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TO MY FATHER





Preface to the Dover Edition

CONTINUING INTEREST HAS ENCOURAGED PUBLICATION OF A SECOND

edition of this book. Because revising it to fit my present thinking and

the new climate of opinion about the foundations of statistics would

obliterate rather than restore, I have limited myself in the preparation

of this edition much as though dealing with the work of another.

The objective errors that have come to my attention, mainly through

the generosity of readers, of whom Peter Fishburn has my special

thanks, have been corrected, of course. Minor and mechanical ones, such

as a name misspelled or an inequality that had persisted in pointing in

the wrong direction, have been silently eliminated. Other changes are

conspicuous as additions. They consist mainly of this Preface, Appendix

4: Bibliographic Supplement, and several footnotes identified as new

by the signt. To enable you to pursue the many new developments

since 1954 according to the intensity and direction of your own

interests, a number of new references leading to many morearelisted in

the Bibliographic Supplement, and the principle advances known to me

are pointed out in new footnotes or in comments on the new references.

Citations to the bibliography in the original Appendix 3 are made

by a compact, but otherwise ill-advised, letter and number code; those

to the new Appendix 4 are made by a now popular system, which is

effective, informative, and flexible. Example: The historic papers (Borel

1924) and [D2] have been translated by Kyburg and Smokler (1964).
The following paragraphs are intended to help you approach

this book with a more current perspective. To some extent, they will be

intelligible and useful even to a novice in the foundations of statistics,

but they are necessarily somewhat technical and will therefore take on

new meaning if you return to them as your reading in this book and

elsewhere progresses.

The book falls into two parts. The first, ending with Chapter 7, is a

general introduction to the personalistic tradition in probability and

utility. Were this part to be done over, radical revision would not be

required, though I would now supplement the line of argument center-

ing around a system of postulates by other less formal approaches, each

convincing in its own way, that converge to the general conclusion that

personal (or subjective) probability is a good key, and the best yet

1
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known,to all our valid ideas about the applications of probability. There

would also be many new works to report on and analyze more thoroughly

than can be donein footnotes.

The original aim of the second part of the book, beginning with

Chapter8, 1s all too plainly stated in the second complete paragraph on

page 4. There, a personalistic justification is promised for the popular

body of devices developed by the enthusiastically frequentistic schools

that then occupied almost the whole statistical scene and still dominate

it, though less completely. The second part of the book is indeed devoted

to personalistic discussion of frequentistic devices, but for one after

another it reluctantly admits that justification has not been found.

Freud alone could explain how the rash and unfulfilled promise on

page 4 went unamended through so manyrevisions of the manuscript.

Today, as I see it, the theory of personal probability applied to sta-

tistics shows that many of the prominent frequentistic devices can at

best lead to accidental and approximate, not systematic and cogent, suc-

Gess, as Is expanded upon, perhaps more optimistically, by Pratt (1965).

Amongthe ill-founded frequentistic devices are minimax rules, almost

all tail-area tests, tolerance intervals, and, in a sort of class byitself,

fiducial probability.

If I havelost faith in the devices of the frequentistic schools, I have

learned new respect for some of their general theoretical ideas. Let me

amplify first in connection with the Neyman-Pearson school. While

insisting on long-run frequency as the basis of probability, that school

wisely emphasizes the ultimate subjectivity of statistical inference or

behavior within the objective constraint of ‘‘admissibility,’’ as in (Leh-

mann 1958; Wolfowitz 1962). But careful study of admissibility leads

almost inexorably to the recognition of personal probabilities and their

central role in statistics (Savage 1961, Section 4; 1962, pp. 170-175),

so personalistic statistics appears as a natural late development of the

Neyman-Pearson ideas.

One consequence of this sort of analysis of admissibility is the ex-

tremely important likelihood principle, a corollary of Bayes’ theorem,

of which I was not even aware whenwritingthefirst edition of this book.
This principle, inferable from, though nominally at variance with,

Neyman-Pearson ideas (Birnbaum 1962), was first put forward by

Barnard (1947) and by Fisher (1955), members of what might be

called the Fisher school of frequentists. See also (Barnard 1965; Bar-

nard et al. 1962; Cornfield 1966).

The views just expressed are evidently controversial, and if I have

permitted myself such expressions as ‘‘show’’ and ‘‘inexorably,’’ they

are not meant with mathematical finality. Yet, controversial though
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they may be, they are today shared by a numberof statisticians, who

may be called personalistic Bayesians, or simply personalists. This book

has played—and continues to play—a role in the personalistic move-

ment, but the movement itself has other sources apart from those from

which this book itself was drawn. One with great Impact on practical

statistics and scientific management is a book by Robert Schlaifer

(1959). This is a welcome opportunity to say that his ideas were devel-

oped wholly independently of the present book, and indeed of other

personalistic literature. They are in full harmony with the ideas in

this book but are more down to earth and less spellbound by tradition.

L. J. SAVAGE

Yale Unwersity

June, 1971





Preface to the First Edition

A BOOK ABOUT SO CONTROVERSIAL A SUBJECT AS THE FOUNDATIONS
of statistics may have some valuein theclassroom, as I hope this one

will; but it cannot be a textbook, or manual of instruction, stating the

accepted facts about its subject, for there scarcely are any. Openly, or
coyly screened behind the polite conventions of what wecall a disinter-
ested approach, it must, even more than other books, be an airing of
its author’s current opinions.

One whoso airs his opinions has serious misgivings that (as may be

judged from other prefaces) he often tries to communicate along with

his book. First, he longs to know, for reasons that are not altogether

noble, whether he is really making a valuable contribution. His own
conceit, the encouragement of friends, and the confidence of his pub-

lisher have given him hope, but he knows that the hopes of others in

his position have seldom been fully realized.
Again, what he has written is far from perfect, even to his biased

eye. He has stopped revising and called the book finished, because
one must sooneror later.

Finally, he fears that he himself, and still more such public as he

has, will forget that the book is tentative, that an author’s most recent
word need not be his last word.
The application of statistics interests some workers in almost every

field of empirical investigation—not only in science, but also in com-
merce and industry. Moreover, the foundations of statistics are con-

nected conceptually with many disciplines outside of statistics itself,

particularly mathematics, philosophy, economics, and psychology—a

situation that, incidentally, must augment the natural misgivings of

an author in this field about his own competence. Those who read in

this book may, therefore, be diverse in background and interests. With
this consideration in mind, I have endeavored to keep the book as free

from technical prerequisites as its subject matter and its restriction to

a reasonable size permit.
Technical knowledge of statistics is nowhere assumed, but the reader

who has some general knowledge of statistics will be much better pre-

pared to understand and appraise this book. The books Statistics, by
L. H. C. Tippett, and On the Principles of Statistical Inference by

vu
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A. Wald,listed in the Bibliography at the end of Appendix 3, are short

authoritative introductions to statistics, either of which would provide
somestatistical background for this book. The books of Tippett and
Wald are so different in tone and emphasis that it would by no means
be wasteful to read them both, in that order.
Any but the most casual reader should have someformal preparation

in the theory of mathematical probability. Those acquainted with

moderately advanced theoretical statistics will automatically have this
preparation; others may acquire it, for example, by reading Theory of

Probability, by M. E. Munroe, or selected parts of An Introduction to
Probability Theory and Its Applications, by W. Feller, according to

their taste. In Feller’s book, a thorough reading of the Introduction

and Chapter 1, and a casual reading of Chapters 5, 7, and 8 would be

sufficient.

The explicit mathematical prerequisites are not great; a year of cal-

culus would in principle be more than enough. But, in practice, read-

ers without some training in formal logic or one of the abstract branches

of mathematics usually taught only after calculus will, I fear, find some

of the long though elementary mathematical deductions quite forbid-

ding. For the sake of such readers, I therefore take the liberty of giv-
ing some pedagogical advice here and elsewhere that mathematically

more mature readers will find superfluous and possibly irritating. In

the first place, it cannot be too strongly emphasized that a long mathe-

matical argument can be fully understood on first reading only when it

is very elementary indeed, relative to the reader’s mathematical knowl-
edge. If one wants only the gist of it, he may read such material once

only; but otherwise he must expect to read it at least once again. Seri-

ous reading of mathematics is best done sitting bolt upright on a hard

chair at a desk. Pencil and paper are nearly indispensable; for there

are always figures to be sketched and steps in the argumentto be veri-

fied by calculation. In this book, as in many mathematical books,

when exercises are indicated, it is absolutely essential that they be

read and nearly essential that they be worked, because they constitute

part of the exposition, the exercise form being adopted where it seems

to the author best for conveying the particular information at hand.
To some mathematicians, and even more to logicians, I must say a

word of apology for what they may consider lapses of rigor, such as

using the same symbol with more than one meaning andfailing to dis-

tinguish uniformly between the use and the mention of a symbol; but

they will understand that these lapses are sacrifices to what I take to

be general intelligibility and will have, I hope, no real difficulty in re-

pairing them.
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Few will wish to read the whole book; therefore introductions to the

chapters and sections have been so written as not only to provide orien-

tation but also to facilitate skipping. In particular, safe detours are

indicated around mathematically advanced topics and other digressions.

A few words in explanation of the conventions, such as those by which
internal and external references are made in this book, may be useful.
The abbreviation § 3.4 means Section 4 of Chapter 3; within Chapter

3 itself, this would be abbreviatedstill further to § 4. The abbreviation
(3.4.1) means the first numbered and displayed equation or other ex-

pression in § 3.4; within Chapter 3, this would be abbreviated still

further to (4.1) and within § 3.4 simply to (1). Theorems, lemmas,

exercises, corollaries, figures, and tables are named by a similar system,
e.g., Theorem 3.4.1, Theorem 4.1, Theorem 1. Incidentally, the proofs

of theorems are terminated with the special punctuation mark @, a

device borrowed from Halmos’s Measure Theory.

Seven postulates, Pl, P2, etc., are introduced over the course of

several chapters. For ready reference these are, with some explanatory

material, reproduced on the end papers.

Entries in the Bibliography at the end of Appendix 3 are designated

by a self-explanatory notation in square brackets. For example, the
works of Tippett, Wald, Munroe, Feller, and Halmos, already referred

to, are [T2], [W1], [M6], [F1], and [H2], respectively.

I often allude to a set of key references to a given topic. This means

a set of external references intended to lead the reader that wishes to
pursue that particular topic to the fullest and most recent bibliographies;

it has nothing to do with the merit or importanceofthe works referred to.

Technical terms (except for non-verbal symbols) that are defined in
this book are printed in bold face or italics (depending on the impor-

tance of the term for this book or for established usage) in the context

where the term is defined. These special fonts are occasionaily used

for other purposes as well. Terms are sometimes used informally—

even in unofficial definitions—before being officially defined. Even the
official definitions are sometimes of necessity very loose, corresponding

to the well-known principle that, in a formal theory, some terms must

in strict logic be left undefined.

L. J. SAVAGE
University of Chicago

April, 1954
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CHAPTER 1

Introduction

1 Therole of foundations

It is often argued academically that no science can be more secure

than its foundations, and that, if there is controversy about the foun-

dations, there must be even greater controversy about the higher parts

of the science. As a matter of fact, the foundations are the most con-

troversial parts of many, if not all, sciences. Physics and pure mathe-

matics are excellent examples of this phenomenon. Asfor statistics,
the foundations include, on any interpretation of which I have ever

heard, the foundations of probability, as controversial a subject as one

could name. As in other sciences, controversies over the foundations

of statistics reflect themselves to some extent in everyday practice, but
not nearly so catastrophically as one might imagine. I believe that

here, as elsewhere, catastrophe is avoided, primarily because in prac-

tical situations commonsense generally saves all but the most pedantic
of us from flagrant error. It is hard to judge, however, to what extent

the relative calm of modern statistics is due to its domination by a

vigorous schoolrelatively well agreed within itself about the foundations.

Although study of the foundations of a science does not have the
role that would be assigned to it by naive first-things-firstism, it has a

certain continuing importance as the science develops, influencing, and

being influenced by, the more immediately practical parts of the science.

2 Historical background

The concept and problem of inductive inference have been promi-

nent in philosophyat least since Aristotle. Mathematical work on some
aspects of the problem of inference dates back at least to the early

eighteenth century. Leibniz is said to be thefirst to publish a sugges-

tion in that direction, but Jacob Bernoulli’s posthumous Ars Conjec-
tandi (1713) [B12] seemsto bethefirst concerted effort.{ This mathe-

+ Valuable information on this and other topics of the early philosophic history of
probability is attractively presented in Keynes’ treatise [K4], especially in Chapters

VII, XXIII, and the bibliography.

]



2 INTRODUCTION [1.2

matical work has always revolved around the concept of probability;
but, though there was active interest in probability for nearly a cen-

tury before the publication of Ars Conjectandi, earlier activity seems

not to have been concerned with inductive inference.
In the present century there has been and continues to be extra-

ordinary interest in mathematical treatment of problems of inductive
inference. For reasons I cannot and need not analyze here, this ac-

tivity has been strikingly concentrated in the English-speaking world.

It is known under several names, most of which stress some aspect of

the subject that seemed of overwhelming importance at the moment

when the name was coined. ‘Mathematical statistics,” one of its

earliest names,is still the most popular. In this name, ‘‘mathematical’”’

seems to be intended to connote rational, theoretical, or perhaps mathe-

matically advanced, to distinguish the subject from those problems of

gathering and condensing numerical data that can be considered apart

from the problem of inductive inference, the mathematical treatment

of which is generally relatively trivial. The name “statistical inference’’

recognizes that the subject is concerned with inductive inference. The

name “statistical decision” reflects the idea that inductive inference is
not always, if ever, concerned with what to believe in the face of in-

conclusive evidence, but that at least sometimes it is concerned with

what action to decide upon under such circumstances. Within this

book, there will be no harm in adopting the shortest possible name,

“statistics.”
It is unanimously agreed that statistics depends somehow on proba-

bility. But, as to what probability is and how it is connected with

statistics, there has seldom been such complete disagreement and break-

down of communication since the Tower of Babel. There must be

dozens of different interpretations of probability defended by living
authorities, and some authorities hold that several different interpreta-

tions may be useful, that 1s, that the concept of probability may have

different meaningful senses in different contexts. Doubtless, much of

the disagreement is merely terminological and would disappear under

sufficiently sharp analysis. Some believe that it would all disappear,

or even that they have themselves already made the necessary
analysis.

Considering the confusion about the foundations of statistics, it is

surprising, and certainly gratifying, to find that almost everyone is

agreed on what the purely mathematical properties of probability are.

Virtually all controversy therefore centers on questions of interpreting

the generally accepted axiomatic concept of probability, that is, of de-

termining the extramathematical properties of probability.
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The widely accepted axiomatic concept referred to is commonly as-
cribed to Kolmogoroff [K7] and goes by his name. It should be men-

tioned that there is some dissension from it on the part of a small group

led by von Mises [V2]. There are also a few minor technical variations
on the Kolmogoroff system that are sometimesof interest; they will be
discussed in § 3.4.

I would distinguish three main classes of views on the interpretation

of probability, for the purposes of this book, calling them objectivistic,

personalistic, and necessary. Condensed descriptions of these three
classes of views seem called for here. If some readersfind these descrip-

tions condensed to the point of unintelligibility, let them be assured

that fuller ones will gradually be developed as the book proceeds.
Objectivistic views hold that some repetitive events, such as tosses

of a penny, prove to be in reasonably close agreement with the mathe-
matical concept of independently repeated random events, all with the

same probability. According to such views, evidence for the quality
of agreement between the behavior of the repetitive event and the
mathematical concept, and for the magnitude of the probability that

applies (in case any does), is to be obtained by observation of some
repetitions of the event, and from no other source whatsoever.

Personalistic views hold that probability measures the confidence

that a particular individual has in the truth of a particular proposition,

for example, the proposition that it will rain tomorrow. These views
postulate that the individual concerned is in some ways “reasonable,”’
but they do not deny the possibility that two reasonableindividuals

faced with the same evidence may havedifferent degrees of confidence

in the truth of the same proposition.

Necessary views hold that probability measures the extent to which

one set of propositions, out of logical necessity and apart from human

opinion, confirms the truth of another. They are generally regarded
by their holders as extensionsof logic, which tells when oneset of prop-

ositions necessitates the truth of another.

After what has been said about the intensity and complexity of the
controversy over the probability concept, you must realize that the

short taxonomy aboveis bound to infuriate any expert on the founda-

tions of probability, but I trust it may do the less learned more good

than harm.

The great burst of statistical research in the English-speaking world
in the present century has revolved around objectivistic views on the

interpretation of probability. As will shortly be explained, any purely

objectivistic view entails a severe difficulty for statistics. This diffi-
culty is recognized by members of the British-American School, if I



4 INTRODUCTION [1.3

may use that name without its being taken tooliterally or at all na-
tionalistically, and is regarded by them as a great, though not insur-

mountable, obstacle; indeed, some of them seeit as the central problem

of statistics.

The difficulty in the objectivistic position is this. In any objecti-

vistic view, probabilities can apply fruitfully only to repetitive events,

that is, to certain processes; and (depending on the view in question)

it is either meaningless to talk about the probability that a given propo-

sition is true, or this probability can be only 1 or 0, according as the

proposition is in fact true or false. Under neither interpretation can

probability serve as a measure of the trust to be put in the proposition.

Thus the existence of evidence for a proposition can never, on an ob-

jectivistic view, be expressed by saying that the proposition is true with

a certain probability. Again, if one must choose among several courses

of action in the light of experimental evidence, it is not meaningful, in

terms of objective probability, to compute which of these actions 1s

most promising, that is, which has the highest expected income. Hold-

ers of objectivistic views have, therefore, no recourse but to argue that

it is not reasonable to assign probabilities to the truth of propositions

or to calculate which of several actions is the most promising, and that

the need expressed by the attempt to set up such concepts must be

met in other ways, if at all.

The British-American School has had great success in several re-

spects. The numberof its adherents has rapidly increased. It has con-

tributed many procedures of strong intuitive appeal and (one feels) of

lasting worth. These have found widespread application in many

sciences, in industry, and in commerce. The success of the school may

pragmatically be taken as evidence for the correctness of the general

view on which it is based. Indeed, anyone who overthrows that view

must either discredit the procedures to which it has led, or show, as

I hope to show in this book, that they are on the whole consistent with

the alternative proposed.

Some, I among them, hold that the grounds for adopting an objec-

tivistic view are not overwhelmingly strong; that there are serious log-

ical objections to any such view; and, most important of all, that the

difficulty a strictly objectivistic view meets in statistics reflects real

inadequacy.

3 General outline of this book

This book presents a theory of the foundations of statistics which is

based on a personalistic view of probability derived mainly from the

work of Bruno de Finetti, as expressed for example in [D2]. The theory
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is presented in a tentative spirit, for I realize that the serious blemishes
in it apparent to me are not the only ones that will be discovered by
critical readers. A theory of the foundations of statistics that appears
contrary to the teaching of the most productive statisticians will prop-

erly be regarded with extraordinary caution. Other views on proba-
bility will, of course, be discussed in this book, partly for their own in-
terest and partly to explain the relationship between the personalistic
view on which this book is based and other views.
The book is organized into seventeen chapters, of which the present

introduction is the first. Chapters 2—7 are, so to speak, concerned with
the foundations at a relatively deep level. They develop, explain, and

defend a certain abstract theory of the behavior of a highly idealized

person faced with uncertainty. That theory is shown to have as im-
plications a theory of personal probability, corresponding to the per-

sonalistic view of probability basic to this book, and also a theory of

utility due, in its modern form, to von Neumann and Morgenstern
[V4].

Thereis a transition, occurring in Chapter 8 and maintained through-
out the rest of the book, to a shallower level of the foundationsof sta-
tistics; I might say from pre-statistics to statistics proper. In those
later chapters, it is recognized that the theory developed in the earlier

ones is too highly idealized for immediate application. Some compro-

mises have to be made, and the appropriate ones are sought in an anal-
ysis of some of the inventions andideas of the British-American School.
It will, I hope, be demonstrated thereby that the superficially incom-

patible systems of ideas associated on the one hand with a personalistic

view of probability and on the other with the objectivistically inspired

developments of the British-American School do in fact lend each other

mutual support and clarification.



CHAPTER 2

Preliminary Considerations

on Decision in

the Face of Uncertainty

1 Introduction

Decisions made in the face of uncertainty pervade the life of every

individual and organization. Even animals might be said continually

to make such decisions, and the psychological mechanisms by which

men decide may have much in common with those by which animals
do so. But formal reasoning presumably plays no role in the decisions
of animals, little in those of children, and less than might be wished in
those of men. It may be said to be the purpose of this book, and in-

deed of statistics generally, to discuss the implications of reasoning for

the making of decisions.

Reasoning is commonly associated with logic, but it is obvious, as

many have pointed out, that the implications of what is ordinarily

called logic are meager indeed when uncertainty is to be faced. It has

therefore often been asked whether logic cannot be extended, by prin-
ciples as acceptable as those of logic itself, to bear more fully on un-
certainty. An attempt to extend logic in this way will be begun in
this chapter, differing in two important respects from most, but not

all, other attempts.

First, since logic is concerned with implications among propositions,

many have thought it natural to extend logic by setting up criteria for

the extent to which one proposition tends to imply, or provide evidence
for, another. It seems to me obvious, however, that what is ultimately

wanted is criteria for deciding among possible courses of action; and,

therefore, generalization of the relation of implication seems at best a

roundabout method of attack. It must be admitted that logic itself

does lead to some criteria for decision, because what is implied by a

proposition known to be true is in turn true and sometimesrelevant to

making a decision. Should some notion of partial implication be de-

monstrably even better articulated with decision than is implication it-
6
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self, that would be excellent; but how is such a notion to be sought ex-
cept by explicitly studying decision? Ramsey’s discussion in [R1] of
the point at issue hereis especially forceful.

Second, it is appealing to suppose that, if two individuals in the same

situation, having the same tastes and supplied with the same informa-

tion, act reasonably, they will act in the same way. Such agreement,
belief in which amounts to a necessary (as opposed to a personalistic)

view of probability, is certainly worth looking for. Personally, I be-

lieve that it does not correspond even roughly with reality, but, hav-
ing at the moment no strong argument behind my pessimism on this

point, I do not insist on it. But I do insist that, until the contrary be
demonstrated, we must be prepared to find reasoning inadequate to

bring about complete agreement. In particular, the extensionsof logic

to be adduced in this book will not bring about complete agreement;

and whether enough additional principles to do so, or indeed any addi-

tional principles of much consequence, can be adduced, I do not know.
It may be, and indeed I believe, that there is an element in decision
apart from taste, about which, like taste itself, there is no disputing.

The next four sections of this chapter build up a formal model, or

scheme, of the situation in which a person is faced with uncertainty;
the final two, in terms of this model, motivate and state some of the

few principles that seem to me entitled to be taken as postulates for
rational decision.

2 The person

I am about to build up a highly idealized theory of the behaviorof a

“rational” person with respect to decisions. In doing so will, of course,
have to ask you to agree with me that such and such maximsof behavior

are “rational.’’ In so far as “rational’’ means logical, there is no live

question; and, if I ask your leavethereatall, it is only as a matter of

form.+ But our person is going to have to make up his mind in situa-

tions in which criteria beyond the ordinary ones of logic will be neces-

sary. So, when certain maxims are presented for your consideration,
you must ask yourself whether you try to behave in accordance with

them, or, to put it differently, how you would react if you noticed your-
self violating them.

+ The assumption that a person’s behavioris logical is, of course, far from vacuous.

In particular, such a person cannot be uncertain about decidable mathematical prop-

ositions. This suggests, at least to me, that the tempting program sketched by Polya
[P6] of establishing a theory of the probability of mathematical conjectures cannot

be fully successful in that it cannot lead to a truly formal theory, but de Finetti
[D5] seems more optimistic about the program.+
+ Polya has greatly elaborated his program, but not in the direction of seek-

ing a formal theory. A curious early work by Cérésole (1915) is somewhat
pertinent, and Hacking (1967) argues for the possibility of ineluding math-

ematical uncertainty in a formal theory.
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It is brought out in economic theory that organizations sometimes

behave like individual people, so that a theory originally intended to

apply to people may also apply to (or may even apply better to) such
units as families, corporations, or nations. In view of this possibility,

economic theorists are sometimes reluctant to use the word ‘‘person,”’

or even “individual,” for the behaving units to which they refer; but
for our purpose “person” threatens no confusion, though the possi-

bility of using it in an extended sense may well be borne in mind.

3 The world, and states of the world

A formal description, or model, of what the person is uncertain about

will be needed. To motivate this formal description, let me begin in-

formally by considering a list of examples. The person might be un-

certain about:
1. Whether a particular egg is rotten.

2. Which,if any, in a particular dozen eggs are rotten.

3. The temperature at noon in Chicago yesterday.

4. What the temperature was and will be in the place now covered

by Chicago each noon from January 1, 1 a.p., to January 1, 4000 a.p.

5. The infinite sequence of heads and tails that will result from re-

peated tosses of a particular (everlasting) coin.

6. The complete decimal expansion of z.

7. The exact and entire past, present, and future history of the uni-

verse, understood in any sense, however wide.

These examples have a few features in common, though, if there are

more than a few, it is a discredit to my imagination. Thus, in each

there is some object about which the person is uncertain, an egg, a

dozen eggs, a temperature, a sequence of temperatures, etc. Each ob-

ject admits a certain class of descriptions that might thinkably apply

to it. To illustrate, the egg of Example 1 might be rotten or not; and

the terms of the example are meant to exclude any other description

from consideration, though, of course, a real egg has many other fea-

tures. Again, since any subset of the dozen eggs (including the extreme

cases of all and none at all) might be rotten, there are 2'” descriptions

associated with Example 2. For Example 3 and each subsequent one,

there are an infinite number of descriptions, though the array of de-

scriptions is more complicated in some than in others, reaching theulti-

mate of complexity in Example 7. Example 6 is a little anomalous
in that anything the person does not know about the description of 7

he could know in principle by thinking sufficiently hard about it, that

is, by logic alone. This point, banal to somereaders, needs explanation



2.3] THE WORLD, AND STATES OF THE WORLD 9

for others. If, for example, 7 is understood to be the area of a circle of
unit radius, it follows by logic alone that 7 is not greater than the area

of a square circumscribing the unit circle, that is, r < 4. By an elabo-

ration of this method wz can be computed to any degree of accuracy,
and by other purely logical methods many other facts about m can be
established, such as the fact that a is not a rational number.

In connection with the concepts suggested by the preceding para-

graph, the following nomenclature is proposed as brief, suggestive, and

in reasonable harmony with the usages of statistics and ordinary dis-
course.

Term Definition

the world the object about which the person is
concerned

a, state (of the world) a description of the world, leaving no
relevant aspect undescribed

the true state (of the world) the state that does in fact obtain,i.e.,
the true description of the world

In application of the theory, the question will arise as to which world

to use in a given context. Thus, if the person is interested in the only

brown egg in a dozen, should that egg or the whole dozen be taken as

the world? It will be seen as the theory is developed that in principle

no harm is done by taking the larger of two worlds as a model of the

situation. One is therefore tempted to adopt, once and for all, one

world sufficiently large, say Example 7. The most serious objection to

this is that Example 7 is vague, and some mathematical and philosophi-

cal experience suggests that the vagueness cannot be removed without

ruining the universality of the example. It may also be added that the

use of modest little worlds, tailored to particular contexts, is often a
simplification, the advantage of which is justified by a considerable
body of mathematical experience with related ideas.

