivals with decreasing defectivity
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probability. Similar ideas can be used for classification by searching for

similar items in high dimensional spaces [179].

In the work of Emad, Varshney, Malioutov and Dash [70], [142],

group testing is used to learn classification rules that are interpretable

by practitioners. For example, in medicine we may wish to develop a rule

based on training data that can diagnose a condition or identify high-risk

groups from a number of pieces of measured medical data (features).

However, standard machine learning approaches such as support vector

machines or neural networks can lead to classification rules that are

complex, opaque and hard to interpret for a clinician. For reasons of

simplicity, it can be preferable to use suboptimal classification rules

based on a small collection of AND clauses or a small collection of OR

clauses. In [70], [142], the authors show how such rules can be obtained

using a relaxed noisy linear programming formulation of group testing

(to be introduced in Section 3.2). They also use ideas based on threshold

group testing (see, for example, Example 3.6 in Section 3.1) to develop

a more general family of classifiers based on clinical scorecards, where a

small number of integer values are added together to assess the risk.

Theoretical computer science Group testing has been applied to

classical problems in theoretical computer science, including pattern

matching [45, 110, 138] and the estimation of high degree vertices in

hidden bipartite graphs [197].

In addition, generalizations of the group testing problem are studied

in this community in their own right, including the ‘k-junta problem’

(see for example [24, 30, 151]). A binary function f is referred to as

a k-junta if it depends on at most k of its inputs, and we wish to

investigate this property using a limited number of input–output pairs

(x, f(x)).

It is worth noting that testing k-juntas only requires determining

whether a given f has this property or is far from having this property

[24], which is distinct from learning k-juntas, i.e., either determining

the k inputs that f depends on or estimating f itself. Further studies

of the k-junta problem vary according to whether the inputs x are

chosen by the tester (‘membership queries’) [29], uniformly at random

by nature [151], or according to some quantum state [14, 19]. In this
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sense, group testing with a combinatorial prior is a special case of the

k-junta learning problem, where we are sure that the function is an OR

of the k inputs.

Appendix: Comparison of combinatorial and i.i.d. priors

In this technical appendix, we discuss the relationship between com-

binatorial and i.i.d. priors for the defective set. We tend to use the

combinatorial prior throughout this survey, so new readers can safely

skip this appendix on first reading.

Recall the two related prior distributions on the defective set K:

• Under the combinatorial prior, there are exactly k defective items,

and the defective set K is uniformly random over the
(n
k

)
possible

subsets of that size.

• Under the i.i.d. prior, each item is defective independently with a

given probability q ∈ (0, 1), and hence the number of defectives

k = |K| is distributed as k ∼ Binomial(n, q), with E[k] = nq. For

brevity, we adopt the notation k = nq.

Intuitively, when the (average) number of defectives is large, one

should expect the combinatorial prior with parameter k to behave

similarly to the i.i.d. prior with a matching choice of k, since in the

latter case we have k = k(1+o(1)) with high probability, due to standard

binomial concentration bounds.

To formalize this intuition, first consider the definition rate :=
1
T log2

(n
k

)
for the combinatorial prior (see Definition 1.7), along with

the following analogous definition for the i.i.d. prior:

rate :=
nh(q)

T
, (1.18)

where h(q) = −q log2 q − (1 − q) log2 (1 − q) is the binary entropy func-

tion. Using standard estimates of the binomial coefficient [15, Sec. 4.7],

the former is asymptotically equivalent to 1
T nh(k/n), which matches

1
T nh(q) = 1

T nh(k/n) with k in place of k. Consistent with our focus in

this monograph, in this section we focus on scaling laws of the form

k → ∞ and k = o(n) (or similarly with k in place of k), in which
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case the preceding rates are asymptotically equivalent to 1
T k log2

n
k

and 1
T k log2

n
k

. With some minor modifications, the arguments that we

present below also permit extensions to the linear regime k = Θ(n)

(discussed in Section 5.9).

Having established that the rate expressions asymptotically coincide,

further arguments are needed to transfer achievability and converse

results from one prior to the other. In the following, we present two

results for this purpose. In both results, any statement on the existence or

non-existence of a decoding rule may refer to decoders that have perfect

knowledge of the number of defectives k, or only partial knowledge (for

example high-probability bounds), or no knowledge at all – but the

assumed decoder knowledge must remain consistent throughout the

entire theorem. Note that having exact knowledge of k in the i.i.d. setting

is a particularly unrealistic assumption, since in that setting it is a

random quantity. We further discuss the issue of known vs. unknown k

at the end of the section.

The following theorem describes how to transfer achievability bounds

from the combinatorial prior to the i.i.d. prior.

Theorem 1.7. Consider a sequence of (possibly randomized or adap-

tive) test designs X (indexed by n) attaining P(err) → 0 under the

combinatorial prior whenever k = k0(1+o(1)) for some nominal number

of defectives k0, with k0 → ∞ and k0 = o(n) as n → ∞. Then the same

X and decoding rule also attains P(err) → 0 under the i.i.d. prior with

q = k0/n (i.e., k = k0). In particular, if a given rate R0 is achievable

under the combinatorial prior whenever k = k0(1 + o(1)), then it is also

achievable under the i.i.d. prior with k = k0.

Proof. Since k = k0 grows unbounded as n → ∞ by assumption, we have

by standard binomial concentration that k = k(1 + o(1)) = k0(1 + o(1))

with probability approaching one under the i.i.d. prior. Letting I denote
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the corresponding set of ‘typical’ k values, we deduce that

P(err) =
∑

k

P(k)P(err | k) (1.19)

≤
∑

k∈I

P(k)P(err | k) + P(k /∈ I) (1.20)

→ 0, (1.21)

since P(err | k) → 0 for all k ∈ I by assumption, and we established that

P(k /∈ I) → 0. This establishes the first claim. The additional claim on

the rate follows since, as discussed above (and using k = k0(1 + o(1))),

the achievable rates for both priors are asymptotically equivalent to
1
T k0 log2

n
k0

.

Analogously, the following theorem describes how to transfer con-

verse bounds from the combinatorial prior to the i.i.d. prior.

Theorem 1.8. Fix R0 > 0, and suppose that under the combinatorial

prior with some sequence of defective set sizes k = k0 (indexed by n)

satisfying k0 → ∞ and k0 = o(n), there does not exist any algorithm

achieving rate R0. Then for any arbitrarily small constant ǫ > 0, under

the i.i.d. prior with q = k0(1 + ǫ)/n, there does not exist any algorithm

achieving rate R0(1 + ǫ).

Proof. Since k0 → ∞ and the average number of defectives under the

i.i.d. prior is k = k0(1 + ǫ), we deduce via binomial concentration that

k ∈ [k0, k0(1 + 2ǫ)] with probability approaching one. For k outside this

range, any contribution to the overall error probability is asymptotically

negligible.

On the other hand, when k does fall in this range, we can consider

a genie argument in which a uniformly random subset of k1 = k − k0

defectives is revealed to the decoder. The decoder is then left to identify

k0 defectives out of n1 = n− k1 items. Hence, the problem is reduced

to the combinatorial prior with slightly fewer items.

The condition k ≤ k0(1 + 2ǫ) implies that k1 ≤ 2ǫk0 and hence

n1 ≥ n−2ǫk0, which behaves as n(1−o(1)) since k0 = o(n). As discussed

at the start of this section, in the sparse regime, the asymptotic rate

is equal to the asymptotic value of 1
T k log2

n
k (combinatorial prior) or
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1
T k log2

n
k

(i.i.d. prior), and we observe that (i) replacing n by n(1−o(1))

does not impact the asymptotic rate; and (ii) replacing k = k0(1 + ǫ)

by k0 reduces the rate by a factor of 1/(1 + ǫ) asymptotically.

We conclude the proof via a contradiction argument: If R0(1 + ǫ)

were achievable with q = k0(1+ǫ)/n under the i.i.d. prior, the preceding

reduction would imply that R0 is achievable with k = k0 under the

combinatorial prior, which was assumed to be impossible.

Unlike Theorem 1.7, this result requires scaling the (average) number

of defectives and the rate by 1 + ǫ. However, since ǫ is arbitrarily

small, one can think of this scaling as being negligible. In fact, for all

achievability and converse results that we are aware of, in the case that

k = Θ(nα) for some α ∈ (0, 1), the asymptotic rate depends only on α

and not on the implied constant in the Θ(·) notation.

From i.i.d. to combinatorial It is also of interest to transfer results

in the opposite direction, i.e., to infer achievability or converse bounds

for the combinatorial prior based on those for the i.i.d. prior. For this

purpose, the contrapositive statements of Theorems 1.7 and 1.8 read as

follows:

• (Theorem 1.7) If there does not exist any test design and decoder

achieving P(err) → 0 under the i.i.d. prior when q = k0/n with

k0 → ∞ and k0 = o(n), then there also does not exist any test

design and decoder that simultaneously achieves P(err) → 0 under

the combinatorial prior for all k such that k = k0(1 + o(1)).

• (Theorem 1.8) Again assuming k0 → ∞ and k0 = o(n), if the

rate R0 is achievable with q = k0/n under the i.i.d. prior, then

for arbitrarily small ǫ > 0 the rate R0/(1 + ǫ) is achievable with

k = k0/(1 + ǫ) under the combinatorial prior.

It is worth noting that the former of these statements does not directly

provide a converse result for any particular value of k, but rather, only

does so for the case that several k must be handled simultaneously.
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Discussion on knowledge of k A somewhat more elusive challenge is

to transfer results from the case that the decoder knows k to the case

that it does not (or the case that it only knows bounds on k), and vice

versa. In particular, it is sometimes convenient to prove achievability

results for the case that k is known exactly (see for example Chapter 4),

and to prove converse results for the case that k is unknown (see for

example Section 2.2). This potentially poses a ‘gap’ in the achievability

and converse bounds even when the associated rates coincide.

While we are not aware of any general results allowing one to close

such a gap, we briefly mention a technique that has succeeded in doing

so in the noiseless setting; the details will be given in Section 4.3. Recall

that we gave a lower bound on the rate of SSS for unknown k in

Section 2.2. To establish a converse for the case that k is known, we

argue that if both SSS and COMP fail, then there must exist some

K′ 6= K with |K′| = |K| = k such that K′ is also consistent with the

outcomes. (Note that neither COMP nor SSS require knowledge of k).

Since the decoder cannot do better than randomly guess between these

two consistent sets even when k is known, we deduce that P(err) cannot

tend to zero.

Transferring converse results from the unknown-k setting to the

known-k setting – or equivalently, transferring achievability results

in the other direction – in greater generality (such as noisy settings)

remains an interesting open problem. General results of this kind would

reduce the need to study these distinct cases separately.
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Algorithms for Noiseless Group Testing

2.1 Summary of algorithms

In this chapter, we discuss decoding algorithms for noiseless nonadaptive

group testing. That is, we are interested in methods for forming the esti-

mate K̂ of the defective set given the test matrix X and the outcomes y.

In addition, we present performance bounds for these algorithms under

random test designs.

We are particularly interested in algorithms that are practical in

the following two senses:

1. The algorithm does not require knowledge of the number of defec-

tives k, other than general imprecise knowledge such as ‘defectivity

is rare compared to nondefectivity’, which we implicitly assume

throughout.

2. The algorithm is computationally feasible. Specifically, we seek

algorithms that run in time and space polynomial in n, and

preferably no worse than the O(nT ) time and space needed to read

and store an arbitrary test design X. In fact, certain algorithms

exist having even faster ‘sublinear’ decoding times, but their

discussion is deferred to Section 5.4.

238
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All algorithms in this chapter are practical in the first sense. One

of the algorithms, called SSS, is not (likely to be) practical in the

second sense, but we include it here as a benchmark. Since several

algorithms are based on approximating the SSS algorithm in faster

time, the analysis of SSS is useful for understanding these other more

practical algorithms.

An important concept that we will use is that of a satisfying set.

Definition 2.1. Consider the noiseless group testing problem with n

items, using a test design X and producing outcomes y. A set L ⊂
{1, 2, . . . , n} is called a satisfying set if

• every positive test contains at least one item from L;

• no negative test contains any item from L.

Thus, when performing group testing with test design X, had the

true defective set been L, we would have observed the outcome y.

Clearly the true defective set K is itself a satisfying set.

While we postpone complete definitions of algorithms until the

relevant sections, it is worth providing a quick outline here:

SSS (smallest satisfying set) chooses the smallest satisfying set.

This is based on the idea that the defective set K is a satis-

fying set, but since defectivity is rare, K is likely to be small. This

algorithm appears unlikely to be implementable with a practical

runtime in general for large n, as it is equivalent to solving an

integer program. See Sections 2.2 and 2.6 for details.

COMP (combinatorial orthogonal matching pursuit) assumes

that each item is defective unless there is a simple proof that it

is nondefective, namely, that the item is in at least one negative

test. See Section 2.3 for details.

DD (definite defectives) assumes that each item is nondefective un-

less there is a certain simple proof that it is defective. See Sec-

tion 2.4 for details.
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SCOMP (sequential COMP) attempts to find the smallest satisfy-

ing set by beginning with the DD set of definite defectives, and

sequentially adding items to the estimated defective set until a

satisfying set is obtained. See Section 2.5 for details.

Linear programming relaxations solve a relaxed form of the small-

est satisfying set problem, and use this to attempt to find the

smallest satisfying set. See Section 2.6 for details.

In Chapter 3, we will present additional algorithms that can be special-

ized to the noiseless case, particularly belief propagation (see Section 3.3)

and separate decoding of items (Section 3.5). Since these algorithms are

primarily of interest for noisy settings, we omit them from this chapter

to avoid repetition.

We will shortly see numerical evidence that SSS performs the best

when the problem is sufficiently small that it can be implemented, while

the SCOMP and linear programming approaches perform best among

the more practical algorithms. As another means to compare these

algorithms, in the upcoming sections, we will mathematically analyse

the rates achieved by these algorithms in the case that the matrix X

has a Bernoulli design, formally stated as follows.

Definition 2.2. In a Bernoulli design, each item is included in each test

independently at random with some fixed probability p = ν/k. In other

words, independently over i ∈ {1, 2, . . . , n} and t ∈ {1, 2, . . . , T}, we

have P(Xti = 1) = p = ν/k and P(Xti = 0) = 1 − p = 1 − ν/k.

The parametrization p = ν/k is chosen because such scaling with

constant ν will be seen to be optimal as k grows large. Intuitively, since

the average number of defectives in each test is ν, one should avoid the

cases ν → 0 or ν → ∞ because they lead to uninformative tests (that is,

tests returning a given outcome with high probability). In Section 2.7,

we turn to the near-constant tests-per-item design, formally introduced

in Definition 2.3 below. We will see that the rates of all of the above

algorithms are slightly improved when used with this alternative design.

Later, in Section 4.3, we will see how the analysis of the SSS and

COMP algorithms allows us to establish algorithm-independent lower
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Figure 2.1: Rates of various algorithms for nonadaptive group testing in the sparse
regime with a Bernoulli design and with a near-constant column weight design.

Table 2.1: Summary of features of algorithms: (i) range of α (if any) for which
the optimal rate is attained under randomized testing; (ii) whether an efficient
algorithm is known; (iii) whether the output is guaranteed to be a satisfying set;
(iv)-(v) guarantees on the false positives and false negatives in the reconstruction.
The algorithms labelled ‘fast’ can be implemented in time O(nT ), except possibly
LP, whose complexity depends on the solver used (see Section 2.6 for discussion).

Optimal rate Fast SS No false + No false −
SSS α ∈ [0, 1) no yes no no

COMP no yes no no yes

DD α ∈ [1/2, 1) yes no yes no

SCOMP α ∈ [1/2, 1) yes yes no no

LP α ∈ [1/2, 1) yes maybe no no

bounds on the number of tests required under Bernoulli and near-

constant test-per-item designs.

The result of this chapter are further complemented by those of

Chapter 4, which looks further into information-theoretic achievability

and converse bounds. A collective highlight of these two chapters is
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Figure 2.2: Empirical performance through simulation of five algorithms with a
Bernoulli design. The parameters are n = 500, k = 10, and p = 1/(k + 1) = 0.0909.
For comparison purposes, we plot the theoretical upper bound on P(suc) from
Theorem 1.1 as ‘counting bd’.

the following result on the information-theoretic optimality of some

practical algorithms when certain random test designs are adopted.

Theorem 2.1. Consider group testing with n items and k = Θ(nα)

defectives, for α > 1/2. Suppose that the test design is Bernoulli (with

the parameter p chosen optimally) or constant tests-per-item (with

the parameter L chosen optimally), and suppose that the decoding

algorithm is SSS, DD, SCOMP, or linear programming. Then we can

achieve the rate

R∗ =





1

e ln 2

1 − α

α
≈ 0.531

1 − α

α
for Bernoulli design,

ln 2
1 − α

α
≈ 0.693

1 − α

α
for near-constant tests-per-item,

which is the optimal rate for these random test designs regardless of

the decoding algorithm used.
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Figure 2.3: Simulation of the COMP, DD and SSS algorithms with Bernoulli and
near-constant column weight designs. The problem parameters are n = 500, and
k = 10. The Bernoulli parameter is p = 1/k = 0.1; the near-constant column weight
parameter L is the nearest integer to (ln 2)T/k ≃ 0.0693T .

This and the other main results from this chapter are illustrated in

Figure 2.1.

Table 2.1 summarizes the algorithms. Whether or not the linear

programming approach is guaranteed to give a satisfying set depends on

the rule used to convert the LP solution to an estimate of the defective

set – see Section 2.6 for further discussion.

While this chapter focuses on rigorously provable results, we can also

examine the behaviour of the algorithms presented here in simulations.