The sense in which the world of a dozen eggs is larger than the world

of the one brown egg in the dozen is in somerespects obvious. It may

be well, however, to emphasize that a state of the smaller world corre-

sponds not to one state of the larger, but to a set of states. Thus,

“The brown egg is rotten” describes the smaller world completely, and

therefore is a state of it; but the same statement leaves much about the

larger world unsaid and corresponds to a set of 2'! states of it. In the
sense under discussion a smaller world is derived from a larger by neg-

lecting some distinctions between states, not by ignoring somestates

outright. The latter sort of contraction may be useful in case certain
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states are regarded by the person as virtually impossible so that they

can be ignored.

4 Events

An event is a set of states. For example, in connection with the
world of Example 2, the person might well be concerned with the event
that exactly one egg in the dozen is rotten (an event having 12 states

as elements), or, a little less academically, that at least one of the eggs

is rotten (an event having 2!” — 1 states as elements,i.e., all the states

in the world but one). In connection with the world of Example 3,

the person might be concerned with the event, having an infinite num-

ber of states, that the temperature at noon in Chicago yesterday was
below freezing. To give a final illustration, of a more mathematical

flavor, consider in connection with Example 5 the event that the ratio

of the number of heads to tails approaches 3 as the sequence progresses

to infinity.
In connection with any given world, there are two events that are

of the utmost logical importance, though in ordinary discourse it may

seem banal even to mention their existence. These are the universal

and the vacuous events. The universal event, here to be symbolized
by S, is the event having every state of the world as element. In so

far as ‘“‘world’”’ has a real technical meaning, S is the world. The vacu-

ous event, which can here be safely enough symbolized by the 0 of
arithmetic, is the event having nostates as elements. To illustrate, in

Example 1 the event that the egg is rotten or good is the universal

event, and that it is both rotten and goodis the vacuous event.

It 1s important to be able to express the idea that a given event con-

tains the true state among its elements. English usage seems to offer

no alternative to the rather stuffy expression, ‘‘the event obtains.”’

The theory under development makes no formal reference to time.
In particular, the concept of event as here formulatedis timeless, though

temporal ideas may be employed in the description of particular events.

Thus, it would not be said that Lincoln’s assassination is an event that

occurred in 1865 and that the next return of Halley’s comet is one that
will occur in 1985, but that Lincoln’s assassination in 1865 and the

return of Halley’s comet in, but not before, 1985 are events that

obtain.

Modern mathematical usage, especially that of a branch of mathe-
matics called Boolean algebra, suggests the following table of defini-

tions in connection with the concepts of state and event. Someof

these are synonyms, others abbreviations, and still others new terms

compoundedoutof old.
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Though the notations introduced in Table 1 are very elementary

and of great utility, they are not ordinarily taught except in connec-
tion with logic or relatively advanced mathematics. A set of exercises
illustrating their use is therefore given below in the form of a numbered

list of statements. These statements are true whateverthe sets A, B,

TABLE 1. MATHEMATICAL NOMENCLATURE PERTAINING TO STATE AND EVENTS

Term Definition
(Basic terms)

set event
A, B,C, generic symbols for events
s, s,s” generic symbols for states
S the universal event
0 the vacuous event

(Relations)

seéA. sis an elementof A, 1.e., a state in A.f
AC B(orBD A). A is contained in B,i.e., every element

of A is an element of B.
A =B. A equals B,1.e., A is the sameset as B,

1e., A and B have exactly the same
elements.

(Constructs)

the complement of A with those elements of S that are not in A
respect to S

~A the complement of A with respect to S
the union of the A,’s

UA:
AUB

those elements of S that are elements
of at least one of the sets Aj, Ag, etc.

the union of the A,’s

the union of A and B,1.e., those ele-
ments of S that are elements of A or
B (possibly of both)

those elements of S that are elements
of each of the sets Aj, Ag, etc.

the intersection of the A,’s
the intersection of A and B,1.e., those

elements of S that are elements of
both A and B

the intersection of the A;’s

Ni As
ANB

{ Typographical note: The Porson font of the Greek alphabet (a, B, y, 6, «, f, -*-)
is the one almost always printed, at least in America, when mathematical constants

and variables are denoted by Greek letters. The symbol e used in this and some other

publications to denote ‘element of’ is, however, the epsilon of the Vertical font

(a, 8, y, 8, e, 6, -°°). Some publications use the special symbol €; and someuse ¢,
the Porson epsilon, presumably because of its resemblance to €. The latter usage

entails either using ¢ for two different purposes or else changing fonts in mid alphabet

(a, B, v, 5, e¢, ¢, °°) when constants and variables are denoted by Greek letters.
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C may be. Mathematicians would for the most part verify them by
translating them into English and appealing to commonsense, though
in complicated cases explicit use might be made of Exercise 9. Dia-

grams, called Venn diagrams, in which sets are symbolized by areas,

as illustrated by Figure 1, are often suggestive.

 

~(AUB)

"A |e@”
Figure 1

 

      

It 1s a remarkable and useful fact that any universally valid state-
ment about sets remainsso if, throughout, U is interchanged with N,
0 with S, and C with D. The dualin this sense of each exercise should

be studied along with the exercise itself. For example, the dual of

Exercise 7 is: A > B, if and only if A = A U B. Note that thefirst
parts of Exercises 1 through 6 are dual to the secondparts.

It may be remarked that, if Exercises 1-6 are taken as axioms and

7 as a definition, Exercises 8-21 and also the duality principle follow

formally from them. For example, 10 can be proved thus: By 7, if

Af Bis A, then A Cc B; but, by 1, A NA is A; therefore A C A.
Again, 8 can be proved, using 6, 3, 2, 1, 3, and 6 in that order, thus:

(1) ONA=(ANAA)NAH=(RKANA)NA

=nAN(ANA)=XANA=ANAA =O.

Such formal demonstration is fun and helps develop mathematical skill.

In the present exercises the novice, however, should consider it as a

possible supplement to, but not as a substitute for, demonstration by

interpretation.

If the exercises fail to render the notations familiar, it would be best

to talk with someone to whom they are already familiar or failing that,

to read in any elementary book where the subject is treated, for ex-

ample, Chapter II, ‘‘The Boole-Schroeder Algebra,” in the text of
Lewis and Langford [L7].

Exercises illustrating Boolean algebra

LANA=A=AUA.
2(ANB)NC=AN(BNC); AUB UC=AU(BUOC.

(These facts often render parentheses superfluous.)
83 ANB=BNA;AUB=BUA.
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4 AN(BUQO=(ANBUANC;AU(BNC=
(AUB)N (AUC).

5. SN A=A;0UA =A.
6. AN (~A) =0;A U (WA) =S.
7. ACB, if and only if A = AN B.

8.ONA =O.
9. A = B,if and onlyifAC Band BCA.

10. ACA.
11. (AN BCA.
12. 1f AC B,thn (ANC) C(BNC), and (AUC) C(BUC).
13. (A U B) CC, if and only if A CCand BCC.
144.0C ACS.

15. AN (A U B) =A.
16. ~(~A) = A.
17. ~(4 U B) = (~A) A (~B) (De Morgan’s theorem).
18. ~0 =S.
19. AN (~A UB)=ANB.
20. A C B,if and only if (~B) C (~A).
21. A CB,if and only if A N (~B) = 0.
22. ~(U: A;) = N: (~A,;) (General De Morgan’s theorem).

23. A U ((); Bi) = 1): (A U BY).
24. A 1 ((1):B,) = 1): (A N Bp.
25. (Ui 4s) U (UB) = Ui (4: U Bp.
26. (1): Ad) U (11; Bs) = M)e7 (Ai U B)).
27. A Cc (();B,), if and only if A C B;for every i.

28. (1); By CBC (U: B;) for every j.

5 Consequences, acts, and decisions

To say that a decision is to be madeis to say that one of two or more

acts is to be chosen, or decided on. In deciding on an act, account

must be taken of the possible states of the world, and also of the con-

sequences implicit in each act for each possible state of the world. A

consequence is anything that may happen to the person.

Consider an example. Your wife has just broken five good eggs into

a bowl when you come in and volunteer to finish making the omelet.

A sixth egg, which for some reason must either be used for the omelet

or wasted altogether, lies unbroken beside the bowl. You must de-
cide what to do with this unbroken egg. Perhapsit is not too great an

oversimplification to say that you must decide amongthree acts only,

namely, to break it into the bowl containing the other five, to break it
into a saucer for inspection, or to throw it away without inspection.
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Depending on the state of the egg, each of these three acts will have

some consequence of concern to you, say that indicated by Table 1.

TaBLE 1. AN EXAMPLE ILLUSTRATING ACTS, STATES, AND CONSEQUENCES
 

 

 

State

Act

Good Rotten

break into bowl six-egg omelet no omelet, and five good eggs
destroyed

break into saucer| six-egg omelet, and a saucer| five-egg omelet, and a saucer
to wash to wash

throw away five-egg omelet, and one good| five-egg omelet
egg destroyed  
 

Even the little example concerning the omelet suggests how varied

the things, or experiences, regarded as consequences, can be. They

might in general involve money,life, state of health, approvalof friends,

well-being of others, the will of God, or anything at all about which the
person could possibly be concerned. Consequences might appropriately

be called states of the person, as opposed to states of the world. They

might also be referred to, with some extension of the economic notion
of income, as the possible incomes of the person. In any one problem,

the set of consequences envisaged will be denoted by F, and the indi-

vidual consequences will be denoted by f, g, h, etc. In the omelet ex-
ample, F consists of the six consequences tabulated in Table 1: six-egg

omelet; no omelet, and five good eggs destroyed; etc.

If two different acts had the same consequences in everystate of the

world, there would from the present point of view be no point in con-

sidering them two different acts at all. An act may therefore be iden-

tified with its possible consequences. Or, more formally, an act is a

function attaching a consequenceto each state of the world. The nota-

tion f will be used to denote an act, that is, a function, attaching the

consequence f(s) to the state s. The notation f is logically a better

namefor a function than the more customary f(s) for exactly the same

reason that the word “logarithm” is a better term for logarithm than

“logarithm of x’ would be. The notational distinction involved here is

often justifiably neglected in mathematical work, but we will have spe-

cial need to observe it, at least in connection with acts, as will soon be

explained. Whenseveral acts are to be discussed at once, they may be
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denoted by different letters thus: f, g, h; by the use of primes thus: f,
f’, f’’; or by subscripts thus: f;, f;. The set of all acts available in a

given situation will be denoted by F or a similar symbol. In the ex-

ample of the omelet, F has three acts as elements. If, for example, f

denotes the first of the three acts listed in Table 1, then f is defined

thus:

f(good) = six-egg omelet;

(1)
f(rotten) = no omelet, and five good eggs destroyed.

The argument might be raised that the formal description of decision

that has thus been erected seems inadequate because a person may not

know the consequences of the acts open to him in each state of the

world. He might be so ignorant, for example, as not to be sure whether

one rotten egg will spoil a six-egg omelet. But in that case nothing

could be simpler than to admit that there are four states in the world

corresponding to the two states of the egg and the two conceivable

answers to the culinary question whether one bad egg will spoil a six-

egg omelet. It seems to me obvious that this solution works in the

greatest generality, though a thoroughgoing analysis might not be triv-

ial. A reader interested in the technicalities of this point or that of

the succeeding paragraph will find an extensive discussion of a similar

problem in Chapter II of [V4], where von Neumann and Morgenstern

discuss the reduction of a general game to its reduced form.

Again, the formal description might seem inadequate in that it does

not provide explicitly for the possibility that one decision may lead to

another. Thus, if the omelet should be spoiled by breaking a rotten

egg into it, new questions might arise about what to substitute for
breakfast and how to appease your justifiably furious wife. But, Just

as in the preceding paragraph an apparent shortcoming of the proposed

mode of description was attributed to an incomplete analysis of the

possible states, here I would say that the list of available acts envisaged

in Table 1 is inadequate for the interpretation that has just been put

on the problem. Wherethe single act “‘break into bowl” now stands,
there should be several, such as: “break into bowl, and in case of dis-
aster have toast,” ‘‘break into bowl, and in case of disaster take family

to a neighboring restaurant for breakfast.’’ Appropriate consequences

of these new acts can easily be imagined.

As has just been suggested, what in the ordinary way of thinking

might be regarded as a chain of decisions, one leading to the other in

time, is in the formal description proposed here regarded as a single de-

cision. To put it a little differently, it is proposed that the choice of a
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policy or plan be regarded as a single decision. This point of view,
though not always in so explicit a form, has played a prominentrole
in the statistical advances of the present century. For example, the
great majority of experimentalists, even today, suppose that the func-

tion of statistics and of statisticians is to decide what conclusions to

draw from data gathered in an experiment or other observational pro-
gram. But statisticians hold it to be lacking in foresight to gather data

without a view to the method of analysis to be employed, that is, they

hold that the design and analysis of an experiment should be decided

upon as an articulated whole.

The point of view under discussion may be symbolized by the prov-

erb, ‘‘Look before you leap,” and the one to which it is opposed by the
proverb, “You can cross that bridge when you cometo it.”’ When two

proverbs conflict in this way, it 1s proverbially true that there is some

truth in both of them, but rarely, if ever, can their common truth be

captured by a single pat proverb. One must indeed look before he

leaps, in so far as the looking is not unreasonably time-consuming and
otherwise expensive; but there are innumerable bridges one cannot

afford to cross, unless he happens to come to them.

Carried to its logical extreme, the “Look before you leap” principle
demands that one envisage every conceivable policy for the government

of his whole life (at least from now on) in its most minute details, in
the light of the vast number of unknown states of the world, and decide
here and now on one policy. This is utterly ridiculous, not—as some

might think—because there might later be cause for regret, if things
did not turn out as had been anticipated, but because the task implied
in making such a decision is not even remotely resembled by human
possibility. It 1s even utterly beyond our powerto plan a picnic or to
play a game of chess in accordance with the principle, even when the

world of states and the set of available acts to be envisaged areartifi-
cially reduced to the narrowest reasonable limits.

Though the ‘Look before you leap” principle is preposterous if car-

ried to extremes, I would nonethe less argue that it is the proper sub-

ject of our further discussion, because to cross one’s bridges when one

comes to them means to attack relatively simple problems of decision

by artificially confining attention to so small a world that the “Look
before you leap” principle can be applied there. I am unable to formu-
late criteria for selecting these small worlds and indeed believe that
their selection may be a matter of judgment and experience about which

it is impossible to enunciate complete and sharply defined general prin-

ciples, though something morewill be said in this connection in § 5.5.
On the other hand, it is an operation in which weall necessarily have
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much experience, and one in which there is in practice considerable

agreement.

In view of the ‘‘Look before you leap” principle, acts and decisions,
like events, are timeless. The person decides ‘‘now”’ once forall; there

is nothing for him to wait for, because his one decision providesforall
contingencies. None the less, temporal modes of description, though

translatable into atemporal ones, are often suggestive. Thus, there

will be occasion to analyze and make frequent use of the idea of defer-

ring a decision until an observation relevant to it has been made.

6 The simple ordering of acts with respect to preference

Of two acts f and g, it is possible that the person prefers f to g.

Loosely speaking, this means that, if he were required to decide between

f and g, no other acts being available, he would decide onf.

This procedure for testing preference is not entirely adequate, if only

because it fails to take account of, or even define, the possibility that

the person may not really have any preference between f and g, re-

garding them as equivalent; in which case his choice of f should not be

regarded as significant. If the person really does regard f and g as

equivalent, that is, if he is indifferent between them, then, if f or g

were modified by attaching an arbitrarily small bonus to its conse-

quences in every state, the person’s decision would presumably be for

whichever act was thus modified. This test for indifference does not

provide an altogether satisfactory definition, since it begs the question
to some extent by postulating in effect that the tester knows what con-

stitutes a small bonus. Another attempted solution would be to say
that the person knows by introspection whether he has decided hap-

hazardly or in response to a definite feeling of preference. This sort of

solution seems to me especially objectionable, because I think it of

great importance that preference, and indifference, between f and g be

determined, at least in principle, by decisions between acts and not by

response to introspective questions. In spite of the difficulty of dis-
tinguishing between preference and indifference, I think enough has

been said for us to proceed to a postulational treatment of them.

The very meaning of the relationship of preference that I have at-

tempted to establish in the preceding paragraph implies that the per-

son cannot simultaneously prefer f to g and g tof. In the postulational

treatment of the relationships of preference and indifference, it will be

technically convenient to work with the relation ‘is not preferred to’’

rather than directly with its complementary relation ‘‘is preferred to.”’

Thus, rather than say that it is impossible that both f is preferred to

g and g tof, I might say that, of any two acts f and g,f is not preferred
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to g or g is not preferred to f, possibly both. Again, the definition of

preference suggests that, if f is not preferred to g, and g is not preferred

to h, then it is impossible that f should be preferred to h.

The two assumptions just made about the relation “is not preferred
to”’ is sometimes expressed in ordinary mathematical usage by saying

that the relation is a simple ordering among acts. Formally, a relation
<- among a set of elements z, y, 2 ---, is called a simple ordering, in

this book, if and only if for every x, y, and 2:

1. Hither x <-y, or y <> a.
2. Ifa <-y, and y <-z, then x <-z.

Borrowmg from arithmetic the suggestive abbreviation < for the re-

lation “is not preferred to,’’ the assumption that < is a simple order-

ing can be expressed formally by a postulate, thus:

Pl The relation < is a simple ordering amongacts.

It is noteworthy that P1 makes no explicit reference to states of the

world. Except possibly for mathematical refinements, t it seems to me

that no additional postulates can be formulated without making such

reference—at any rate none will be in this book.

P1 by itself is not very rich in consequences, but one easily proved

theorem following from it may be mentioned.

THEOREM 1 If F is a finite set of acts, there exist f and h in F such
that for all g in F

f<g<h.

Theorem 1 is especially relevant to application of the theory of de-

cision, because I interpret the theory to imply that, if F is finite, the

person will decide on an act h in F to which no other act in F is pre-

ferred, the existence of at least one such h being guaranteed by the

theorem.

It is often appropriate to consider infinite sets of available acts. In

economic contexts, for example, it is generally an inappropriate com-

plication to take explicit account of the possibility that all transactions
must be in integral numbers of pennies. If infinite sets of available acts
are set up and interpreted without some mathematical tact, unrealistic

conclusions are likely to follow. Suppose, for example, that you were

free to choose any income, providedit be definitely less than $100,000
per year. Precisely which income would you choose, abstracting from

the indivisibility of pennies?

{ For example, such topological assumptions about the space with neighborhoods

defined in terms of < as connectedness, local compactnesss, or density.
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It is sometimes convenient to supplement the relation < by other

relations derived from it in accordance with the definitions in Table 1,
analogous definitions being applicable to any simple ordering. Theas-

sumption of simple ordering, P1, has several implications for the de-

rived relations >, <, >, and =. These are generally strongly sug-
gested by the properties of the corresponding relations in arithmetic.

TABLE 1. TABLE OF RELATIONS DERIVED FROM <

New Relation Definition

f> g. g<i.

f < g, ie., g is preferred to f. It is false that g < f.

f > g. g <f.

f= g,ie., fis equivalent to (or f<g,andg<f.
indifferent with respect to) g.

g is between f and h. f<g<horh<g<f.

A few such implications of P1 are listed below, with no intention of

completeness, as exercises for those who may not already be familiar

with the elementary properties of simple ordering.

Exercises

1. The relation > is also a simple ordering.

2. All the relations <, >, <, >, and = are transitive, that is, they

can be validly substituted for < in the second part of the definition of

simple ordering.
3. Between any pair of acts f, g, one and only one of the threerela-

tions <, =, and > holds.
4. If f < g, and g = h, thenf <h.

5. If f = g, then g = f.

6. For any f, f = f.

7. At least one of three acts f, g, h is between the other two. When

can there be more than one such?

Two very different sorts of interpretations can be made of Pl and

the other postulates to be adduced later. First, Pl can be regarded as

a prediction about the behavior of people, or animals, in decision situa-

tions. Second, it can be regarded as a logic-like criterion of consist-

ency in decision situations. For us, the second interpretation is the

only one of direct relevance, but it may be fruitful to discuss both,

calling the first empirical and the second normative.



20 PRELIMINARY CONSIDERATIONS ON DECISION [2.6

Logic itself admits an empirical as well as a normative interpreta-
tion. Thus, if an experimental subject believes certain propositions,

it is to be expected that he will also believe their logical consequences

and disbelieve the negations of these consequences. This theory of hu-

man psychology has somevalidity and is of great practical utility in our

everyday dealings with other people, though it is very crude and ap-

proximate. For one thing, people often do make elementary mistakes

in logic; more refined theories would attribute these mistakes to such
things as accident or subconscious motivation. For another, if any-

one whobelieved the axioms of mathematicsalso believed all that they
imply and nothing that they contradict, mathematical study would be

superfluous for him; such a person would, as has been explained, be

able to state the ten-thousandth or any other term in the decimal ex-
pansion of z on demand. To summarize, logic can be interpreted as a

crude but sometimes handy empirical psychological theory.

The principal value of logic, however, is in connection with its norma-
tive interpretation, that is, as a set of criteria by which to detect, with

sufficient trouble, any inconsistencies there may be among ourbeliefs,

and to derive from the beliefs we already hold such new ones as con-

sistency demands. It does not seem appropriate here to attempt an

analysis of why and in what contexts we wish to be consistent; it is

sufficient to allude to the fact that we often do wish to be so.

Analogously, P1 together with the postulates to be adduced later can

be interpreted as a crude and shallow empirical theory predicting the

behavior of people making decisions. This theory is practical in suitably

limited domains, and everyone in fact makes use of at least some as-

pects of it in predicting the behavior of others. At the same time, the

behavior of people is often at variance with the theory. The departure

is sometimesflagrant, in which case our attitude toward it is much like

that we hold toward slip in logic, calling the departure a mistake and

attributing it to such things as accident and subconscious motivation.

Or, the departure may be detectable only by a long chain of argument

or calculation, the possibilities becoming increasingly complicated as
new postulates are brought to stand beside P1.

Pursuing the analogy with logic, the main use I would make of P1

and its successors is normative, to police my own decisions for consist-

ency and, where possible, to make complicated decisions depend on

simpler ones.

Here it is more pertinent than it was in connection with logic that

something be said of why and whenconsistencyis a desideratum, though

I cannot say much. Suppose someone says to me, “I am a rational

person, that is to say, I seldom, if ever, make mistakes in logic. But I
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behave in flagrant disagreement with your postulates, because they vio-

late my personal taste, and it seems to me moresensible to cater to my
taste than to a theory arbitrarily concocted by you.” I don’t see how

I could really controvert him, but I would be inclined to match his in-
trospection with some of my own. I would,in particular, tell him that,

whenit is explicitly brought to my attention that I have shown a pref-

erence for f as compared with g, for g as compared with h, and for h as

compared with f, I feel uncomfortable in much the same way that I do
whenit is brought to my attention that some of mybeliefs are logically
contradictory. Whenever I examine sucha triple of preferences on my

own part, I find that it is not at all difficult to reverse one of them. In

fact, I find on contemplating the three alleged preferences side by side

that at least one among them is not a preferenceat all, at any rate not

any more.
There is some temptation to explore the possibilities of analyzing

preference among acts as a partial ordering, that is, in effect to replace

part 1 of the definition of simple ordering by the very weak proposition

f < f, admitting that some pairs of acts are incomparable. This would

seem to give expression to introspective sensations of indecision or vacil-

lation, which we may bereluctant to identify with indifference. My
own conjecture is that it would prove a blind alley losing much in power

and advancing little, if at all, in realism; but only an enthusiastic ex-

ploration could shed real light on the question.

7 The sure-thing principle

A businessman contemplates buying a certain piece of property. He

considers the outcome of the next presidential election relevant to the
attractiveness of the purchase. So, to clarify the matter for himself,

he asks whether he would buyif he knew that the Republican candidate

were going to win, and decides that he would do so. Similarly, he con-
siders whether he would buy if he knew that the Democratic candidate

were going to win, and again finds that he would do so. Seeing that he

would buy in either event, he decides that he should buy, even though

he does not know which event obtains, or will obtain, as we would ordi-

narily say. It is all too seldom that a decision can bearrived at on the

basis of the principle used by this businessman, but, except possibly

for the assumption of simple ordering, I know of no other extralogical

principle governing decisions that finds such ready acceptance.

Having suggested what I shall tentatively call the sure-thing prin-

ciple, let me give it relatively formal statement thus: If the person

would not prefer f to g, either knowing that the event B obtained, or

knowing that the event ~B obtained, then he does not prefer f to g.
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Moreover (provided he does not regard B as virtually impossible) if he

would definitely prefer g to f, knowing that B obtained, and, if he would

not prefer f to g, knowing that B did not obtain, then he definitely pre-

fers g to f.

The sure-thing principle cannot appropriately be accepted as a postu-

late in the sense that Pl is, because it would introduce new undefined

technical terms referring to knowledge and possibility that would ren-

der it mathematically useless without still more postulates governing

these terms. It will be preferable to regard the principle as a loose one

that suggests certain formal postulates well articulated with P1.

What technical interpretation can be attached to the idea that f

would be preferred to g, if B were known to obtain? Under any rea-

sonable interpretation, the matter would seem not to depend on the

values f and g assumeat states outside of B. There is, then, no loss

of generality in supposing that f and g agree with each other except in

B,that is, that f(s) = g(s) for all se ~B. Underthis unrestrictive as-
sumption, f and g are surely to be regarded as equivalent given ~B;

that is, they would be considered equivalent, if it were known that B

did not obtain. The first part of the sure-thing principle can now be

interpreted thus: If, after being modified so as to agree with one an-
other outside of B, f is not preferred to g; then f would not be preferred

to g, if B were known. The notion will be expressed formally by say-

ing that f < g given B.+

It is implicit in the argument that has just led to the definition of
f < g given B that, if two acts f and g are so modified in ~B as to agree

with each other, then the order of preference obtaining between the

modified acts will not depend on which of the permitted modifications
was actually carried out. Equivalently, if f and g are twoacts that do

agree with each other in ~B, and f < g; then, if f and g are modified

in ~B in any way such that the modified acts f’ and g’ continue to

agree with each other in ~B,it will also be so that f’ < g’. This as-

sumption is made formally in the postulate P2 below and illustrated

schematically in Figure 1, a kind of diagram I find suggestive in many

such contexts.

In Figure 1, the set S of all states s and the set F of al] consequences
f are represented by horizontal and vertical intervals respectively. In
any such diagram an act f, being a function attaching a value f(s) ¢« F

to each s ¢ S is represented by a graph. This particular diagram graphs

two acts f and g thatagree with each other in ~B, and twootheracts

f’ and g’ that also agree with each other in ~B andarise by modifying

f and g respectively only in ~B, that is, acts agreeing with f and g

respectively in B.

+ In this edition, the corresponding definition D1 on the end papers has

been slightly strengthened to compensate an inadvertent weakness in the end

paper version of P2, pointed out to me by Peter Fishburn.
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P2 If f, g, and f’, g’ are such that:

1. in ~B,f agrees with g, and f’ agrees with g’,

2. in B, f agrees with f’, and g agrees with g’,

3.f<g;
then f’ < g’.

Each of the relations ‘‘< given B”’ is now easily seen to be a simple

ordering, and therelations ““>, <, >, = given B”’are to be defined
mutatis mutandis. It is noteworthy though obvious that, if f(s) = g(s)

for all s ¢ B, then f = g given B.

It is now possible and instructive to give an atemporal analysis of

the following temporally described decision situation: The person must
decide between f andg after he finds out, that is, observes, whether B

obtains; what will his decision be if he finds out that B does in fact

obtain?

Atemporally, the person can submit himself to the consequences of

f or else of g for all s ¢ B, and, independently, he can submit himself to

the consequences of f or else of g for all s e ~B; which alternative will

he decide upon for the s’s in B?

Finally, describing the situation not only atemporally but also quite

formally, the person must decide among four acts defined thus:

hoo agrees with f on B and with f on ~B,

ho; agrees with f on B and with g on ~B,

hig agrees with g on B and with f on ~B,

h,; agrees with g on B and with g on ~B.

The question at issue now takes this form. Supposing that none of
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the four functions is preferred to the particular one h;;, is 7 = 0, or is

i = 1; that is, does h,;; agree with f on B or with g on B?

It is not hard to see that 7 can be 1, if and only iff < g given B. In-

deed, if 7 = 1, ho; < h;;, which means that f < g given B. Arguing in

the opposite direction, if f < g given B; then hog < hyo, and hg; < hy.

Suppose now, for definiteness, hig < h,;, then none of the four possi-

bilities is preferred to h,,; this proves the point in question.

It may fairly be said that the person considers B virtually impossible,

or that B is null; if and only if, for all f and g, f < g given B. Indeed,

if B is null in this sense, the values acts take on elements of B areirrele-

vant to all decisions.

Several trivial conclusions about null events are listed as a compound

theorem, all components but the last of which have immediate intuitive

interpretations.

THEOREM 1

1. The vacuousevent,0, is null.

B is null, if and only if, for every f and g, f = g given B.

If B is null, and B > C; then is null.

If ~B is null; f < g given B,if and only if f < g.

f < g given S,if and only if f < g.

If S is null, f = g for every f andg.Om
o
R

oo
bo

Component 6 of Theorem 1 requires comment, because it corresponds

to a pathological situation. In case S is null, it is not really intuitive

to say that S (and therefore every event) is virtually impossible. The

interpretation is rather that the person simply doesn’t care what hap-

pens to him. This is imaginable, especially undera suitably restricted

interpretation of F’, but it is uninteresting and will accordingly be ruled

out by a later postulate, P5.

A finite set of events B; is a partition of B; if B; N B; = 0, for? ¥ J,
and (J; B; = B. With this definition, it is easily proved by arithmetic
induction that

THEOREM 2 If B; is a partition of B, and f < g given B; for each 1,

then f < g given B. If, in addition, f < g given B;for at least one J,

then f < g given B.

COROLLARY | The union of any finite numberof null events is null.

There are still other interesting consequences of Theorem 2, which

may be most conveniently mentioned informally. If, in Theorem 2,

B = S (or, more generally, if ~B is null), it is superfluous to say “given
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B” in the conclusions of the theorem. If f = g given B; for each 1,

then f = g given B. So much for the consequences of P2.
Acts that are constant, that is, acts whose consequences are inde-

pendent of the state of the world, are of special interest. In particular,

they lead to a natural definition of preference among consequences in

terms of preference among acts. Following ordinary mathematical us-

age, f = g will mean thatf is identically g, that is, for every s, f(s) = g.
A formal definition of preference among consequences can now con-

veniently be expressed thus. For any consequences g and g’, g < q’;

if and only if, when f = g and f’ = 9’, f < f’.

In the same spirit, meaning can be assigned to such expressions as

f <g,g < f given B,etc., and I will freely use such expressions without

defining them explicitly. In particular, f < g given B has a natural

meaning, but one that is rendered superfluous by the next postulate,

P3.
Incidentally, it is now evident how awkward for us it would be to

use f(s) for f; because f(s) < g(s) is a statement about the consequences

f(s) and g(s), whereas f < g is a statement about acts, and we will

have frequent need for both sorts of statements.

Suppose that f = g, and f’ = g’, and that g < g’, is it reasonable to
admit that, for some B, f > f’ given B? That depends largely on the

interpretation we choose to make of our technical terms, as an example

helps to bring out.+

Before going on a picnic with friends, a person decides to buy a

bathing suit or a tennis racket, not having at the moment enough money

for both. If we call possession of the tennis racket and possession of

the bathing suit consequences, then we must say that the consequences

of his decision will be independent of where the picnic is actually held.

If the person prefers the bathing suit, this decision would presumably

be reversed, if he learned that the picnic were not going to be held

near water. Thus the question whether it can happen that f > f’

given B would be answeredin the affirmative. But, underthe interpre-
tation of ‘act’? and “consequence” I am trying to formulate, this is

not the correct analysis of the situation. The possession of the tennis
racket and the possession of the bathing suit are to be regardedas acts,

not consequences. (It would be equivalent and more in accordance

with ordinary discourse to say that the coming into possession, or the

buying, of them are acts.) The consequences relevant to the decision

are such as these: a refreshing swim with friends, sitting on a shadeless

beach twiddling a brand-new tennis racket while one’s friends swim,

etc. It seemsclear that, if this analysis is carried to its limit, the ques-

tion at issue must be answered in the negative; and I therefore propose

+ The role of such freedom throughout science is brilliantly discussed by

Quine (1951).
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to assume the negative answer as a postulate. The postulate is so

couched as not only to assert that knowledge of an event cannot estab-

lish a new preference among consequences or reverse an old one, but

also to assert that, if the event is not null, no preference among conse-

quences can be reduced to indifference by knowledge of an event.

P3 If f = g, f' = g’, and B is not null; then f < f’ given B,if and
only ifg < g’.

Applying Theorem 2, it is obvious that

THEOREM 3 If B; is a partition of B; and if (for all 7 and s) f; < gi,
f(s) = fi, and g(s) = g; when s ¢ B;; then f < g given B. If, in addi-

tion, f; < g; for some 7 for which B; is not null, then f < g given B.

Theorem 3 is logically equivalent to P3 in the presence of P1 and P2,

and Theorem 3 can as easily be given an intuitive basis as the postulate

P3. Therefore the assumption of P3 as a postulate instead of Theorem

3 1s only a matter of taste.

Theorem 3 has been widely accepted by the British-American School

of statisticians, special emphasis having been given to it, in connection

with his notion of admissibility, by the late Abraham Wald. I believe,
as will be more fully explained later, that much of its particular sig-

nificance for that school stems from the implication that, if several

different people agree in their preferences among consequences, then

they must also agree in their preferences among certain acts.

This brings the present chapter to a natural conclusion, since the

further postulates to be proposed can be more conveniently introduced

in connection with the uses to which they are put in later chapters.



CHAPTER 3

Personal Probability

1 Introduction

I personally consider it more probable that a Republican president

will be elected in 1996 than that it will snow in Chicago sometimein the

month of May, 1994. But even this late spring snow seems to me more

probable than that Adolf Hitler is still alive. Many, after careful con-

sideration, are convinced that such statements about probability to a

person mean precisely nothing, or at any rate that they mean nothing

precisely. At the opposite extreme, others hold the meaning to be so

self-evident as to be unanalyzable. An intermediate position’is taken
in this chapter, where a particular interpretation of probability to a
person is given in terms of the theory of consistent decision in the face

of uncertainty, the exposition of which was begun in the last chapter.

Muchas I hope that the notion of probability defined here is consistent

with ordinary usage, it should be judged by the contribution it makes
to the theory of decision, not by the accuracy with which it analyzes
ordinary usage.

Perhaps thefirst way that suggests itself to find out which of two

events a person considers more probable is simply to ask him. It might
even be argued, though I think fallaciously, that, since the question

concerns whatis inside the person’s head, there can be no other method,
just as we havelittle, if any, access to a person’s dreams except through

his verbal report. Attempts to define the relative probability of a pair

of events in terms of the answers people give to direct interrogation
has justifiably met with antipathy from most statistical theorists. In
the first place, many doubt that the concept “more probable to me
than” is an intuitive one, open to no ambiguity and yet admitting no

further analysis. Even if the concept were so completely intuitive,

which might justify direct interrogation as a subject worthy of some

psychological study, what could such interrogation have to do with the

behavior of a person in the face of uncertainty, except of course for his

verbal behavior underinterrogation? If the state of mind in question

is not capable of manifesting itself in somesort of extraverbal behavior,

27
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it is extraneous to our main interest. If, on the other hand, it does
manifest itself through more material behavior, that should, at least

in principle, imply the possibility of testing whether a person holds

one event to be more probable than another, by some behavior express-

ing, and giving meaning to, his judgment. It would, in short, be pref-

erable, at least in principle, to interrogate the person, not literally

through his verbal answer to verbal questions, but rather in a figurative

sense somewhat reminiscent of that in which a scientific experiment is

sometimes spoken of as an interrogation of nature. Several schemes of
behavioral, as opposed to direct, interrogation have been proposed.
The one introduced below was suggested to me by a passage of de Fi-

netti’s (on pp. 5-6 of [D2]), though the passage itself does not empha-
size behavioral interrogation.

To illustrate the scheme, our idealized person has just taken two

eggs from his icebox and holds them unbroken in his hand. We wonder

whether he thinks it more probable that the brown one is good than

that the white one is. Our curiosity being real, we are prepared to

pay, if necessary, to have it satisfied. We therefore address him thus:

‘“We see that you are about to open those eggs. If you will be so co-

operative as to guess that one or the other egg is good, we will pay you

a dollar, should your guess prove correct. If incorrect, you and we

are quits, except that we will in any event exchange your two eggs for

two of guaranteed goodness.”’ If under these circumstances the person

stakes his chance for the dollar on the brown egg, it seems to me to

correspond well with ordinary usage to say that it is more probable to

him that the brown one is good than that the white one is. Though,
of course, I hope for your agreement on this analysis of ordinary usage,

I repeat that it is not really fundamental to the subsequent argument,

as indeed no such lexicographical point could be; for the utility of a

construct or definition depends only secondarily on the aptness of the

expression in terms of whichit is couched.

There is a mode of interrogation intermediate between what I have

called the behavioral and the direct. One can, namely, ask the person,
not how he feels, but what he would do in such and such situation.

In so far as the theory of decision under development is regarded as

an empirical one, the intermediate mode is a compromise between econ-

omy and rigor. But, in the theory’s more important normative inter-

pretation as a set of criteria of consistency for us to apply to our own

decisions, the intermediate mode seems to me to be just the nght

one.
Though it entails digression from the main theme, some readers may

be interested in a few words about actual experimentation on strictly
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empirical behavioral interrogation. Some key references bearing on
the subject are [M4], [R3], and [W8].

In the first place, a little reflection shows that an experiment in which

human subjects are required to decide among actual acts may be very

expensive in time, money, and effort, especially if the consequences en-

visaged are expensive to provide, a point discussed in detail in [W8].

Questions of morality, and even of legality, toward the subject may

further complicate the investigation. For example, Mosteller and No-

gee, as described in Section 3B of [M4], made certain that every sub-

ject in one experiment of theirs would be financially benefited, though

they kept this security secret from the subjects.

There is also a difficulty in principle. Suppose that I wish to dis-

cover a person’s preferences among several acts—three acts f, g, and h

are sufficient to bring out the difficulty. If I in good faith offer him the

opportunity to decide amongall three, and he decides on f; then there

is no further possibility of discovering what his preference was between

gandh. Suppose, for example, that a hot man actually prefers a swim,

a shower, and a glass of beer, in that order. Once he decides on, and

thereby becomes entitled to, the swim, he can no longer appropriately

be asked to decide between shower and beer. A naive attempt to do so

would result in his deciding between a swim and shower on the one

hand, and a swim and beer on the other—an altogether different situa-

tion from the one intended.

The difficulty can sometimes be met by special devices. For example,

the investigator might wait for a different but “similar” occasion. But

W. Allen Wallis has mentioned to me an interesting and very general
device, which will now be described, with his permission. t

Suppose that the hot man is instructed to rank the three acts in

order, subject to the consideration that two of them will be drawn at

random (e.g., by card drawing or dice rolling), and that he is then to

have whichever of these two acts he has assigned the lower rank. He

is thus called on to select one of six acts, that is, one of the six possible
rankings. If he does, for example, select the ranking {swim, shower,

beer}, it follows easily from the theory of decision thus far developed
that for him swim > shower > beer, barring the farfetched possibility

that he regards one or more of the three drawings as virtually impossi-

ble and provided that his preference among the three acts swim, shower,

beer given any of the three drawingsis the sameashis original prefer-

ence. The investigator could in practice design the drawing in such a

| I have since seen this same device used by M.Allais.
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way as to be well satisfied that the required “irrelevance” obtained, ex-
cept for very “superstitious” people. This ends the present digression on

actual behavioral interrogation.

The purpose of this chapter is to explore the concept of personal

probability | that was indicated in the example about the two eggs.

The concept will be put on a formal basis in § 2 by introducing two new

postulates, P4 and P5, to be used in conjunction with P1-3. This will

lead to a formal analysis of the notion that one event is no more prob-

able than another. Several deductions about this notion reminiscent

of mathematical properties ordinarily attributed to probability will be

made; but only in § 3, after adjunction of still another postulate, P6,
can the notion be connected quantitatively with what mathematicians

ordinarily call mathematical probability. Section 4 is devoted to some

mathematically technical criticisms of the notion of personal proba-

bility, which can safely be skipped or skimmedby those not interested

in such matters. Section 5 discusses conditional personal probability;

6, the approach to certainty through a long sequence of conditionally

independent relevant observations; and 7, an extension of the concept

of a sequence of independent events, particularly interesting from the

viewpoint of personal probability.

2 Qualitative personal probability

When I spoke in the introductory section of offering the person a
dollar if his guess about the egg proved correct, it was tacitly assumed

that his guess would not be affected by the amount of the prize offered.

That seems to me correct in principle. It would, for example, seem un-

reasonable for the person with the two eggs to reverse his decision if

the prize were reduced from a dollar to a penny. He might reverse

himself in going from a penny to a dollar, because he might not have

found it worth his trouble to give careful consideration for too small a

prize. I think the anomaly can best be met by deliberately pretending

that consideration costs the person nothing, though that is far from the

truth in actual complicated situations. It might, on the other hand,

be stimulating, and it is certainly more realistic, to think of considera-

tion or calculation as itself an act on which the person must decide.

Though I have not explored the latter possibility carefully, I suspect

that any attempt to do so formally leads to fruitless and endless re-

gression.

+ The term “personal probability’? was suggested to me orally by Thornton C.

Fry. Some other terms suggested for the same concept are “subjective probability,”

“psychological probability,’ and “degree of conviction.”
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To offer a prize in case A obtains means to make available to the per-

son an act f4 such that

fa(s) =f fors¢A,
1
m) fa(s) =f’ forse ~A,

where f’ < f. The assumption that on which of two events the person

will choose to stake a given prize does not depend on the prize itself

is expressed by the following postulate, which looks formidable only

because it contains four definitions like (1). The reader may find it
helpful to graph an instance of the postulate in the spirit of Figure

2.7.1.

P4 sf f, f’, 9, 9'; A, B; fa, fe, ga, Se are such that:

1. i <f, g <9;

2a. fa(s) =f, ga(s) =9 forse A,

fats) =f, ga(s) = 9 forse ~A;

2b. fa(s) =f, ga(s) = 9 for s ¢ B,

fas) =f’, gas) =9' forse ~B;

3. fa < fa;

then ga < gp.

In the light of P4, it will be said that A is not more probable than
B, abbreviated A < B; if and only if when f’ < f and fa, fg are such
that

fa(s) =f forse A, fa(s)=f' forse ~A,

fa(s) =f forseB, fa(s) =f’ forse ~B;

then fA < fp.

The assumption that there is at least one worth-while prize is in-
nocuous; for, though a context failing to satisfy it might arise, such a

context would be too trivial to merit study. I therefore propose the

following postulate.

P5 There is at least one pair of consequencesf, f’ such that f’ < f.

All the implications to be deduced from P1-—5 for some time to come

are themselves implications of the three easily established conclusions,
which are introduced by the following definition and theorem.
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A relation <- between eventsis a qualitative probability; if and only

if, for all events B, C, D,

1. <+ is a simple ordering,

2. B<-C, if and only if BUD<-C UD, provided BN D=
CN D=0,
3.0<:-B,0<-S.

It may be helpful to remark that the second part of the above defini-

tion says, in effect, that it will not affect the person’s guess to offer
him a consolation prize in case neither B nor C obtains, but D happens
to.

THEOREM 1 The relation < as applied to events is a qualitative

probability.

You will have no difficulty in proving that Theorem 1 follows from

P1-5. Theorem 1 has many consequences of the sort one would expect

if < meant “not more probable than” in any sense having the mathe-

matical properties ordinarily attributed to numerical probability. This

is illustrated by the following list of exercises, which should not only
be proved formally, but also interpreted intuitively. One easy exercise
not included in the list below, because it is not strictly a consequence

of Theorem 1 alone, is to show that B = 0, if and only if B is a null

event.

Exercises

LifbBcc,thnO<B<CC<S.

2a. If BN D=C fl D=0; then B < C, if and only if BUD<
CU D.

2b. 1f0<C,andBNC=0;thnB< BUC.
3. If B< C, then ~C < ~B; and conversely. Hint: Draw a Venn

diagram of the fourfold partition BNC, ~B NC, BN ~C, ~BN
~C.

4a. If B< CrandCN D=0;thn BUD<CUD.
4b. If B < 0; then B U C = C, and B = 0.
4c. fS< Bs thn BN C=C,andB=S.
44. BUD<CUD,andBN D=0;thenB< C.
5a. If B, < Ch, Bo < Co, and C1 M C2 = QO; then B, U Bo < Ci U

C.. Hint: Exhibit By and C, in the form Bz = Bo’ UQ,Ci = Cy’ UQ

with By’, Cy’, Q disjoint. Justify the following calculation, step by step.

B, U By’ < C, U Bo’ = C,' U Beg < Cy’ U Cs,

whence B, U By, < C, U Co.
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5b. If B, UB, <C; UC, and B, N Be = 0; then By <C, or

Bo < Co.

6. If B< ~B and C > ~C, then B < C; equality holding in the

conclusion, if and only if it holds in both parts of the hypothesis.

3 Quantitative personal probability

As I have said, the exercises terminating the preceding section sug-

gest a close mathematical parallelism between personal probability and

the mathematical properties ordinarily attributed to probability, though

the postulates assumed thusfar do not (as could easily be demonstrated)

make it possible to deduce from this parallelism the unambiguous as-

signment of a numerical probability to each event. But, if, for example

(following de Finetti [D2]), a new postulate asserting that S can be
partitioned into an arbitrarily large number of equivalent subsets were

assumed, it is pretty clear (and de Finetti explicitly shows in [D2)])

that numerical probabilities could be so assigned. It might fairly be

objected that such a postulate would be flagrantly ad hoc. On the

other hand, such a postulate could be maderelatively acceptable by

observing that it will obtain if, for example, in all the world thereis a

coin that the person is firmly convincedis fair, that is, a coin such that

any finite sequence of heads andtails is for him no more probable than

any other sequenceof the same length; though such a coinis, to be sure,

a considerable idealization.

After some general and abstract discussion of the mathematical con-

nection between qualitative and quantitative probability, a postulate,

P6, will be proposed, which, though logically actually stronger than the

assumption that there are partitions of S into equivalent events, seems

to me even easier to accept. Once P6 is accepted, there will scarcely

again be any needto refer directly to qualitative probability.

To begin with, let me say precisely what is meant, in the present

context, by a probability measure, this being the standard term for

what I would here otherwise prefer to call a quantitative probability,

and what it means for a probability measure to be in agreement with

a qualitative probability.

A probability measure on a set S is a function P(B) attaching to

each B C S a real numbersuch that:

1. P(B) > 0 for every B.

21f&BNC=0,P(B UC) = P(B) + PC).
3. P(S) = 1.

This definition, or something verylike it, is at the root of all ordinary

mathematical work in probability.
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If S carries a probability measure P and a qualitative probability

<+ such that, for every B, C, P(B) < P(O), if and only if B <-C;
then P (strictly) agrees with <-. If B<-+C implies P(B) < P(C),
then P almost agrees with <-. This terminology is obviously con-

sistent in that, if P agrees, that is, strictly agrees, with <:, P also al-

most agrees with <-. It is also easily seen that, if P agrees with <,,

then knowledge of P implies knowledge of <-. But, if P only almost

agrees with <-, it may happen, as examples in § 4 show, that P(B) =

P(C), though B <: C, so that knowledge of P may imply only imperfect

knowledge of <.-.
The rest of this section is mainly a study of qualitative probabilities

generally, with a view to discovering interesting conditions under which

there is a probability measure that agrees, either strictly or almost,

with a given qualitative probability. These conditions suggest a new

postulate governing the special qualitative probability <. The work

is necessarily rather tedious and burdened with detail. It will, there-

fore, be wise for most readers to skim over the material, omitting the
proofs but noticing the more obvious logical connections among the

theorems and definitions. Some may then find themselves sufficiently

interested in the details to return and read or supply the proofs, as the

case may require. Others may safely go forward. Here, as elsewhere,

technical terms of interest for the moment only are introduced with

italics rather than boldface.
An n-fold almost uniform partition of B is an n-fold partition of B

such that the union of no r elements of the partition is more probable

than that of any r + 1 elements.

THEOREM 1 If there exist n-fold almost uniform partitions of B for

arbitrarily large values of n, then there exist m-fold almost uniform par-

titions for every positive integer m.

Proor. Let B;,7 = 1, ---, n, be an n-fold almost uniform partition

(of B) with n > m?. Using the euclidean algorithm, let n be written
n = am-+ b, where a and 6 are integers such that m < a and0O <b <

m. Now let C;, 7 = 1, ---, m, be any m-fold partition such that each

C;; is the union of a or a + 1 of the B,’s. The unionof any r of the C;’s,
r < m,is the union of from ar to (a + 1)r of the B,’s and the union of

r+ 1 of the C;’s is that of from a(r + 1) to (a + 1)(r + 1) of the B;,’s.

Since r<mc<a, (a+ 1ljr=ar+r<ar+a=a(r+1).@

THEOREM 2 If there exist n-fold almost uniform partitions of S for

arbitrarily large values of n, then there is one and only one probability

measure P that almost agrees with <-. Furthermore,for any p, 0 < p
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<1, any BCS, and the unique P just defined, there exists CC B
such that P(C) = pP(B).t

Proor. The proof is broken into a sequence of easy steps, left, for

the most part, to the reader. These steps are groupedin blocks, only

the last step in each being needed in the proof of later steps.

1. There exist n-fold almost uniform partitions of S for every posi-

tive n.

2a. If pi, ---, Pn are real numbers such that 0 < p, < po <---< Mn,

and 2p; = 1; then

(1) p< r/n, r=leyn.
1

2b. If further

r+1 n

Dd Pi = » Pi forr=1,--::,n—1;

1 n—r+l1

then

2) Lp = (r—1)/n, and DY mS (r+ 1)/n.
1 n—r-+1

2c. The sum of any r of the p,’s lies between (r — 1)/n and (r + 1)/n.

2d. If P almost agrees with <-, and C(r, n) denotes here and later

in this proof any union of r elements of any n-fold almost uniform par-

tition (not necessarily the same from one context to another), then

(3) (r — 1)/n S$ P(C(r, n)) S (+ 1)/n.

3. Let k(B, n) denote the largest integer r (possibly zero) such that

some C(r, n) 1s not more probable than B. The function k(B, n) is
well-defined, and 0 < k(B, n) < n.

4a. For any P that almost agrees with <-,

(4) (k(B, n) — 1)/n < P(B) S (k(B, n) + 2)/n.

4b. At most one P can almost agree with <:-

5a. If B; and C; are n-fold partitions (not necessarily almost uniform)

so indexed that B, <- By <---- <-B,, and Cy >: C2, >: +--+ > Cn;

then

(5) UB> UC, 1r=0,---,n-1.

+ Technical note: The mathematical essence of the terminal conclusion of this
theorem, and other conclusions related to it, are given by Sobczyk and Hammer
[S15]. It might be conjectured, in analogy with countably additive measures, that

this conclusion means only that P is non-atomic, but that conjecture is false [N5].+

+ A key reference for further information on the structure of finitely addi-

-tive measures is (Dubins 1969). Sustained use of finitely additive prohahility
is illustrated in (Dubins and Savage 1965).
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5b. If in addition the two partitions are almost uniform, then

r r+2

(6) Ucis- U B, r=1,---,n—2.
1

r+2

Proot. Y Bi >-U Bi>Uer>-U cs

oc. Theunion ofany r elements of one almost uniform n-fold parti-

tion is not more probable than the union of any r + 2 elements of an-

other.

5d. If BM C = 0, then

(7) K(B,n) + k(C,n) —-2<S kKBUC, n) < kB, n) +k, n) +1.

6a. If a C(r, m) is not more probable than a C(s, n), then

r—2 s+ 2 10 (s(tm n mn

(Consider an mn-fold almost uniform partition, and use the easily es-

tablished fact that the union of any ¢ + 2 elements of an almost uni-

form partition is actually more probable than that of any ¢ elements.)

k(B, m) _ kB, n) 13
coy 2ys.

m nN m nN mn

 

 

6b.  

 

 

6c. It 1s meaningful to define P(B) by

k(B, n) 
n> © n

that is, the limit exists.

7. P(B), as just defined, is a probability measure, and the only one

that almost agrees with <:.

8a. There exist two infinite sequences of sets C, and D, contained

in B such that:

1.C, A Dz =
2. Ch Cc Chai; and Dy Cc Dn41,

3. P(Ca) = pP(B) — n™,
4. P(Da) > (1 — p)P(B) — n=

8b. P(UnCn) > eP(B), P(Un Dn) > (1 — »)P(B), and (Un Cx) A
(U, Dn) = 0.

8c. P(Un Cn) = pP(B). @

A few technical terms of localized interest only are now introduced.

If and only if, for every B >- 0, there is a partition of S, no element of
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which is as probable as B; <: is fine.+ Band are almost equiva-
lent, written B <=- C; if and only if for all non-null G and A such that
BNG=CNH=0, BUG>-C and CUHAH>-B. It is obvious

that equivalent events are also almost equivalent. Finally, if and only

if every pair of almost equivalent events are equivalent, <: is tight.

THEOREM 3

Hyp. <- is fine.

CoNcL. 1. If B>-0, and C >- 0; there exists DCC such that

0<-D<.-B.

2,.1f B<=-G, C=-H, and BNC=GNH=0; then BUC
<=GU H.

38. WB=-C,G=H,BUCz=-GUHA,andBNC=GNA =0;
then B =- G.

4, Any partition of S into almost equivalent events is an almost uni-

form partition.

5. Any event can be partitioned into two almost equivalent events.

6. Any event can be partitioned into 2” almost equivalent events,

for any non-negative integer n.

7. There exists one and only one P that almost agrees with <-.

For any B, p (0 < p < 1), and the unique P just defined, there ex-

ists C C B such that P(C) = pP(B). If B>-0, P(B)>0. Finally,
B =-C, if and only if P(B) = P(C).

Proor. The parts of the conclusion are so arranged that each is easy

to prove in the light of its predecessors, but proofs for Parts 3 and 5

are given below. It may be remarked thatall parts are trivial conse-

quences of the last one and havetherefore relatively little importance in

themselves.