Figure 2.2 compares the five algorithms with a Bernoulli design. We

see that SCOMP and linear programming are almost as good as SSS

(which would be infeasible for larger problems), while DD is not much

worse, and COMP lags behind more significantly.

Figure 2.3 compares the performance of the COMP, DD and SSS

algorithms under Bernoulli and near-constant column weight matrix

designs. We see that the near-constant column weight design provides a

noticeable improvement for all three algorithms.
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1 0 1 0 0 1 0 0

1 1 0 1 0 0 1 1

1 0 0 0 1 0 0 0

0 1 1 0 1 1 0 1

1 0 1 1 0 1 0 1

Figure 2.4: Group testing example. We describe the outcome of the SSS algorithm
in Example 2.1, and of the COMP algorithm in Example 2.2.

2.2 SSS: Smallest satisfying set

We first discuss the smallest satisfying set (SSS) algorithm. While SSS

does not require knowledge of the number of defectives, it appears

unlikely to be impractical for a large number of items n due to the

computation required. This is due to the highly combinatorial nature

of the algorithm, which amounts to solving an integer program (see

Section 2.6).

Recall from Definition 2.1 that a set L is satisfying if every positive

test contains at least one item from L, and no negative test contains

any item from L. Moreover, since the true defective set K is satisfying,

a smallest satisfying set definitely exists – though it may not be unique.

The SSS algorithm is based on the idea that since K is satisfying,

and since defectivity is rare, it seems plausible that K should be the

smallest satisfying set.

Algorithm 2.1. The smallest satisfying set (SSS) algorithm is defined

by setting K̂SSS to be the smallest satisfying set, with ties broken

arbitrarily if such a set is not unique.

Example 2.1. In Figure 2.4, we give an example of a group testing

matrix and its outcome. (This example will reappear throughout this

chapter.) Since we have only n = 7 items, it is, in this small case,

practical to check all 27 = 128 subsets. It is not difficult to check that
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the sets {2, 4} and {2, 4, 7} are the only satisfying sets. Of these, {2, 4}
is the smallest satisfying set. Thus, we have K̂SSS = {2, 4} as the output

of the SSS algorithm.

Remark 2.1. A naive implementation of SSS requires an exhaustive

search over
(n
k

)
putative defective sets, and in general, we do not regard

SSS as being practical in the sense described above. To make this

intuition more precise, we describe a connection to the set cover problem

(see [192]). Given a universe U and a family S of subsets of U , the set

cover problem is to find the smallest family of subsets in S such that

its union is the whole of U . Suppose that we let U be the set of positive

tests, and the subsets in S list the tests in which each possibly defective

item is included. (An item is ‘possibly defective’ if it appears in no

negative tests; this definition will play a key role in the COMP and DD

algorithms later.) Then the minimal set cover is exactly the smallest

satisfying set. The set cover problem is known to be NP-hard to solve

[117], or even to verify that a given putative solution is optimal.

Since SSS is in some sense the ‘best possible’ (albeit possibly im-

practical) algorithm, we are interested in upper bounds on its rate.

In Section 4.3, we make the term ‘best possible’ more precise, and

show that in fact these upper bounds are achievable in the information-

theoretic sense. In fact, if we switch from the combinatorial prior to the

i.i.d. prior on the defective set (see the Appendix to Chapter 1), then it

can be shown that SSS is equivalent to maximum a posteriori (MAP)

estimation of K, and in this case its optimality is immediate.

Theorem 2.2. Consider noiseless nonadaptive group testing with exact

recovery and the small error criterion, with k = Θ(nα) for some α ∈
(0, 1), and using the SSS algorithm for decoding. The maximum rate

achievable by SSS with a Bernoulli design is bounded above by

R
SSS
Bern ≤ max

ν>0
min

{
h(e−ν),

ν

eν ln 2

1 − α

α

}
. (2.1)

Here and throughout, we write h(x) = −x log2 x− (1 − x) log2(1 − x)

for the binary entropy function, measured in bits.

Proof. The first term follows using an argument from [8], and can be seen

as a strengthening of the Fano-based counting bound (1.6) provided by
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Chan et al. [33]. The idea is to observe that [33] considers tests for which

the probability of being negative could take any value, so the entropy

is upper bounded by the maximum possible value, H(Yt) ≤ h(1/2) = 1.

However, under Bernoulli testing with a general value of p = ν/k, the

probability that a test is negative is (1 − ν/k)k ≃ e−ν , meaning that

H(Yt) ≃ h(e−ν). The full argument, which is justified by a typical set

argument, is given in [8, Lemma 1].

We explain how the second term follows using a simplified version

of the argument from [12]. We say that a defective item is masked if

every time it is tested, it appears in a test with some other defective

item. We observe that if some i ∈ K is masked then SSS fails, since the

set K \ {i} forms a smaller satisfying set. In other words, we know that

P(err) ≥ P

(⋃

i∈K

{i masked}
)
. (2.2)

Hence, using the Bonferroni inequalities (see for example [78, Chapter

IV, eq. (5.6)]), we can bound

P(suc) ≤ 1 − P

(⋃

i∈K

{i masked}
)

≤ 1 −
∑

i∈K

P ({i masked}) +
∑

i<j∈K

P ({i and j masked}) . (2.3)

Now, any particular defective i is masked if all the tests it is included

in also contain one or more other defective items. Using a Bernoulli

test design with item probability p = ν/k, the probability that item

i appears in a particular test with no other defectives is p(1 − p)k−1,

so the probability it is masked is (1 − p(1 − p)k−1)T . Similarly, the

probability that items i and j are both masked is (1 − 2p(1 − p)k−1)T ,

since we need to avoid the two events ‘item i and no other defective

tested’ and ‘item j and no other defective tested’, which are disjoint.

Overall, then, in (2.3) we can deduce that

P(suc) ≤ 1 − k(1 − p(1 − p)k−1)T +
k2

2
(1 − 2p(1 − p)k−1)T . (2.4)

Since p = ν/k, we write r = p(1 − p)k−1 ∼ ν/(keν). Taking

T =

⌈
(1 − r) ln k

r

⌉
(2.5)
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and using the fact that

k(1 − r)T − k2

2
(1 − 2r)T ≥

(
ke−rT/(1−r)

)(
1 − k

2
e−rT/(1−r)

)
(2.6)

(see [12, eq. (41)]), we can deduce that (2.4) is bounded away from 1.

Note that proving a converse for the choice (2.5) also proves the same

converse for all larger values of T , since additional tests can only help

the SSS algorithm.

In Definition 1.8, using the binomial coefficient approximation (1.11),

this means that if the rate exceeds

log2

(n
k

)

T
∼ (1 − α)

ln 2

k lnn

T
=

(1 − α)k lnn

ln 2

r

(1 − r) ln k
∼ ν

eν ln 2

1 − α

α
,

(2.7)

then the success probability is bounded away from 1.

In Chapter 4, we will survey a result of Scarlett and Cevher [166]

showing that the rate (2.1) is achievable for all α ∈ (0, 1), and deduce

that this is the maximum achievable rate for the Bernoulli design.

2.3 COMP: Combinatorial orthogonal matching pursuit

The COMP algorithm was the first practical group testing algorithm

shown to provably achieve a nonzero rate for all α < 1. The proof was

given by Chan et al. [33, 34].

COMP is based on the simple observation that any item in a negative

test is definitely nondefective. COMP makes the assumption that the

other items are defective.

Algorithm 2.2. The COMP algorithm is defined as follows. We call

any item in a negative test definitely nondefective (DND), and call the

remaining items possibly defective (PD). Then the COMP algorithm

outputs K̂COMP equalling the set of possible defectives.

The basic idea behind the COMP algorithm has appeared many

times under many names – the papers [120, 144, 33, 34, 36, 133] are

just a few examples. The first appearance of the COMP idea that we

are aware of is by Kautz and Singleton [120]. We use the name ‘COMP’
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(for Combinatorial Orthogonal Matching Pursuit) following Chan et al.

[33].

Example 2.2. Recall our worked example from Figure 2.4, previously

discussed in Example 2.1. Consider all the negative tests. Test 1 is

negative, so items 1, 3, and 6 are definitely nondefective (DND). Test 3

is negative, so items 1 and 5 are definitely nondefective. Putting this

together, we deduce that the remaining items 2, 4, 7 are the possible

defective (PD) items, so we choose to mark them as defective. In other

words, K̂COMP = {2, 4, 7}.

The following lemma shows that COMP can be interpreted as finding

the largest satisfying set, in stark contrast with SSS.

Lemma 2.3. The estimate K̂COMP generated by the COMP algorithm

is a satisfying set (in the sense of Definition 2.1) and contains no false

negatives. Every satisfying set is a subset of K̂COMP, so K̂COMP is the

unique largest satisfying set.

Proof. Observe that since every DND item appears in a negative test,

and so must indeed be nondefective, the COMP algorithm outputs

no false defectives, and the true defective set satisfies K ⊆ K̂COMP.

Furthermore, since every positive test contains an element of K, and

hence of K̂COMP, we deduce that K̂COMP is a satisfying set.

Fix a satisfying set L and consider item i 6∈ K̂COMP. By construction

i must be a DND, meaning that it appears in a negative test and

therefore (see the second part of Definition 2.1) cannot be in L. In other

words K̂c
COMP ⊆ Lc, or reversing the inclusion, L ⊆ K̂COMP.

(In the above and subsequently, we are writing Kc = {1, . . . , n} \ K
for the items not in K.)

The observation that any satisfying set must be a subset of K̂COMP

can be used to reduce the search space associated with SSS, since the

number of subsets of K̂COMP is typically much smaller than the number

of subsets of {1, 2, . . . , n}. However, this may not make SSS sufficiently

practical in general; Remark 2.5 below shows that in regimes where DD

fails, the expected size of K̂COMP is at least knǫ ≫ k for some ǫ > 0, so

the remaining number of possibilities is still
(knǫ

k

) ≥ nǫk.
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In the remainder of this section, we will give the rate achievable by

the COMP algorithm with a Bernoulli design. These results are due to

[33] and [8]. We should expect that COMP is suboptimal, since it does

not make use of the positive tests.

Theorem 2.4. Consider noiseless nonadaptive group testing with exact

recovery and the small error criterion, with k = Θ(nα) for some α ∈
(0, 1), and using the COMP algorithm for decoding. With a Bernoulli

design and an optimized parameter p = 1/k, the following rate is

achievable:

RCOMP
Bern =

1

e ln 2
(1 − α) ≈ 0.531(1 − α). (2.8)

Proof. For any given nondefective item, the probability that it appears

in a particular test, and that such a test is negative, is p(1 − p)k. This

follows from the independence assumption in the Bernoulli design; the

test is negative with probability (1 − p)k, and the given item appears

with probability p. Hence, the probability that this given nondefective

appears in no negative tests is (1 − p(1 − p)k)T .

The COMP algorithm succeeds precisely when every nondefective

item appears in a negative test, so the union bound gives

P(err) = P

( ⋃

i∈Kc

{item i does not appear in a negative test}
)

≤ |Kc|
(
1 − p(1 − p)k

)T

≤ n exp(−Tp(1 − p)k). (2.9)

The expression p(1 − p)k is maximized at p = 1/(k + 1) ∼ 1/k, so we

take p = 1/k (or equivalently ν = 1), meaning that (1 − 1/k)k → e−1.

Hence, taking T = (1 + δ)ek lnn means that Tp(1 − p)k ∼ (1 + δ) lnn.

Using the binomial coefficient approximation (1.11), we have the

asymptotic expression

log2

(n
k

)

T
∼ (1 − α)

ln 2

k lnn

T
.

Then following Definition 1.8, taking (1+δ)ek lnn gives a rate arbitrarily

close to (1 − α)/(e ln 2), as desired.



250 Algorithms for Noiseless Group Testing

Remark 2.2. Using a similar but slightly more involved argument, one

can show that the expression RCOMP
Bern from (2.8) gives the maximum

achievable rate when COMP is used in conjunction with Bernoulli

testing. The argument is outlined as follows for a general parameter

p = ν/k.

First, we use binomial concentration to show that the number of

negative tests T0 is tightly concentrated around its mean, yielding

T0 ≃ T e−ν . Conditioned on T0, the probability of a given nondefective

failing to be in any negative test is

q := (1 − p)T0 ≃ exp(−pT0) ≃ exp

(
−ν

k
Te−ν

)
.

The error events are (conditionally) independent for different nondefec-

tive items, so the total error probability is 1 − (1 − q)n−k. Substituting

q ≃ exp(−Tνe−ν/k), applying some simple manipulations, and noticing

that νe−ν is maximized at ν = 1, we find that

T > (1 + η)ek lnn =⇒ P(err) → 0

T < (1 − η)ek lnn =⇒ P(err) → 1,

for arbitrarily small η > 0. This matches the choice of T in the proof

of Theorem 2.4 above. In fact, this argument not only shows that (2.8)

the highest achievable rate, but also that the error probability tends to

one when this rate is exceeded.

The preceding argument essentially views COMP as a coupon-

collecting algorithm, gradually building up a list of nondefectives using

negative tests. We say that a nondefective item is ‘collected’ if it appears

in a negative test. A result dating back to Laplace (see also [71]) states

that in order to collect all coupons in a set of size m, it suffices to

have m lnm trials. Here, we need to collect m = n − k ∼ n coupons,

and each of the e−1T negative tests (assuming ν = 1) contains on

average pn = n/k such coupons. Thus, we require n
k e−1T ∼ n lnn,

which rearranges to T ∼ ek lnn.

Remark 2.3. The analysis above allows us to consider the extent to

which COMP and other algorithms require us to know the exact number

of defectives k. While, for a given test matrix, the decisions taken by
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COMP do not require this knowledge, clearly to form a Bernoulli test

matrix with p = 1/k requires the value of k itself.

However, COMP is reasonably robust to misspecification of k, in

the following sense. Suppose that for a fixed c we base our matrix

on the erroneous assumption that there are k̂ = k/c defectives, and

hence use p = 1/k̂ = c/k instead. Repeating the analysis above, we

can see that (2.9) behaves like n exp(−Tce−c/k), so we should use

T = (1+δ)k lnn/(ce−c) tests, corresponding to a rate of (1−α)ce−c/ ln 2.

In other words, even with a multiplicative error in our estimate of k,

COMP will achieve a nonzero rate, and if the multiplicative factor c is

close to 1, COMP will achieve a rate close to that given in Theorem 2.4

above. Although the analysis would be more involved, we anticipate

that similar results should hold for other algorithms. We further discuss

the question of uncertainty in the number of defectives, including how

group testing can provide estimates of k which are accurate up to a

multiplicative factor, in Section 5.3.

2.4 DD: Definite defectives

The DD (Definite Defectives) algorithm, due to Aldridge, Baldassini

and Johnson [12], was the first practical group testing algorithm to

provably achieve the optimal rate for Bernoulli designs for a range of

values of α (namely, α ≥ 1
2).

Recall the definitions of ‘definite nondefective’ and ‘possible defective’

from Definition 2.2. DD is based on the observation that if a (necessarily

positive) test contains exactly one possible defective, then that item is

in fact definitely defective.

Algorithm 2.3. The definite defectives (DD) algorithm is defined as

follows.

1. We say that any item in a negative test is definitely nondefective

(DND), and that any remaining item is a possible defective (PD).

2. If any PD item is the only PD item in a positive test, we call that

item definitely defective (DD).
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3. The DD algorithm outputs K̂DD, the set of definitely defective

items.

One justification for DD is the observation that removing nondefec-

tive items from a test does not affect the outcome of the test, so the

problem is the same as if we use the submatrix with columns in PD. In

addition, the principle ‘assume nondefective unless proved otherwise’

(used by DD) should be preferable to the rule ‘assume defective unless

proved otherwise’ (used by COMP) under the natural assumption that

defectivity is rare. We illustrate this by continuing Example 2.2.

Example 2.3. We present a worked example of DD. From Example 2.2,

we know that items 2, 4, and 7 are the possible defectives (PD). Now

consider the submatrix with the corresponding columns, illustrated in

Figure 2.5. Notice that tests 4 and 5 are positive, and only contain one

(possible defective) item, so we can deduce that items 2 and 4 must be

defective. The defectivity status of item 7 is still unclear, but the DD

algorithm marks it as nondefective. Thus, we have K̂DD = {2, 4}.

0 0 0 0

1 1 1 1

0 0 0 0

1 0 0 1

0 1 0 1

Figure 2.5: Example of the DD algorithm. We describe the inferences that we make
in Example 2.3, but give the submatrix of PD columns only, having marked the
DND items discovered in Example 2.2 by COMP as nondefective (replacing question
marks by outlined figures to represent our knowledge).

Lemma 2.5. The estimate K̂DD generated by the DD algorithm has no

false positives.
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1 0 1 1

0 1 1 1

1 1 0 1

Figure 2.6: Example of DD algorithm finding a set which is not satisfying, to
illustrate Remark 2.4. In this case K̂DD = ∅.

Proof. Since (as in COMP), all DND items are indeed definitely nonde-

fective, the first stage of DD makes no mistakes. Furthermore, we know

that each DD item is indeed defective, so the second stage of inference

in DD is also certainly correct. Hence, DD can only makes an error in

the final step, by marking a defective item as nondefective. In other

words, DD has no false positives, and K̂DD ⊆ K.

Remark 2.4. Unlike COMP, the DD algorithm does not necessarily

produce an estimate which is a satisfying set. Figure 2.6 contains a

simple example that illustrates this; since no test is negative, all items

are marked as PDs, but no test contains a single item, so K̂DD = ∅.