Part 3. Suppose, for example, BUE<-G, BN EHE=0, and
E >-0; and consider two cases:

(a) If BUC <-S, it may be assumed without loss of generality
that C N EF = 0, whence (B UC) UE >-GU 4H. Therefore, C >- H.

Let E be partitioned into two non-null events £; and £2; then (since
it is absurd to suppose that the part of G outside of C is null, which

would imply C >-G >-B U E) there is in G an EL’ such that C | E’
=O0<-E’<-H,. Now CUEH’>- HUE’ >-G>-(BU £,) U &,,
whence C >: B U E), whichis absurd.

(b) If BU C =-S,it can (setting aside the easy special case C M G
=-(Q) be shown successively that: HUG=-S; C<-BUE <:-G,
where E>-0 and ECCNG; (BNAUEK<-(G4NC; (CNA)
<- (GM B); and H U E <:G, which establishes a contradiction.

+ In thefirst edition, this definition was a trifle too weak, as pointed out by
Malcolm Pike.
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Part 5. There exists a sequence of threefold partitions of B, say

C,, Dn, and G,, such that:

1.C, UG, >+ Dn, and D, U G, >: Ch,

2. Cn41 ~ Cn, Dn4 — Dp, and Gn41 Cc Gn,

3. ~Ga4i MN Gr 2+ Gr41; whence G,- contains two disjoint events

each at least as probable as G,,41.

For any H >-0, G, <:H for sufficiently large n, as may be seen by

considering some m-fold partition no element of which is more probable

than H,and letting n be such that 2"—’ > m. If G, were more probable
than H and therefore more probable than each elementof the partition,

it would follow that the union of all elements of the partition, namely

S, is less probable than G,, which would be absurd.
The two events By = UnCn, Bo = (Un Dn) U (Fn Gr) partition B

in the required fashion. @

CorROLLaRY 1 If <- is both fine and tight; the only probability

measure that almost agrees with <- strictly agrees with it, and there

exist partitions of S into arbitrarily many equivalent events.

THEOREM 4 <-is both fine andtight, if and only if, for every B <-C,

there exists a partition of S the union of each element of which with B

is less probable than C.

The proof of this theorem is easy.

In the light of Theorems 3 and 4, I tentatively propose the following

postulate, P6’, governing the relation < among events, and thereby

the relation < amongacts.

P6’ If B < C, there exists a partition of S the union of each ele-
ment of which with B is less probable than C.

It seems to me rathereasier to justify the assumption of P6’, which

says in effect that < is both fine and tight, than to justify the assump-

tion, which was made by de Finetti [D2] and by Koopman [K9], [K10],

[K11] in closely related contexts, that there exist partitions of S into
arbitrarily many equivalent events, though logically P6’ implies that

assumption and somewhat more. Suppose, for example, that you your-

self consider B < C, that is, that you would definitely rather stake a
gain in your fortune on C than on B. Consider the partition of your

own world into 2” events each of which corresponds to a particular

sequence of n heads andtails, thrown by yourself, with a coin of your

own choosing. It seems to me that you could easily choose such a
coin and choose n sufficiently large so that you would continue to pre-
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fer to stake your gain on C, rather than on the union of B and any par-

ticular sequence of n heads and tails. For you to be able to do so, you

need by no means consider every sequence of heads and tails equally

probable.

It would, however, be disingenuous not to mention that some who
have worked on a closely related concept of probability, notably Keynes
[K4] and Koopman [K9], [K10], [K11], would object to P6’ precisely

because it implies that the agreement between numerical probability

and qualitative probability is strict. Koopman, for example, holds

that, if 4d > B and A  B, then A 1s necessarily more probable than

B, though the numerical probability of A may well be the sameas that

of B. Thus, if a marksman shootsat a wall, it is logically contradictory

that his bullet should fall nowhere at all, but it is logically consistent

that a prescribed mathematically ideal point on the bullet should strike

a prescribed mathematically ideal line on the wall. Since the event of

the prescribed point hitting a prescribedlineis logically possible, Koop-
man would insist that the event is more probable than the vacuous

event, namely that the bullet goes nowhere, though the numerical proba-

bility of both events is zero. I do not take direct issue with Koopman,

because he is presumably talking about a somewhat different concept

of probability from the particular relation <; but I do not think it

appropriate to suppose that the person would distinctly rather stake a

gain on the line than on the null set. The issue is not really either an

empirical or a normative one, because the point and line in question

are mathematical idealizations. If the point and line are replaced by a

dot and a band,respectively, then, of course, no matter how small the

dot and band maybe, the probability of the one hitting the other is

greater than that of the vacuous event. But it seems to me entirely

a matter of taste, conditioned by mathematical experience, to decide

what idealization to make if the dot and bandarereplaced by their ideal-

ized limits. So much for hair splitting.
Asfar as the theory of probability per se is concerned, postulate P6’

is all that need be assumed, but in Chapter 5 a slightly stronger assump-

tion will be needed that bears on acts generally, not only on those very

special acts by which probability is defined. Therefore, I am about to

propose a postulate, P6, that obviously implies P6’ and will therefore

supersede it. This stronger postulate seems to me acceptable for the

same reason that P6’ itself does.

P6 If g < h, and f is any consequence; then there exists a parti-

tion of S such that, if g or h is so modified on any one element of the

partition as to take the value f at every s there, other values being un-
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disturbed; then the modified g remains less than h, or g remainsless

than the modified h, as the case may require.

4 Some mathematical details

Are there qualitative probabilities that are both fine and tight, that

are fine but not tight, that are tight but not fine, that are neither fine

nor tight but do have one and only one almost agreeing probability
measure? Examples answering all these questions in the affirmative

will be exhibited in this section.

To indicate a different topic that will also be treated here, those of

you who have had more than elementary experience with mathematical

treatments of probability know that it is not usual to suppose, as has

been done here, that all sets have a numerical probability, but rather

that a sufficiently rich class of sets do so, the remainder being consid-

ered unmeasurable. Again, it is usual to suppose that, if each of an

infinite sequence of disjoint sets is measurable, the probability of their
union is the sum of their probabilities, that is, probability measures

are generally assumed to be countably additive. But the theory being

developed here does assume that probability is defined for all events,

that is, for all sets of states, and it does not imply countable additivity,

but only finite additivity. The present section not only answers the

questions raised in the preceding paragraph, but also discusses the re-

lation of the notions of limited domain of definition and of countable

additivity to the theory of probability developed here. The general

conclusions of this discussion are: First, there is no technical obstacle

to working with a limited domain of definition, and, except for exposi-

tory complications, it might have been mildly preferable to have done

so throughout. Second, it is a little better not to assume countable

additivity as a postulate, but rather as a special hypothesis in certain

contexts. <A different and much more extensive treatment of these

questions has been given by de Fimetti [D4].

Finally, before entering upon the main technical work of this sec-

tion, one easy question about the relation between qualitative and

quantitative probability will be answered and several as yet unanswered

ones will be raised.

Are there qualitative probabilities without any strictly agreeing meas-

ure? Yes, because any qualitative probability that is fine but not

tight is easily shown to provide an example. It is, however, an open

question, stressed by de Finetti [D5], whether a qualitative probability

on a finite S always has strictly agreeing measure. It would also be

technically interesting to know about the existence of almost agreeing

measures in the same context.t+

+ Even this has since been answered in the negative by Kraft, Pratt, and

Seidenherg (1959). See also (Fishburn 1970, pp. 210-211).



3.4] SOME MATHEMATICAL DETAILS 41

The matters to be treated in the rest of this section are rather tech-

nical mathematically, and, though I would not delete them altogether,

it does not seem justifiable to lay the necessary groundwork for pre-

senting them in an elementary fashion. Some may, therefore, find it

necessary to skip the rest of this section altogether, or to skim it rather

lightly.
It is well known that there does not exist a countably additive proba-

bility measure defined for every subset of the unit interval, agreeing

with Lebesgue measure on those sets where Lebesgue measure is de-

fined, and assigning the same measure to each pair of congruent setst

(Problem (b), p. 276 of [H2]). On the other hand,there do existfinitely

additive probability measures agreeing with Lebesgue measure on those

sets for which Lebesgue measure is defined, and assigning the same

measure to each of any pairs of congruentsets; cf. p. 32 of [B4]. The

existence of such measures shows, among other things, that a finitely

additive measure need not be countably additive. Again, calling such

a finitely additive extension of Lebesgue measure P and defining B <- C

to mean P(B) < P(C), we see an example of a qualitative probability

that is both fine and tight.

An example of a qualitative probability that is tight but not fine may

be constructed by taking for S two unit intervals, S; and Se, in each

of which finitely additive extensions of Lebesgue measure, P; and Pz,

are defined. The generic set B in this example is therefore partitioned
into B; = Bf) 8, and By = B ff) So, respectively. For this example,
let B <-C; if, and only if P,(B,) < P,(C,), or else P,(B,) = P,(C;),
and P2(Be) < Pe(Co). This <: is not fine, because, for example, S
cannot be partitioned into events none of which is more probable than

So. On the other hand, it is easily seen to be tight.

Next, take S to be the union of S,; and S. with the measures of P,
and P. as defined in the preceding example, but modify the definition
of <-, saying B <-C; if and only if P,;(B,;) + Pe(Be) < Pi(Cy) +

P2(C2), or else P1(B1) + P2(Bo) = Pi(Ci) + Pe(Ce), and Pi(Bi) <
P,(C,). This is an example of a qualitative probability that is fine but

not tight.

Combining the ideas of the two preceding examples, it is easy to ex-

hibit a qualitative probability that is neither fine nor tight but is such
that S can be divided into arbitrarily many equally probable events.

Thus all the questions raised in the opening paragraph of this section

are answered in the affirmative.

+ §. Ulam (1930) proves that any nonatomic, countably additive probability
measure defined on all the subsets of the unit interval is inconsistent with the
eontinuum hypothesis.
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To get a feeling for the question whetherliterally all sets should be

regarded as measurable, suppose that S is a cube of unit volume and

that the probability measure P that strictly agrees with < is such that

the probability of a parallelepiped is equal to its volume. It follows

that the probability of any set having Jordan content is its Jordan

content, but, if a set has not Jordan content, a continuum of possibili-

ties is still open. Though other possibilities are conceivable, it is not
unnatural to consider an idealized person for whom the numerical prob-
ability attached to each Borel set, or even each Lebesgue measurable

set, is its Lebesgue measure. To go further and take seriously compari-

sons between sets that are not Lebesgue measurable, or even between

those that are not Borel measurable, seems to me to be without any

implication bearing on reality. I suppose it might be argued, on the
contrary, that there is no feature of reality that can properly be inter-

preted by postulating that the person is able to compare only sets from

a sufficiently narrow field, so that it is simpler and more elegant to ad-

mit all sets. The question seems to be oneof taste, but the following
remark illustrates what I consider an awkwardness in supposing proba-

bility to be attached to all sets. It would seem, atfirst glance, that the
person should be able, if he is so constituted, to regard all pairs of geo-
metrically congruent sets for which he makes any comparison atall as

equivalent, but the famous Banach-Tarski paradox [B5] shows that

this cannot be doneif all sets are regarded as measurable. I think it a

little more graceful to abstain from comparison between the more bi-
zarre sets than to give up, or even much modify, my everyday notions

about the symmetry of such probability problems associated with
geometry.

If one is unwilling to insist on comparison between every pair of

sets, or events; then, in the samespirit, it is inappropriate to insist on

comparison between every pair of acts. All that has been, or is to be,

formally deduced in this book concerning preferences amongsets, could
be modified, mutatis mutandis, so that the class of events would not

be the class of all subsets of S, but rather a Borel field, that is, a o-alge-

bra, on S; the set of all consequences would be a measurable space,

that is, a set with a particular o-algebra singled out; and an act would

be a measurable function from the measurable space of events to the

measurable space of consequences. Indeed, the whole thing could be
done for abstract o-algebras without reference to sets at all, and this

might have some actual advantage, since it would make possible the
identification of events with propositions in almost any formallanguage,

even one unable to formulate at all the complete descriptions I call

states.
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It may seem peculiar to insist on o-algebras as opposed to finitely

additive algebras even in a context where finitely additive measures are

the central object, but countable unions do seem to beessential to some

of the theorems of § 3—for example, the terminal conclusions of Theo-

rem 3.2 and Part 5 of Theorem 3.3.
So much of the modern mathematical theory of probability depends

on the assumption that the probability measures at hand are countably

additive that one is strongly tempted to assume countable additivity,

or its logical equivalent, as a postulate to be adjoined to P1-6.*+ But I

am inclined to agree with de Finetti [D2], [D4] and Koopman [K9],

[K10], [K11] that, however convenient countable additivity may be,

it, like any other assumption, ought not be listed among the postulates

for a concept of personal probability unless we actually feel that its

violation deserves to be called inconsistent or unreasonable. I know of

no argument leading to the requirement of countable additivity, and

many of us have a strong intuitive tendency to regard as natural proba-

bility problems about the necessarily only finitely additive uniform

probability densities on the integers, on the line, and on the plane. It

therefore seems better not to assume countable additivity outright as a

postulate, but to recognize it as a special hypothesis yielding, where

applicable, a large class of useful theorems.

5 Conditional probability, qualitative and quantitative

Conditional preferences amongacts in the light of a given event were

introduced in § 2.7. Since the relation < among events has been de-
fined in terms of the corresponding relation among acts, we may well

expect to attach meaning to statements of the form B < C given D,

provided that D is not null. The natural way to do sois to take a pair

of acts f and g that test whether B < C (as prescribed by the definition
of < between acts in § 2) and say that B < C given D, if and only if
f < g given D. Since there is more than onepair of acts f, g by which

the proposition B < C canbetested,it is at first sight conceivable that

not all such pairs would be in the same order given D, which would frus-

trate the proposed definition of < given D. However,it is easily seen

that for any f, g testing B < C, f < g given D (D not null) is equiva-
lent toBN D<CND. Thusit is seen not only that the proposed
definition is unambiguous, but also that it is expressible in terms of
probability comparisons among sets, without direct reference to acts

at all, and, still further, that the postulates P1-6 apply to the condi-

tional preference relation < given D among acts. This preamble sufh-

ciently motivates the following definition and easy theorem about quali-
tative probability relations generally.

1 Carried out by Villegas (1964).
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If <-+ is a qualitative probability, and 0 <- D; then B <-C given

D, if and only if BN D<-C ND.

THEOREM I If <- is a qualitative probability, then so is <+ given

D. If in addition <: is fine or tight, then <: given D is correspondingly

fine or tight.

If <: is fine, then, for any D that is not null, there exists, in view of
Theorem 3.3, one and only one probability measure P(B| D), the

(conditional) probability of B given D, that almost agrees with <-.
But, just as one would expect from the traditional study of numerical

probability, and as may beeasily verified, P(B M D)/P(D) considered
as a function of B for fixed D is a probability measure that almost

agrees with <-+ given D. Therefore,

(1) P(B| D) = P(B N D)/P(D).

As was explained in § 2.7, preference among acts given B can sug-

gestively be expressed in temporal terms. Analogously, the comparison

among events given B and, therefore, conditional probability given B

can be expressed temporally. Thus P(C | B) can be regarded as the

probability the person would assign to C after he had observed that B

obtains. It is conditional probability that gives expression in the theory

of personal probability to the phenomenon of learning by experience.

In accordance with established usage, a pair of events B, C are called

independent if P(B NM C) = P(B)P(C). More generally, a set of events
are called independent, if for every finite set of them, say B,, ---, Bn,

(2) P (f)\:B,) = I]: PB).
Obviously, if D is not null, B and D are independent; if and only if

P(B| D) = P(B), in which case D mayfairly be called irrelevant to B.
The notions of independence and irrelevance have, so far as I can

see, no analogues in qualitative probability; this is surprising and un-

fortunate, for these notions seem to evoke a strong intuitive response.

The absence of these analogues is traceable to the absence of a qualita-

tive analogue for propositions of the form P(B | C) < PG | H). Work-

ing under a rather different motivation from that which guides this

book, B. O. Koopman [K9], [K10], and [K11] has developed a system of

qualitative possibility in which it is meaningful to compare B given C

with G given H. It is true also that for qualitative probability, even as

it is defined here, some interconditional comparisons might be natu-

rally defined. If, for example, B <-~B given C and ~G <:G given

H, it would not be unreasonable to establish the convention that B

given C <:-G given H. This sort of extension is not, however, highly
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pertinent to my purpose, for here I have little interest in qualitative

probabilities, except as a foundation for quantitative probability.

The following partition formula is well known and easy to prove:

(3) P(C) = 2) P(C Bj)P(B;)

where B, is a partition of S into non-null sets. If, further, C' is not null,
it is also trivial to derive the celebrated Bayes’ rule (or theorem),

P(C| B,P(B:)

P(C)

_ P(C| B)P(B)

EPC] B)P(B)

(4) P(B;|C) = 

 

Illustrations of these formulas are found in all elementary texbooks on

probability, as well as in later sections of this book.

Finally, if neither B nor is null,

P(B|C)P(C|B) P(BNC)

P(B)  P(C)  P(B)P(C)
 (5)

which may be given the suggestive reading: Knowledge of C' modifies

the probability of B by the same factor by which knowledge of B modi-

fies the probability of C.

The concept of random variable enters into almost any discussion of

probability. Experts are fairly well agreed on the following definition.

A random variable is a function x attaching a value x(s) in some set

X to every s in a set S on which a probability measure P is defined. f

Such an S together with the measure P is called a probability space.

Real-valued random variables are the most familiar, though in gen-

eral the values X can be things of any sort. If, for example, x and y,

with values in X and Y, respectively, are random variables on the

same measure space, a new random variable z = {x, y} is defined by

setting z(s) = {x(s), y(s)}. The values of z are thus elements of what

is called X * Y (read the cartesian product of X and Y), the set of

ordered pairs with first element in X and second in Y. The samesort

of thing can be done,of course, for ordered n-tuples and alsofor infinite

sequences of random variables.

+ In many applications of the theory of probability, not all subsets of S or of X
are considered measurable. It is then required as part of the definition of random

variable that x be measurable, i.e., that for every measurable Y C X, the set of
s’s such that z(s) e Y be measurable.
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Two random variables x and y defined on the same measure space S

are called (statistically) independent; if and only if, for every Xp C X
and Yo C Y, the two events(i.e., subsets of S) defined by the condi-
tions z(s) «Xo and y(s) «Yo, respectively, are independent.t The

extension of this definition from pairs to any numberof random variables

is obvious.

6 The approach to certainty through experience

In § 3, the theory of personal probability was, from the purely math-
ematical point of view, reduced to that of probability measures, a sub-
ject that has been elaborately studied, more or less explicitly, for cen-

turies. Any mathematical problem concerning personal probability is

necessarily a problem concerning probability measures—the study of

which is currently called by mathematicians mathematical probability

—and conversely. The particular outlook and interpretation implicit

in a personalistic concept of probability leads, however, to problems
that, though perfectly meaningful for mathematical probability, might

not otherwise have been emphasized. This section and the succeeding

one each briefly discuss one such problem. These two problems are

selected from among many possibilities for the insight they provide

into the concept of personal probability.

Before studying these problems, it is necessary to be conversant with

the material in Appendixes 1 and 2, which is used in the immediate
sequel and often throughout the rest of this book.
As was brought out in § 5, the person learns by experience. The

purpose of the present section is to explore with a moderate degree of

generality how he typically becomes almost certain of the truth, when
the amount of his experience increases indefinitely. To be specific,

suppose that the person is about to observe a large number of random

variables, all of which are independent given B; for each 7, where the

B; are a partition of S. It is to be expected intuitively, and will soon

be shown, that under general conditions the person is very sure that

after making the observation he will attach a probability of nearly 1 to

whichever element of the partition actually obtains.

To describe the situation formally, let B; be a partition of S with

P(B;) = B(1). Let x,, r = 1, 2, ---, be a sequence of random variables,

each taking on only a finite number of values (which can without loss

of generality be thought of as integers). The restriction to a finite set

of values could be removed, but to do so would raise problems of mathe-
matical technique that, however interesting, are rather beside the point

+ Where not all sets are measurable, Xo and Yo must, of course, be required to

be measurable.
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of this book. Let x denote the first n of the random variables x,. It is

to be borne in mind that x dependson n,so, strictly speaking, it should
be written x(n). The assumption that, given B, the x,’s all have the

same distribution is expressed by

(1) P(z,(s) = 2, | Bi) = &(z,| 2),
where (2, | 1) is defined by the context. Combining (1) with the as-

sumption that the x,’s are independent given B,,

(2) P(x| B, =p P(x(s) = {a1, «++, tn} | BY = II kz, | 0),
r=]

where a conventional symbol has been used for equal by definition.

These hypotheses having been laid down, it follows from Bayes’ rule

and the partition formula (5.3) and (5.2), that

_ PG | Bs) P(B,)
 

 

3 P(B;(3) (B; 2) Pw)

and Pe)

(4) P(x) = 276IL &@, | 4).

In connection with (3), it may be observed in passing that, if the a priori

probability, 6(7), of B; is 0, then, no matter what value x is observed,

the a posteriori probability of B,;, P(B;| x), is also 0. This is an ex-
ample of the general principle that, if some event is regarded as vir-

tually impossible, then no evidence whatsoever can lendit credibility.

Similarly, (3) implies the equally common-sense principle that, if an

observation zx is virtually impossible on the hypothesis (i.e., given)

B,, and x is observed, then B; becomes virtually impossible a posteriori.

It is particularly interesting to compare the probability of two ele-

ments of the partition, say B, and Bz for definiteness, in the light of z.

P(B,| 2) _ B(1) &(@;| 1)
(5)

P(Bo|x)  B(2) + &(2,|2)

_ B(1)
R’ (a,

~ B(2)°; (er)

= BO) ve),

B(2)
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where self-explanatory abbreviations have been introduced. Equation
(5) is meaningless, if both the numerator and denominatorof its left-

hand side vanish. If the denominator alone vanishes, the fraction may

properly be regarded as infinite. This will happen; if and only if Bg is

null, and B, is not null given x. That is, it will happen if and only if

B(1) # 0, B(2) = 0, or if B(1) ¥ 0, and R(x) = ~.
In modern statistical usage, R’(x,) and R(z) are the likelihood ratios

of B, to Bz given x, and z, respectively, quantities of importance in

many theoretical contexts.

If a person contemplates making the observation x, that is, finding

out the value of x(s) for the s that is the true state of the world, it may

properly be asked howprobable he considers it that R will turn out to

have a particular value. It will be shown, barring two banal excep-

tions, that, for n sufficiently large, the probability, given B,, that F is

greater than any preassigned number is almost 1. The possibility

P(B,) = 0 is to be excepted, for then the conditional probability in
question is meaningless. The other exception occurs when E(x,| 1) =

E(x, | 2) for every 7,, that is, when the common distribution of x, given

B, is the same as it is given Bo; for then observation of x, is simply

irrelevant in distinguishing B, from Bg, or, a little more technically, x,

is irrelevant to B, given B, U Bo, and

(6) P(R'(x,) = 1| By) = 1.

Formally, it is to be demonstrated that, unless P(B,) = 0, or (6)

holds,

(7) lim P(R(z)>p|Bi)=1 #for0<p<-.

The problem is quite simple when account is taken of the fact that

R(x) is the product of n random variables, R’(x,), that are independent

given B,. In attacking the problem, two casesare to be distinguished,

according as there are or are not values of x that have positive proba-

bility given B, but zero probability given Bo.

It is in practice rather fortunate to find instances of the first case,

for then (7) applies with a vengeance. Indeed, suppose that

(8) P(R'(zr) < @| By) = 4, <1.

Then

(9) P(R = ©|B,) = 1 @”,

which obviously approaches 1 with increasing n.
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The second case, namely ¢ = 1, is more interesting. Since much is

known about sumsof identically distributed independent random varia-

bles, it is natural to investigate

(10) log R(x) = 2) log R’(z,),

thereby replacing a product by a sum. It is easily seen from the defi-

nition of R’(z,) that P(R’(z,) > 0 | B,) = 1, so, in the case now at

hand, the functions log R’(z,) are independent real bounded random

variables.

Letting

(11) I = E(log R’(z,) | Bi),
the weak law of large numbers { implies that, for any « > 0,

(12) lim P(log R(x) > n(UI — e)| By) = 1,

equivalently, i

(13) lim P(R(x) > e*@-°? | By) = 1.

The objective will therefore be achieved, if it is demonstrated that

I> 0 unless (6) holds. But

(14) I E(log R’(z,) | Bi)

— log E(R’~*(z,) | Bi)

= — log1 = 0,

IV

as may be argued thus: The inequality in the above calculation is as-

signed as Exercise 8 in Appendix 2, together with the fact that equality

can hold in (14) if and only if R’—!(x,) is constant with probability

one given B;. But the expected value of #’~'(x,) given B, is equal to
1, as (14) asserts and as may beeasily verified from the definition of
R’~'(x,). So, barring the exceptions provided for, IJ > 0, and the
demonstration of (7) is complete.

Before the observation, the probability that the probability given x

of whichever element of the partition actually obtains will be greater

than a is

(15) dB)P(P(B; | x) > a| Bi),

where summation is confined to those 7’s for which 6(7) # 0. Applica-
tion of (14) (extended to arbitrary pairs of 7’s) showsthat the coefficients

| For the definition of this law, see, if necessary, p. 191 of Feller’s book [F1].
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of each @(z) in the quantity (15), and therefore the quantity itself, ap-
proaches | as 7 increases; provided only that no two functions £(x, | 1)

and &(x, | 2’) are the same,if 6(2) and @(2’) are both different from zero.

To summarize informally, it has now been shown that, with the ob-

servation of an abundance of relevant data, the person is almost cer-

tain to become highly convinced of the truth, and it has also been shown

that he himself knowsthis to be the case.

It may be remarked, for those familiar with certain theorems, that

many refinements of (7) and its consequences could be worked out by

application of the strong law of large numbers, the central limit theo-

rem, and the law of the iterated logarithm to R’(x,).

The quantity J is coming to be called the information of the distri-

bution of x, given B, with respect to the distribution of x, given Bo.

More generally, if P and Q are probability measures, confined (for sim-

plicity) to a finite set X with elements x; the information of P with
respect to Q is defined by

P(x)
P(x) log ——-(16) 2X (x) log Oz)

This usage stems from work of Claude Shannon in communication en-

gineering, a good account of whichis given in [S11]; and also from inde-

pendent work of Norbert Wiener in a related context [W10]. The ideas

of Shannon and of Wiener, though concerned with probability, seem

rather far from statistics. It is, therefore, something of an accident
that the term “‘information’’ coined by them should be not altogether

inappropriate in statistics. The situation is still further confused, be-

cause, as long ago as 1925, R. A. Fisher emphasized an important no-

tion, which he called “information,” in connection with the theory of

estimation (Paper 11, Theory of statistical estimation in [F6]). At first

glance, Fisher’s notion seems quite different from that of Shannon and

Wiener, but, as a matter of fact, his is a limiting form of theirs. A

useful but rather technical exposition relating the several senses of ‘‘in-

formation” is given by Kullback and Leibler [K15], and I return to the

topic in § 15.6.+

7 Symmetric sequences of events

A problem often posed by statisticians is to estimate from a sequence

of observations the unknown probability p that repeated trials of some

sort are successful. On an objectivistic view, this problem is natural

and important, for on such a view the probability that a coin falls heads,

for example, is a property of the coin that can be determined by ex-

perimentation with the coin and in no other way. But on a personalistic

| See also (Kullback 1961).
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view of probability, strictly interpreted, no probability is unknown to

the person concerned, or, at any rate, he can determine a probability

only by interrogating himself, not by reference to the external world.