However, when DD does produce a satisfying set, it must necessarily

be the smallest satisfying set – that is, K̂DD = K̂SSS. We prove this

by contradiction as follows: Assume that K̂DD is a satisfying set, but

not the smallest one. Then K̂DD must have more elements than K̂SSS,

meaning there exists some item i ∈ K̂DD ∩ (K̂SSS)c. By the definition of

the DD algorithm, this item i appears in some non-empty collection of

positive tests, say indexed by {t1, . . . , tm} ⊆ {1, . . . , T}, with no other

element of K̂DD. However, each such test tj must also contain some item

ij ∈ K̂SSS, because K̂SSS is satisfying. On the other hand, by definition,

no element in K̂DD ∪K̂SSS appears in any negative tests, so {i, i1, . . . im}
would all be counted as PD by Stage 1 of the DD algorithm. As a result,

item i would never appear as a lone PD item, and so would never be

marked as DD, giving a contradiction.

We now discuss how to calculate the rate of DD under a Bernoulli

test design. It turns out that DD outperforms the COMP rate given
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in Theorem 2.4 above, as is immediately deduced from the following

result due to [12].

Theorem 2.6. Consider noiseless nonadaptive group testing with exact

recovery and the small error criterion, with k = Θ(nα) for some α ∈
(0, 1), and using the DD algorithm for decoding. With a Bernoulli design

and an optimal choice of the parameter ν = 1 (so that p = 1
k ), the

following rate is achievable:

RDD
Bern =

1

e ln 2
min

{
1,

1 − α

α

}
≈ 0.531 min

{
1,

1 − α

α

}
. (2.10)

Moreover, for α ≥ 1/2, this matches the maximum achievable rate for

SSS given in Theorem 2.2.

Note that in (2.10), the first minimand dominates for α ≤ 1/2 and

the second minimand dominates for α ≥ 1/2.

For reasons of brevity, we do not provide a full proof of this result

here, but instead give an outline and refer the reader to the original

paper [12] for details.

First, we introduce some notation. We write G for the number of

nondefective items that are marked as possible defectives by the first

stage of COMP. That is, there are G nondefective items that only

appear in positive tests (in [12] such items are referred to as ‘intruding’),

so that in total there are k +G possible defective items.

We divide the tests into groups, according to the number of defective

and possible defective items they contain. For each i ∈ K, we write

Mi = # tests containing item i and no other defective item,

Li = # tests containing item i and no other possible defective item.

Similarly, we write M0 = L0 for the number of tests containing no

defective items, and M+ = T − (M0 +
∑
i∈K Mi) and L+ = T − (L0 +∑

i∈K Li) for the number of remaining tests.

It is clear that the DD algorithm will correctly identify item i as

defective if and only if Li = 0, so that we can write

P(suc) = P

(⋂

i∈K

{Li 6= 0}
)

= 1 − P

(⋃

i∈K

{Li = 0}
)
. (2.11)
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Unfortunately, the joint distribution of {Li : i ∈ K} is not simple to

characterize. However, we can make some progress by conditioning on

the value of M0 (the number of negative tests), to deduce that

M0 ∼ Bin(T, (1 − p)k), (2.12)

G | {M0 = m} ∼ Bin(n− k, (1 − p)m). (2.13)

The first result (2.12) follows because a test is negative if and only

if it contains no defective items, and for Bernoulli testing this occurs

independently across tests with probability (1 − p)k. Moreover, (2.13)

follows because a nondefective item is a possible defective if and only it

does not appear in positive tests, and for Bernoulli testing this occurs

independently across items with probability (1 − p)m.

Now, we can combine the above findings with the properties of a

certain function defined in [12, eq. (13)] as

φk(q, T ) :=
k∑

ℓ=0

(−1)ℓ
(
k

ℓ

)
(1 − ℓq)T . (2.14)

The idea is to argue that, conditioned on M0 and G, the distribution of

(Li) is multinomial with known parameters, and [12, Lemma 31] shows

that the probability

P

(⋃

i∈K

{Li = 0}
∣∣∣M0 = m,G = g

)

arising from (2.11) can be expressed in terms of the function φK in

(2.14). Hence, we can write P(suc) from (2.11) as an expectation over

G and M0 of values of

φK

(
q1(1 − p)g

1 − q0
, T −m0

)
,

for certain explicit constants. The proof proceeds by combining mono-

tonicity properties of φ with the fact that G and M0 satisfy certain

concentration inequalities.

Remark 2.5. Although we have omitted several details, we can give

some intuition into the performance of DD by assuming that certain

random variables concentrate around their mean. Specifically, assuming
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that p = 1/k and that T = Cek lnn, we can see that the expected

number of negative tests is

EM0 = T (1 − p)k ∼ T e−1 = Ck lnn.

Binomial concentration tells us that M0 is close to its mean with high

probability, so that concentration of G means that it is close to

EG ∼ n(1 − p)EM0 ∼ n exp(−pEM0) ∼ n1−C . (2.15)

With this result in place, we can establish the following:

1. If C = max{α, 1 − α} + ǫ ≥ 1 − α + ǫ, then (2.15) gives that

EG ≤ nα−ǫ ≪ k (since k = Θ(nα)). In other words, the number

of possible defectives is close to the number of true defectives, so

the true defectives should not get ‘drowned out’. This choice of C

leads to the rate (2.10) using (1.11) as before.

2. As shown in [162], Theorem 2.6 provides the best possible achiev-

able rate for DD with Bernoulli testing, so any further improve-

ments require changing either the algorithm or the test design,

not just the analysis. For α ≥ 1/2, such a claim is trivially de-

duced from an observation that no algorithm can do better under

Bernoulli testing. For α < 1/2, taking C = max{α, 1 − α} − ǫ =

1−α−ǫ in (2.15) gives EG ∼ knǫ ≫ k which leads to a large num-

ber of true defectives getting ‘drowned out’ by the nondefectives

that are marked as possible defectives.

2.5 SCOMP: Sequential COMP

SCOMP is an algorithm due to Aldridge, Baldassini, and Johnson [12]

that builds a satisfying set by starting from the set of definite defectives

(DD) and sequentially adding new items until a satisfying set is reached.

The name comes from ‘Sequential COMP’, as it can be viewed as a

sequential version of the COMP algorithm.

Algorithm 2.4. The SCOMP algorithm is defined as follows.

1. Initialize K̂ as the estimate K̂DD produced by the DD algorithm

(Algorithm 2.3), and declare any definitely nondefective items



2.5. SCOMP: Sequential COMP 257

(items appearing in a negative test) to be nondefective. The other

possible defectives are not yet declared either way.

2. Any positive test is called unexplained if it does not contain any

items from K̂. Add to K̂ the possible defective not in K̂ that is in

the most unexplained tests, and mark the corresponding tests as

no longer unexplained. (Ties may be broken arbitrarily.)

3. Repeat step 2 until no tests remain unexplained. The estimate of

the defective set is K̂.

Note that a satisfying set leaves no unexplained tests, and any set

containing no definite nondefectives and leaving no unexplained tests is

satisfying. Note also that the set of all possible defectives is satisfying,

so the SCOMP algorithm does indeed terminate.

The following result [7] is relatively straightforward to prove.

Theorem 2.7. For any given test design, any rate achievable by DD is

also achievable by SCOMP. In particular, with a Bernoulli design and

optimal choice of the parameter p, SCOMP can achieve the rate given

in (2.6) above. Moreover, for α ≥ 1/2, this matches the best achievable

rate obtained using SSS (Theorem 2.2).

Proof. The simple idea is that for each particular test design X and

defective set K, whenever DD succeeds, SCOMP also succeeds. More

specifically, if K̂DD = K, then the initial choice K̂ = K in step 1 of

SCOMP (Algorithm 2.4) is already a satisfying set, so there are no

unexplained tests to consider in step 2, and the algorithm terminates.

It remains an interesting open problem to determine whether SCOMP

has a larger achievable rate than DD for Bernoulli testing. We note

from simulations such as Figure 2.2 that SCOMP appears to perform

strictly better than DD for many specific problems, though it is unclear

whether this converts into a strictly larger achievable rate than that

of DD for α < 1/2. In particular, as described in Section 2.7 below,

Coja-Oghlan et al. [46] have recently proved that SCOMP provides no

such improvement in rate for the near-constant column weight design.
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There is an analogy between SCOMP and Chvatal’s approximation

algorithm for the set cover problem (see Remark 2.1). At each stage,

Chvatal’s algorithm [43] greedily chooses a subset that covers the largest

number of currently uncovered elements in the universe of elements.

Similarly, SCOMP makes a greedy choice of possibly defective items that

explain as many currently unexplained positive tests as possible. For

a universe of |U | = m items, Chvatal’s algorithm produces a solution

that is at most Hm times larger than the optimal set cover, where

Hm ∼ lnm is the m-th harmonic number. This can be shown to be the

best possible approximation factor for a polynomial-time algorithm for

set cover (in the worst case) [192, Theorem 29.31]. This means that for

certain test matrices, we can view SCOMP as outputting the ‘tightest

possible polynomial-time approximation to the smallest satisfying set’.

However, this does not preclude the possibility of improved efficient

approximations under other well-chosen test matrices.

2.6 Linear programming relaxations

Linear programming (LP) algorithms have been proposed as a way to

approximate SSS with practical runtime and storage requirements, by

solving a relaxed version of the smallest satisfying set problem.

Specifically, recalling that xti indicates if item i is in test t, and

yt is the outcome of test t, a smallest satisfying set corresponds to an

optimal solution to the integer program

minimizez

n∑

i=1

zi

subject to
n∑

i=1

xtizi ≥ 1 when yt = 1,

n∑

i=1

xtizi = 0 when yt = 0,

zi ∈ {0, 1}.

We hope that the optimal z will be close to the true defectivity vector

u introduced in Definition 1.2, since taking z = u will satisfy the

constraints. In general, we think of each 0–1 vector z as the indicator
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function of some putative defective set L, with L = L(z) := {i : zi = 1}.

The first two constraints on z ensure that L(z) is satisfying in the

sense of Definition 2.1, by considering the positive and negative tests

respectively. Hence, each z that achieves the minimal value of the linear

program is the indicator function of a satisfying set of minimal size, i.e.,

K̂ = {i : zi = 1} is a smallest satisfying set.

The LP approach attempts to estimate the defective set via a relaxed

version of the 0–1 problem, where each zi can be any nonnegative real

number. That is, the optimization formulation is exactly as above, but

with each constraint zi ∈ {0, 1} replaced by

zi ≥ 0.

Linear programs of this form can be solved efficiently: the ellipsoid

algorithm is guaranteed to find a solution in polynomial time, though

it is typically outperformed in practice by the simplex algorithm. (See,

for example, [48, p. 897] for a discussion of the running times of linear

programming algorithms.)

There are various heuristics for how to turn an optimal solution

z = (zi) to the relaxed program into an estimate of the defective set.

For example, one could consider the following crude method: If there

is any i with zi /∈ {0, 1}, declare a global error; otherwise, estimate

K̂ = {i : zi = 1} to be the defective set. Malioutov and Malyutov [140]

suggest an estimate K̂ = {i : zi > 0}, and show strong performance on

simulated problems. Note that this rule will always provide a satisfying

set, since each positive test will have some possible defective i with zi
that is declared defective. Alternatively, the estimate K̂ = {i : zi ≥
1/2} appears to be (very) slightly better in simulations, but does not

guarantee a satisfying set.

For the purposes of the following theorem, it suffices that in the

event that all zi are 0 or 1, the heuristic chooses K̂ = {i : zi = 1}, as

any sensible heuristic surely must. This theorem is due to [7], and shows

that the above LP approach, like SCOMP, is at least as good as DD.

Theorem 2.8. For any given test design, any rate achievable by DD

is also achievable by LP. In particular, with a Bernoulli design and

optimal choice of the parameter p, LP can achieve the rate given in
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(2.6) above. Moreover, for α ≥ 1/2, this matches the best achievable

rate obtained using SSS (Theorem 2.2).

Proof. Again, for each particular test design X and defective set K,

whenever DD succeeds LP also succeeds. To be precise, any item i which

appears in some negative test t must have zi = 0 in order to satisfy the

second constraint of the linear program,
∑n
i=1 xtizi = 0. Furthermore, if

a positive test t contains only one possible defective i, the LP solution

must have zi ≥ 1 to ensure the first constraint
∑n
i=1 xtizi ≥ 1 holds,

and it will choose zi = 1 to minimize
∑
i zi. Finally, if DD succeeds

then these definite defectives form a satisfying set, so all constraints

are satisfied, and the algorithm will set all other zi = 0, to minimize∑
i zi.

As with SCOMP, while simulation evidence suggests that LP outper-

forms DD for certain problems (see for example Figure 2.2), it remains

an interesting open problem to determine whether it achieves a strictly

larger rate than DD for α < 1/2.

We briefly mention an earlier result that used linear programming

to get a nonzero rate for all α, albeit with a much lower rate than that

of Theorem 2.8. The LiPo algorithm of Chan et al. [34] is based on

relaxing a similar integer program, and further assumes the decoder

knows k exactly, so the linear program can be phrased as a feasibility

problem. They show that LiPo achieves the rate

RLiPo
Bern =

1
8
3 e2 ln 2

1 − α

1 + α
≈ 0.073

1 − α

1 + α
. (2.16)

2.7 Improved rates with near-constant tests-per-item

Throughout this chapter, we have focused on Bernoulli testing designs,

where each item is independently placed in each test with a given

probability, and hence X contains i.i.d. Bernoulli entries. Such a design

is conceptually simple, is typically the easiest to analyse mathematically,

and is known to be information-theoretically optimal for k = O(n1/3)

(see Chapter 4).

However, it turns out that we can do better in certain cases. Below,

we will see that an alternative random design based on near-constant
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tests-per-item can improve the COMP and DD rates by a factor of

e(ln 2)2 ≃ 1.306, leading to two key implications. First, for k = Θ(nα)

with α sufficiently close to one, this combination outperforms Bernoulli

testing used in conjunction with any decoder. Second, for small α, this

combination improves on the best known rate for Bernoulli testing under

any practical decoder. The results of this section are due to Johnson,

Aldridge, and Scarlett [114] and Coja-Oghlan et al.[46].

The following definition formally introduces the random design that

provides the above-mentioned improved rates.

Definition 2.3. The near-constant column weight (or near-constant

tests-per-item) design with parameter ν > 0 forms a group testing matrix

X in which L = νT/k entries of each column are selected uniformly at

random with replacement and set to one,1 with independence between

columns. The remaining entries of X are set to zero.

Since we sample with replacement, some items may be in fewer than

L tests, but typically only slightly fewer, hence the terminology ‘near-

constant’. This is a mathematical convenience that makes the analysis

more tractable. The parametrization L = νT/k is chosen because such

scaling with ν = Θ(1) turns out to be optimal, analogously to the

scaling p = ν/k in Definition 2.2. (In Section 5.8, we will briefly survey

a setting in which the number of tests per item is constrained to be

much smaller than O(T/k).) An intuitive reason as to why the above

design may be preferable to the Bernoulli design is that it prevents any

item from being included in too few tests.

While Definition 2.3 suffices for our purposes, it is worth mentioning

that it is one of a variety of related randomized designs that have

appeared in the literature. Indeed, a variety of works have considered

(exactly-)constant tests-per-item (see for example [137, 149]). There is

evidence that such matrices provide similar gains, but to our knowledge,

this has not been proved in the same generality and rigour as the case

of near-constant tests-per-item. In addition, matrices with a constant

row weight have been considered [33], but with no proven gains over

Bernoulli testing.

1We ignore rounding issues here, and note that the results are unaffected by
whether we set L = ⌊νT/k⌋ or L = ⌈νT/k⌉.
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We first present the rate achieved by the simple COMP algorithm

(see Section 2.3).

Theorem 2.9. Consider noiseless nonadaptive group testing with ex-

act recovery and the small error criterion, with k = Θ(nα) for some

α ∈ (0, 1), and using the COMP algorithm for decoding. With a near-

constant column weight design and an optimized parameter ν = ln 2,

the maximum achievable rate using COMP is

R
COMP
NCC = ln 2(1 − α) ≈ 0.693(1 − α). (2.17)

Proof sketch. We omit the details of the proof for brevity, and refer the

reader to [114]. The key idea is again to formulate a coupon-collector

problem (see Remark 2.2).

First, we consider the total number of positive tests T1. A given

test t is negative if, for each of the k defective items, none of the

L = νT/k choices of column entries is t. Since these choices take

place independently with replacement, this is the same as choosing

kL = νT entries in total, all independently with replacement. Hence,

the probability that test t is negative is (1 − 1/T )νT ∼ e−ν , so the

expected number of positive tests ET1 ∼ T (1 − e−ν).

Now, since changing one choice of column entry changes the number

of positive tests by at most 1, the random variable T1 satisfies the

bounded difference property in the sense of McDiarmid [148], which

allows us to prove a standard concentration bound. Specifically we can

deduce by McDiarmid’s inequality that T1 is close to its mean, so that

T1 ≈ T (1 − e−ν) with high probability.

Finally, conditioned on T1, each nondefective item appears in some

negative test with probability 1−(T1/T )L, independently of one another.

Hence, assuming the concentration result holds (replacing T1 by its

mean), we find that

P(suc) ∼ (1 − (T1/T )L)n−k ∼ (1 − (1 − e−ν)L)n = (1 − (1 − e−ν)νT/k)n.

It is easy to check that (1 − e−ν)ν is maximized at ν = ln 2, where

it takes the value e−(ln 2)2
. Thus, choosing T = (1 + δ)(k lnn)/(ln 2)2

gives us that (1 − e−ν)νT/k = e−(1+δ) lnn. This allows us to deduce that

P(suc) ∼ (1 − n−1+δ)n ∼ exp(−n−δ), which tends to 1.



2.7. Improved rates with near-constant tests-per-item 263

In terms of rates, again using Definition 1.7 and (1.11), we can

deduce that this equates to a rate of (1 − α)(k lnn)/(T ln 2) which

approaches ln 2(1 − α) as required.