This situation has been interpreted to imply that the personalistic

view is wrong, or at any rate inadequate, because it apparently cannot

even express one of the most natural and typical problemsof statistics.

Thus far in this book, I have not argued against the possibility of de-

fining some useful notion of objective probability, but have contented

myself with presenting a particular notion of personal probability.

Therefore, at this point it might be tempting to seek a dualistic theory

admitting both objective and personal probabilities in some kind of ar-

ticulation with one another. De Finetti [D3] has shown, however,
that it is not necessary to do so, that the notion of a coin with unknown

probability p can be reinterpreted in terms of personal probability

alone.

The present section is devoted to outlining this development due to

de Finetti. In the organization of the book as a whole, it plays no logi-

cally essential part; it is, rather, a digression intended to give a clearer

understanding of the notion of personal probability, especially in rela-

tion to objectivistic views. The ideas presented here are but a frag-

ment of those on the same subject in [D2].

Let x, be a sequence of random variables taking only the values 0

and 1. The x,’s are, to all intents and purposes, a sequenceof events,

the rth of which is the event that z,(s) = 1. To say that these events

are independent, each occurring with probability p, is to say that the

probability of any finite pattern, 71, ---, 2n, initiating the sequence
z,(s) is given by the formula

(1) P(a,(s) = tyr, r= 1, a) n | Dp) = pil — p)"%,

where y is the numberof 1’s amongthe 2,’s for r = 1, ---, n.

Mixtures, in a certain sense, of sequences of random variables are

often of interest, as they already have been in the preceding section.

Suppose, to be explicit, that the world is partitioned by B; and that,

given B,, the x,’s are independent with P(z,(s) = 1 | B;) having some

fixed value p(t). Then the unconditional probability of a particular
initial sequence is a mixture of the probabilities given by (1) thus:

(2) P(a,(s) = a; r = 1, +++, n) = mu p(z)*(1 — p(t))”4P(B,).

It is natural to generalize (2) formally thus:

8) Play(s) = ar = 1, +n) =fh — pamOn),
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where M is a probability measure on the real numbers in the interval

(0, 1].

It is noteworthy that equation (8), understood to apply for every n,

is equivalent to the condition that the probability that every n of each

prescribed set of n of the x,’s takes the value 1 is

(4) fp" dM(p).

This follows by arithmetic induction from the obvious formula

(5) Pla,-(s) = t%3r= 1, ---, n)

= P(a,(s) = tr5r = 1, +++, 0; tn41(8) = 0)

+ P@(s) = 2,37 = 1, +++, 0; tn4i(s) = 1),

which applies to any sequence of random variables taking on only the

values 0 and 1.

Equation (3) can very well have an interpretation in such terms that
the measure M is not merely an abstract probability measure, but is

actually a personal probability. Thus, if p is a random variable that

is (for a given person) distributed according to M, and, if for each p

the conditional distribution of the x,’s given p is independent, with

P(z,(s) = 1) = p; then (8) obtains. Strictly speaking, the notion of
conditional probability as it occurs in the preceding sentence is used in

a somewhat wider sense than has been defined in this book, for the

probability of any particular p will typically be zero. At least for

countably additive measures, the necessary extension of conditional

probability and conditional expectation is presented by Kolmogoroff in

[K7]; it is a concept of the greatest value in advanced mathematical

statistics and in probability generally.

However, in most contexts where objectivists speak of an unknown

probability p, there is, so far as an exclusively personalistic view of

probability is concerned, no unknown parameter that can play the role

of p in (3).
Examination of situations in which “unknown’’ probability is ap-

pealed to, whetherJustifiably or not, shows that, from the personalistic

standpoint, they always refer to symmetric sequences of events in the

sense of the following definition. The sequence of random variables

x,, taking only the values 0 and 1, is a symmetric ¢ sequence, if and only

if the probability that any b of the z,(s)’s equal 1 and any c other

z,(s)’s equal 0 depends only on the integers b and c.

¢ De Finetti uses the French word for “equivalent.’’t
+ He andothers now prefer “exchangeable.” The concept seems to have been

first suggested hv Jules Haag (1928).
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It is easy to verify that any mixture of independent sequences in the
sense of (3) is a symmetric sequence. De Finetti has discovered that

the converseis also true. These conclusions can be formally summarized

thus:

THEOREM 1 A sequence of random variables x,, taking only the

values 0 and 1, is symmetric, if and only if there exists a probability

measure M on the interval [0, 1] such that the probability that any pre-

scribed n of the 2,(s)’s equal 1 is given by (4). Two such measures,

and M’, must be essentially the same,f in the sense that, if B is a sub-

interval of [0, 1], then M(B) = M’(B).

Considering that de Finetti has published a proof of Theorem 1 in
[D2] based on the Fourier integral, that any proof of it must be rather

technical, and that the theorem is not the basis of any formal inference

later in this book, it seems best not to proveit here. f

It is Theorem 1 that makes it possible to express propositions re-

ferring to unknownprobabilities in purely personalistic terms. If, for

example, a statistician were to say, “I do not know the p of this coin,

but I am sure it is at most one half,” that would mean in personalistic

terms, ‘I regard the sequence of tosses of this coin as a symmetric se-

quence, the measure M of which assigns unit measure to the interval

(0, 3]... This condition on M means in turn that for every n the (per-

sonal) probability of n consecutive heads is at most 2~”, as is easily

verified. I do not insist that propositions couched in terms of a ficti-

tious unknown probability are bad, if understood as suggestive abbrevi-

ations, but only that the meaningfulness of such propositions does not

constitute an inadequacy of the personalistic view of probability.

The mathematical concept of probability measure or, a trifle more

generally, bounded measure is fundamental to mathematics generally.

Probability measures, often under other names, are, therefore, em-

ployed in manyparts of pure and applied mathematics completely un-

related to probability proper. For example, the distribution of mass

in a not necessarily rigid body is expressed by a bounded measure that

tells how much of the body is in each region of space. We must, there-

fore, not be surprised if, even in studying probability itself, we come

across some probability measures used not to measure probability

t Technical note: If ‘probability measure’”’ were here understood to mean a count-

ably additive probability measure on the Borel sets of [0, 1], the theorem would re-
main true, and the essential uniqueness of 4 would become true uniqueness.

¢ Technical note: Theorem 1 can be proved very quickly and naturally by apply-

ing the theory of the Hausdorff moment problem (pp. 8-9 of [S13]) to M, but this
method does not seem to generalize readily.+

+ New and general methods are in Hewitt and Savage (1955) and Ryll-
Nardzewski (1957). For related work see Biihlmann (1960), Freedman (1962,
1963), Milier-Gruzewska (1949, 1950), and Rényi and Révész (1963).
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proper but only for auxiliary purposes. In the event that p is not ac-

tually an unknown parameter, the measure M presented by Theorem 1

seemsatfirst sight to be such a purely auxiliary measure, but, as a matter

of fact, M does measure certain interesting probabilities, at least ap-

proximately. For example,letting

1 n

(6) Ln = » Lry

nm 1

it can be shown that

(7) lim P(z,(s) < 6) = M(p < 8).

In words, the person considers the average of any large numberof fu-

ture observations to be distributed approximately the way p is dis-
tributed by M. This is an extension of the ordinary weak law of large

numbers, proved in [D2] along with a corresponding extension of the

strong law.

If the first n terms of a symmetric sequence are observed, how does

the rest of the sequence appear to the person in the light of this obser-

vation? In thefirst place, it also is a symmetric sequence but generally

of a structure different from that of the original sequence, as may be

shown thus: Let

(8) my, m — y) =pt P(a-(s) = ty37 = 1, ---, 0),

as one may for a symmetric sequence. Then

(9) P(tg(s) =%3dqqEnt+l, --+>n+m| z,(s) =2,r=1,---,n)

_ P(xp(s) = 2p, p = 1, °-:,;n +m)

P(2,(s) = 2, r = 1, +++, n)

rytz, (n— y) +(m—2))
- my, 2 — Y) |

where z is the numberof 1’s among the z,’s, g=n+1,-°--:,;n+™m.

Equation (9) showsthat the sequence x,, g > 7, given that 2z,(s) = 2,,

r=1,-°--, n, is a new symmetric sequence characterized by

ry +2,(ny) +(m—2))
TY, n— y)

The measure M’ associated with the new sequence is, according to

Theorem 1, essentially determined by the condition that

 

 

(10) n'(z,m — 2) =pf 
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(11) fp™ dM"(p) = n’(m, 0)
x(m + Yn — y)

T(Y, n— y)

fp™tu(1 — p)"-Y dM(p)

 

 

T(Y, n— y)

y 1 — n—y

=fr?ame.
TY, n— y)

Equation (11) makes it plausible that, except for the slight ambiguity

permitted by Theorem 1, M’is defined (for Borel sets B) by

(12) M(B) = 77y,n-y)JDY(1 — p)"-¥ dM(p),

and this can in fact be demonstrated with some appeal to slightly ad-

vanced methods pertaining to the Hausdorff moment problem (pp. 8-9

of [S13}).

It is noteworthy that, if M(B) = 0, then M’(B) = 0 also. In the

event that p really is an unknown parameter, this means that, if the

person is virtually certain that the true p is not in B, no amount of

evidence can alter that opinion.

Equation (12) shows that M’ is generally different from M. Indeed,

for fixed n > 1, M’ is clearly the same as M for every y for which

r(y, n — y) > 0, if and only if M assigns the measure 1 to some one
value of p. That is, the person regards evidence drawn from a sym-
metric sequence as irrelevant to the future behavior of the sequence,if

and only if at the outset he regards the sequence not merely as sym-

metric but also as independent.

It can be shown that the person regards it as highly probable that,

if he observes a sufficiently long segment of a symmetric sequence, the

continuation of the sequence will then be one for which the conditional

variance of p,

(13) fv dM'(p) — {fp ano}

will be small. In the event that p is really an unknown parameter,this

implies that the person is very sure that after a long sequenceof obser-

vations he will assign nearly unit probability to the immediate neigh-

borhood of the value of p that actually obtains—a parallel to the ap-

proach to certainty discussed in § 6.



CHAPTER 4

Critical Comments

on Personal Probability

1 Introduction

It is my tentative view that the concept of personal probability in-

troduced and illustrated in the preceding chapter is, except possibly

for slight modifications, the only probability concept essential to sci-

ence and other activities that call upon probability. I propose in this

chapter to discuss the shortcomings I see in that particular personal-

istic view of probability, which, for brevity, shall here be called simply

“the personalistic view’; to point out briefly the relationships between

it and other views; to criticize other views in the light of it; and to dis-

cuss the criticisms holders of other views have raised, or may be ex-

pected to raise, againstit.

From the standpoint of strict logical organization such critical re-
marks are somewhat premature, because the personalistic view itself

insists that probability is concerned with consistent action in the face

of uncertainty. Consequently, until the theory of such action has been

completely outlined in later chapters, the view to becriticized cannot

even be considered to have been wholly presented. Practically, how-

ever, it Seems wise not to confine critical comments to the one part of

the text that logic may suggest as appropriate, but rather to touch on

criticism from time to time, even at the cost of some repetition. Thus,

some of what is to be said here has already been said in the introductory

chapter and elsewhere, and someof it will be said again.

Views other than the personalistic view are to be discussed here, but

it cannot be too distinctly emphasized that the account given of them

will be very superficial.t One function of discussing other viewsis to

provide the reader with at least some orientation in the large and di-

versified body of ideas pertaining to the foundation of statistics that

| Much more extensive comparative material is given by Keynes [K4], by Nagel

[N1], and by Carnap [C1]. Koopman [K12] should also be mentioned in this con-
nection.
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have been accumulated. <A less obvious, but I think no less important

and legitimate, function is to cast new light on the personalistic view,

especially for those who already hold, or tend to hold, other views.

2 Some shortcomingsof the personalistic view

I can answer, to my own satisfaction, somecriticisms of the personal-

istic view that have been brought to my attention. These points are

discussed later in the chapter, but in this section I state and discuss

as Clearly as I can those that I find more difficult and confusing to
answer.

According to the personalistic view, the role of the mathematical

theory of probability is to enable the person using it to detect incon-

sistencies in his own real or envisaged behavior. It is also understood

that, having detected an inconsistency, he will remove it. An incon-

sistency is typically removable in many different ways, among which

the theory gives no guidance for choosing. Silence on this point does

not seem altogether appropriate, so there may be room to improve the

theory here. Consider an example: The person finds on interrogating

himself about the possible outcome of tossing a particular coin five

times that he considers each of the thirty-two possibilities equally
probable, so each has for him the numerical probability 1/32. He also

finds that he considers it more probable that there will be four or five

heads in thefive tosses than that the first two tosses will both be heads.

Now, reference to the mathematical theory of probability soon shows
the person that, if the probability of each of the thirty-two possibilities

is 1/32, then the probability of four or five heads out of five is 6/32,

and the probability that the first two tosses will be heads is 8/32, so

the person has caught himself in an inconsistency. The theory does not

tell him how to resolve the inconsistency; there are literally an infinite

numberof possibilities among which he must choose.

In this particular example, the choice that first comes to my mind,

and I imagineto yours,is to hold fast to the position that all thirty-two

possibilities are equally likely and to accept the implications of that
position, including the implication that four or five heads out of five

is less probable than two heads out of two. I do not think that there is

any Justification for that choice implicit in the example as formally

stated, but rather that in the sort of actual situation of which the ex-

ample is a crude schematization there generally are considerations not

incorporated in the example that do Justify, or at any rate elicit, the

choice.

To approach the matter in a somewhat different way, there seem to

be some probability relations about which wefeel relatively ‘‘sure”’ as
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compared with others. When our opinions, as reflected in real or en-
visaged action, are inconsistent, we sacrifice the unsure opinions to the

sure ones. The notion of ‘‘sure’”’ and ‘‘unsure”’ introducedhereis vague,
and my complaint is precisely that neither the theory of personal proba-

bility, as it is developed in this book, nor any other device known to me
renders the notion less vague+ There is some temptation to introduce

probabilities of a second order so that the person would find himself
saying such things as ‘“‘the probability that B is more probable than C

is greater than the probability that F is more probable than G.’”’ But

such a program seems to meet insurmountable difficulties.

The first of these—pointed out to me by Max Woodbury—isthis.

If the primary probability of an event B were a random variable b
with respect to secondary probability, then B would have a “‘composite”’

probability, by which I mean the (secondary) expectation of b. Com-
posite probability would then play the allegedly villainous role that

secondary probability was intended to obviate, and nothing would have

been accomplished.

Again, once second order probabilities are introduced, the introduc-

tion of an endless hierarchy seems inescapable. Such a hierarchy seems

very difficult to interpret, and it seems at best to make the theory less
realistic, not more.

Finally, the objection concerning composite probability would seem

to apply, even if an endless hierarchy of higher order probabilities were

introduced. The composite probability of B would here be the limit
of a sequence of numbers, £,(£y,_1(--: Ee(Pi(B))---)), a limit that

could scarcely be postulated not to exist in any interpretable theory of

this sort. The reader may wish to evaluate for himself the arguments

in favor of such a hierarchy put forward by Reichenbach (Chapter 8,
[R2]), taking proper account of the differences, between Reichenbach’s

overall view, and his mathematical theory, of probability on one hand

and, on the other, the personalistic view and measure-theoretic mathe-

matical theory that are the basis of my critique of higher order proba-

bilities.

The interplay between the ‘‘sure”’ and “‘unsure” is interestingly ex-
pressed by de Finetti (p. 60, [D2]) thus: “The fact that a direct estimate

of a probability is not always possible is just the reason that the logi-

cal rules of probability are useful. The practical object of these rules

is simply to reduce an evaluation, scarcely accessible directly, to others

by means of which the determination is rendered easier and more
precise.”

It may be clarifying, especially for some readers under the sway of

the objectivistic tradition, to mention that, if a person is “sure” that

+ One tempting representation of the unsure is to replace the person’s single
probability measure P by a set of such measures, especially a convex set. Some
explorations of this are Dempster (1968), Good (1962), and Smith (1961).
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the probability of heads on the first toss of a certain penny is 4, it does

not at all follow that he considers the coin fair. He might, to take an

extreme example, be convinced that the penny is a trick one that al-

ways falls heads or alwaysfalls tails.

Logic, to which the theory of personal probability can be closely par-

alleled, is similarly incomplete. Thus, if my beliefs are inconsistent

with each other, logic insists that I amend them, withouttelling me how

to do so. This is not a derogatory criticism of logic but simply a part

of the truism that logic alone is not a complete guide to life. Since the

theory of personal probability is more complete than logic in somere-

spects, it may be somewhat disappointing to find that it represents no

improvement in the particular direction now in question.

A second difficulty, perhaps closely associated with the first one,

stems from the vagueness associated with Judgments of the magnitude

of personal probability. The postulates of personal probability imply

that I can determine, to any degree of accuracy whatsoever, the proba-

bility (for me) that the next president will be a Democrat. Now,it is
manifest that I cannot really determine that number with great accu-

racy, but only roughly. Since, as is widely recognized, all the interest-

ing and useful theories of modern science, for example, geometry, rela-

tivity, quantum mechanics, Mendelism, and the theory of perfect com-

petition, are inexact; it may notat first sight seem disquieting that the

theory of personal probability should also be somewhat inexact. As

will immediately be explained, however, the theory of personal proba-

bility cannot safely be compared with ordinary scientific theories in

this respect.

I am not familiar with anyserious analysis of the notion that a theory

is only slightly inexact or is almost true, though philosophersof science

have perhaps presented some. Even if valid analyses of the notion

have been made,or are madein thefuture, for the ordinary theories of
science, it is not to be expected that those analyses will be immediately

applicable to the theory of personal probability, normatively inter-

preted; because that theory is a code of consistency for the person ap-

plying it, not a system of predictions about the world around him.

The difficulty experienced in § 2.6 with defining indifference seems

closely associated with the difficulty about vagueness raised here.

Another difficulty with the theory of personal probability (or, more

properly, with that larger theory of the behavior of a person in the

face of uncertainty, of which the theory of personal probability is a

part) is that the statement of the theory is not yet necessarily complete.

Thus weshall in the next chapter come upon another proposition that.

demands acceptance as a postulate, and, since even this leaves the per-



60 CRITICAL COMMENTS ON PERSONAL PROBABILITY [4.4

son a great deal of freedom, there is no telling when someone will come

upon still another postulate that clamors to be adjoined to the others.
Strictly speaking, this is not so much an objection to the theory as a

warning about what to expect of its future development.

3 Connection with other views

All views of probability are rather intimately connected with one an-

other. For example, any necessary view can be regarded as an extreme

personalistic view in which so manycriteria of consistency have been

invoked that there is no role left for the person’s individual judgment.
Again, objectivistic views can be regarded as personalistic views ac-

cording to which comparisons of probability can be made only for very

special pairs of events, and then only according to such criteria thatall

(right-minded) people agree in their comparisons.

From a different standpoint, personalistic views lie not between, but

beside, necessary and objectivistic views; for both necessary and objec-

tivistic views may, 1n contrast to personalistic views, be called objective

in that they do not concern individual judgment.

4 Criticism of other views

It will throw some light on the personalistic view to say briefly how

some other views seem to compare unfavorably with it.

It is one of my fundamental tenets that any satisfactory account of

probability must deal with the problem of action in the face of uncer-
tainty. Indeed, almost everyone who seriously considers probability,

especially if he has practical experience with statistics, does sooner or

later deal with that problem, though often only tacitly. Even some
personalistic views seem to me too remote from the problem of action,

or decision. For example, de Finetti in [D2] gives two approaches to

personal probability. Of these, one is almost exactly like the view

sponsored here, except only that the notion ‘‘more probable than”’ is

supposed to be intuitively evident to the person, without reference to
any problem of decision. The other is more satisfactory in this re-

spect, being couched in terms of betting behavior, but it seems to me

a somewhatless satisfactory approach than the one sponsored here, be-

cause it must assumeeither that the bets are for infinitesimal sums or—

anticipating the language of the next chapter—thatthe utility of money

is linear. The theory expressed by Koopmanin [K9], [K10], and [K11]

and that expressed by Good in [G2] are both personalistic views that

tend to ignore decision, or at any rate keep it out of the foreground;

but the personalistic view expressed by Ramsey in [R1], like the one
sponsored here, takes decision as fundamental. If any necessary view
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can be formulated at all, it might well be possible to formulate it in

terms of decision, but, so far as I know, the notion of decision has not

appeared fundamental to the holders of any necessary view. It seems

fair to say that objectivistic views, by their very nature, must in prin-

ciple regard decision as secondary to probability, if relevant at all.

Yet, the objectivist A. Wald has done more than anyoneelse to popu-

larize the notion of decision.

As has already been indicated, from the position of the personalistic

view, there is no fundamental objection to the possibility of construct-

ing a necessary view, but it is my impression that that possibility has

not yet been realized, and, though unable to verbalize reasons, I con-

jecture that the possibility is not real. Two of the most prominent en-

thusiasts of necessary views are Keynes, represented by [K4], and Car-

nap, who has begun in [C1] to state what he hopes will prove a satis-

factory necessary (or nearly necessary) view of probability. Keynes

indicated in the closing pages of [K4] that he was not fully satisfied

that he had solved his problem and even suggested that some element

of objectivistic views might have to be accepted to achieve a satisfac-

tory theory, and Carnap regards [C1] as only a step toward the estab-
lishment of a satisfactory necessary view, in the existence of which he

declares confidence. That these men express any doubtat all about the

possibility of narrowing a personalistic view to the point where it be-

comes a necessary one, after such extensive and careful labor directed

toward proving this possibility, speaks loudly for their integrity; at the
same timeit indicates that the task they have set themselves, if possi-

ble at all, is not a hight one.

Keynes, writing in 1921 of what are here called objectivistic views,
complained, ‘‘The absence of a recent exposition of the logical basis of

the frequency theory by any of its adherents has been a great disadvan-

tage to me in criticizing it.” (Chap. VIII, Sec. 17, of [K4]). I believe

that his complaint applies as aptly to my position todayas to his then,

though I cannot pretend to have combed the intervening literature

with anything like the thoroughness Keynes himself would have em-

ployed. Reichenbach, to be sure, presents in great detail an interest-
ing view that must be classified as objectivistic [R2], but it seems far

removed from those that dominate modern statistical theory and form

the main subject of the following discussion. Whatever objectivistic

views may be, they seem, to holders of necessary and personalistic

viewsalike, subject to two majorlines of criticism. In thefirst place,

objectivistic views typically attach probability only to very special

events. Thus, on no ordinary objectivistic view would it be meaning-
ful, let alone true, to say that on the basis of the available evidence it
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is very improbable, though not impossible, that France will become a

monarchy within the next decade. Many whohold objectivistic views
admit that such everyday statements may have a meaning, but they

insist, depending on the extremity of their positions, that that meaning

is not relevant to mathematical concepts of probability or even to sci-

ence generally. The personalistic view claims, however, to analyze
such statements in terms of mathematical probability, and it considers
them important in science and other human activities.

Secondly, objectivistic views are, and I think fairly, charged with

circularity. They are generally predicated on the existence in nature
of processes that may, to a sufficient degree of approximation, be rep-

resented by a purely mathematical object, namely an infinite sequence

of independent events. This idealization is said, by the objectivists

who rely on it, to be analogous to the treatment of the vague and ex-

tended mark of a carpenter’s pencil as a geometrical point, which is so

fruitful in certain contexts. When it is pointed out to the objectivist
that he uses the very theory of probability in determining the quality
of the approximation to which he refers, he retorts that the applied

geometer—a fictitious character whose reputation for solidity in science
is unquestioned—likewise uses geometry in determining the quality of
his approximations. Let the geometer then be challenged, and here-

plies with a threefold reference to experience, saying, “It is a common

experience that with sufficient experience one develops good judgment
in the use of geometry and thenceforth generally experiences success in
the predictions he bases on it.’’ ‘“‘Now,’’ says the objectivist, ‘‘the

geometer’s answer is my answer.”’ But it seemsto critics of objectivistic
views that, though the geometer may be entitled to make as manyallu-
sions to experience as he pleases, the probabilist is not free to do so,
precisely becauseit is the business of the probabilist to analyze the con-

cept of experience. He, therefore, cannot properly support his position

by alluding to experience until he has analyzed that concept, though
he can, of course, allude to as many experiences as he wishes.

Two sorts of mixed views call for special comment here.
First, some (among them Carnap [C1]; Koopman [K9], [K10], and

[K11]; and Nagel [N1]) hold that two probability concepts play a role
in inference, an objectivistic one and a personalistic or a necessary one.

This dualism is typically justified as necessary to the analysis of such

a concept as that of a coin with unknown probability of falling heads.
But, as § 3.7 explains, de Finetti has provided a satisfactory analysis
on the basis of personal probability alone.

Second, others—for example, van Dantzig [V1] and Féraud [F2]—

finding the conventional objectivistic views circular for the reasons I
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have cited, try to break the circle by relatively isolated use of subjec-
tive ideas. Very crudely, it seems to be their position that in any one

context it is allowable for a person to act as though some one event of

sufficiently small (objective) probability, chosen at his discretion, were

impossible. Quite apart from the relatively technical question of
whether any consistent mixed view of this kind can be constructed,
holders of personalistic and necessary views alike criticize them as un-
necessarily timid, for they embrace subjective ideas, but only gingerly.

& The role of symmetry in probability

An important and highly controversial question in the foundations

of probability is whether and, if so, how symmetry considerations can

determine the probabilities of at least some events.

Symmetry considerations have always been important in the study
of probability. Indeed, early work in probability was dominated by

the notion of symmetry, for it was usually either concerned with, or di-

rectly inspired by, symmetrical gambling apparatus such as dice or

cards. Toillustrate those classical problems, suppose that a gambleris

offered several bets concerning the possible outcome of rolling three
dice, where it is to be understood that refraining from any bets atall
may be among the available “bets.” Which of the available bets
should the gambler choose? Perhaps I distort history somewhat in in-

sisting that early problems were framed in terms of choice amongbets,

for many, if not most, of them were framed in terms of equity, that is,
they asked which of two players, if either, would have the advantage

in a hypothetical bet. But, especially from the point of view of the

earlier probabilists, such a question of equity is tantamount to a ques-
tion of choice among bets, for to ask which of two “‘equal”’ betters has

the advantage is to ask which of them has the preferable alternative,
as was pointed out quite explicitly by D. Bernoulli in [B10].

In effect, the classical workers recommended the following solution
to the problem of three dice, with corresponding solutions to other

gambling problems:

1. Attach equal mathematical probabilities to each of the 216 (=6°)
possible outcomes ofrolling the three dice. (There are 6° possibilities,
because the first, second, and third dice can each show anyof six scores,

all combinations being possible.)

2. Under the mathematical probability established in Step 1, com-
pute the expected winnings (possibly negative) of the gambler for each

available bet.

3. Choose a bet that has the largest expected winnings among those

available.
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At present it is appropriate to refrain from criticisms of the use

made of expected winnings until the next chapter and to concentrate

discussion on the notion that the 216 possibilities should be considered

equally probable, which can conveniently be done by drastically reduc-

ing the class of bets considered to be available. Say, for definiteness,
that the only bets to be considered are simply even-moneybets of one
dollar, that the triple of scores falls in a preassigned subset of the 216

possibilities. When attention is focused on this restricted class of bets,
the total recommendation is seen to imply that the probability measure

defined in thefirst step of the recommendation be adopted as the per-

sonal probability of the gambler. To put it differently, a gambler who

adopts the recommendation will hold the 216 possible outcomes equally
probable not only in some abstract sense, but also in the sense of per-

sonal probability as defined in § 3.2.

The notion that the 216 possibilities should be regarded as equally

probable is familiar to everyone; for it is taken for granted wherever

gentlemen gamble as well as in the standard high-school algebra courses,

whereit serves to illustrate the theory of combinations and permutations.

Traditionally, the equality of the probabilities was supposed to be
established by what was called the principle of insufficient reason, {

thus: Suppose that there is an argument leading to the conclusion that

one of the possible combinations of ordered scores, say {1, 2, 3}, is
more probable than some other, say {6, 3, 4}. Then the information
on which that hypothetical argument is based has such symmetry as

to permit a completely parallel, and therefore equally valid, argument

leading to the conclusion that {6, 3, 4} is more probable than {1, 2, 3}.

Therefore, it was asserted, the probabilities of all combinations must
be equal.

The principle of insufficient reason has been and, I think, will con-

tinue to be a most fertile idea in the theory of probability; but it is not

so simple as it may appear at first sight, and criticism has frequently

and justly been brought against it. Holders of necessary views typi-

cally attempt to put the principle on a rigorous basis by modifying it

in such a way as to take account of such criticism. Holders of personal-

istic and objectivistic views typically regard the criticism as not alto-

gether refutable, so they do not attempt to establish a formal postulate

corresponding to the principle but content themselves—as I shall here

—with exhibiting an element of truth in it.

Oneof thefirst criticisms is that the principle is not strictly applicable

for a person who has had any experience with the apparatus in ques-

+ Perhaps what I here call the principle of insufficient reason should be called the

principle of cogent reason. See Section 3 of [B15] for the distinction involved.
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tion, or even with similar apparatus. Thus, attempts to use the prin-

ciple, as I have stated it, to prove that there is no such thing as a run

of luck at dice, as actually played, are invalid. The person may have

had relevant experience, directly or vicariously, not only with gambling

apparatusitself, but also with people who make andhandleit, including

cheaters.

It is not always obvious what the symmetry of the information is in

a situation in which one wishes to invoke the principle of insufficient

reason. For example, d’Alembert, an otherwise great eighteenth-cen-

tury mathematician, is supposed to have arguedseriously that the prob-

ability of obtaining at least one head in twotosses of a fair coin is 2/3

rather than 3/4. (Cf. [T3], Art. 464.) Heads, as he said, might appear
on the first toss, or, failing that, it might appear on the second, or,

finally, might not appear on either. D’Alembert considered the three

possibilities equally likely.

It seems reasonable to suppose that, if the principle of insufficient

reason were formulated and applied with sufficient care, the conclusion

of d’Alembert would appear simply as a mistake. There are, however,

more serious examples. Suppose, to take a famousone,that it is known

of an urn only that it contains either two white balls, two black balls,
or a white ball and a black ball. The principle of insufficient reason has

been invoked to conclude that the three possibilities are equally proba-
ble, so that in particular the probability of one white and one black

ball is concluded to be 1/3. But the principle has also been applied to

conclude that there are four equally probable possibilities, namely, that

the first ball is white and the secondalso, that the first is white and the

second black, etc. On that basis, the probability of one white and one

black ball is, of course, 1/2. Personally, I do not try to arbitrate be-

tween the two conclusions but consider that the existence of the pair
of them reflects doubt on the notion that a person’s knowledge relevant

to any matter admits any full and precise description in terms of
propositions he knows to be true and others about which he knows

nothing.

Most holders of personalistic views do not find the principle of in-

sufficient reason compelling, because they envisage the possibility that

a person may consider one event more probable than another without

having any compelling argumentfor his attitude. Viewed practically,

this position is closely associated with the first criticism of the principle
of insufficient reason, for the holder of a personalistic view typically
supposes that the person is under the influence of experience, and pos-

sibly even biologically determined inheritance, that expresses itself in

his opinions, though not necessarily through compelling argument.
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Holders of personalistic views do see some truth in the principle of

insufficient reason, because they recognize that there are frequently par-

titions of the world, associated with symmetrical-looking gambling ap-

paratus and the like, that many and diverse people all consider (very

nearly) uniform partitions. As was illustrated in the preceding sec-

tion, we often feel more ‘‘sure’”’ about probabilities derived from the
judgment that such partitions are uniform than we do about others.

Such partitions are, moreover, very important in that they provide

some events the probability of which to diverse people is in agreement.

Though the events concerned are often of no importance in themselves,

agreement about them can, through the statistical invention of ran-

domization, contribute to agreement about all sorts of issues open to
empirical investigation. Widespread though the agreement about the

near uniformity of some partitions is, holders of personalistic views

typically do not find the contexts in which such agreement obtains

sufficiently definable to admit of expression in a postulate.

Holders of purely objectivistic views see no sense atall in the original

formulation of the principle of insufficient reason, for it uses ‘“proba-

bility”? in a manner they consider meaningless. But they too see an
element of truth in the principle, which they consider to be established
as a part of empirical physics. Thus, for example, they regard it as an

experimental fact, admitting some explanation in terms of theoretical

physics, that three dice manufactured with reasonable symmetry will

exhibit each of the 216 possible patterns with nearly equal frequency,

if repeatedly rolled with sufficient violence on a suitable surface.

Holders of personalistic views agree that experiments or, more gen-

erally, experiences determine to a large extent when people employ the

idea of insufficient reason. Thus, though experiments with gambling

apparatus, quite apart from gambling itself, have a fascination that

perhaps exceeds their real interest, such experiments are not altogether

worthless. On the one hand, they provide strong evidence that a per-

son cannot expect to maintain a symmetrical attitude toward any piece

of apparatus with which he has had long experience, unless heis vir-
tually convinced at the outset that the possible states of the apparatus

are equally probable and independent from trial to trial. To say it in

the more familiar and sometimes more congenial language of objective

probability, long experiments with coins, dice, cards, and the like have

always shown somebias, and often some dependence from trial to trial.

On the other hand (and this has the utmost practical importance), it

has been shown that, with skill and experience, gambling apparatus, or

its statistical equivalent, can be manufactured in which the bias and

the dependence from trial to trial are extremely small. This implies
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that groups of very diverse people can be brought to agree that repeated

trials with certain apparatus are nearly uniform and nearly independent.

Thus certain methods of obtaining random numbers and other outcomes

of uniform and independent trials, which are vital to many sorts of

experimentation, have justifiably found acceptance with the scientific

public. A stimulating account of practical methods of obtaining ran-

dom numbers, and random samples generally, is given by Kendall in

Chapter 8 (Vol. I) of [K2].

6 How can science use a personalistic view of probability?

It is often argued by holders of necessary and objectivistic viewsalike

that that ill-defined activity known asscience or scientific method con-

sists largely, if not exclusively, in finding out what is probably true,

by criteria on which all reasonable men agree. The theory of proba-

bility relevant to science, they therefore argue, ought to be a codifica-

tion of universally acceptable criteria. Holders of necessary views say
that, just as there is no room for dispute as to whether one proposition

is logically implied by others, there can be no dispute as to the extent
to which one proposition is partially implied by others that are thought

of as evidence bearing on it, for the exponents of necessary viewsre-
gard probability as a generalization of implication. Holders of objec-

tivistic views say that, after appropriate observations, two reasonable

people can no more disagree about the probability with which trials

in a sequence of coin tosses are heads than they can disagree about the

length of a stick after measuring it by suitable methods, for they con-

sider probability an objective property of certain physical systems in

the samesense that length is generally considered an objective property

of other physical systems, small errors of measurement being contem-
plated in both contexts. Neither the necessary nor the objectivistic

outlook leaves any room for personal differences; both, therefore, look

on any personalistic view of probability as, at best, an attempt to pre-

dict some of the behavior of abnormal, or at any rate unscientific,

people.

I would reply that the personalistic view incorporates all the univer-
sally acceptable criteria for reasonableness in Judgment known to me

and that, when anycriteria that may have been overlooked are brought

forward, they will be welcomed into the personalistic view. ‘The cri-
teria incorporated in the personalistic view do not guarantee agreement

on all questions among all honest and freely communicating people,

even in principle. That incompleteness, if one will call it such, does not

distress me, for I think that at least some of the disagreement we see
around us is due neither to dishonesty, to errors in reasoning, nor to
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friction in communication, though the harmful effects of the latter are

almost incapable of exaggeration.

As was mentioned in connection with symmetry, there are partitions

that diverse people all consider nearly uniform, though not compelled

to that agreement by any postulate of the theory of personal proba-

bility. As has also been mentioned and as will be explained later (es-
pecially in § 14.8), through the statistical invention of randomization,
agreement about partitions pertaining to gambling apparatus of no im-

portance in itself can be made to contribute to agreement in every
part of empirical science.

Another mechanism that brings people having some, but not all,
opinions in common into more complete agreement wasillustrated in

§§ 3.6-7. Indeed, it was there shown that in certain contexts any two

opinions, provided that neither is extreme in a technical sense, are al-

most sure to be brought very close to one another by a sufficiently

large body of evidence.
It has been countered; I believe, that, if experience systematically

leads people with opinions originally different to hold a commonopinion,

then that common opinion, and it only, is the proper subject of scien-

tific probability theory. There are two inaccuracies in this argument.

In the first place, the conclusion of the personalistic view is not that
evidence brings holders of different opinions to the same opinions, but

rather to similar opinions. In the second place, it is typically true of

any observational program, however extensive but prescribed in ad-

vance, that there exist pairs of opinions, neither of which can becalled

extreme in any precisely defined sense, but which cannot be expected,

either by their holders or any other person, to be brought into close
agreement after the observational program.

I have, at least once, heard it objected against the personalistic view

of probability that, according to that view, two people might be of

different opinions, according as oneis pessimistic and the other opti-

mistic. I am not sure what position I would take in abstract discussion

of whether that alleged property of personalistic views would be ob-

jectionable, but I think it is clear from the formal definition of qualita-

tive probability that the particular personalistic view sponsored here
does not leave room for optimism and pessimism, howeverthesetraits

be interpreted, to play any role in the person’s judgmentof probabilities.

+ See (Fisher 1934), p. 287.



CHAPTER 5

Utility

1 Introduction

The postulates P4—-6, introduced in Chapter 3, have already led to

simplification of the relation < in so far as it applies to acts of a special

but important form. Indeed, through the introduction of numerical

probability, those special comparisons have been reduced to ordinary

arithmetic comparison of numbers in such a way that manyrelations

among acts are deducible by simple and systematic arithmetic calcula-

tion. In this chapter it will be shown that the arithmetization of com-

parison among acts can, with the introduction of one mild new postu-

late, be extended to virtually all pairs of acts.

This far-reaching arithmetization of comparison among acts is

achieved by attaching a number U(f) to each consequence f in such a

way that f < g if andonly if the expected value of U(f) is numerically
less than or equal to that of U(g), provided only that the real-valued

functions U(f) and U(g) are essentially bounded. The provision can

fail to be met only if there exist acts that are, so to speak, distinctly

preferable to any fixed reward or distinctly worse than anyfixed punish-

ment.

A function U that thus arithmetizes the relation of preference among

acts will be called a utility. It will be shown that the multiplicity of

utilities is not complicated, every utility being simply related to every

other. I have chosen to use the name “utility” in preference to any

other, in spite of some unfortunate connotations this name has in con-

nection with economic theory, because it was adopted by von Neumann

and Morgenstern when in [V4] they revived the concept to whichit re-

fers, in a most stimulating way. Their treatment has been of such wide-

spread interest that the introduction of a name other than “utility” at

the present time would cause more confusion than it could alleviate.

The next three sections are concerned with the technical exploration

of the utility concept. I think readers interested in the details will find

it best to read these sections twice as a unit, in the fashion I have been

recommending for other material in which definitions and propositions

69
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are interlarded with proofs; others will be content with a cursory read-

ing, omitting proofs.

Taking advantage of the simplicity afforded by the introduction of

utility, I try in §5 to make some progress with the problem, pointed

out in § 2.5, of specifying criteria for the construction of ‘‘small worlds.”

Finally, § 6 briefly reports the history of the utility idea. A separate
critical section is not necessary, because thecriticisms of the theory of

utility known to me are incorporated conveniently into the historical

section.

2 Gambles

Before discussing utility, it is expedient to establish certain facts,

the first being that at least among a rather rich class of acts, namely

acts confined with probability one to a finite number of consequences,

preference depends only on the probability distribution of the conse-

quences of the acts.

THEOREM 1

Hyp. l. fi, --+, fn are n elements of F, n => 1.

2. pi, °**, Pn are numbers such that Zp; = 1.

3. g and h are acts such that

P(g(s) = fi) = P(h(s) = fi) = Pi) i= Torey n,

CONCL. g=h.

Proor. The theorem is obvious for n = 1. It will be proved by in-

duction, supposing henceforth that n > 1.

Let B denote the intersection of the two events that g(s) = f, and

h(s) ¥ fn, and let C denote the intersection of the two events that
h(s) = fn and g(s) # fn. It is easy to see that P(B) = P(C). C can

be partitioned into Co, Ci, ---, Cr—1, where Co is a null event and C;,,

} = 1, ---, n — 1, is the intersection of C' with the event that g(s) = f;.

By repeated application of Conclusion 7 of Theorem 3.3.3, B can be

partitioned into events Bo, Bi, ---, Bn—, such that P(B;) = P(C)),

1=0,---,n—-—1.
Let go = g, and define g;,, step by step for z = 0, ---, m — 2 thus:

(1) gi4i(S) = fn for s ¢ Cy41,
= Sian for S¢ Bean,

= g;(s) elsewhere.

It is easily seen from the facts of conditional probability that g;41 =

g: given B;,,; U C;41, and it is even more obvious that gi41 = g; given

~(Bizi U Ci4i). Therefore gi41 = gi, so Qn_1 = g. Furthermore,
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P(gi4i(s) = f3) = P(g(s) = f3) = 93, 80 Pn—i(s) = fi) = 7, J = 1,
--+,n. Thus g,_1 1s not only equivalent to g but also satisfies the hy-

pothesis of the theorem relative to h, so it will suffice to prove the theo-

rem for gn—; and h in place of g and h.

Now gn—1 has been constructed to equal f, in C, except on a null set.

Therefore gn; = h given C U D, where D is the subset of ~C on

which Zn-1 = h= fn:

It remains only to show that g,_; = hgiven~(C U D). If ~(C U D)
is null, that is true automatically; henceforth concentrate on the less
trivial situation. If ~(C U D)is not null, then < given ~(C U D)
satisfies all the postulates assumed thus far, and therefore the conse-

quences fi, ++, fa—1; the numbersp,;’ = p;/(1 — pn), = 1, °+-,n — 1;
the acts g,—; and h; and the relation < given ~(C U D)satisfy the

hypothesis of the theorem for a case in which it is supposed already to

have been proved. @

In this chapter the notation 2p;f; will denote the class of all acts f-

for which there exist partitions B; of S such that P(B;) = p; and f(s) =

f; for s ¢B;. Here the f,’s are a finite sequence of consequences (not

necessarily distinct), and the p,’s a corresponding sequence of non-
negative real numbers such that 2p; = 1. In view of Conclusion 7 of

Theorem 3.3.3, such a class of acts, which will in this chapter be re-

ferred to as a gamble and denoted by f, g, h, or the like, always has at
least one element. Theorem 1 says, in effect, that the person regards
all elements of any gamble as equivalent. To put it differently, if the

events B; of a partition have the probabilities p;, and if the act f is

such that the consequence f; will befall the person in case B; occurs,

then the value of f is independent of how the partition B; is chosen.
Gambles can be mixed, in a sense, to make new gambles, thus: Let

f; be a finite sequence of gambles,

(2) f; = mu pighis,

and o; a corresponding sequence of non-negative real numbers such

that 20; = 1. The mizture of the f;’s with weights o;, denoted 2ao;f;, is
defined by

(3) Zot = DI oj | pisfiil
tJ

= x (o;p55)fej,

which is meaningful, the f;;’s being consequences and the (¢;p;;)’s being

numbers such that 2(0;p;;) = 1. Such mixtures are exemplified by an
insurance policy in which the benefit is an annuity payable during the
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life of the beneficiary, and by a lottery in which the prizes are tickets

in other lotteries.

In view of Theorem 1, it is natural to say that f < g meansthat, for

every act f in the class of acts corresponding to f,f < g. Corresponding

definitions are to be understood for f < g, f< g, f < g,ete.

THEOREM 2 If f, g, and h are gambles, and 0 < p < 1; then pf +

(1 — p)h < pg + (1 — p)h, if and only if f < g.

Proor. Let f, g; f;, g;; and B;, C; be acts, consequences, and parti-

tions such that f and g are among the acts represented by f and g,re-

spectively, with f(s) = f; for s ¢ B; and g(s) = g; for s ¢ Cj.

Construct D;; C B; NM C; such that P(D,;) = pP(B; NM C;), and let
D=UD,;. Then P(D) = p, P(B;| D) = P(B,, and P(C;| D) =
P(C;).
What is to be provedis, in effect, that f < g given D, if and only if

f <g. In view of Theorem 1 it is clear that whether that is so or not

for f and g does not depend on the particular choice of D; so, with an

obvious temporary extension of terminology, it is to be proved thatf < g

given p, if and only if f < g.

If f = g given a for every 0 < a <1, there is nothing to prove.

Otherwise it can be assumed without loss of generality that, for some
Qo, f< g given Qo.

In view of Theorem 2.7.2, if a+ 8 <1, f > g given a, and f > g
given 8; then f > g given (a + @), and similarly f > g given a/2.
Making use of P6 and Theorem 2.7.2, it can easily be shown that, for

any a sufficiently close to ao, f < g given a.
The preceding three paragraphs imply that, in the case at hand,

f < g given a foreverya,0<a<1.@

THEOREM 3 If f<g, and 0<o<p<1, then pf+ (1 — p)g <

of + (1 — o)g.

Proor. In view of the immediately verifiable identities,

pf + (1 — p)g = (9p — o Ff + [1 — (9p — o)] X

| g (1 — p)
—__—__—__—— f + —-—_ g :
1- —o 1- —o(4) (p ) (9 o)

of + (1 — o)g = (p — o)g + [1 — (p — o)] X

a (1 — p)fp >",
ote Ti @-~?9
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this theorem is a special case of Theorem 2; unless p = 1, and o = 0,
in which caseit is trivial. @

THEOREM 4 If f, < f and f; <g < fo, then there is one and only

one p such that pf, + (1 — p)f, = g.

Proor. It follows immediately from Theorem 3 and theprinciple of
the Dedekind cut f that there is one and only one pp such that

of, + (1 — a)fo < g, if o> po

(5) .
of, + (1 — a)f, > g, if ao < po.

According to (5), no number, except possibly po, can satisfy the equiv-

alence demanded by the theorem.

Finally, using (5) and P6 (muchas it was used in the proof of Theo-

rem 2), it follows that po does indeed satisfy the equivalence. @

3 Utility, and preference among gambles

The idea of utility can most conveniently be introduced in connec-

tion with gambles or, equivalently, acts that with probability one are
confined to a finite number of consequences, thus: A utility is a function

U associating real numbers with consequences in such a way that, if

f = Yp,f; and g = 2o,g;; then f < g,if and only if 2p,U(f,) < Do;U(g;).

Writing U[f] for 2p;U(f;), the condition takes the form U[f] < U[g].
Similarly, it is convenient to understand that, for an act f,

(1) Ulf] = E(U()).

In this notation the following obvious theorem gives a slightly different

characterization of utility.

THEOREM 1 A real-valued function of consequences, U,is a utility;

if and only if f < g is equivalent to U[f] < U[g], provided f and g are

both with probability one confined to a finite set of consequences.

Do the postulates thus far assumed guarantee that any utilities exist

at all? Can Theorem 1 be extended to an even wider class of acts?

Does a great diversity of utilities exist, or does the relation < practi-

cally determine the function U? These questions, here mentioned in

the order in which they most naturally arise, are manifestly of great

importance in understanding utility. For technical reasons, they will

| Cf., if necessary, any introduction to the theory of the real numbers for explana-
tion of this principle, e.g., Chapter IT of [G3].
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be answered in a different order—the third followed by the first in this
section, and the second in the next section.

If there is a utility at all, there is surely more than one, because a

utility plus a constant and a utility times a positive constant are also

obviously utilities; thus:

THEOREM 2 If U is a utility, and p, o are real numbers with p > 0;
then U’ = pU + a is also a utility.

CoROLLARY 1 If there exists a utility, and if f < g; then there ex-
ists a utility U for which U(f) and U(g) are any preassigned pair of
numbers, provided U(f) < U(g).

Theorem 2 says that any increasing linear function of a utility is a
utility. The next theorem says that, conversely, any two utilities are

necessarily increasing linear functions of one another.

THEOREM 3 If U and U’areutilities, there exist numbers p and a
such that U’ = pU + a, p > 0.

Proor. Thefirst step of the proof will be to demonstrate the fol-

lowing identity for the two utilities U and U’ and for any three conse-

quences f, g, h.

1 1 1

(2) U(f) Ug) Uh) =9.

Uf) Ug) U'(h)

If any two of the consequences f, g, h are equivalent, two columns of
the determinant in question are equal, and therefore the determinant

vanishes. It can be assumed, then, that no twoof f, g, and h are equiv-

alent; and there is no loss in generality, as may be seen by permuting

columns, in assuming f <g<h. Theorem 2.4 now permits the con-

clusion that there is a p such that pf + (1 — p)h = g. Therefore,

1 = pl + (1 — p)1

(3) U(g) = pU(f) + (1 — p)U(h)

U'(g) = pU'(f) + A — p)U’(h).

Thus the middle column of the determinant is linearly dependent on

the other two, so the determinant vanishes, as was asserted.

Now let g and h be anyfixed pair of consequences such that g < h,

the existence of such a pair being assured by P5. Equation (2) can be
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successively rewritten, where f is an arbitrary consequence, thus:

(4) 1U(g)U'(h) — U(h)U"(g)] — U(F)[U'(A) — Ug)

+ U'(Ff)[U(h) — U(g)] = 9,

U’(h) — U'g) U(g)U'(h) — U(h)U'G)
5 U'(f) = U(f) — ;
©) W) U(h) — U(g) W) U(h) — Ug)
  

which proves the theorem; for U’(h) — U’(g) and U(h) — U(g) are
both positive. @

COROLLARY 2 If U and U’ are utilities such that, for some g < A,
U(g) = U’(g) and U(h) = U’(h); then U and U’are the same,thatis,
for every f, U(f) = U’(f).

To summarize,if there is a utility at all, there are an infinite number,

but the array of utilities is not complicated; for all can be generated
from any one by increasing linear transformations.

Turn now to the question of existence.

THEOREM 4 There exists a utility.

Proor. Von Neumann and Morgenstern proveessentially this theo-

rem, as well as the preceding one, in the appendix of [V4]. The following
proof is theirs, expressed, as the teacher used to say, in my own words.

For this proof only, certain special nomenclature is introduced. A
set of gambles F is convex; if and only if, for every f, g ¢F and p, 0 < p
<1, pf + (1 — p)geF. An interval I of gambles is the set of all gam-

bles f such that, for somefixed g and h (which determinetheinterval),

gsf<h. A hyper-utility V on a convex set F is a real-valued func-

tion of the gambles of F, such that f < g, if and only if V(f) < V(g),

and such that V(of + (1 — p)g) = pV(F) + (1 — p)V(g).
The following remarks about this special nomenclature are obvious

and will be repeatedly used in the proof, without explicit reference.
The set of all gambles is convex. The intersection of two convex sets

is convex. Every interval is convex. There is an interval containing

any finite set of gambles. If there is a hyper-utility on the set of all

gambles, it is a utility when confined to consequences.
By the same method that led to the proofs of Theorems 2 and 3,

if there is a hyper-utility on F containing g and h, with g < h, then there
is one and only one hyper-utility V on F such that V(g) = 0 and V(h)
=],
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If | is the interval determined by g < h, then, according to Theorem

2.4, there is for every f in J a unique number,call it V(f), such that

(6) =(1— Vif))g + V(Ah.

By repeated use of Theorem 2.2, it follows for any f, f’ ¢ I that

(7) pf + (1 — p)f pi (1 — ViF))g + Vif)A}

+ (1 — pil — ViF))g + V(F)A}

{1 — [oV(F) + (1 — p)V(Fg

+ [oV(F) + (1 — p) V(F)IA,

so V is a hyper-utility on the convexset I.

From here on in this proof, let g, h be a fixed pair of consequences with

g <h. Making use of the preceding two paragraphs, there is a unique

hyper-utility assigning the values 0 and 1 to g and h, respectively, on

any one interval containing g and h. The intersection of two such in-
tervals is a convex set containing g and h, and on theintersection the

hyper-utilities associated with the two intervals are both hyper-utilities

attaching 0 and 1 to g and h, respectively; they must, therefore, be

equal to one another on theintersection.

Any gamble f is an element of some interval containing g and h.

Let V(f) be the commonvalue assigned to f by all the hyper-utilities

that are defined on intervals containing f, g, and h and that assign the
values 0 and 1 to g and h, respectively. Since there is always at least

one such interval for any gamble f, the function V is defined forall

gambles.

The proof will be complete when it is shown that V is a hyper-utility
for the convex set of all gambles. Let f and f’ be any two gambles and

panumber, 0 < p <1. There is an interval containing f, f’, g, h, and

pf + (1 — p)f’.. In that interval the function V is a hyper-utility.

Therefore V(of + (1 — p)f’) = pV(f) + (1 — p)V(F’) and Vf) < V(f),
if and only iff < f. @

4 The extension of utility to more general acts

The requirement that an act have only a finite number of conse-

quences may seem, from a practical point of view, almost no require-

ment at all. To illustrate, the number of time intervals that might
possibly be the duration of a huinan life can be regarded as finite, if
you agree that the duration may as well be rounded to the nearest

minute, or second, or microsecond, and that there is almost no possi-

bility of its exceeding a thousand years. More generally, it is plausible
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that, no matter what set of consequences is envisaged, each conse-

quence can be practically identified with some element of a suitably

chosen finite, though possibly enormous, subset. It might therefore

seem of little or no importance to extend the concept of utility to acts

having an infinite number of consequences. If that argument were

valid, it could easily be extended to reach the conclusion that infinite
sets are irrelevant to all practical affairs, and therefore to all parts of

applied mathematics. But it is one of the most profound lessons of

mathematical experience that infinite sets, tactfully handled, can lead

to great simplification of situations that could, in principle, but only

with enormous difficulty, be treated in terms of finite sets. How diffi-

cult it would be to study geometry if one madeat the outset the ‘‘sim-

plifying assumption’ that to all intents and purposes at most 10!:°°
points in space can be discriminated from one another! Again, it is

generally more convenient and fruitful to think of the annual cash in-

come of an individual or firm as a continuous variable with an infinite

number of possible values than as a discrete variable confined to some

large finite number of values, even if it is known that the income must

be some integral numberof cents less, say, than 10°.
One way to extend the concept of utility to acts with an infinite

number of consequences would be to postulate: If U[f] and U[g] both

exist (the values +o and —o being regarded as possible); f < g, if

and only if U[f] < U[g]. I see no serious objection to making this as-

sumption outright, though it might be complained that the assumption

is motivated more by general mathematical intuition and experience

than by intuitive standards of consistency among decisions, which I

have tried to take as my sole guide thus far. A statement almost as

strong as the one in question can, however, be derived on adjoining a

new postulate, P7, more in the spirit of Pl-6. That rather technical

program will be carried out in the next several paragraphs. Those not

interested can safely skip to the paragraph following Corollary 1 on

page 80.