Comparing with Theorem 2.4, we see that for the COMP algorithm,

the near-constant column weight design provides an improvement of

roughly 30.6% over Bernoulli testing. In addition, the rate of Theo-

rem 2.9 improves even over that of the DD algorithm with Bernoulli

testing, both for sufficiently small α and sufficiently high α. See Fig-

ure 2.1 for an illustration.

We now turn to the DD algorithm (see Section 2.4), which strictly

improves on Theorem 2.9 for all α ∈ (0, 1).

Theorem 2.10. Consider noiseless nonadaptive group testing with ex-

act recovery and the small error criterion, with k = Θ(nα) for some

α ∈ (0, 1), and using the DD algorithm for decoding. Under a near-

constant column weight design with an optimized parameter ν = ln 2,

the following rate is achievable:

RDD
NCC = (ln 2) min

{
1,

1 − α

α

}
≈ 0.693 min

{
1,

1 − α

α

}
. (2.18)

Moreover, for α ≥ 1/2, this achieves the maximum achievable rate for

SSS using this design, R
SSS
NCC (see Theorem 2.11 below).

The proof of this result bears some similarity to that of Bernoulli

testing, but is more technically challenging. The interested reader is

referred to [114].

Comparing Theorem 2.10 to Theorem 2.6, we see that the achievable

rate with the near-constant column weight design is roughly 30.6%

higher than the Bernoulli design – the same gain as that observed for

COMP (see Figure 2.1). Overall, Theorem 2.10 currently provides the

best known rate for any practical algorithm and any testing design for

all α ∈ (0, 1).

As in the case of Bernoulli testing, one immediately deduces (by

Theorem 2.7 and Theorem 2.8 respectively) that the SCOMP and

LP algorithms (see Sections 2.5 and 2.6) also achieve the rate (2.18).

Moreover, in [46], it was shown that (2.18) is the maximum achievable
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rate for the SCOMP (and DD) algorithm under the near-constant

column weight design, meaning that asymptotically SCOMP does not

outperform DD. The fact that the rate cannot exceed (ln 2)1−α
α comes

from Theorem 2.11 below. As for the ln 2 term, the idea is to show that

for rates above ln 2 there exist many nondefectives that explain the

maximum possible number L of tests, and hence even the first iteration

of SCOMP fails. It remains an open problem as to whether a similar

phenomenon holds for other test designs, such as Bernoulli testing.

Next, we present a converse bound [114, Theorem 4] for SSS, re-

vealing that DD is optimal for the near-constant column weight design

when α is not too small.

Theorem 2.11. Consider noiseless nonadaptive group testing with exact

recovery and the small error criterion, with k = Θ(nα) for α ∈ (0, 1),

and using the SSS algorithm for decoding. With a near-constant column

weight design, the maximum achievable rate is bounded above by

R
SSS
NCC ≤ min

{
1, ln 2

1 − α

α

}
. (2.19)

This result is analogous to Theorem 2.2. In Chapter 4, we will survey

a recent result of Coja-Oghlan et al. [46] showing that the rate (2.19) is

achievable for all α ∈ (0, 1), and deduce that (2.19) gives the maximum

achievable rate for the near-constant column weight design.



3

Algorithms for Noisy Group Testing

3.1 Noisy channel models

In Chapter 2, we focused on noiseless group testing algorithms and their

theoretical guarantees. From both a theoretical and practical perspective,

these algorithms (as presented) rely strong on the assumption that there

is no noise. In this chapter, we give an overview of a variety of algorithms

that are designed to handle noisy scenarios, most of which build on the

ideas from the noiseless setting. We initially present heuristic approaches,

and then move on to techniques with theoretical guarantees.

For many of the applications described in Section 1.7, it is clearly

an unrealistic modelling assumption that the tests would be able to

perfectly identify whether any defective item is present in the pool.

There are a variety of ways of modelling the noise, which affect the

algorithms and their performance in different ways. We proceed by

giving several illustrative examples.

Recall that standard noiseless group testing can be formulated

component-wise using the Boolean OR operation as yt =
∨
i∈K xti (see

(1.2)). One of the simplest noise models simply considers the scenario

where these values
∨
i∈K xti are flipped independently at random with

a given probability.

265



266 Algorithms for Noisy Group Testing

Example 3.1 (Binary symmetric noise). In the binary symmetric noise

model, the t-th test outcome is given by

Yt =





∨
i∈K Xti with probability 1 − ρ

1 −∨
i∈K Xti with probability ρ.

(3.1)

This is, each test is flipped independently with probability ρ.

While the binary noise model is an interesting one, many applica-

tions in Section 1.7 suggest that false positive tests and false negative

tests may occur with different probabilities. We proceed by presenting

some examples, maintaining the standard assumption that distinct test

outcomes are conditionally independent given X. Furthermore, we as-

sume that each test has the same probability distribution specifying its

outcome, and that this distribution depends on the test design X only

through the number of defective items in the test and the total number

of items in the test.

For reasons of generality, we no longer insist that the test outcomes

yt can only take values in {0, 1}, but rather consider the case of yt ∈ Y
for some finite alphabet Y . We follow in part the notation of [6, Section

6.3].

Definition 3.1. We define the probability transition function p(· | m, ℓ)
such that for a test containing m items, ℓ of which are defective, for

each outcome y ∈ Y we have

P

(
Yt = y

∣∣∣∣∣
n∑

i=1

Xti = m,
∑

i∈K

Xti = ℓ

)
= p(y | m, ℓ), (3.2)

independently of all other tests.

In other words, p(y | m, ℓ) is the probability of observing outcome

y from a test containing ℓ defective items and m items in total. Note

that
∑
y∈Y p(y | m, ℓ) = 1 for all m and ℓ.

For example, the standard noiseless group testing model has proba-

bility transition function

p(1 | m, ℓ) = 1 if ℓ ≥ 1, p(0 | m, ℓ) = 0 if ℓ ≥ 1,

p(1 | m, ℓ) = 0 if ℓ = 0, p(0 | m, ℓ) = 1 if ℓ = 0,
(3.3)
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independent of m. The binary symmetric noise model of Example 3.1

has probability transition function

p(1 | m, ℓ) = 1 − ρ if ℓ ≥ 1, p(0 | m, ℓ) = ρ if ℓ ≥ 1,

p(1 | m, ℓ) = ρ if ℓ = 0, p(0 | m, ℓ) = 1 − ρ if ℓ = 0.
(3.4)

Definition 3.1 captures a variety of other noise models, one of which

is the addition noise model of [17]. Here false negative tests never occur,

but false positive tests occur independently with a given probability ϕ.

Example 3.2 (Addition noise). In the addition noise model, the proba-

bility transition function is given by

p(1 | m, ℓ) = 1 if ℓ ≥ 1, p(0 | m, ℓ) = 0 if ℓ ≥ 1,

p(1 | m, ℓ) = ϕ if ℓ = 0, p(0 | m, ℓ) = 1 − ϕ if ℓ = 0,
(3.5)

where ϕ ∈ (0, 1) is a noise parameter.

We note that the noise processes described in Examples 3.1 and 3.2

can both be thought of as sending the outcome of standard noiseless

group testing through a noisy communication channel (see Definition

3.3 below). Another interesting model, which cannot be represented in

this way, is the dilution model of [17]. This captures the idea that in

some scenarios (for example in DNA testing), the more defectives are

present, the more likely we are to observe a positive test.

In this model, the outcome of a test containing ℓ ≥ 1 defectives will

be positive if and only if a Binomial(ℓ, 1 − ϑ) random variable is at

least one. Equivalently, this can be thought of as a scenario where every

defective item included in the test only ‘behaves as a defective’ with

probability 1 − ϑ, whereas with probability ϑ it is ‘diluted’.

Example 3.3 (Dilution noise). In the dilution noise model, the proba-

bility transition function is given by

p(1 | m, ℓ) = 1 − ϑℓ, p(0 | m, ℓ) = ϑℓ, for all ℓ ≥ 0, (3.6)

where ϑ ∈ (0, 1) is a noise parameter.

An analogous model to the dilution noise model is the Z channel

noise model, in which tests containing defective items are erroneously

negative with some fixed probability.
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Example 3.4 (Z channel noise). In the Z channel noise model, the

probability transition function is given by

p(1 | m, ℓ) = 1 − ϑ if ℓ ≥ 1, p(0 | m, ℓ) = ϑ if ℓ ≥ 1,

p(1 | m, ℓ) = 0 if ℓ = 0, p(0 | m, ℓ) = 1 if ℓ = 0,
(3.7)

where ϑ ∈ (0, 1) is a noise parameter.

By analogy, the addition noise channel (Example 3.2) can also be

viewed as ‘reverse Z channel’ noise.

An example to illustrate the fact that the alphabet Y need not be

{0, 1} is the erasure noise model, where each test may fail to give a

conclusive result. We represent such an outcome by a question mark ?.

In this case, Y = {0, 1, ?}, and the noise model is defined as follows.

Example 3.5 (Erasure noise). In the erasure noise model, the probability

transition function is given by

p(1 | m, ℓ) = 1 − ξ if ℓ ≥ 1, p(? | m, ℓ) = ξ if ℓ ≥ 1,

p(? | m, ℓ) = ξ if ℓ = 0, p(0 | m, ℓ) = 1 − ξ if ℓ = 0,

(3.8)

where ξ ∈ (0, 1) is a noise parameter, and all other values of p( · | m, ℓ)
are zero.

Next, we provide another example of interest from [126], falling

under the broad category of threshold group testing (e.g., see [42, 56]).

In this example, a positive result is attained when the proportion of

items in the test exceeds some threshold θ, a negative result is obtained

when the proportion is below another threshold θ (with θ ≤ θ), and

positive and negative outcomes are equally likely when the proportion

is in between these thresholds.

Example 3.6 (Threshold group testing). In the probabilistic threshold

group testing noise model, the probability transition function is given

by
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p(1 | m, ℓ) = 1 if ℓ
m ≥ θ, p(0 | m, ℓ) = 0 if ℓ

m ≥ θ,

p(1 | m, ℓ) = 0 if ℓ
m ≤ θ, p(0 | m, ℓ) = 1 if ℓ

m ≤ θ,

p(1 | m, ℓ) = 1
2 if θ < ℓ

m < θ, p(0 | m, ℓ) = 1
2 if θ < ℓ

m < θ ,

(3.9)

where θ ≤ θ are thresholds.

Another variation in [126] instead assumes that the probability of

a positive test increases from 0 to 1 in a linear fashion in between the

two thresholds, rather than always equalling 1
2 . It is worth noting that,

while our focus is on random noise models, most works on threshold

group testing have focused on adversarial noise [42, 56].

We remark that the noise models described in Equations (3.3), (3.4),

(3.5), (3.6), (3.7), and (3.8) above share the property that p(· | m, ℓ)
does not depend on m. Of course, this need not be the case in general,

as Example 3.6 shows. However, this property is sufficiently useful that

we follow [6, Definition 6.11] in explicitly naming it.

Definition 3.2. We say that a noise model satisfies the only defects

matter property if the probability transition function is of the form

p(y | m, ℓ) = p(y | ℓ). (3.10)

Properties of this type have been exploited in general sparse estima-

tion problems beyond group testing (see for example [5, 144, 166]). In

these cases, this property means that only the columns of a measurement

matrix that correspond to the nonzero entries of a sparse vector impact

the samples, and further that the corresponding output distribution is

permutation-invariant with respect to these columns.

While the only defects matter property, Definition 3.2, does not hold

in general, it plays a significant role in many proofs of noisy group testing

results. For example, this assumption is used throughout Chapter 4 to

provide information-theoretic achievability and converse results. Some

further evidence for the value of Definition 3.2 is that Furon [85] gives

examples where ‘only defects matter’ does not hold and a nonzero rate

cannot be achieved.

A further interesting special case of Definition 3.2 is when the

noisy group testing process can be thought of as sending the outcome
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of standard noiseless group testing through a noisy ‘communication’

channel.

Definition 3.3 (Noisy defective channel). If we can express

p(y | m, ℓ) = p(y | 1{ℓ ≥ 1}), (3.11)

where p(y | 1{ℓ ≥ 1}) is the transition probability function of a noisy

binary communication channel, then we say that the noisy defective

channel property holds.

In the case that this property holds, the following result is stated

in [20].

Theorem 3.1. If the noisy defective channel property (Definition 3.3)

holds then the group testing capacity C (in the sense of Definition 1.8)

satisfies the following, regardless of whether the test design is adaptive

or nonadaptive:

C ≤ Cchan, (3.12)

where Cchan is the Shannon capacity of the corresponding noisy com-

munication channel p(y | 1{ℓ ≥ 1}).

In fact, a similar result holds more generally even when the channel

p(y|ℓ) has a nonbinary input indicating the number of defectives in the

test; however, it is primarily the form stated in Theorem 3.1 that has

been useful when comparing to achievability results.

One may be tempted to conjecture that for k = o(n), equality holds

in (3.12) for adaptive group testing. This conjecture was recently shown

to be true [162] for the Z channel noise model (Example 3.4), but

false when k = Θ(nα) for α sufficiently close to one under the binary

symmetric noise and addition noise models (Examples 3.1 and 3.2).

The argument given in [20] to prove Theorem 3.1 uses the fact that

the test outcome vector y = (y1, . . . , yT ) acts like the output of the

channel whose input codeword is indexed by the defective set. Since

the transmission of information is impossible at rates above capacity,

it certainly remains impossible in the presence of the extra constraints

imposed by the group testing problem.
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We remark that the noisy defective channel property of Definition

3.3 is satisfied by the models described in Equations (3.3), (3.4), (3.5),

(3.7), and (3.8) (though not the dilution model (3.6) or threshold model

(3.9)). For example, we can deduce that the binary symmetric model

Definition 3.4 has group testing capacity C ≤ 1 − h(ρ). It remains an

open problem to determine under what conditions this bound is sharp;

in Section 4.5, we will see that it is sharp in the sparse regime k = O(nα)

when α is sufficiently small.

One noisy model where we can determine the adaptive group testing

capacity is the erasure model; the following result is from [20, Theorem

1.3.1].

Theorem 3.2. The capacity of adaptive group testing is C = 1 − ξ for

the erasure model of Example 3.5 when k = o(n).

Proof. This is achieved by simply using a noiseless adaptive group

testing scheme (see Section 1.5), and repeating tests for which yt = ?.

Standard concentration-of-measure results tell us that, for any ǫ > 0,

with high probability no more than T (ξ + ǫ) tests will need repeating,

and the result follows from Theorem 1.3.

A similar argument can be used to determine bounds on the rates

of nonadaptive algorithms under Bernoulli designs for the erasure noise

model of Example 3.5. Again, with high probability, given T tests, we

know there should be at least T (1 − ξ − ǫ) tests that are not erased.

Hence, simply ignoring the tests which return a ?, it is as if we have

been given a Bernoulli design matrix with at least T (1 − ξ − ǫ) rows.

Hence, for example, if there are k = Θ(nα) defectives, then building

on Theorem 2.6, we can achieve a rate of

1 − ξ

e ln 2
min

{
1,

1 − α

α

}
(3.13)

using the DD algorithm and a Bernoulli test design. Similarly, building

on Theorem 2.2, we know that no algorithm can achieve a rate greater

than

(1 − ξ) max
ν>0

min

{
h(e−ν),

ν

eν ln 2

1 − α

α

}
. (3.14)

for Bernoulli designs.
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We also briefly mention that since the addition noise channel (Ex-

ample 3.2) satisfies the property that a negative outcome is definitive

proof of no defectives being present, we can easily extend the analysis

of the COMP algorithm to deduce a counterpart to Theorem 2.4 (see

[169, Lemma 1] for details). Specifically, since a proportion ϕ of the

negative tests are flipped at random, we can achieve a rate of

1 − ϕ

e ln 2
(1 − α) (3.15)

using the COMP algorithm (see [169, eq. (149)]).

In the remainder of the chapter, we describe a variety of algorithms

that can be used to solve noisy group testing problems in the presence

of both false positive tests and false negative tests (e.g., for the binary

symmetric noise model). Most of these are in fact extensions of the

noiseless algorithms presented in Chapter 2, and like that chapter, we

focus our attention on nonadaptive Bernoulli test designs, the small-error

recovery criterion, and the scaling k = Θ(nα) with α ∈ (0, 1).

3.2 Noisy linear programming relaxations

Recall the linear programming relaxation for the noiseless setting in

Section 2.6. A similar idea can be used in the noisy setting by introducing

slack variables, which leads to a formulation allowing ‘flipped’ test

outcomes but paying a penalty in the objective function for doing so.

Using this idea, the following formulation was proposed in [140]:

minimizez,ξ

n∑

i=1

zi + ζ
T∑

t=1

ξj

subject to zi ≥ 0

ξt ≥ 0

ξt ≤ 1 when yt = 1
n∑

i=1

xtizi = ξt when yt = 0

n∑

i=1

xtizi + ξt ≥ 1 when yt = 1.
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As in the noiseless setting, z represents an estimate of the defectivity

indicator vector u (see Definition 1.2), whereas here we also have a

vector of T slack variables ξ = (ξ1, . . . , ξT ). The parameter ζ controls

the trade-off between declaring a small number of items to be defective

(sparsity) and the degree to which the test outcomes are in agreement

with the decoded zi (most slack variables being zero). Observe that

if we were to further constrain each zi and ξt to be binary-valued (0

or 1), then the above formulation would be minimizing a weighted

combination of the number of (estimated) defectives and the number

of ‘flipped’ tests. Such a binary-valued minimization problem, with a

suitable choice of ζ, can also be shown to be equivalent to maximum a

posteriori (MAP) decoding under an i.i.d. defectivity model (see the

Appendix to Chapter 1) and symmetric noise (see Example 3.1).