Suppose that every possible consequence of the act g is at least as

attractive to the person as the act f considered as a whole; then it seems

to me within the spirit of the sure-thing principle to conclude that

f < g; the same mightas fairly have beensaid for the relations >, and

also for the two relations < given B and > given B. This ideais for-
malized in the following postulate, which, according to the conven-

tions of mathematical double-talk, is to be interpreted as two proposi-

tions—one having < and the other > throughout.

P7 If f < (>) g(s) given B for every s ¢ B, then f < (>) g given B.
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Attention has been called to the mathematically useful fact that, if
P1-6 apply to a relation <, then they also apply to any relation <

given B, provided B is not null. It is obvious that the sameis true for

P1-7, a fact that will be used often. It is also noteworthy that P1-7

obviously imply the propositions that arise if in them every instance

of the sign < is replaced by > and every instance of > is replaced by
<. Therefore in any deduction from P1-7 every instance of the signs

< and > can be reversed to produce a deduction that may becalled

the symmetric dual of the original deduction. This remark, a legitimate
child of the principle of insufficient reason, has not been important

heretofore, because almost all deductions thus far made have been their

own symmetric duals. Since that will not be so of some of the lemmas

in the present section, much needless writing and thinking can be saved

by agreeing at the outset that, once a result is proved, it and its sym-

metric dual may be used as if both had been explicitly proved.

Before going to work with P7, some may wish to see an example of

a mathematical structure satisfying P1-6 but not satisfying P7. More-

over, understanding of such an examplewill do muchto clarify the uses

to be made of P7. To construct the example, begin by letting S be a

set carrying a finitely additive probability measure P under which S

can be partitioned into subsets of arbitrarily small probability. Let
the set of consequences be thehalf-open interval of numbers 0 < f < 1.

Let U(f) = f, Ulf] = E(f), and

(1) Vif] = limP{f(s) 2 1 — ¢}.

Since the probability in (1) decreases with e, there is no question about

the existence of the limit. Now let W(f] = U[f] + V/[f], and define

f <g to mean that W[f] < Wlg]. Checking postulates P1-6, it will

be found that the < thus defined satisfies them all, and that what has

here been called U(f) is indeed a utility for <. But if, for example,

there is an f such that U[f] = V[f] = 4, P7 is violated, as can be seen
by comparing f to the act that, for each s, takes as value the maximum

of 2 and f(s). Whether there can be such an f, may,so far as I know,
depend on the choice of S and P. But, if the positive integers are taken

as S, and P is so chosen that though the probability of any one integer
is 0 the probability of the set of even integers is 1/2, a possibility as-

sured by the note to Section 3 of Chapter II on p. 231 of [B4], the func-

tion equal to 0 at the odd integers and equal to (1 — 1/n) at each even

nis such anf. Finite, as opposed to countable, additivity seems to be

essential to this example; perhaps, if the theory were worked out in a

countably additive spirit from the start, little or no counterpart of P7

would be necessary.

+ Fishburn (1970, Exercise 21, p. 213) has suggested an appropriate weak-
ening of P7.
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Several lemmas depending on P7 are now to be proved preparatory

to proving that U[f] governs preference for a very large class of acts.

It is to be understood throughout the section that U is any fixed utility.

The truth of each lemmais intuitively clear, in the sense that each could

justifiably be accepted as a postulate if need be. Since they are also

easy to prove and of secondary interest, condensed proofs will suffice.

LEMMA 1 If, for every consequence h, f < h, andg < h; then = g.

Proor. Consider in the light of P7 that f < g(s) and g < f(s) for

every Ss. @

LEMMA 2 If there exists a consequence fp such that f < fo, and if
U(f(s)) < Uo for every s, then there exists a gamble g such that f < g
and U[g] < Uo.

Proor. If U(fo) < Uo, then g can be taken to consist of fo alone.
Otherwise, let f; be any consequence such that U(f,) < Uo and let g
be the unique mixture of fo and f; such that U(g) = Uo. @

LEMMA 3

Hyp. 1. The B,’s, 1 = 1, ---, n, are a partition, and the U,’s are
corresponding numbers.

2. f is an act such that U(f(s)) < U; for s « B,.
3. fis a gamble such that f < f.

CoNCL. Ulf] < 2U;P(B;).

Proor. If the lemmawerefalse, it would be false even for some f < f.

Then it may be assumed, modifying f if need be by means of P6 and
Lemma 1, that there exists for each 7 an f; such that f < f; given B,.

Now,in view of Lemma 2, there exists for each 7 a g; such that f < g;

given B; and U[g,;] < U;. Let g = 2P(B;)g:, and observe that f <
f<g. Therefore, U[f] < U[g] = 2P(B,;)U(g:) < 2P(B,)U;. @

An act will be called bounded if its utility is, according to ordinary

mathematical usage, an essentially bounded random variable; the no-

tion is put in a more formalandself-contained way asfollows: A bounded
act is an act f such that, for some two numbers Up and U;, P{Uo <

U(f(s)) < U,;} = 1. The definition is clearly not dependent on the

choice of U.

THEOREM 1 If f and g are bounded, then f < g, if and only if

Ulf] < Ulg].

Proor. If there exist g and h such that g < f < Ah, then thereis,
by Theorem 2.4, a mixture f of g and h such that f = f. The null event
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on which U(f(s)) is not between Up and U,; may as well be disregarded;

the rest can be partitioned into n + 1 events B; defined by the condition

that s¢B; if and only if V;_; < U(f(s)) < Vi, 7=1, ---, n+1,
where

(2) vi=|(1-*)uo+2 0). i=0,---,n4+1.
nNnL

Applying Lemma3 and its symmetric dual,

(3) 2V;_1P(B,) < U[f] < 2VP(B)).

Similarly, according to Exercise 3 of Appendix 1,

(4) 2V;-1P(Bi) < Ulf] < 2V:P(B,).

Therefore

(5) | Ulf] — UIFl| < 2(Vi — Vin)P(B,) = (Ui — Uo)/n,
whence U(f) = U(f).

To consider the remaining case, suppose that the bounded act f ex-

ceeds (is exceeded by) every consequence; call it for the moment big

(little). According to Lemma1,all big (and, dually, all little) acts are
equivalent to one another. Furthermore, it is, for example, easily seen

that, if an act is big, then for e > 0,

(6) P{U(I(s)) 2 sup U(f) — J = 1.

(Some may be more familiar with the notation ‘““LUB” and “GLB,”

read “least upper bound” and ‘‘greatest lower bound,” than with the

corresponding “‘sup” and “‘inf,”’ read ‘‘supremum”’ and “infimum.” If

even these older terms are not familiar, see Exercise 4 of Appendix 2.)

Therefore, if there are big (little) acts, they all have the same expected

utility, namely sup U(f) (inf U(f)).

Suppose now that f <g. It is possible that f and g are both little;

that f is little, and g is equivalent to some gamble; that f is little and

g big; that f and g are each equivalent to some gamble; that f is equiva-

lent to some gamble, and g is big; or, finally, that they are both big.

In each of these cases, a simple argument shows that U/[f] < Ulg].

The converse arguments are similar. @

CoroLuary 1 If f and g are bounded, and P(B) > 0, then f<g
given B, if and only if E(U(f) — U(g)| B) < 0.

It would be possible to explore unbounded acts for which expected

utility exists to see whether expected utility governs preferences among

even such acts under postulates P1—7 or under some extension of them+

+ Peter Fishburn (1970, pp. 194, 206-207) and I have since discovered to
my surprise that these postulates imply bounded utility, which puts the next

several paragraphsin a new light.
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I do not think, however, that the question is sufficiently interesting to

warrant attention here, especially since there is somereason,first stated

by Gabriel Cramerina letter partially reproduced in [B10], to postulate

that there are upper and lower bounds toutility, in which caseall acts

would necessarily be bounded.
Even without P7, the postulates imply, in the following sense, that

no gamble has infinite or minusinfinite utility.
An act f has infinite (minus infinite) utility; if and only if, for some

g <(>)h and for every « > 0, there is a B with P(B) < e¢ and such
that the act equal to f on B and to g on ~B exceeds(is exceeded by) h.
A gamble or a consequence would be said to have infinite (minus tn-

finite) utility, if one of the acts corresponding to it had infinite (minus

infinite) utility.
Indeed, Theorem 2.4, a deduction from P1-6, obviously implies that

there are no infinite or minus infinite gambles or consequences. It

may, however, be mentioned that Pascal held that, in Just the sense

at hand, salvation is an infinite consequence ({P2], pp. 189-191). Again,

it is often said, in effect, that the utility to a person of immediate death

is a consequence of minus infinite utility, but casual observation shows

that this is not true of anyone—at least not of anyone who would cross

the street to greet a friend. In the same vein, medicine often gives lip

service to the idea that the death of a patient is of minusinfinite utility,

and, of course, doctors do go to great lengths to keep their patients

alive; but a doctor who took the idea too seriously would make a nui-

sance of himself and soon find himself with no patients to treasure.

If the utility of consequences is unbounded, say from above,{ then,

even in the presence of PI-7, acts (though not gambles) of infinite
utility can easily be constructed. My personal feeling is that, theo-

logical questions aside, there are no acts of infinite or minus infinite

utility, and that one might reasonably so postulate, which would amount

to assuming utility to be bounded.

Justifiable though it might be, that assumption would entail a cer-

tain mathematical awkwardness in many practical contexts. For ex-

ample, as will be discussed at greater length in Chapter 15, it sometimes

seems reasonable to suppose that the penalty for acting as though a

particular unknown numberwerefi instead of its true value, u, is propor-

tional to 6? = (u — f)*. But,if the possible values of u are unbounded,
then so are the possible values of 6, so utility is here taken to be un-
bounded. On close scrutiny of such an example one alwaysfinds that

| That is, if, for every V, there is a consequence f such that V < U(f). This

manner of speaking is permissible; because in view of Theorem 3.3, if one utility is
bounded,all are.
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it is not really reasonable to assume the penalty even roughly propor-

tional to 6” for large values of 5”, but rather that large values are so im-

probable that the error made in misappraising the penalty associated

with them is negligible compared to the saving in simplicity resulting

from the misappraisal. If the assumption of bounded utility were made

part of the theory of personal probability, then any example in which

unboundedutility is used for mathematical simplicity would be in con-

tradiction to the postulates. I propose, therefore, not to assume bounded

utility formally, but to remember that problems involving unbounded

utility are to be handled cautiously.

To take stock of the chapter thusfar, utility having been established,

it is now superfluous to consider that consequences maybeofall sorts,

since the postulates imply that in virtually every context a consequence

is adequately characterized by its utility, some one utility function

having been chosen from the linear family of possibilities. Therefore,

unless the contrary is clearly indicated, f, g, and A will henceforth mean
not exactly consequences in the sense used to date, but rather real
numbers measuringutility in units to be called utiles. Correspondingly,

an act f will henceforth be understood to be a real-valued random varia-

ble. The entire theory of preference, at least for bounded acts, can

now be summarized by the following résumé:

Rf <g given B,if and only if P(B) = 0, or E(f — g| B) < 0.

From now on, though not formulated as a postulate, it is to be assumed

without further quibbling that R holds, provided only that E(f) and

E(g) exist and are finite; no attempt will be made to compare acts for

which the expected value does notexist or is infinite.

If a person is free to decide amonga set F of acts, he will presumably

choose one the expectation of which is v(F), where

(7) v(F) = sup E(f),

provided that such a one exists. This provision must be mentioned,
even though a set F for which v(F) = © will, by convention, not be

considered to give rise to a valid decision problem; for, if F is infinite in
number, there may be no act in F with expectation quite as great as

v(F). Nonetheless, v(F) may, in a sense, be regarded as the value or

utility of the set of acts F, as is discussed in the penultimate paragraph

of § 6.5.

5 Small worlds

Allusion was madein the penultimate paragraph of § 2.5 to the prac-

tical necessity of confining attention to, or isolating, relatively simple
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situations in almost all applications of the theory of decision developed

in this book. As was mentioned there, I find it difficult to say with
any completeness how such isolated situations are actually arrived at

and justified. The purpose of the present section is to take some steps

toward the solution of that problem or, at any rate, to set the problem

forth as clearly as I can. This section, though importantfor a critical

evaluation of the thesis of this book, is not essential to a casual reading.

Making an extreme idealization, which has in principle guided the
whole argument of this book thus far, a person has only one decision

to make in his whole life. He must, namely, decide how to live, and

this he might in principle do once and forall. Though many,like my-

self, have found the concept of overall decision stimulating, it is cer-
tainly highly unrealistic and in many contexts unwieldy.t Any claim

to realism made by this book—or indeed by almost any theory of per-

sonal decision of which I know—is predicated on the idea that some of

the individual decision situations into which actual people tend to sub-

divide the single grand decision do recapitulate in microcosm the mech-

anism of the idealized grand decision. One application of the theory

of utility to overall decisions has, however, been attempted by Milton

Friedman in [F11].

The problem of this section is to say as clearly as possible what con-

stitutes a satisfactory isolated decision situation. The general method

of attack I propose to follow, for want of a better one, is to talk in terms

of the grand situation—tongue in cheek—andin those terms to analyze
and discuss isolated decision situations. I hope you will be able to

agree, as the discussion proceeds, that I do not lean too heavily on the

concept of the grand decision situation.
Consider a simple example. Jones is faced with the decision whether

to buy a certain sedan for a thousand dollars, a certain convertible also

for a thousand dollars, or to buy neither and continue carless. The

simplest analysis, and the one generally assumed, is that Jones is de-
ciding between three definite and sure enJoyments, that of the sedan,

the convertible, or the thousand dollars. Chance and uncertainty are
considered to have nothing to do with the situation. This simple anal-

ysis may well be appropriate in some contexts; however, it is not diffi-

cult to recognize that Jones must in fact take account of many uncer-
tain future possibilities in actually making his choice. The relative

t Unrealistic though the concept is, it would be a mistake, arising out of elliptical

presentation, to suppose that the concept predicates the choice of a complete life-
long policy by new-born babies. If a person ever reached such a level of maturity

as to be able to makea lifelong choice for his life from that time on, he would then
become a person to whom the concept could be literally applied.
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fragility of the convertible will be compensated only if Jones’s hope to

arrange a long vacation in a warm and scenic part of the country ac-

tually materializes; Jones would not buy a car at all if he thought it

likely that he would immediately be faced by a financial emergency
arising out of the sickness of himself or of some memberof his family;

he would be glad to put the moneyinto a car, or almost any durable

goods, if he feared extensive inflation. This brings out the fact that

what are often thought of as consequences (that is, sure experiences of
the deciding person) in isolated decision situations typically are in re-

ality highly uncertain. Indeed, in the final analysis, a consequence is

an idealization that can perhaps never be well approximated. I there-

fore suggest that we must expect acts with actually uncertain conse-

quences to play the role of sure consequencesin typical isolated decision
situations.

Suppose now, to elaborate the example, that Jones is presented with

a choice between tickets in several different lotteries such that, which-

ever he chooses and whatever tickets are drawn, he will win either
nothing, the sedan, the convertible, or a thousand dollars. None of

these four consequences—not even ‘“‘nothing’’—is actually a sure con-

sequence in the strict sense, as I think you will now understand. I

propose to analyze Jones’s present decision situation in terms of a

“small world.”’ The more colloquial Greek word, microcosm, will be

reserved for a special kind of small world to be described later. To de-

scribe the state of the small world is to say which prize is associated
with each of the tickets offered to Jones. The small-world acts actually
available to Jones are acceptance of one or another of the tickets.

The generic small-world act is an arbitrary function taking as its value

one of the four small-world consequences according to which small-
world state obtains.

It will be noticed that the small-world states are in fact events in
the grand world, that indeed they constitute a partition of the grand
world. If there are an infinite number of small-world states, as indeed

there must be, if the small world is to satisfy the postulates P1-7, then

the partitic.. in question becomes an infinite partition.t These con-

siderations lead to the following technical definitions.

Let the grand world S be, as always, a set with elementss, s’, ---
The grand-world consequences F may as well be taken to be a bounded

+ Technical note: It is mathematically more general and elegant not to insist that
the small world have states at all, but rather to speak of a special class of events as

small-world events. This class should be closed under complementsandfinite unions.

In short, the small-world events, and thereby the small world itself, constitute a

Boolean subalgebra of the Boolean algebra of the grand-world events.
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set of real numbers. The grand-world acis are then real-valued func-

tions f, g, h, ---. The preference ordering between acts is determined

by the condition that f < g if and onlyif

where the expected value indicated in (1) is derived from a probability

measure P characteristic of the grand world or, to be more exact, of

the person’s attitude toward the grand world.
The construction of a small world S from the grand world S begins

with the partition of S into subsets, or small-world states 5, 8’, --- (not
necessarily finite in number). Throughout this technical discussion, it

will be necessary to bear in mind certain double interpretations such

as that 5 is both an element of S and a subset of S. Strictly speaking, a

small-world event B in S is a collection of subsets of S and notitself a

subset of S. However, the union of all the elements of B, regarded as

subsets of S, is an event in S; call it [B].

The small world, as I mean to define it, is determined not only by

the definition of a state, but also by the definition of small-world con-

sequences. A small-world consequence is a grand-world act. A set F' of
grand-world acts, regarded as small-world consequences,is thus part of

the definition of any given small world. It will be mathematically

simplest, and cost little if anything in insight, to suppose that the ele-

ments of F are finite in number. They will be denoted f, g, h, ---;
and, when the small-world consequence f is recognized as a grand-world

act, f(s) will denote the grand-world consequence of f at the grand-

world state s.

A small-world act f is, of course, a function from small-world states &

to small-world consequences f. In this isolated technical discussion, we

will hobble along with the notations f(8) for the small-world conse-

quence attached to § by f, and f(s; 8) for the grand-world consequence

attached to-s by f(§) recognized as a grand-world act. Each small-

world act f gives rise to a unique grand-world act f, defined thus:

(2) f(s) = pr f(s; 8(s)),

where S(s) means that small-world state § of which the grand-world

state s is an element.
The distinction between f and f, like some other distinctions I have

thought it worth while to make in the present complicated context, is

perhaps pedantic. At any rate, it is to be understood as part of the
definition of a small world that f < & if and only if f < &, that is, in
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view of (1), if and only if E(f) < E(%). In this connection, it is useful

to note that

(3) E() = >> E@| F(5(s)) = HPUG(s)) = &)
keF

= DE f(3(s)) = k)PFE(s)) = &).
k

It may be advantageous to review (3), and thereby the whole techni-
cal definition of a small world, in terms of an example. A small-world

act, typified by the purchase of a lottery ticket, amounts to accepting

the consequences of one of several ordinary grand-world acts according

to which element of a partition does in fact obtain. For example, the

participant in a lottery may drive away a car, lead away a goat, face

a firing squad, or remain in the status quo, according to the terms of

the lottery and according to which ticket he has in fact drawn. Letting

the example of the lottery stand for the general situation, the expected

utility of a lottery ticket can be computed by the partition formula

(3.5.3) from the conditional expectation associated with each ticket,

which is what (8) does.

It may fairly be said that a lottery prize is not an act, but rather the

opportunity to choose from a numberof acts. Thus a cash prize puts

its possessor in a position to choose among many purchases he could

not otherwise afford. I believe that analysis to be more nearly correct,

but it is more complicated; and, if one thinks of each set of acts made

available by a lottery prize as represented by a best act of that set,

the more complicated analysis seems superfluous, at least in a first

attack.

A small world is completely satisfactory for the use to which I mean

to put it, if and only if it itself satisfies the seven postulates and leads

to—moretechnically, agrees with—a probability P such that

(4) P(B) = P({B))

for all B C S and hasa utility U such that

(5) U(f) = E(f)

for allfeF. For the present context, call such a completely satisfac-

tory small world a microcosm; if the small world satisfies the postulates,

but does not necessarily admit P as its probability nor U as a utility,

call it a pseudo-microcosm.

To display the circumstances under which a small world is a pseudo-

microcosm, I shall briefly comment on each of the postulates in the

form given on the end papers of this book, referring to them here as



5.5] SMALL WORLDS 87

P1-7, as opposed to P1-7, to emphasize that they are here being con-
sidered with respect to 8 and F.

Pl Simple ordering.

Automatically satisfied. Indeed it is directly implied by P1.

P2 Conditional preference well defined.

Automatic.

P3 Conditional preference does not effect consequences.

Requires exactly that, for every f, 9¢ F, and B CS,either:

a. f <Ggiven[B], if and only iff < g, or

b. h<k given [Bl], foreveryh, ke F.

In these inequalities the elements of F’ are of course interpreted as
grand-world acts.

P4 Qualitative personal probability well defined.

Requires exactly that, if f < g and hg < hg, where

ha(s) =g forse [B]

=f  forse~[B]°

(6)
ha(s) = for s ¢[C]g

=f forse~[C];

hthen h’s < h’a, where h’g and h’g are defined in termsoff’, 9’, f’ < 9’,
in analogy with (6). _

This postulate is automatic in case Ff’ has at most two elements.

P5 The person has some defimte preference.

Requires f < g for some f, g ¢ F.

P6 Partition of worlds into tiny events.

It is clear that this postulate is not automatic, that is, it is not im-

plied by the validity of P1-7 for the grand world. It is not even m-
plied by P1-7 together with P1-5, though in the presence of all these
P6 could undoubtedly be weakened. There seems to belittle to gain
in the present context by reducing P6 to such minimal terms, nor by

expressing it, as P1-5 have been expressed, in grand-world termsalone;

for P6 does not lend itself easily to such treatment, though it would be
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easy to decide in any instance whether P6 obtained without undue

reference to the grand world.

P7 Strong form of sure-thing principle.

Automatic, in view of the explicit assumption that F has only a

finite numberof elements.
To summarize, a small world is a pseudo-microcosm, if and only if

it satisfies P3-6. The possibility of enlarging an arbitrary small world

in such a way asto satisfy those conditions has already been implicitly

discussed in connection with P3-6. To recall the arguments that were

adduced, one might review the example about the egg in §3.1, and

the further discussion of that example in the opening paragraph of
§ 3.2; the remark in § 3.2, introducing P5; and the example about the

coin following P6’ in § 3.3.

It is encouraging to possess the argumentsJust cited tending to show

that any small world can without overwhelmingdifficulty be embedded

in a somewhat larger small world that is a pseudo-microcosm. A pseudo-
microcosm is, however, completely satisfactory, only if it is actually a

microcosm, that is, only if it leads to a probability measure and a

utility well articulated with those of the grand world. The problem of
deciding under what circumstances that occurs is much facilitated by

the fact that the probability measure and a utility of a pseudo-micro-

cosm can be written down explicitly, as the next few paragraphs show.

To study the problem, suppose the small world is a pseudo-micro-

cosm. Then, in view of P5, let g, h be elements of F such that g < h,
andlet

~ Ec(h — g [B)) -
7 B) = ~ P((B(7) Q(B) =pr Bho ([B]) 

a)f(06 ~ g(s)} dP(s).

By using P3 to check the positivity, it is easily verified that Q is a prob-

ability measure on S. The probability measure Q agrees with the re-

lation < between small-world events, which is easily verified on re-

writing (3) for the special small-world act fz that takes the value h
for §<¢ Band g for §< ~B thus:

E(A| (B)P(B) + E@| ~{B)P(~(Bp

Ech — g| (B)P(B) + E@

= E(h — 9)Q(B) + E(@).

(8) E(tz)
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Since g and A are essentially arbitrary, there are many ways to con-

struct a probability measure that agrees with the relation < between
small-world events, but, in the presence of P1-6, all of them must (in

view of Corollary 3.3.1) be the same as Q. That consideration leads to

the formula

(9) EG —f’ | (B)P(B)) = EG — FQ)

for all f, f/eF and BCS.
Using (9) and recalling that U(f) has been defined as E(f), (3) can

be rewritten thus:

(10) E(@) = EG) + re E(k — g| F(&(s)) = K)PF(&(s)) = &)

= X U(kK)Q(F(8) = &).

The question whether a given pseudo-microcosm is really a micro-

cosm is the question whether Q(B) = P([B]) and whether is a utility

for the pseudo-microcosm. The answer to the second part is immediate

and, I think, somewhat surprising, for (10) shows that for any pseudo-

microcosm U is indeeda utility.

Unfortunately, the condition Q(B) = P([B]) is not also automatic.

Thepossibility of its failing to be satisfied is illustrated by the following

simple mathematical example. Let S be the unit square 0 < 2, y < 1,

and let
1 ]

(11) E(f) =f f fla, y) dx dy.
0 0

It is of no real moment that the integral in (11), if understood in the

Lebesgue or Riemann sense, is not defined for all bounded functions.

Let the elements of S be the vertical line segments, x = constant.
Finally, suppose that the elements of F consist of the function zero and

any finite number of non-negative multiples of a fixed positive function

h =h. It is easy to verify that S as thus defined is a pseudo-microcosm
and that

(12) QB) =fal’) de
where ;

[rena
(13) q(x’) =—— ] 1]

f h(2, y) de dy
O 0
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Unless q is 1 for every x’, which will not at all typically be the case, S

is not really a microcosm.

The general condition that a pseudo-microcosm be a microcosm—i.e.,

that Q(B) = P({B])—is evidently, in view of (9),

(14) E(f — | (Bl) = EG -f)
for every f, f’<F and every B for which P([B]) > 0. Incidentally,
that condition alone practically implies that a small world S, not néces-

sarily assumed to be a pseudo-microcosm, is a real microcosm. More

exactly, it implies all the postulates P1-7, except P6; andit implies

that the probability measure P agrees with the relation < between

small-world events. Also, if a small world is a pseudo-microcosm,it is

enough that (14) should hold for some pair of functions for which the
right-handside of the equation does not vanish.
Equation (14) is, however, unsatisfactory in that it seems incapable

of verification without taking the grand world much too seriously.

Some consolation may derive from the fact that if f and f’ are constants

they automatically satisfy (14). Two such absolute, or grand-world,

consequences would suffice, for, as has Just been remarked, it is suffi-

cient that (14) be satisfied for two materially different small-world
consequences, in the presence of P1-7 (which are verifiable without

any detailed knowledge of the grand world). It must, however, be ad-
mitted, as has already been mentioned, that the very idea of a grand-

world consequence takes the grand world pretty seriously—a point

forced into my reluctant mind by a conversation with Francesco Bram-

billa.

I feel, if I may be allowed to say so, that the possibility of being taken

in by a pseudo-microcosm that is not a real microcosm is remote, but

the difficulty I find in defining an operationally applicable criterion is,

to say the least, ground for caution.