The above formulation treats false positive tests and false negative

tests equally. However, it can also be modified to weigh the two differ-

ently; in the extreme case, if it is known that a test with no defectives

definitely results in a negative outcome (e.g., dilution noise of Example

3.3, or Z channel noise of Example 3.4), then we could replace all of the

slack variables corresponding to negative tests by zero. An analogous

statement holds true when a test with at least one defective definitely

results in a positive outcome (e.g., addition noise of Example 3.2).

To the bets of our knowledge, no theoretical results are known for

the above noisy LP relaxation. However, this method has been seen

to provide state-of-the-art performance in numerical experiments [140];

see Section 3.7 for an illustration.

A related noisy LP relaxation using negative tests only was proved to

achieve positive rates in [34]. However, there are two notable limitations.

First, from a theoretical view, the constants were not optimized in the

proofs, and so the rates are far from optimal. Second, from a practical

view, ignoring the tests with positive outcomes can significantly worsen

the performance.

3.3 Belief propagation

A decoding algorithm based on belief propagation was described in [172,

Section III]. Although there was no attempt to calculate performance
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Items

Tests

m
(r)
i→t

(ui) m̂
(r)
t→i

(ui)

Figure 3.1: Example bipartite graph used in belief propagation decoding. Edges
represent the inclusion of items in tests, and messages are passed in both directions.

bounds or rates, there was some numerical evidence presented to show

that this approach can work very well (see also Section 3.7). The

apparent success of belief propagation may not be a surprise, since it

has enjoyed considerable success for the decoding of LDPC codes over

noisy channels, a problem that shares characteristics with group testing.

Recall from Definition 1.2 that we write ui = 1{i ∈ K} to indicate

whether or not item i is defective. The idea is to estimate the defective

set by working with the marginals of the posterior distribution, and for

each i, seek to estimate ui as

ûi := arg max
ui∈{0,1}

P(ui | y), (3.16)

where y is the vector of test outcomes. Clearly, we would prefer to

optimize this posterior probability as a function of all the (ui)i∈{1,...,n},

but this would be computationally infeasible due to the size of the

search space.

While exactly computing the probability P(ui | y) appearing in

(3.16) is also difficult, we can approximately compute it using loopy

belief propagation. To understand this, we set up a bipartite graph with

n nodes on one side corresponding to items, and T nodes on the other

side corresponding to tests. Each test node is connected to all of the

nodes corresponding to items included in the test. See Figure 3.1 for a

simple example.
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Assuming that k out of n items are defective, a natural prior is

given by

P(Ui = 1) =
k

n
=: q, (3.17)

and for analytical tractability, an independent prior P(u) =
∏n
i=1 P(ui)

is adopted. Even for a combinatorial prior where K is uniform over(n
k

)
possible defective sets, (3.17) yields a good approximation for large

k due to concentration of measure. In either case, as described, this

method requires at least approximate knowledge of k.

In accordance with general-purpose techniques for loopy belief prop-

agation (e.g., see [135, Ch. 26]), messages are iteratively passed from

items to tests and tests to items. Letting N (i) and N (t) denote the

neighbours of an item node and test node respectively, the item-to-test

and test-to-item message are given as follows [172]:

m
(r)
i→t(ui) ∝ (

q1{ui = 1} + (1 − q)1{ui = 0})
∏

t′∈N (i)\{t}

m̂
(r)
t′→i(ui)

(3.18)

m̂
(r)
t→i(ui) ∝

∑

{ui′ }i′∈N (t)\{i}

P(yt | u[t])
∏

i′∈N (t)\{i}

m
(r)
i′→t(ui), (3.19)

where r indexes the round of message passing, ∝ denotes equality up to a

normalizing constant, and u[t] denotes the sub-vector of u corresponding

to the items in test t, which are the only ones that impact yt. These

messages amount to updating beliefs of the test outcomes yt in terms

of ui, and beliefs of ui in terms of the test outcomes yt. By iterating

these steps, we hope to converge to a sufficiently good approximation

of the posterior.

The sum over {ui′}i′∈N(t)\{i} in (3.19) grows exponentially in the

number of items in the test, so these messages are still expensive to

compute if the computation is done naively. Fortunately, at least for

certain noise models, it is possible to rewrite the messages in a form that

permits efficient computation. In [172], this was shown for the following

model that combines the addition and dilution models of Examples 3.2

and 3.3:

p(1 | m, ℓ) = 1 − (1 − ϕ)ϑℓ, p(0 | m, ℓ) = (1 − ϕ)ϑℓ, for all ℓ ≥ 0.

(3.20)
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Observe that setting ϕ = 0 recovers the dilution model, whereas setting

ϑ = 0 recovers the addition model.

For this model, it is convenient to work with log-ratios of the

messages, defined as

L
(r)
i→t = ln

m
(r)
i→t(1)

m
(r)
i→t(0)

and L̂
(r)
t→i = ln

m̂
(r)
t→i(1)

m̂
(r)
t→i(0)

. (3.21)

The natural prior P(ui = 1) = q mentioned above means that L
(r)
i→t

should be initialized as L
(0)
i→t = ln

(
q

1−q

)
. Then the item-to-test updates

in subsequent rounds easily follow from (3.18):

L
(r+1)
i→t = ln

(
q

1 − q

)
+

∑

t′∈N (i)\t

L̂
(r)
t′→i. (3.22)

The test-to-item messages require a bit more effort to derive, but

the analysis is entirely elementary. If the test t is positive (yt = 1), we

obtain [172]

L̂
(r)
t→i = ln


ϑ+

1 − ϑ

1 − (1 − ϕ)
∏

j∈N (t)\{i}

(
ϑ+ 1−ϑ

1+exp(L
(r)
j→t

)

)


 ,

and if the test t is negative (yt = 0), we simply have L̂
(r)
i→i = lnϑ [172].

We are not aware of any works simplifying the messages (or their

log-ratios) for general noise models. Since the binary symmetric noise

model of Example 3.1 (with parameter ρ) is particularly widely-adopted,

we also state such a simplification here without proof. If yt = 1, then

m̂
(r+1)
t→i (ui) ∝





ρ
∏

i′∈N(t)\{i}

(
m

(r)
i′→t(0) +m

(r)
i′→t(1)

)
ui = 1

ρ
∏

i′∈N(t)\{i}

(
m

(r)
i′→t(0) +m

(r)
i′→t(1)

)

+ (1 − 2ρ)
∏

i′∈N(t)\{i}

m
(r)
i′→t(0)

ui = 0,
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while if yt = 0, then

m̂
(r+1)
t→i (ui) ∝





(1 − ρ)
∏

i′∈N(t)\{i}

(
m

(r)
i′→t(0) +m

(r)
i′→t(1)

)
ui = 1

(1 − ρ)
∏

i′∈N(t)\{i}

(
m

(r)
i′→t(0) +m

(r)
i′→t(1)

)

− (1 − 2ρ)
∏

i′∈N(t)\{i}

m
(r)
i′→t(0)

ui = 0.

Here we found it more convenient to work directly with the messages

rather than their log-ratios; the two are equivalent in the sense that

either can be computed from the other.

In the case that k is known exactly, instead of declaring ûi to be zero

or one according to (3.16), one can sort the estimates of P(ui = 1 | y) in

decreasing order and declare the resulting top k items to be the defective

set. Moreover, while (3.16) amounts to declaring an item defective if the

estimate of P(ui = 1 | y) exceeds 1
2 , one could threshold at values other

than 1
2 . This would be of interest, for example, in scenarios where false

positives and false negatives in the reconstruction are not considered

equally bad.

3.3.1 Related Monte Carlo decoding algorithms

A distinct but related approach to belief propagation is based on gener-

ating samples from P(K | y) via Markov Chain Monte Carlo (MCMC).

To our knowledge, the MCMC approach to group testing was initiated

by Knill et al. [124]; see also [170] and [84] for related follow-up works.

Each of these papers uses the notion of Gibbs sampling: A randomly-

initialized set K0 ⊆ {1, . . . , n} is sequentially updated by choosing an

item in {1, . . . , n} (e.g., uniformly at random) and deciding whether it

should be added or removed (or unchanged) from the set. Specifically,

this decision is made based on a posterior calculation using Bayes rule,

analogously to the belief propagation updates.

The Gibbs sampling procedure is designed to produce a Markov chain

with stationary distribution P(K | y), so that after sufficiently many

iterations, the set being maintained is also approximately distributed

according to P(K | y). After taking numerous samples of sets from
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this distribution, the most commonly-occurring items are taken to be

the final estimate K̂. Similarly to BP, a theoretical analysis of MCMC

appears to be challenging, but the empirical performance is strong in

simulations.

3.4 Noisy COMP

In Section 2.3, we discussed the analysis given by [33, 34] of the simple

COMP algorithm in the noiseless case. In the same works, the authors

also introduced a noisy version of COMP, which we refer to as NCOMP.

The authors focused on the binary symmetric noise model (Example

3.1) with parameter ρ ∈ (0, 1
2

)
, but the algorithm could also potentially

be applied to other noise models.

The idea of NCOMP is that for any item i ∈ {1, . . . , n}, if the item

is defective, then among the tests where i is included, we should expect

roughly a fraction 1 − ρ of the outcomes to be positive. In contrast,

if the item is nondefective, we should expect a smaller fraction of the

outcomes to be positive. Thus, the algorithm declares item i to be

defective or nondefective according to the following rule:

Declare i defective ⇐⇒
∑T
t=1 1{Xti = 1 ∩ yt = 1}
∑T
t=1 1{Xti = 1}

≥ 1 − ρ(1 + ∆)

(3.23)

for some parameter ∆ > 0. Note that this rule requires knowledge of

the noise level ρ.

It was shown in [33, 34] that with a suitable choice of ∆, NCOMP

achieves a positive rate for all α ∈ (0, 1), albeit generally far from the

information-theoretic limits of Section 4.5. The rates presented in [33,

34] differ according to the choice of ν > 0, but as discussed in [168,

Footnote 3], the best rate that can be ascertained directly from these

works is

RNCOMP
Bern =

(1 − 2ρ)2(1 − α)

4.36(1 +
√
α)2

, (3.24)

and amounts to choosing ν = 1. This rate and the other relevant rates

will be compared visually in Section 3.7.

We provide only a high-level outline of the proof of (3.24), and

refer the reader to [33, 34] for the details. The analysis separately
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characterizes the probability of a given defective wrongly being declared

as nondefective (i.e., failing the threshold test in (3.23)) and a given

nondefective wrongly being declared defective. The i.i.d. nature of the

test matrix and noise permits a concentration of measure argument,

from which it can be shown that both of these error events decay

exponentially in T as long as ∆ is not too high. Applying the union

bound leads to a multiplication of the preceding probabilities by k and

n− k respectively, and the analysis is completed by choosing T large

enough to make the resulting bound decay to zero, as well as optimizing

∆ and ν.

3.5 Separate decoding of items

The NCOMP algorithm described above decodes each item individually:

The decision on whether or not item i is defective is based only on the

i-th column of X, along with y. This general principle of decoding items

separately was in fact introduced in an early work of Malyutov and

Mateev [145], and shown to come with strong theoretical guarantees in

the case that k = O(1). It was originally referred to as separate testing

of inputs, but we adopt the terminology separate decoding of items to

avoid confusion with the idea of tests that contain only a single item.

Again, recall that ui = 1{i ∈ K} indicates whether or not item i is

defective. The decoding rule for item i proposed in [145] is as follows:

Declare i defective ⇐⇒
T∑

t=1

log2

PY |Xi,Ui
(yt|xti, 1)

PY (yt)
≥ γ (3.25)

where γ > 0 is a threshold. This can be interpreted as the Neyman-

Pearson test for binary hypothesis testing with hypotheses H0 : ui = 0

and H1 : ui = 1; note that PY |Xi,Ui
(yt|xti, 0) is the same as PY (yt)

regardless of the value of xti (i.e., nondefective items do not impact the

test outcome).

We briefly mention that the decoder (3.25), along with its analysis

(outlined below), can be viewed as a simplified and computationally

efficient counterpart to an intractable joint decoding rule based on

thresholding. The latter is surveyed in Chapter 4 as a means to deriving
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information-theoretic achievability bounds. See also [126, 106] for further

works comparing separate and joint decoding.

The results of [145] indicate the following somewhat surprising fact:

When k = O(1) and n → ∞, the rate achieved by separate decoding

of items for the noiseless model or binary symmetric noise model is

within an ln 2 factor of the optimal (joint) decoder. For instance, in the

noiseless setting, a rate of ln 2 ≈ 0.7 bits/test is attained, thus being

reasonably close to the optimal rate of one.

For more general noise models, under Bernoulli testing, a sufficient

condition on the number of tests for vanishing error probability is [145]

T ≥ log2 p

I1
(1 + o(1)),

where the single-item mutual information I1 is defined as follows, with

implicit conditioning on item 1 being defective, and X1 denoting whether

it was included in a given test that produced the outcome Y :

I1 = I(X1;Y ). (3.26)

In a follow-up work [146], similar results were shown when the rule

(3.25) is replaced by a universal rule (one that does not depend on the

noise distribution) based on the empirical mutual information.

In this monograph, we are primarily interested in the sparse regime

k = Θ(nα), as opposed to the very sparse regime k = O(1). Separate

decoding of items was studied under the former setting in [168], with

the main results for specific models including the following.

Theorem 3.3. Consider the separate decoding of items technique under

i.i.d. Bernoulli testing with parameter p = ln 2
k (i.e., ν = ln 2), with

k = Θ(nα) for some α ∈ (0, 1). Then we have the following:

• Under the noiseless model, there exists a constant c(δ′) > 0 such

that the rate

RSD
Bern = max

δ′>0
min

{
(ln 2)(1 − α)(1 − δ′), c(δ′)

1 − α

α

}
(3.27)

is achievable. In particular, as α → 0, the rate approaches ln 2

bits/test.
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• Under the binary symmetric noise model (3.1) with parameter

ρ ∈ (0, 1
2

)
, there exists a constant cρ(δ

′) > 0 such that the rate

RSD
Bern(ρ) = max

δ′>0
min

{
(ln 2)(1 −H2(ρ))(1 − α)(1 − δ′), cρ(δ

′)
1 − α

α

}

(3.28)

is achievable. Hence, as α → 0, the rate approaches (ln 2)(1 −
H2(ρ)).

The quantities c(δ′) and cρ(δ
′) are related to concentration bounds

arising in the analysis, as we discuss in the proof outline below. Explicit

expressions for these quantities can be found in [168], but they are

omitted here since they are somewhat complicated and do not provide

significant insight. For both the noiseless and symmetric noise models,

in the limit as α → 0, the rate comes within a ln 2 factor of the channel

capacity, which cannot be exceeded by any group testing algorithm

(see Theorem 3.1). In [126], characterizations of the mutual information

I1 in (3.26) were also given for a variety of other noisy group testing

models.

Overview of proof of Theorem 3.3 As stated following (3.25), the

decoder for a given item performs a binary hypothesis test to determine

whether the item is defective. As a result, analysing the error probability

amounts to characterizing the probabilities of false positives and false

negatives in the recovery.

We first consider false positives. Letting i represent a nondefective

item, and letting Xi = [X1i, . . . , XT i]
T be the corresponding column of

X, the probability of being declared defective is

Pfp =
∑

xi,y

P(xi)P(y)1

{ T∑

t=1

log2

PY |Xi,Ui
(yi | xti, 1)

PY (yt)
≥ γ

}
(3.29)

≤
∑

xi,y

P(xi)

( T∏

t=1

PY |Xi,Ui
(yi | xti, 1)

)
2−γ (3.30)

= 2−γ , (3.31)
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where (3.29) uses the fact that the column Xi and test outcomes

Y are independent when i is nondefective; (3.30) follows by writing

the sum of logarithms as the logarithm of a product and noting that

P(y) =
∏T
t=1 PY (yt), which means that the event in the indicator

function can be re-arranged to P(y) ≤ (∏T
t=1 PY |Xi,Ui

(yi | xti, 1)
)
2−γ ;

and (3.31) follows since we are summing a joint probability distribution

over all of its values. Since there are n− k nondefectives, we can use

the union bound to conclude that for any δ > 0, the choice

γ = log2

n− k

δ

suffices to ensure that the probability of any false positives is at most δ.

With this choice of γ, the probability of any given defective item i

being declared as nondefective is given by

Pfn = P

( T∑

t=1

log2

PY |Xi,Ui
(Yt|Xti, 1)

PY (Yt)
≤ log2

n− k

δ

)
. (3.32)

Observe that the mean of the left-hand side inside the probability is

exactly TI1. Moreover, the probability itself is simply the lower tail

probability of an i.i.d. sum, and hence, we should expect some degree

of concentration around the mean. To see this more concretely, we note

that as long as

T ≥ log2
n−k
δ

I1(1 − δ′)
(3.33)

for some δ′ ∈ (0, 1), we have

Pfn ≤ P

( T∑

t=1

log2

PY |Xi,Ui
(Yt | Xti, 1)

PY (Yt)
≤ TI1(1 − δ′)

)
, (3.34)

which is the probability of an i.i.d. sum being a factor 1 − δ′ below its

mean.

In the very sparse regime k = O(1), establishing the required concen-

tration is straightforward – it suffices to apply Chebyshev’s inequality

to conclude that Pfn → 0 for arbitrarily small δ′. We can then apply a

union bound over the k defective items to deduce that the probability

of any false negatives vanishes, and we readily deduce (3.5).
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The sparse regime k = Θ(nα) is more challenging, and the choice

of concentration inequality can differ depending on the specific noise

model. We omit the details, which are given in [168], and merely state

that in Theorem 3.3, the second result makes use of a general bound

based on Bernstein’s inequality, whereas the first result uses a sharper

bound specifically tailored to the noiseless model.

3.6 Noisy (near-)definite defectives

We saw in Chapter 2 that the Definite Defectives (DD) algorithm

(Algorithm 2.3) achieves the best known rates of any practical algorithm

in the noiseless setting. As a result, there is substantial motivation

for analogous algorithms in noisy settings. Here we present such an

algorithm, developed by Scarlett and Johnson [169], which is suitable for

noise models satisfying the noisy defective channel property (Definition

3.3), and is again practical in the sense of Section 2.1.

Under Bernoulli testing with parameter ν > 0, the algorithm accepts

two parameters (γ1, γ2) and proceeds as follows:

1. For each i ∈ {1, . . . , n}, let Tneg(i) be the number of negative tests

in which item i is included. In the first step, we construct the

following set of items that are believed to be nondefective:

N̂D =

{
i : Tneg(i) >

γ1Tν

k

}
(3.35)

for some threshold γ1. The remaining items, P̂D = {1, . . . , n}\N̂D,

are believed to be ‘possible defective’ items.

2. For each j ∈ P̂D, let T̃pos(j) be the number of positive tests that

include item j and no other item from P̂D. In the second step, we

estimate the defective set as follows:

K̂ =

{
i ∈ P̂D : T̃pos(i) >

γ2Tνe−ν

k

}
(3.36)

for some threshold γ2.

In the noiseless case, setting γ1 = γ2 = 0 recovers the standard DD

algorithm, Algorithm 2.3. For the addition noise model (Example 3.2),
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since negative test outcomes are perfectly reliable, one can set γ1 = 0.

Similarly, for the Z channel noise model Example 3.4, since positive test

outcomes are perfectly reliable, one can set γ2 = 0. In fact, one of the

main goals of [169] was to show that these two noise models can behave

quite differently in group testing despite corresponding to channels with

the same Shannon capacity.

Using concentration of measure results, it is possible to give expo-

nential tail bounds for error events corresponding to particular values

of γ1 and γ2. By balancing these tail bounds, in certain cases [169]

explicitly gives optimal values of these parameters, and deduces the

associated achievable rates (whose expressions are omitted here).

The strongest results among those in [169] are for the addition

noise model (Example 3.4), in which the achievability curve matches an

algorithm-independent converse for Bernoulli testing for a wide range

of α ∈ (0, 1). Various rates are also provided for the Z channel and

symmetric noise models; see the following section for example plots

for the latter case. For each of these models, the rate converges to the

noiseless DD rate (Section 2.4) in the low noise limit. On the other

hand, the convergence can be rather slow, with visible gaps remaining

even for low noise levels.

3.7 Rate comparisons and numerical simulations

In this section, we compare the achievable rates of the algorithms

considered throughout this chapter, as well as comparing the algorithms

numerically. We focus here on the symmetric noise model (Definition

3.1), since it has received the most attention in the context of proving

achievable rates for noisy group testing algorithms.

Rate comparisons. In Figure 3.2, we plot the achievable rates of

NCOMP, separate decoding of items, and noisy DD with noise levels

ρ = 10−4 and ρ = 0.11. We optimize the Bernoulli testing parameter

ν > 0 separately for each design. We also plot information-theoretic

achievability and converse bounds to be presented in Chapter 4, with

the achievability part corresponding to a computationally intractable

decoding rule.
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Figure 3.2: Achievable rates for the symmetric noise model with noise levels
ρ = 10−4 (Left) and ρ = 0.11 (Right). The converse and achievability curves
correspond to information-theoretic limits given in Chapter 4.

We observe that at least in this example, the rates for separate

decoding of items and noisy DD are uniformly stronger than the rate

proved for NCOMP. In the low noise case, noisy DD provides the best

rate among the practical algorithms for most values of α, but separate

decoding of items provides a better rate for small α. At the higher noise

level, separate decoding of items provides a better rate over a wider

range of α, but noisy DD still dominates for most values of α.

Overall, the rates for the noisy setting remain somewhat less well-

understood than the noiseless setting (see Figure 2.1), and closing the

remaining gaps remains an interesting direction for further research.

Numerical simulations. In Figure 3.3, we plot experimental sim-

ulation results under the symmetric noise model (Example 3.1) with

parameter ρ = 0.05, and with n = 500 items and k = 10 defectives. We

consider i.i.d. Bernoulli testing with parameter ν = ln 2, along with the

following decoding rules:

• Noisy LP as described in Section 3.2, with parameter ζ = 0.5 and

each ui rounded to the nearest integer in {0, 1};

• Belief propagation (BP) as described in Section 3.3, with 10

message passing iterations;
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Figure 3.3: Experimental simulations for the symmetric noise model under Bernoulli
testing with parameter ν = ln 2, with n = 500 items, k = 10 defectives, and noise
parameter ρ = 0.05.

• NCOMP as described in Section 3.4, with ∆ = 0.1(1−2ρ)
ρ based on

the theoretical choice in [33] along with some manual tuning of

the constant factor;

• Separate decoding of items as described in Section 3.5, with

γ = (1 − δ)I(X1;Y ) in accordance with the theoretical analysis,

and δ chosen based on manual tuning to be 1
3 ;

• Noisy DD as described in Section 3.6, with parameters γ1 = γ2 =

0.175 based on manual tuning.

We observe that BP performs best, followed closely by LP. There is

then a larger gap to NDD and separate decoding, and finally NCOMP

requires the most tests. While our experiments are far from being an

exhaustive treatment, these results indicate somewhat of a gap between

the current theory and practice, with the best-performing methods (BP

and LP) also being the least well-understood from a theoretical point

of view. Closing this gap remains an interesting direction for further

research.
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Figure 3.4: Performance of oracle versions of the respective algorithms under the
same setup as that of Figure 3.3.

To better understand the impact of knowledge of k in noisy group

testing, in Figure 3.4, we repeat the experiment with ‘oracle’ versions

of the algorithms for the case that the number of defectives k is known:

• Noisy LP includes the additional constraint that the estimates of

ui sum to k;

• Instead of thresholding, BP chooses the k items with the highest

estimated probabilities of being defective.

• NCOMP takes the k items for which the proportions of positive

tests (relative to those the item is included in) are highest;

• Separate decoding of items chooses the k items with the highest

sum of log-probability ratios (see (3.25));

• Noisy DD estimates the ‘possible defectives’ to be the set of

(1 + ∆)k items in the lowest number of negative tests, where we

set ∆ = 1
2 based on manual tuning. The algorithm then estimates

the defective set to be the set of k items with the highest number

of positive tests in which it is the unique possible defective.
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We observe that knowledge of k brings the performance of NCOMP,

separate decoding, and noisy DD closer together, but generally maintains

their relative order. On the other hand, the performance of LP improves

more than that of BP, making it become the best performing algorithm

for most values of T .



4

Information-Theoretic Limits

In this chapter, we present information-theoretic achievability and

converse bounds characterizing the fundamental limits of group testing

regardless of the computational complexity. We have already seen a few

converse results in the previous chapters, including the counting bound

(Theorem 1.1) in the noiseless setting, and a capacity-based bound for

noisy settings (Theorem 3.1).

The main results presented in this chapter are as follows:

• an achievable rate for the noiseless setting under Bernoulli testing,

which matches or improves on all the algorithms considered in

Chapter 2 (see the discussion in Section 4.1 and the details in

Section 4.2);

• a matching converse bound for the noiseless setting establishing

the exact maximum achievable rate of nonadaptive testing with a

Bernoulli design (Section 4.3);

• an improved achievable rate for the noiseless setting under a near-

constant column weight design (see the discussion in Section 4.1

and the details in 4.4);

289
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• analogous achievability and converse bounds for noisy settings

under the Bernoulli design, and applications to specific models

(Section 4.5).

4.1 Overview of the standard noiseless model

Two major results in this chapter give achievable rates for noiseless

nonadaptive group testing with two different designs. Theorem 4.1,

due to Scarlett and Cevher [166, 164], concerns the Bernoulli design

(see Definition 2.2), and Theorem 4.2, due to Coja-Oghlan et al. [46],

concerns the near-constant column weight design (see Definition 2.3).

Theorem 4.1. Consider noiseless nonadaptive group testing, under the

exact recovery criterion in the small error setting, and k = Θ(nα)

defectives with α ∈ (0, 1). Then the rate

RBern = max
ν>0

min

{
h(e−ν),

νe−ν

ln 2

1 − α

α

}
(4.1)

is achievable, and can be achieved by a Bernoulli test design.

Theorem 4.2. Consider noiseless nonadaptive group testing, under the

exact recovery criterion in the small error setting, and k = Θ(nα)

defectives with α ∈ (0, 1). Then the rate

RNCC = min

{
1, (ln 2)

1 − α

α

}
(4.2)

is achievable, and can be achieved by a near-constant column weight

design with ν = ln 2.

The results are shown in Figure 4.1, which is a repeat of Figure 2.1

included here for convenience. We see that for α ≤ 1/3, both theorems

give an equal rate of 1, while for α > 1/3, the rate (4.2) for near-constant

column weight designs is slightly higher than the rate (4.1) for Bernoulli

designs, in particular equalling 1 for α ≤ 0.409.

Theorem 4.1 is proved in Section 4.2 using information-theoretic

methods akin to those used in studies of channel coding. We dedicate a

large section of this chapter to the study of this proof, as the information
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Figure 4.1: Rate for nonadaptive group testing in the sparse regime with a Bernoulli
design and with a near-constant column weight designs.

theory approach is a powerful and flexible method that can be applied

to other sparse inference problems (see [166]), and in particular to noisy

group testing models (see Section 4.5). The proof of Theorem 4.2 uses

a more direct probabilistic method to show that there exists only one

satisfying set (see Definition 2.1) with high probability – arguably a

simpler strategy, but one that may be harder to generalise to other

models. We discuss this proof in Section 4.4.

The rate expression in (4.1) is a little complicated. It will become

apparent in the forthcoming proof of Theorem 4.1 that the parameter

ν enters through the choice of the Bernoulli parameter as p = ν/k. It is

easy to see that the first minimand of (4.1) is maximized at ν = ln 2,

and is the value of p that corresponds to (asymptotically) half of the

tests being positive. By differentiation, we see that the second minimand

of (4.1) is maximized at ν = 1, which corresponds to p = 1/k, and is

the value of p that corresponds to an average of one defective per test.

Using these findings, we can check that the following simplification of
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(4.1) holds:

RBern =





1 for α ≤ 1/3

as in (4.1) for 1/3 < α < 0.359

0.531
1 − α

α
for α ≥ 0.359,

where it should be understood that the decimal values are non-exact

(rounded to three decimal places).

The near-constant column weight design with L = νT/k tests per

item is always optimized with ν = ln 2, which corresponds to (asymp-

totically) half of the tests being positive. This makes the expression

(4.2) simpler, and we have

RNCC =





1 for α ≤ 0.409,

0.693
1 − α

α
for α > 0.409.

Thus, we see that nonadaptive group testing achieves the rate 1 of

the counting bound (see Section 1.4) and has the same rate as adaptive

testing for α ≤ 1/3 with a Bernoulli design and for α ≤ 0.409 with a

near-constant column weight design. On the other hand, for α above

these thresholds, the rates are strictly below the counting bound. In

fact, Theorems 4.1 and 4.2 provide the best possible rates for their

respective designs (see Sections 4.3 and 4.4), meaning nonadaptive

testing with these designs is provably worse than adaptive testing in

these regimes, since in the latter setting the counting bound is achievable

(see Section 1.5).

Before continuing, we briefly review work on achievable rates for

noiseless nonadaptive group testing that preceded Theorems 4.1 and

4.2 (although these papers did not necessarily phrase their results this

way). We begin with results using Bernoulli test designs.

Freidlina [82] and Malyutov [143] showed that a rate of 1 is achievable

in the very sparse regime where k is constant as n → ∞. Malyutov used

an information-theoretic approach based on a multiple access channel

model with one input for each defective item. Sebő [171] also attained

a rate of 1 for constant k using a more direct probabilistic method.

Atia and Saligrama [17] reignited interest in the use of information-

theoretic methods for studying group testing. They used a model of
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channel coding with correlated codewords, where each potential defective

set is a message (recall the channel coding interpretation of group testing

shown in Figure 1.1). Atia and Saligrama showed that, in the limiting

regime where k → ∞ after n → ∞, one can succeed with T = O(k logn)

tests, although they did not specify the implicit constant. Effectively,

in our notation, this shows a nonzero rate for α = 0, but does not

prove the Freidlina–Malyutov–Sebő rate of 1. They also showed that

T = O(k logn log2 k) suffices for any k = o(n), though this falls short of

proving a nonzero rate for α ∈ (0, 1). They also gave order-wise results

for some noisy models. A similar approach to Atia and Saligrama was

taken by Scarlett and Cevher [166] (outlined below), but with tighter

analysis and careful calculation of constants giving the better rates of

Theorem 4.1.

Aldridge, Baldassini, and Gunderson [11] generalized Sebő’s ap-

proach to all α ∈ [0, 1), showing a nonzero rate for all α that achieves

the rate of 1 at α = 0, but that is suboptimal compared to (4.1) for

α ∈ (0, 1).

In Chapter 2 of this monograph, we saw some rates that can be

achieved with practical algorithms. Chan et al. [33, 34] were the first

to show a nonzero rate for all α ∈ (0, 1), albeit one that is suboptimal

compared to (4.1), by analysing the COMP algorithm (Theorem 2.4).

They also showed nonzero rates for some non-Bernoulli designs. The

DD algorithm of Aldridge, Baldassini, and Johnson [12] also achieves

nonzero rates for all α ∈ (0, 1) with Bernoulli testing, in particular

matching (4.1) for α > 1/2 (Theorem 2.6).

We also saw in Section 2.7 that the performance of these algorithms

is improved when used with the near-constant column weight design.

In particular, the DD algorithm achieves the same rate as (4.2) for

α > 1/2, as shown by Johnson, Aldridge and Scarlett [114]. We direct

the reader back to Chapter 2 for detailed discussions of these results

and other algorithms.

Mézard, Tarzia and Toninelli [149] had suggested that Theorem 4.2

should be true by appealing to heuristics from statistical physics – the

innovation of Coja-Oghlan et al. [46] was to prove this rigorously.
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4.2 Proof of achievable rate for Bernoulli testing

4.2.1 Discussion of proof techniques

Our proof follows Scarlett and Cevher [166], who proved Theorem 4.1

as a special case of a more general framework for noiseless and noisy

group testing. The analysis is based on thresholding techniques that are

rooted in early information-theoretic works, such as [77, 176], as well

as recent developments in information-spectrum methods [100]. In fact,

we also saw a simpler version of this approach when studying separate

decoding of items in Section 3.5.

To describe these methods in more detail, we momentarily depart

from the group testing problem and consider a simple channel cod-

ing scenario where M codewords are drawn from some distribution

PX, and one of them is transmitted over a channel PY|X to produce

an output sequence y. The optimal (yet generally computationally

intractable) decoding rule chooses the codeword x maximizing the like-

lihood PY|X(y|x), and the resulting error probability is upper bounded

by the probability that the true codeword is the only one such that

log2
PY|X(y|x)

PY(y) exceeds a suitably-chosen threshold. Intuitively, we should

expect PY|X(y|x) to be considerably larger than PY(y) when x is the

true transmitted codeword, whereas if x is an incorrect codeword then

this is unlikely to be the case.

More precisely, by a simple change of measure technique, the prob-

ability of log2
PY|X(y|x)

PY(y) exceeding any threshold γ for a single non-

transmitted codeword is at most 2−γ , and hence the union of these

events across all M − 1 non-transmitted codewords has probability at

most (M − 1)2−γ . Choosing γ slightly larger than log2M ensures that

this probability is small, and hence the error probability is roughly

the probability that the true codeword x fails the threshold test, i.e.,

log2
PY|X(y|x)

PY(y) < γ ≈ log2M .

Finally, for a memoryless channel taking the form PY|X(y|x) =∏n
i=1 PY |X(yi|xi), and an i.i.d. codeword distribution of the form PX(x) =

∏n
i=1 PX(xi), the quantity log2

PY|X(y|x)

PY(y) concentrates about its mean

nI(X;Y ). As a result, we get vanishing error probability when the
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number of codewords satisfies M . 2nI(X;Y ), and we can achieve any

coding rate up to the mutual information I(X;Y ).

For group testing, we follow the same general idea, but with a notable

change: the ‘codewords’ (that is, the T × k sub-matrices XK of the test

matrix for K of cardinality k) are not independent. For example, the

codewords corresponding to K1 = {1, 2, 3} and {K2} = {1, 4, 7} have a

common first column. To handle this issue, we treat different incorrect

codewords separately depending on their amount of overlap with the

true codeword: If there is no overlap then the analysis is similar to

that of channel coding above, while if there is overlap then we consider

probabilities of the form log2
P1(y|·)
P2(y|·) , where P1 conditions on the true

codeword, and P2 only conditions on the overlapping part.

We now proceed with the proof of Theorem 4.1. We first introduce

some notation that will allow the initial steps to be re-used for the

noisy setting, then formally specify the decoder used, provide the non-

asymptotic bound that forms the starting point of the analysis, and

finally, outline the subsequent asymptotic analysis that leads to the

final result.

4.2.2 Information-theoretic notation

While our focus is primarily on the noiseless setting, the initial steps

of the analysis are just as easily done simultaneously for general noise

models. Specifically, we consider an arbitrary model studying the ‘only

defects matter’ property, given in Definition 3.2. Due to this property

and the symmetry in the random construction of X, the analysis will

not be impacted by the realization of K, and we will therefore set

K = {1, . . . , k} without loss of generality.

We now introduce some notation. We again consider the Bernoulli

design (Definition 2.2), in which each item is included in each test

independently with probability p. For convenience, we write p = ν/k

for some ν > 0, and as usual the T × n test matrix is denoted by X.

The submatrix XK denotes only the columns of the matrix X indexed

by K, and XK denotes a single row of XK. We write V = V (XK) for

the random number of defective items in the test indicated by X.
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The observation Y ∈ {0, 1} is generated according to some general

distribution PY |XK
depending on XK only through V :

(Y | X,K) ∼ PY |XK
= PY |V . (4.3)

This is precisely the only defects matter property of Definition 3.2. The

T -fold product of PY |XK
gives the distribution of the overall test vector

Y = (Y1, . . . , YT ) given XK, and is denoted by PY|XK
.

As discussed above, we consider separate error events according to

how much an incorrect defective set K′ overlaps with K. To facilitate

this, for a given partition (S0, S1) of K, we write

PY |XS0
,XS1

(y | xS0 ,xS1) = PY |XK
(y | xK), (4.4)

and use this to define the marginal distribution

PY |XS1
(y|xS1) =

∑

xS0

PXS0
(xS0)PY |XS0

,XS1
(y | xS0 ,xS1), (4.5)

where (xS0 ,xS1 , y) is a specific realization of (XS0 ,XS1 , Y ). In the

analysis, S1 will represent the intersection K ∩ K′ between the defective

set K and some incorrect set K′, whereas S0 will represent the set

difference K \ K′.

Finally, in accordance with the techniques outlined in Section 4.2.1,

we define the information density

ı(XS0 ;Y | XS1) = log2

PY |XS0
,XS1

(y | XS0 ,XS1)

PY |XS1
(Y | XS1)

, (4.6)

and let ıT (XS0 ; Y|XS1) be the T -letter extension obtained by summing

(4.6) over the T tests. Since the tests are independent, writing the sum

of logarithms as the logarithm of a product yields

ıT (XS0 ; Y | XS1) = log2

PY|XS0
,XS1

(Y | XS0 ,XS1)

PY|XS1
(Y | XS1)

. (4.7)

We also note that the expectation of (4.6) is equal to the conditional

mutual information I(XS0 ;Y | XS1), and the expectation of (4.7) is

equal to T · I(XS0 ;Y | XS1).
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4.2.3 Choice of decoder

Inspired by classical information-theoretic works such as [77] (again see

Section 4.2.1), we consider a decoder that searches for a defective set

K ⊆ {1, . . . , n} of cardinality k such that

ıT (XS0 ; Y | XS1) > γ|S0| for all (S0, S1) partitioning K with S0 6= ∅

(4.8)

for suitable constants γ1, . . . , γK to be chosen later. If no such set exists,

or if multiple sets exist, then an error is declared.

The rule (4.8) can be viewed as a weakened version of the maximum-

likelihood (ML) rule – that is, the decoder that chooses the set K
maximizing PY|XK

. Specifically, if a unique set satisfies (4.8), it must

be the ML choice, whereas sometimes the ML decoder might succeed

where the above decoder fails – for example, in cases where no K passes

all 2k − 1 of its threshold tests.

The above decoder is unlikely to be computationally feasible in

practice even for moderate problem sizes. The focus in this section is

on information-theoretic achievability regardless of such considerations.

Moreover, while this rule requires knowledge of k, we argue in Section 4.3

that at least in the noiseless setting, the resulting rate can be achieved

even without this knowledge.

4.2.4 Non-asymptotic bound

Observe that in order for an error to occur, it must be the case that

either the true defective set K = {1, . . . , k} fails one of the threshold

tests in (4.8), or some incorrect set K′ passes all of the threshold tests.

As a result, the union bound gives

P(err) ≤ P

( ⋃

(S0,S1)

{
ıT (XS0 ; Y | XS1) ≤ γ|S0|

})

+
∑

K′ 6=K

P

(
ıT (XK′\K; Y | XK∩K′) > γ|K′\K|

)
,

(4.9)

where in the first term the union is implicitly subject to the conditions

in (4.8), and in the second term, we upper bound the probability of
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passing all threshold tests by the probability of passing a single one

(namely, the one with S1 = K ∩ K′).

Using the form of ıT in (4.7), we can upper bound any given sum-

mand of (4.9) as follows with S0 = K′ \K, S1 = K∩K′, and τ = |K′ \K|:

P

(
ıT (XK′\K; Y | XK∩K′) > γτ

)
(4.10)

=
∑

XS0
,XS1

,y

P(XS0 ,XS1)PY|XS1
(y | XS1)

× 1

{
log2

PY|XS0
,XS1

(y | XS0 ,XS1)

PY|XS1
(y | XS1)

> γτ

} (4.11)

≤
∑

XS0
,XS1

,y

P(XS0 ,XS1)PY|XS0
,XS1

(y | XS0 ,XS1)2−γτ (4.12)

= 2−γτ . (4.13)

Here, (4.11) follows since the observations depend on XK′ only through

the columns S1 = K ∩ K′ overlapping with K, (4.12) follows by upper

bounding PY|XS1
(y | XS1) according to the event in the indicator func-

tion and then upper bounding the indicator function by one, and (4.13)

follows from the fact that we are summing a joint distribution over all

of its values.

Combining (4.9) and (4.13), and also applying the union bound in

the first term of the former, we obtain

P(err) ≤
∑

(S0,S1)

P

(
ıT (XS0 ; Y | XS1) ≤ γ|S0|

)
+
∑

K′ 6=K

2−γ|K′\K| .

where we have applied the definition τ = |K′ \ K|. By counting the

number of S0 ⊂ K of cardinality τ ∈ {1, . . . , k}, as well as the number

of K′ 6= K such that |K′ \K| = τ ∈ {1, . . . , k}, we can simplify the above

bound to

P(err) ≤
k∑

τ=1

(
k

τ

)
P

(
ıT (X0,τ ; Y | X1,τ ) ≤ γτ

)
+

k∑

τ=1

(
k

τ

)(
n− k

τ

)
2−γτ ,

(4.14)

where X0,τ = XS0 and X1,τ = XS1 for an arbitrary partition (S0, S1) of

{1, . . . , k} with |S0| = τ ; by the i.i.d. test design and model assumption

(4.3), the probability in (4.14) is the same for any such partition.
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Finally, choosing

γτ = log2

δ

k
(k
τ

)(n−k
τ

)

for some δ > 0, we obtain the non-asymptotic bound

P(err) ≤
k∑

τ=1

(
k

τ

)
P

(
ıT (X0,τ ; Y | X1,τ ) ≤ log2

δ

k
(k
τ

)(n−k
τ

)
)

+ δ. (4.15)

4.2.5 Characterizing the tail probabilities

The next step is to characterize the probability appearing on the right-

hand side of (4.15). The idea is to note that this is the tail probability

of an i.i.d. sum, and hence we should expect some concentration around

the mean. Recall from Section 4.2.2 that the mean of the information

density is the conditional mutual information:

E
[
ıT (X0,τ ; Y | X1,τ )

]
= T · I(X0,τ ;Y | X1,τ ) =: T · Iτ , (4.16)

where (X0,τ ,X1,τ ) correspond to single rows in (X0,τ ,X1,τ ), and Y is

the corresponding entry of Y. The following lemma characterizes Iτ for

the noiseless model; we return to the noisy setting in Section 4.5.

Lemma 4.3. Under the noiseless group testing model using Bernoulli

testing with probability p = ν/k for some fixed ν > 0, the conditional

mutual information Iτ behaves as follows as k → ∞:

1. If τ/k → 0, then

Iτ ∼ e−νν
τ

k
log2

k

τ
.

2. If τ/k → ψ ∈ (0, 1], then

Iτ ∼ e−(1−ψ)νh(e−ψν),

where h(ψ) is the binary entropy function.

Proof. In the noiseless setting, we have I(X0,τ ;Y | X1,τ ) = H(Y | X1,τ ).

If X1,τ contains any ones, then the conditional entropy of Y is zero,

and otherwise, the conditional entropy is the binary entropy function

evaluated at the conditional probability of Y = 1. Evaluating these
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probabilities explicitly, we obtain

Iτ = (1 − p)k−τh
(
(1 − p)τ

)
=
(
1 − ν

k

)k−τ
h

((
1 − ν

k

)τ)
.

In the case that τ/k → 0, the lemma now follows from the asymptotic

expressions (1 − ν/k)k−τ → e−ν and (1 − ν/k)τ ∼ 1 − ντ/k, as well as

h(1 − ζ) ∼ −ζ log2 ζ as ζ → 0.

In the case that τ/k → ψ ∈ (0, 1], the lemma follows from the

limits (1 − ν/k)k−τ → e−(1−ψ)ν and (1 − ν/k)τ → e−ψν , as well as the

continuity of entropy.

We now fix a set of constants δ′
τ for τ = 1, . . . , k, and observe that

as long as

T ≥ log2

(n−k
τ

)
+ log2

(
k
δ

(k
τ

))

(1 − δ′
τ )Iτ

, (4.17)

we can upper bound the probability in (4.15) by

P
(
ıT (X0,τ ; Y | X1,τ ) < (1 − δ′

τ )TIτ
)
. (4.18)

As mentioned above, ıT is a sum of T i.i.d. random variables having

mean Iτ , and as a result, we can bound (4.18) using concentration

inequalities.

In fact, in the case that k is constant (that is, not growing with

n), it suffices to use Chebyshev’s inequality to show that each term

of the form (4.18) vanishes for arbitrarily small δ′
τ [164]. Since each

such term vanishes, then so does the weighted sum of all such terms

in (4.15) (using the fact that k is constant), and we are left only with

the sufficient condition in (4.17) for P(err) ≤ δ + o(1). By taking δ → 0

sufficiently slowly, we are left with the condition

T ≥ max
τ=1,...,k

log2

(n−k
τ

)

Iτ
(1 + o(1))

for P(err) → 0.

However, our main interest is not in the fixed-k regime, but in

the regime k = Θ(nα) for α ∈ (0, 1). In this case, more sophisticated

concentration bounds are needed, and these turn out to introduce extra

requirements on T beyond (4.17) alone.
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Lemma 4.4. Set τ∗ = k/
√

log2 k. Under Bernoulli group testing with

probability p = ν/k, the quantities ıτ,T := ıT (X0,τ ; Y | X1,τ ) satisfy

the following concentration bounds provided that the quantities δ′
τ are

uniformly bounded away from zero and one:

1. For τ ≤ τ∗, we have

P
(
ıτ,T < TIτ (1 − δ′

τ )
)

≤ exp

(
− T

τ

k
e−νν(1 − δ′

τ ) log2(1 − δ′
τ )(1 + o(1))

)
.

2. For τ > τ∗, we have

P
(
ıτ,T < TIτ (1 − δ′

τ )
) ≤ 2 exp

(
− (δ′

τIτ )
2T

4(8 + δ′
τIτ )

)
.

Proof. The first bound is proved by lower bounding iτ,T by a scaled

binomial random variable and applying a well-known concentration

bound specific to the binomial distribution. The second bound is proved

using Bernstein’s inequality. The details can be found in [166].

The remainder of the proof amounts to rather tedious yet elementary

algebraic manipulations, and we therefore provide only an outline. We

start by choosing choose δ′
τ = 1 − ǫ for τ ≤ τ∗, and δ′

τ = ǫ for τ > τ∗,

where ǫ > 0 is arbitrarily small.

The first requirement on T is that it satisfies (4.17) for all τ =

1, . . . , k. Using Lemma 4.3 and the preceding choices of δ′
τ , one can

show that the value of τ that gives the most stringent requirement on

T is τ = k, at least in the asymptotic limit. As a result, we get the

condition

T ≥
(
k log2

n

k

)(
1 +O(ǫ) + o(1)

)
. (4.19)

This arises from the fact that the numerator in (4.17) with τ = k is

dominated by log2

(n−k
k

)
, which behaves as

(
k log2

n
k

)
(1+o(1)) whenever

k = o(n).

The second requirement on T is that, upon substituting the bounds

of Lemma 4.4 into (4.15) and taking δ → 0, the resulting summation

on the right-hand side vanishes. For this to be true, it suffices that both
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the summations over τ ∈ {1, . . . , τ∗} and τ ∈ {τ∗ + 1, . . . , k} vanish.

The second of these (the ‘small overlap’ case) turns out to already

vanish under the condition in (4.19). On the other hand, after some

rearranging and asymptotic simplifications, we find that the first of

these summations (the ‘large overlap’ case) vanishes provided that

T ≥
(

α
1−αk log2

n
k

νe−ν

)
(
1 +O(ǫ) + o(1)

)
. (4.20)

Theorem 4.1 follows by combining these bounds and taking ǫ → 0.

4.3 Converse bound for Bernoulli testing

We have seen that nonadaptive Bernoulli matrix designs achieve a rate

of 1 bit per test whenever α ≤ 1
3 , thus matching the counting bound and

proving their asymptotic optimality. On the other hand, for α ∈ (1
3 , 1
)
,

there remains a gap between the two, with the gap growing larger as α

approaches one.

A priori, there are several possible reasons for the remaining gaps:

the analysis in Section 4.2 could be loose, the use of Bernoulli tests

could be suboptimal, or the counting bound itself could be loose. The

following result, due to Aldridge [8], rules out the first of these, showing

that Theorem 4.1 provides the best rate that one could hope for given

that Bernoulli designs are used.

Theorem 4.5. Consider noiseless group testing in the sparse regime

k = Θ(nα), with the exact recovery criterion, and Bernoulli testing.

If the rate exceeds RBern defined in (4.1), then the error probability

averaged over the testing matrix is bounded away from zero, regardless

of the decoding algorithm.

Proof. The idea of the proof is as follows. First, we argue that if both

the COMP and SSS (see Chapter 2) algorithms fail, then any algorithm

fails with a certain probability. Second, we argue that for rates above

RBern, both COMP and SSS fail.

Let K̂COMP and K̂SSS be the sets returned by COMP and SSS,

respectively. Recall that these are respectively the largest (see Lemma

2.3) and smallest satisfying sets, where a satisfying set is any putative
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set of defective items that could have produced the observed output

(see Definition 2.1). The key observation is that if |K̂COMP| > k and

|K̂SSS| < k, then there exist at least two satisfying sets L with |L| = k;

any such set can be found by adding elements of K̂COMP to K̂SSS

until reaching size k. Then, even if k is known, the best one can do

given multiple such sets is to choose one arbitrarily, yielding an error

probability of at least 1/2. Thus,

P(err) ≥ 1

2
P
(|K̂COMP| > k ∩ |K̂SSS| < k

)

≥ 1

2

(
1 − P(|K̂COMP| = k) − P(|K̂SSS| = k)

)
(4.21)

by the union bound.

We handle the two above terms separately. First, we observe that

P(|K̂COMP| = k) is precisely the probability of COMP succeeding, since

the largest satisfying set is necessarily unique (see Lemma 2.3). In

Remark 2.2, it was shown that the success probability of COMP tends

to zero for rates above the value RCOMP
Bern defined in (2.8), which is strictly

less than the rate RBern that we consider here. Second, {|K̂SSS| = k}
cannot occur when a defective item is masked, and such a masking

event was shown to occur with probability bounded away from zero in

the proof of Theorem 2.2. Combining these two results, we find that

(4.21) is bounded away from 0, which completes the proof.

4.4 Improved rates with near-constant tests-per-item

In Section 2.7, we saw that the near-constant column weight (or near-

constant tests-per-item) design introduced in Definition 2.3 gives im-

proved rates for the COMP and DD algorithms, and that the SSS

algorithm cannot attain a higher rate than min
{
1, ln 2 1−α

α

}
.

Similarly to the Bernoulli design, the converse of min
{
1, ln 2 1−α

α

}

bits per test for SSS under the near-constant column weight design

matches the achievability result for the DD algorithm stated in Theo-

rem 2.10 when α ≥ 1/2. In this section, we describe a recent development

that extends the achievability of the preceding rate to all α ∈ (0, 1), al-

beit at the expense of (potentially considerably) increased computation

compared to DD.
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Formally, the main result of Coja-Oghlan et al. [46] proves that the

near-constant column weight design has a maximum achievable rate of

RNCC = min

{
1, (ln 2)

1 − α

α

}
,

as we stated in Theorem 4.2 above. We refrain from presenting the full

details of the somewhat lengthy proof of Theorem 4.2, but we sketch

the main steps.

On the whole, the analysis is less based on tools from information

theory, and more based on direct probabilistic arguments. (Coja-Oghlan

et al. note that similar arguments have been successful in the theory

of constraint satisfaction problems.) Nevertheless, some similarities do

exist between this approach and the information-theoretic analysis of

Section 4.2. Notably, the error events associated with incorrect defective

sets are handled separately according to the amount of difference with

the true defective set. The error events corresponding to a small overlap

(that is, an incorrect set having relatively few items in common with K)

have low probability for rates up to 1, and the error events corresponding

to a large overlap (a large number of items in common) have low

probability for rate up to (ln 2)1−α
α after the application of a tight

concentration bound.

Proof sketch of Theorem 4.2. Consider the number of satisfying sets

K̂ of the correct size |K̂| = k that have a set difference with the true

defective set of size |K \ K̂| = |K \ K̂| = τ . Clearly there is one such set

with τ = 0, namely, the true defective set. If it can be shown that with

high probability there are no others, then the true defective set is the

only satisfying set, and can – at least given enough computation time

– be found reliably. Different bounds are used depending on whether

τ ≥ τ∗ or τ < τ∗, where we choose τ∗ = k/ log2 n.

Similarly to the Bernoulli design, we may assume that K is fixed,

say K = {1, . . . , k}, without loss of generality. We first consider the

‘small overlap’ (or ‘large difference’) case, where τ ≥ τ∗. Let S be the

event that there exists a satisfying set corresponding to such a τ . Using
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the union bound, we have

P(S) ≤
k∑

τ=τ∗

(
n− k

τ

)(
k

τ

)
P
(K̂τ is satisfying

)
(4.22)

where K̂τ is any set of size k containing τ nondefectives and k − τ

defectives. In [46], a concentration result and a coupling argument is

used to show that the bound (4.22) for the near-constant column weight

design is very close to the analogous bound for the Bernoulli design.

This means that we can treat this case as though we were using the

Bernoulli(p) design, where p = 1 − e−ν/k ∼ ν/k.

Pick ν = ln 2, so 1 − p = 2−1/k. (Here we follow an argument from

[11].) A test has a different result under K̂τ compared to K if no item

in K is tested but an item in K̂τ \ K is tested, or vice versa. This has

probability

2(1 − p)k
(
1 − (1 − p)τ

)
= 2(1 − p)k − 2(1 − p)k+τ .

Hence,

P
(K̂τ is satisfying

)
=
(
1 − 2(1 − p)k + 2(1 − p)k+τ )T ,

and, using (1 − p)k = 1
2 , we have

P(S) ≤
k∑

τ=τ∗

(
n− k

τ

)(
k

τ

)
(
1 − 2(1 − p)k + 2(1 − p)k+τ )T

=
k∑

τ=τ∗

(
n− k

τ

)(
k

τ

)(
1 − 2 · 1

2 + 2 · 1
2

(
2−1/k)τ)T

=
k∑

τ=τ∗

(
n− k

τ

)(
k

τ

)
2−τT/k.

One can check that the summands here are decreasing, so the largest

term is that for τ = τ∗, and for any δ > 0 we have τ∗ < δk for n

sufficiently large. Hence, we have

P(S) ≤ k

(
n− k

δk

)(
k

δk

)
2−δkT/k

≤ k

(
en

δk

)δk (e

δ

)δk
2−δT

= k2−δ(T−k log2(n/k)−2(log2 e−log2 δ)k)
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We see for T > (1 + η)k log2(n/k), which corresponds to any rate up to

1, that P(S) can be made arbitrarily small.

Next, we consider the ‘large overlap’ (or ‘small difference’) case,

where τ < τ∗. The union bound argument above is too weak here, as

‘rare solution-rich instances drive up the expected number of solutions’

[46]. Instead, we first show that a certain property R holds with high

probability, and then use the expansion properties of the near-constant

column weight design to show that, with high probability, no large-

overlap solutions exist when R holds.

Property R is the event that every defective item i ∈ K is the unique

defective item in at least δL tests, for some δ > 0. We need to show that

R holds with high probability. To simplify this proof sketch, we present

the analysis as though each item i were included in exactly L = νT/k

tests chosen without replacement (rather than with replacement). Each

of these L tests contains no other defective items with probability

(
1 − 1

T

)L(k−1)

=

(
1 − 1

T

)νT (1−1/k)

→ e−ν .

For further simplification here (with the full details given in [46]), we

make another non-rigorous approximation and suppose that each such

test contains no other defectives with probability exactly e−ν , and that

this event is independent across tests. Write Mi
d≈ Bin(L, e−ν) for the

number of tests in which i is the unique defective. Then the probability

this is fewer than δL tests is (approximately)

P(Mi < δL) ≈ P
(
Bin(L, e−ν) < δL

) ≤ 2−Ld(δ ‖ e−ν),

where d(p ‖ q) is the relative entropy between a Bernoulli(p) and a

Bernoulli(q) random variable, and we have used the standard Chernoff

bound for the binomial distribution. It is clearly advantageous to take

δ as small as possible, and doing so yields

d(δ ‖ e−ν) = h(δ) − (
δ log2 e−ν + (1 − δ) log2(1 − e−ν)

)

→ − log2(1 − e−ν).
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We can then use a union bound to write

P(R) = P

(⋂

i∈K

Mi ≥ δL

)

≤ 1 − kP(Mi < δL)

. 1 − k2L log2(1−e−ν)

= 1 − 2−(−ν log2(1−e−ν)T/k−log2 k),

where we substituted L = νT/k. The preceding bound can be made to

approach 1 provided that

T > (1 + η)
1

−ν log2(1 − e−ν)
k log2 k

for some small η > 0. The term −ν log2(1 − e−ν) is maximised at

ν = ln 2, where it takes the value ln 2. Hence, the preceding condition

reduces to

T > (1 + η)
1

ln 2
k log2 k,

which corresponds to rates no larger than (ln 2)1−α
α .

It remains to argue that, conditioned on the event R, we have

no small-difference satisfying sets with high probability. The key ob-

servation of [46] is that switching even a single item from defective

to nondefective would change the result of a large number (at least

δL) of formerly positive tests. But turning these tests back positive

requires switching many items from nondefective to defective, because

the expansion properties of the design imply that it is unlikely that any

item will be able to cover many of these tests. These switches in turn

change the result of many more tests, requiring more switches, and so

on. Hence, to get another satisfying set, one must switch the status of

many items, and no ‘large overlap’ set can exist. While this is only an

intuitive argument, it is formalized in [46].

Together, we have establishing vanishing probability for the existence

of satisfying sets with either a small overlap or a large overlap (with

‘small’ and ‘large’ collectively covering all cases), and we are done.

The use of the near-constant column weight design was crucial in

checking that property R holds with high probability. Suppose that
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we instead use a Bernoulli(ν/k) design; then, the probability that a

defective item is the unique defective in a given tests is

p(1 − p)k−1 =
ν

k

(
1 − ν

k

)k−1

∼ νe−ν

k
.

Hence, the probability of being the unique defective item in fewer than

δL = δνT/k tests is

P
(
Bin(T, νe−ν/k) < δνT/k) ≤ 2−Td(δν/k ‖ νe−ν/k).

Again, taking δ as small as possible, we have

d(δν/k ‖ νe−ν/k) ∼ log2(1 − νe−ν/k) ∼ 1

ln 2

νe−ν

k
.

Following the same argument leads to the conclusion that we avoid

large-overlap errors with rates up to νe−ν

ln 2
1−α
α , as in (4.1). Thus, we see

that the achievable rate for Bernoulli designs (Theorem 4.1) can also

be proved using the approach of [46].

We can match the achievability result of Theorem 4.2 with a converse

for near-constant column weight designs. In particular, the proof of the

corresponding result for Bernoulli designs (Theorem 4.5) extends easily

to the near-constant column weight design once Theorem 2.11 on the

SSS algorithm is in place. This extension is stated formally as follows

for completeness.

Theorem 4.6. Consider noiseless group testing in the sparse regime

k = Θ(nα), with the exact recovery criterion, and the near-constant

column weight design (Definition 2.3). If the rate exceeds RNCC defined

in (4.1), then the error probability averaged over the testing matrix is

bounded away from zero, regardless of the decoding algorithm.

This result readily establishes that the achievable rate for the DD

algorithm, stated in Theorem 2.10, is optimal (with respect to the

random test design) when α ≥ 1/2. Recall that these rates are plotted

in Figure 4.1.

4.5 Noisy models

We now turn our attention to noisy settings, considering general noise

models of the form (4.3) – that is, those that satisfy the only defects
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matter property of Definition 3.2. As we discussed previously, our initial

achievability analysis leading to the non-asymptotic bound (4.15) is

valid for any such model, and hence, a reasonable approach is to follow

the subsequent steps of the noiseless model. The main difficulty in

doing so is establishing suitable concentration inequalities analogous to

Lemma 4.4.

We proceed by presenting a general achievability result for the very

sparse regime k = O(1), where establishing the desired concentration is

straightforward. We also give a matching converse bound that remains

valid for the sparse regime k = Θ(nα). Achievability in the sparse regime

is more difficult, and is postponed to Section 4.5.2.

4.5.1 General noise models in the very sparse regime

The following theorem provides a general characterization of the required

number of tests in terms of suitable conditional mutual information

quantities. This result was given in the works of Malyutov [143] and

Atia and Saligrama [17]; see also [53] for a survey paying finer attention

to the error exponent (that is, the exponential rate of decay of the error

probability) and considering universal decoding rules (where the noise

distribution is not known).

Theorem 4.7. Consider any noiseless group testing setup of the form

(4.3), with Bernoulli(p) testing and k = Θ(nα) with α ∈ [0, 1). Then in

order to achieve vanishing error probability as n → ∞, it is necessary

that

T ≥ max
τ=1,...,k

τ log2
n
τ

I(X0,τ ;Y | X1,τ )
(1 − o(1)), (4.23)

where the mutual information is with respect to the independent ran-

dom vectors (X0,τ ,X1,τ ) of sizes (τ, k − τ) containing independent

Bernoulli(p) entries, along with the noise model PY |V in (4.3). More-

over, in the case that α = 0 (k = O(1)) a matching achievability bound

holds, and the maximum achievable rate is given by

R
noisy
Bern = min

τ=1,...,k

1

τ
I(X0,τ ;Y | X1,τ ) (4.24)

= I(X0,k;Y ). (4.25)
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Observe that the equality (4.25) states that the minimum in (4.24)

is achieved by τ = k, and the capacity reduces to a single unconditional

mutual information term. Moreover, if the noisy defective channel

property holds (Definition 3.3) and the Bernoulli testing parameter is

optimized, this mutual information term reduces to the corresponding

channel capacity – for example, I(U ;Y ) = 1 − h(ρ) for the symmetric

noise model.

However, the capacity equalling (4.25) crucially relies on two as-

sumptions: (i) the observation model (4.3) is symmetric, in the sense

of depending only on the number of defectives in the test, and not

the specific defectives included; and (ii) the number of defectives is

bounded, i.e., k = O(1). Counterexamples to (4.25) in cases that the

former condition fails can be found in [143]. As for the latter condition,

we observe that the term log2
n
τ can range from log2

n
k to log2 n, and

these two terms can have a non-negligible difference when k scales with

n. For instance, the analysis of [164] reveals that the term corresponding

to τ = 1 can dominate in the regime k = Θ(nα) when α ∈ (0, 1) is

sufficiently close to one.

The assumption k = O(1) in the achievability part is rather restric-

tive; we discuss this point further in Section 4.5.2. Another limitation

of Theorem 4.7 is that the converse part is specific to Bernoulli testing;

however, we present variants for arbitrary test matrices in Section 4.5.3.

Discussion of achievability proof

Proofs of the achievability part of Theorem 4.7 can be found in [145, 17,

164]; continuing the earlier analysis, we discuss the approach of [164].

As mentioned above, the bound (4.15) remains valid in the noisy

setting, and the main step in the subsequent analysis is establishing

the concentration of ıT (X0,τ ; Y|X1,τ ). In general, this is a challenging

task, and may introduce extra conditions on T , as we saw in the

proof of Theorem 4.1. However, it turns out that when k = O(1), the

concentration bound given in the second part of Lemma 4.4 (which

extends immediately to general noise models [166]) is sufficient. Indeed,

assuming bounded k greatly simplifies matters, since it means that the

combinatorial term
(k
τ

)
in (4.15) is also bounded.
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The equality (4.25) follows from elementary information-theoretic

arguments, which we outline here. Assuming without loss of generality

that K = {1, . . . , k}, writing the entries of XK as (X1, . . . , Xk) accord-

ingly, and letting Xj′

j denote the collection (Xj , . . . , Xj′) for indices

1 ≤ j ≤ j′ ≤ k, we have

1

τ
I(X0,τ ;Y | X1,τ ) =

1

τ
I(Xk

k−τ+1;Y | Xk−τ
1 ) (4.26)

=
1

τ

k∑

j=k−τ+1

I(Xj ;Y | Xj−1
1 ) (4.27)

=
1

τ

k∑

j=k−τ+1

(
H(Xj) −H(Xj | Y,Xj−1

1 )
)
, (4.28)

where (4.26) follows from the definition of (X0,τ ,X1,τ ) and the symmetry

of the noise model in (4.3), (4.27) follows from the chain rule for mutual

information, and (4.28) follows since Xj is independent of Xj−1
1 . We

establish the desired claim by observing that (4.28) is decreasing in τ :

The term H(Xj) is the same for all j, whereas the term H(Xj |Y,Xj−1
1 )

is smaller for higher values of j because conditioning reduces entropy.

Discussion of converse proof

In light of the apparent connection between channel coding and group

testing (see Figure 1.1), a natural starting point is to apply Fano’s

inequality, which states that in order to achieve an error probability of

δ, it is necessary that

I(K; Y | X) ≥ log2

(
n

k

)
(1 − δ) − 1. (4.29)

Note that Y depends on K only through XK, which corresponds to

X0,k in the above notation. We can therefore replace I(K; Y | X) by

I(X0,k; Y), which in turn equals TI(X0,k;Y ) since the tests are indepen-

dent. Substituting into (4.29) and rearranging, we obtain the necessary

condition

T ≥ log2

(n
k

)

I(X0,k;Y )

(
1 − δ − 1

log2

(n
k

)
)
. (4.30)
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This bound matches (4.23) whenever the maximum therein is achieved

by τ = k. However, as discussed above, this is not always the case.

The key to overcoming this limitation is to use a ‘genie argument’

[17], in which a subset of K is revealed to the decoder, and it only

remains to estimate the non-revealed part. This clearly only makes the

recovery problem easier, so any converse for this genie-aided setting

remains valid in the original setting. Note that since X is generated in

a symmetric i.i.d. manner and the assumed model (4.3) is invariant to

relabelling, it makes no difference precisely which indices are revealed;

all that matters is the number revealed. (However, the revealed indices

must not depend on X or y.) Letting τ denote the number of defectives

left to estimate, the number revealed is equal to k − τ .

In the genie-aided setting, the number of possible defective sets

reduces from
(n
k

)
to
(n−k+τ

τ

)
. Moreover, the relevant mutual information

in Fano’s inequality is not I(K; Y|X), but instead I(K0,τ ; Y|K1,τ ,X),

where K0,τ (respectively, K1,τ ) denotes the non-revealed (respectively,

revealed) defective item indices. Upon upper bounding the mutual

information via the data processing inequality, we obtain the following

analogue of (4.30):

T ≥ log2

(n−k+τ
τ

)

I(X0,τ ;Y |X1,τ )

(
1 − δ − 1

log2

(n−k+τ
τ

)
)
. (4.31)

We then recover (4.23) by maximizing over τ = 1, . . . , k and noting that

log2

(
n− k + τ

τ

)
=
(
τ log2

n

τ

)
(1 + o(1)). (4.32)

We mention that an alternative approach was taken in [164], bearing

a stronger resemblance to the above achievability proof and again relying

on change-of-measure techniques from the channel coding literature.

The proof of [164] has the advantage of recovering the so-called ‘strong

converse’ (see Remark 1.3), but it requires additional effort in ensuring

that the suitable sums of information densities concentrate around the

corresponding conditional mutual information.













5

Other Topics in Group Testing

In this chapter, we explore extensions of group testing beyond the

settings considered in the previous chapters, which were primarily

focused on nonadaptive randomized designs, the exact recovery criterion,

and sublinear scaling in the number of defectives. Many of the extensions

considered below have natural analogues in classical information theory,

and we attempt to draw such parallels when they arise naturally.

5.1 Partial recovery

In many group testing situations, one might be satisfied with an estimate

of the defective set K̂ being very close to the true defective set K, without

demanding the exact recovery criterion we have considered throughout

this survey. That is, while one would wish for the number of false

negative items |K̂c ∩ K| and the number of false positive items |K̂ ∩ Kc|
to be small. (Here and subsequently, we write Kc = {1, . . . , n} \ K.) it

might not always be necessary for both to be zero. For example, when

screening for diseases, a small number of false positives might lead to

slightly more medical attention for those who did not need it, a cost

which might be small compared to performing many more pooled tests.
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5.2 Adaptive testing with limited stages

We saw in Section 1.5 that adaptive testing permits the exact zero-error

identification of K with an information-theoretically optimal rate R = 1.

This offers two key advantages over nonadaptive testing: replacing the

small-error criterion by the zero-error criterion, and achieving R = 1,

which is only known to be possible for k = O(n0.409) in the nonadaptive

case (and even then, it is not known how to achieve it efficiently). On

the other hand, adaptive testing schemes may come with considerable

overhead compared to nonadaptive testing, since it is no longer possible

to perform all of the tests in parallel.

An interesting variation that potentially attains the benefits of both

worlds is two-stage testing, in which a very limited amount of adaptivity

is allowed; namely, one can only perform two stages of testing, in which

the tests in the second stage can depend on the outcomes in the first

stage. The binary splitting algorithm (Algorithm 1.1) described in

Section 1.5 does not fall into this category, and in fact uses O(logn)

stages.

A variety of algorithms and results have been proposed for the

two-stage setting [22, 60, 61, 136, 150]. Here we present a result of

Mézard et al. [150], which improves on the earlier bounds of [22]. Note

that here the notion of ‘rate’ is defined (in the same way as Definition

1.8) with respect to the average number of tests for a random defective

set; we refer to this as the variable-T setting.

Theorem 5.2. Consider the problem of two-stage group testing in the

variable-T setting with zero error. When k = Θ(nα) for some α ∈ (0, 1),

the following rate is achievable:

R2 =





1
e ln 2 ≈ 0.531 α ≤ 1

2

ln 2 ≈ 0.693 α > 1
2 .

This result was stated in [150] under the i.i.d. prior defectivity model

(see the Appendix to Chapter 1), but the proof transfers easily to the

combinatorial prior. On the other hand, [150] also states a converse of

ln 2 for all α ∈ (0, 1) under the i.i.d. prior (in particular matching the

achievability part when α > 1
2), and while we expect this to remain

true under the combinatorial prior, we refrain from stating so formally.
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