There certainly seem to be cases in which one could confidently as-

sume (14), though thus far formal analysis of the source of such se-

curity escapes me. Consider, for example, a lottery in which numbered

tickets are drawn from a drum. It seems clear that for an ordinary

person the outcomeof the lottery is utterly irrelevant to his life, except
through the rules of the lottery itself. In other terms equally loose,

the value of a thousand dollars, or of a car, to a person would not ordi-

narily depend at all on what numbers were drawn in a lottery, unless

the person himself (or perhaps some other person or organization with

whom he had some degree of contact) held tickets in the lottery. A

more precise formulation, which does indeed imply (14), is that the

events that represent the outcome of the lottery are all statistically
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independent of the grand-world acts, or functions, that typically enter
as prizes in a lottery. This suggests once more that it would be desir-

able, if possible, to find a simple qualitative personal description of in-

dependence between events. (Compare the first paragraph after

(3.5.2).)

6 Historical and critical comments on utility

A casual historical sketch of the concept of utility will perhaps have
some interest as history. At any rate, most of the critical ideas per-

taining to utility that I wish to discuss find their places in such a sketch

as conveniently as in any other organization I can devise. Much more

detailed material on the history of utility, especially in so far as the

economics of risk bearing is concerned, is to be found in Arrow’s review
article [A6]. Stigler’s historical study [S18] emphasizes the history of

the now almost obsolete economic notion of utility in riskless situations,
a notion still sometimes confused with the one under discussion.

As was mentionedin § 4.5, the earliest mathematical studies of prob-
ability were largely concerned with gambling, particularly with the

question of which of several available cash gambles is most advanta-

geous. Early probabilists advanced the maxim that the gamble with
the highest expected winnings is best or, in terms of utility, that wealth

measured in cash is a utility function. Some sense can be seen in that

maxim, which will here be called by its traditional though misleading

name,the principle of mathematical expectation. First, it has often been
argued that the principle follows for the long run from the weak law of

large numbers, applied to large numbers of independent bets, in each

of which only sums that the gambler considers small are to be won or
lost. Second, Daniel Bernoulli, who, in [B10], was one of the first to

introduce a general idea of utility corresponding to that developed in

the preceding three sections, made the following analysis of the princi-

ple, which justifies its application in limited but important contexts.

If the consequences f to be considered are all quantities of cash, it is

reasonable to suppose that U(f) will change smoothly with changes in

f. Therefore, if a person’s present wealth is fo, and he contemplates

various gambles, none of which can greatly change his wealth, the

utility function can, for his particular purpose, be approximated byits

tangent at fo, that is,

(1) U(f) ~ U(fo) + (F — fo) U"(fo),

a linear function of f. Since a constant term is irrelevant to any com-

parison of expected values, the approximation amounts to regarding

utility as proportional to wealth, that is, to following the principle of
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mathematical expectation. So far as I know, the only other argument
for the principle that has ever been advanced is one concerning equity
between two players. As Bernoulli says, that argumentis irrelevant at

best; and neither of the relevant arguments justifies categorial accept-

ance of the principle. Nonethe less, the principle wasat first so cate-

gorically accepted that it seemed paradoxical to mathematicians of the

early eighteenth century that presumably prudent individuals reject

the principle in certain real and hypothetical decision situations.

Daniel Bernoulli (1700-1782), in the paper [B10], seems to have
been the first to point out that the principle is at best a rule of thumb,

and he there suggested the maximization of expected utility as a more

valid principle. Daniel Bernoulli’s paper reproduces portions of a let-

ter from Gabriel Cramer to Nicholas Bernoulli, which establishes
Cramer’s chronological priority to the idea of utility and most of the
other main ideas of Bernoulli’s paper. But it is Bernoulli’s formulation

together with some of the ideas that were specifically his that became
popular and have had widespread influence to the present day. It is
therefore appropriate to review Bernoulli’s paper in somedetail.

Being unable to read Latin, I follow the German edition [B11].

Bernoulli begins by remindinghis readers that the principle of mathe-

matical expectation, though but weakly supported, had theretofore

dominated the theory of behavior in the face of uncertainty. He says

that, though many arguments had been given for the principle, they
were all based on the irrelevant idea of equity among players. It seems

hard to believe that he had never heard the argument justifying the

principle for the long run, even though the weak law of large numbers

was then only in its mathematical infancy. Ars Conjectandi [B12], then
a fairly up-to-date and most eminent treatise on probability, does seem

to give only the argument about equity, and that in countless forms.

This treatise by Daniel’s uncle, Jacob (= James) Bernoulli (1654-1705),

incidentally, contains the first mathematical advance toward the weak
law, proving it for the special case of repeated trials.
Many examples show that the principle of mathematical expecta-

tion is not universally applicable. Daniel Bernoulli promptly presents
one: “To justify these remarks, let us suppose a pauper happensto ac-

quire a lottery ticket by which he may with equal probability win

either nothing or 20,000 ducats. Will he have to evaluate the worth
of the ticket as 10,000 ducats; and would he be acting foolishly, if he
sold it for 9,000 ducats? ”’

Other examples occur later in the paper asillustrations of the use

of the utility concept. Thus a prudent merchant mayinsure his ship

against loss at sea, though he understands perfectly well that he is
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thereby increasing the insurance company’s expected wealth, and to
the same extent decreasing his own. Such behavioris in flagrant vio-

lation of the principle of mathematical expectation, and to one whoheld

that principle categorically it would be as absurd to insure as to throw

money away outright. But the principle is neither obvious nor de-

duced from other principles regarded as obvious; so it may be challenged,
and must be, because everyone agrees that it is not really insane to

insure.

Bernoulli cites a third, now very famous, example illustrating that

men of prudence do not invariably obey the principle of mathematical
expectation. This example, known as the St. Petersburg paradox (be-

cause of the journal in which Bernoulli’s paper was published) had ear-
lier been publicized by Nicholas Bernoulli, and Daniel acknowledges
it as the stimulus that led to his investigation of utility. Suppose, to

state the St. Petersburg paradox succinctly, that a person could choose

between an act leaving his wealth fixed at its present magnitude or one

that would change his wealth at random,increasing it by (2” — f) dol-
lars with probability 2~” for every positive integer n. No matter how

large the admission fee f may be, the expected income of the random

act is infinite, as may easily be verified. Therefore, according to the
principle of mathematical expectation, the random act is to be pre-

ferred to the status quo. Numerical examples, however, soon convince

any sincere person that he would prefer the status quo if f is at all

large. If f is $128, for example, there is only 1 chance in 64 that a

person choosing the random act will so much as break even, and he

will otherwise lose at least $64, a jeopardy for which he can seek com-
pensation only in the prodigiously improbable winning of a prodigiously

high prize.

Appealing to intuition, Bernoulli says that the cash value of a per-

son’s wealth is not its true, or moral, worth to him. Thus, according to

Bernoulli, the dollar that might be precious to a pauper would be nearly
worthless to a millionaire—or, better, to the pauper himself were he to

become a millionaire. Bernoulli then postulates that people do seek
to maximize the expected value of moral worth, or what has been called

moral expectation.

Operationally, the moral worth of a person’s wealth, so far as it con-

cerns behavior in the face of uncertainty, is just what I would call the
utility of the wealth, and moral expectation is expectation of utility.

t Daniel refers to this Nicholas Bernoulli as his uncle, but, in view of dates men-
tioned in the last section of Daniel’s paper and the genealogy in Chapter 8 of [B9],

I think he must have meanthis elder cousin (1687-1759), perhaps using “uncle’’ as

a term of deference.
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It seems mystical, however, to talk about moral worth apart from

probability and, having done so, doubly mystical to postulate that this
undefined quantity serves as a utility. These obvious criticisms have
naturally led many to discredit the very idea of utility, but §§ 2-4

show (following von Neumann and Morgenstern) that there is a more

cogent, though not altogether unobjectionable, path to that concept.

Bernoulli argued, elaborating the example of the pauper and the

millionaire, that a fixed increment of cash wealth typically results in

an ever smaller increment of moral wealth as the basic cash wealth to

which the increment applies is increased. He admitted the possibility

of examples in which this law of diminishing marginal utility, as it has

come to be called in the literature of economics, might fail. For ex-

ample, a relatively small sum might be precious to a wealthy prisoner

who required it to complete his ransom. But Bernoulli insisted that

such examples are unusual and that as a general rule the law may be

assumed. In mathematical terms, the law says that utility as a func-
tion of money is a concave (i.e., the negative of a convex) function.f

It follows from the basic inequality concerning convex functions (Theo-

rem 1 of Appendix 2) that a person to whom the law of diminishing

marginal utility applies will always prefer the status quo to any fair

gamble, that is, to any random act for which the changein his expected

wealth is zero, and that he will always be willing to pay something in

addition to its actuarial, or expected, value for insurance against any
loss to himself. The law of diminishing marginal utility has been very

popular, and few who haveconsidered utility since Bernoulli have dis-

carded it, or even realized that it was not necessarily part and parcel

of the utility idea. Of course, the law has been embraced eagerly and
uncritically by those who have a moral aversion to gambling.

Bernoulli went further than the law of diminishing marginal utility

and suggested that the slope of utility as a function of wealth might,

at least as a rule of thumb, be supposed, not only to decrease with, but

to be inversely proportional to, the cash value of wealth. This, he

pointed out, is equivalent to postulating that utility is equal to the

logarithm (to any base) of the cash value of wealth. To this day, no
other function has been suggested as a better prototype for Everyman’s

utility function. None the less, as Cramer pointed out in his aforemen-

tioned letter, the logarithm has a serious disadvantage; for, if the loga-

rithm were the utility of wealth, the St. Petersburg paradox could be

{ Often the meanings of ‘‘convex” and ‘“‘concave’”’ as applied to functions are in-
terchanged. A function is here called convex if it appears convex, in the ordinary
sense of the word, when viewed from below. Such a function is, of course, also con-

cave from above, whence the confusion. Cf. Appendix 2.
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amended to produce a random act with an infinite expected utility
(i.e., an infinite expected logarithm of income) that, again, no one would
really prefer to the status quo. To take a less elaborate example, sup-

pose that a man’s total wealth, including an appraisal of his future

earning power, were a million dollars. If the logarithm of wealth were
actually his utility, he would as soon as not flip a coin to decide whether
his wealth should be changed to ten thousand dollars—roughly $500

per year—or a hundred million dollars. This seems preposterous to
me. At any rate, I am sure you can construct an example along the
same lines that will seem preposterous to you. Cramer therefore con-

cluded, and I think rightly, that the utility of cash must be bounded,

at least from above. It seems to me that a good argument can also be

adduced for supposing utility to be bounded from below, for, however

wealth may be interpreted, we all subject our total wealth to slight
jeopardy daily for the sake of a large probability of avoiding more

moderate losses. But the logarithm is unbounded both from above
and from below; so, though it might be a reasonable approximation to

a person’s utility in a moderate range of wealth, it cannot be taken

seriously over extreme ranges.

Bernoulli’s ideas were accepted wholeheartedly by Laplace [L1], who
was very enthusiastic about the applications of probability to all sorts

of decision problems. It is my casual impression, however, that from

the time of Laplace until quite recently the idéa of utility did not
strongly influence either mathematical or practical probabilists.

For a long period economists accepted Bernoulli’s idea of moral

wealth as the measurement of a person’s well-being apart from any

consideration of probability. Though “utility” rather than ‘moral

worth” has been the popular name for this concept among English-

speaking economists, it is my impression that Bernoulli’s paper is the

principal, if not the sole, source of the notion for all economists, though
the paper itself may often have been lost sight of. Economists were for
a time enthusiastic about the principle of diminishing marginal utility,

and they saw what they believed to be reflections of it in many aspects

of everyday life. Why else, to paraphrase Alfred Marshall (pp. 19,
95 of [M2]), does a poor man walk in a rain that induces a rich man to

take a cab?

During the period when the probability-less idea of utility was popu-
lar with economists, they referred not only to the utility of money,
but also to the utility of other consequences such as commodities (and

services) and combinations(or, better, patterns of consumption) of com-

modities. The theory of choice among consequences was expressed by

the idea that, among the available consequences, a person prefers those
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that have the highest utility for him. Also, the idea of diminishing

marginal utility was extended from money to other commodities.
The probability-less idea of utility in economics has been completely

discredited in the eyes of almost all economists, the following argument

against it—originally advanced by Pareto in pp. 158-159 and the

Mathematical Appendix of [Pl]—being widely accepted. If utility is

regarded as controlling only consequences, rather than acts, it is not

true—as it is when acts, or at least gambles, are considered and the

formal definition in § 3, is applied—that utility is determined except
for a linear transformation. Indeed, confining attention to conse-
quences, any strictly monotonically increasing function of one utility

is another utility. Under these circumstances there is little, if any,

value in talking about utility at all, unless, of course, special economic
considerations should render oneutility, or say a linear family of utili-

ties, of particular interest. That possibility remains academic to date,

though one attempt to exploit it was made byIrving Fisher,asis briefly
discussed in the paragraph leading to Footnote 155 of [S18]. In par-

ticular, utility as a function of wealth can have any shape whatsoever

in the probability-less context, provided only that the function in ques-

tion is increasing with increasing wealth, the provision following from
the casual observation that almost nobody throws money away. The

history of probability-less utility has been thoroughly reported by Stig-

ler [S18].
What, then, becomes of the intuitive arguments that led to the no-

tion of diminishing marginal utility? To illustrate, consider the poor

man and the rich man in the rain. Those of us who consider diminish-

ing marginal utility nonsensical in this context think it sufficient to
say simply that it is a common observation that rich men spend money

freely to avoid moderate physical suffering whereas poor men suffer

freely rather than make corresponding expenditures of money; in other

terms, that the rate of exchange between circumstances producing phys-

ical discomfort and money dependson the wealth of the person involved.

In recent years there has been revived interest in Bernoulli’s ideas

of utility in the technical sense of §§ 2—4, that is, as a function that, so

to speak, controls decisions amongacts, or at least gambles. Ramsey’s

essays in [R1], which in spirit closely resemble thefirst five chapters of

this book, present a relatively early example of this revival of interest.

Ramsey improves on Bernoulli in that he defines utility operationally

in terms of the behavior of a person constrained by certain postulates.

Ramsey’s essays, though now much appreciated, seem to have had

relatively little influence.

Between the time of Ramsey and that of von Neumann and Morgen-
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stern there was interest in breaking away from the idea of maximizing
expected utility, at least so far as economic theory was concerned (ef.

(T1a]). This trend was supported by those who said that Bernoulli gives

no reason for supposing that preferences correspond to the expected

value of some function, and that therefore much more general possi-

bilities must be considered. Why should not the range, the variance,

and the skewness, not to mention countless other features, of the dis-

tribution of some function join with the expected value in determining
preference? The question was answered bytheconstruction of Ramsey
and again by that of von Neumann and Morgenstern, which has been
slightly extended in §§ 2-4; it is simply a mathematical fact that, al-
most any theory of probability having been adopted and the sure-thing

principle having been suitably extended, the existence of a function
whose expected value controls choices can be deduced. That does not

mean that as a theory of actual economic behavior the theory of utility

is absolutely established and cannot be overthrown. Quite the con-
trary, it is a theory that makes factual predictions many of which can

easily be observed to be false, but the theory may have some value in

making economic predictions in certain contexts where the departures
from it happen not to be devastating. Moreover, as I have been argu-

ing, it may have value as a normative theory.

Von Neumann and Morgenstern initiated among economists and, to

a lesser extent, also among statisticians an intense revival of interest

in the technical utility concept by their treatment of utility, which ap-

pears as a digression in [V4].

The von Neumann-Morgenstern theory of utility has produced this
reaction, because it gives strong intuitive grounds for accepting the

Bernoullian utility hypothesis as a consequenceof well-accepted maxims

of behavior. To give readers of this book some idea of the von Neu-

mann-Morgenstern theory, I may repeat that the treatment of utility

as applied to gambles presented in §3 is virtually copied from their

book [V4]. Indeed, their ideas on this subject are responsible for almost

all of my own. One idea now held by me that I think von Neumann

and Morgenstern do not explicitly support, and that so far as I know
they might not wish to have attributed to them, is the normative in-

terpretation of the theory.

Of course, much of the new interest in utility takes the form of criti-

cism and controversy. The greater part of this discussion that has come

to my attention has not yet been published. A list of references lead-

ing to most of that which hasis [B7], [W14], [S1], [C4], [F13], [A2].

I shall successively discuss each of the recent major criticisms of the

modern theoryof utility known to me. My methodin each case will
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be first to state the criticism in a form resembling those in whichit is
typically put forward, regardless of whether I consider that form well
chosen. I will then discuss the criticism, elaborating its meaning and

indicating its rebuttal, when there seems to me to be one.

(a) Modern economic theorists have rigorously shown that there is

no meaningful measure of utility. More specifically, if any function U
fulfills the role of a utility, then so does any strictly monotonically in-

creasing function of U. It must, therefore, be an error to conclude that

every utility is a linear function of every other.

This argument has been advanced with a seriousness that is surpris-

ing, considering that it concedes little intelligence or learning to the

proponents of the utility theory under discussion and considering that

it, results, as will immediately be explained, from the baldest sort of a

terminological confusion. To be fair, I must go on to say that I have

never known the argument to be defended long in the presence of the

explanation I am aboutto give.

In ordinary economic usage, especially prior to the work of von Neu-

mann and Morgenstern, a utility associated with gambles would pre-

sumably be simply a function U associating numbers with gambles in

such a way that f < g, if and only if U(f) < U(g); though economic
discussion of utility was, prior to von Neumann and Morgenstern,al-
most exclusively confined to consequences rather than to gambles or

to acts. It is unequivocally true, as I have already brought out, that

any monotonic function of a utility in this wideclassical sense is itself

a utility. What von Neumann and Morgenstern have shown, and

what has been recapitulated in § 3, is that, granting certain hypotheses,
there exists at least one classical utility V satisfying the very special

condition

(2) V(af + Bg) = aV(F) + BV(g),

where f and g are any gambles and a, 6 are non-negative numbers such

that a+ 6 = 1. Furthermore, if I may for the moment call a classical

utility satisfying (2) a von Neumann-Morgenstern utility, every von

Neumann-Morgenstern utility is an increasing linear function of every

other. To put the point differently, the essential conclusion of the von

Neumann-Morgenstern utility theory is that (2) can be satisfied by a

classical utility, but not by very many. The confusion arises only be-

cause von Neumann and Morgenstern use the already pre-empted word

“utility” for what I here call ‘von Neumann-Morgenstern utility.”

In retrospect, that seems to have been a mistake in tactics, but one of

no long-range importance.
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(b) The postulates leading to the von Neumann-Morgenstern con-

cept of utility are arbitrary and gratuitous.

Such a view can, of course, always be held without the slightest fear

of rigorous refutation, but a critic holding it might perhaps be persuaded

away from it by a reformulation of the postulates that he might find
more appealing than the original set, or by illuminating examples. In
particular, Pl-7 are quite different from, but imply, the postulates of

von Neumann and Morgenstern. Incidentally, the main function of
the von Neumann-Morgenstern postulates themselves is to put the es-

sential content of Daniel Bernoulli’s “postulate” into a form that is

less gratuitous in appearance. At least one serious critic, who had at

first found the system of von Neumann and Morgenstern gratuitous,

changed his mind when the possibility of deriving certain aspects of

that system from the sure-thing principle was pointed out to him.

(c) The sure-thing principle goes too far. For example, if two lot-
teries with cash prizes (not necessarily positive) are based on the same
set of lottery tickets and so arranged that the prize that will be assigned

to any ticket by the second lottery is at least as great as the prize as-

signed to that ticket by the first lottery, then there is no doubt that

virtually any person would find a ticket in the first lottery not prefer-

able to the same ticket in the second lottery. If, however, the prizes

in each lottery are themselves lottery tickets, such that the prize asso-

ciated with any ticket in the first lottery is not preferred by the person

under study to the prize associated with the sameticket by the second
lottery, the conclusion that the person will not prefer a ticket in the

first lottery to the sameticket in the second is no longer compelling.

This point resembles the preceding one in that the intuitive appeal

of an assumption can at most be indicated, not proved. I do think it
cogent, however, to stress in connection with this particular point that

a cash prize is to a large extent a lottery ticket in that the uncertainty

as to what will becomeof a person if he has a gift of a thousand dollars
is not in principle different from the uncertainty about what will be-
come of him if he holds a lottery ticket of considerable actuarial value.

Perhaps an adherent to the criticism in question would thinkit rele-

vant to reply thus: Though cash sums are indeed essentially lottery

tickets, a sum of money is worth at least as much to a person as a smaller

sum, in a peculiarly definite and objective sense, because money can,.

if one desires, always be quickly and quietly thrown away, thereby

making any sum available to a person who already has a larger sum.

But I have never heard that reply made, nor do I hereplead its cogency.
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(d) An actual systematic deviation from the sure-thing principle and,

with it, from the von Neumann-Morgenstern theory of utility, can be
exhibited. For example, a person might perfectly reasonably prefer to
subsist on a packet of Army K rations per meal than on two ouncesof
the best caviar per meal. It is then to be expected, according to the
sure-thing principle, that the person would prefer the K rations to a
lottery ticket yielding the K rations with probability 9/10 and the

caviar diet with probability 1/10. That expectation is no doubt ful-
filled, if the lottery is understood to determine the person’s year-long
diet once andfor all. But, if the person is able to have at each meal a

lottery ticket offering him the K rations or the caviar with the indicated

probabilities, it is not at all unlikely, granting that he likes caviar and
has some storage facilities, that he will prefer this “lottery diet.’”’ This
conclusion is in defiance of the principle that ‘‘the theory of consumer
demandis a static theory.” (Cf. [W14].)

I admit that the theory of utility is not static in the indicated sense,
as the foregoing example conclusively shows. But there is not the

slightest reason to think of a lottery producing either a steady diet of

caviar or a steady diet of K rations as being the same lottery as one

having a multitude of different prizes almost all of which are mixed
chronological programs of caviar and K rations. The fact that a theory

of consumer behavior in riskless situations happens to be static in the
required sense (under certain special assumptions about storability and
the linearity of prices) is no argumentat all that the theory of consumer

behavior in risky circumstances should be static in the same sense (as

I mention in a note appended to [W14)).

(e) If the von Neumann-Morgenstern theory of utility is not static,
it is not subject to repeated empirical observation and is therefore

vacuous. (Cf. [W14].)

I think the discussion in § 3.1 of how to determine the preferences of
a hot man for a swim, a shower, and a glass of beer, and the discussion

in §5 of the practicality of identifying pseudo-microcosms are steps

toward showing how the theory can be put to empirical test without
making repeated trials on any one person.

(f) Casual observation shows that real people frequently and fla-

grantly behave in disaccord with theutility theory, and that in fact be-

havior of that sort is not at all typically considered abnormal or ir-
rational.

Two different topics call for discussion under this heading. In the
first place, it is undoubtedly true that the behavior of people does often



5.6] HISTORICAL AND CRITICAL COMMENTS ON UTILITY 101

flagrantly depart from the theory. None theless, all the world knows

from the lessons of modern physics that a theory is not to be altogether

rejected becauseit is not absolutely true. It seems not unreasonable to

suppose, and examples could easily be cited to confirm, that in the ex-

tremely complicated subject of the behavior of people very crude theory

can play a useful role in certain contexts.

Second, many apparent exceptions to the theory can be so reinter-

preted as not to be exceptions at all. For example, a flier may be ob-

served doing a stunt that risks his life, apparently for nothing. That

seems to be in complete violation of the theory; but, if in addition it is

known that the flier has a real and practical need to convince certain

colleagues of his courage, then he is simply paying for advertising with

the risk of his life, which is not in itself in contradiction to the theory.

Or, suppose that it were known moreorless objectively that the flier

has a need to demonstrate his own courage to himself. The theory

would again be rescued, but this time perhaps not so convincingly as

before. In general, the reinterpretation needed to reconcile various

sorts of behavior with the utility theory is sometimes quite acceptable

and sometimes so strained as to lay whoever proposes it open to the

charge of trying to save the theory by rendering it tautological. The

samesort of thing arises in connection with many theories, and I think

there is general agreement that no hard-and-fast rule can be laid down

as to when it becomes inappropriate to make the necessary reinterpre-
tation. For example, the law of the conservation of energy (or its

atomic age variant, the law of the conservation of mass and energy)

owes its success largely to its being an expression of remarkable and

reliable facts of nature, but to some extent also to certain conventions

by which new sorts of energy are so defined as to keep the law true.
A stimulating discussion of this delicate point in connection with the

theory of utility is given by Samuelson in [S1].

(g) Introspection about certain hypothetical decision situations sug-

gests that the sure-thing principle and, with it, the theory of utility

are normatively unsatisfactory. Consider an example based on twode-

cision situations each involving two gambles. f

Situation 1. Choose between

Gamble 1. $500,000 with probability 1; and
Gamble 2. $2,500,000 with probability 0.1,

$500,000 with probability 0.89,
status quo with probability 0.01.

+ This particular example is due to Allais [A2]. Another interesting example was

presented somewhatearlier by Georges Morlat [C4].
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Situation 2. Choose between

Gamble 3. $500,000 with probability 0.11,

status quo with probability 0.89; and

Gamble 4. $2,500,000 with probability 0.1,

status quo with probability 0.9.

Many people prefer Gamble 1 to Gamble 2, because, speaking quali-

tatively, they do not find the chance of winning a very large fortune in
place of receiving a large fortune outright adequate compensation for

even a small risk of being left in the status quo. Many of the same

people prefer Gamble 4 to Gamble 3; because, speaking qualitatively,

the chance of winning is nearly the same in both gambles, so the one

with the much larger prize seems preferable. But the intuitively ac-

ceptable pair of preferences, Gamble 1 preferred to Gamble 2 and Gam-

ble 4 to Gamble 3, is.not compatible with the utility concept or, equiva-

lently, the sure-thing principle. Indeed that pair of preferences implies
the following inequalities for any hypothetical utility function.

U ($500,000) > 0.1U ($2,500,000) + 0.89U ($500,000) + 0.1U ($0),

(3)
0.1U ($2,500,000) + 0.9U ($0) > 0.11U ($500,000) + 0.89U ($0);

and these are obviously incompatible.
Examples + like the one cited do have a strong intuitive appeal; even

if you do not personally feel a tendency to prefer Gamble 1 to Gamble 2

and simultaneously Gamble 4 to Gamble 3, I think that a few trials
with other prizes and probabilities will provide you with an example
appropriate to yourself.

If, after thorough deliberation, anyone maintains a pair of distinct

preferences that are in conflict with the sure-thing principle, he must

abandon, or modify, the principle; for that kind of discrepancy seems
intolerable in a normative theory. Analogous circumstances forced

D. Bernoulli to abandon the theory of mathematical expectation for

that of utility [B10]. In general, a person who hastentatively accepted
a normative theory must conscientiously study situations in which the

theory seems to lead him astray; he must decide for each by reflection

—deduction will typically be of little relevance—whether to retain his

initial impression of the situation or to accept the implications of the

theory forit.
To illustrate, let me record my own reactions to the example with

} Allais has announced (but not yet published) an empirical investigation of the

responses of prudent, educated people to such examples [A2].
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which this heading was introduced. When the twosituations were

first presented, I immediately expressed preference for Gamble 1 as

opposed to Gamble 2 and for Gamble 4 as opposed to Gamble 3, and I
still feel an intuitive attraction to those preferences. But I have since

accepted the following way of looking at the two situations, which
amounts to repeated use of the sure-thing principle.
One way in which Gambles 1-4 could berealized is by a lottery with

a hundred numbered tickets and with prizes according to the schedule

shown in Table 1.

TABLE 1. Prizes IN UNITS OF $100,000 IN A LOTTERY REALIZING
GAMBLES 1-4

 

Ticket Number

1 2-11 12-100
... fGamble1 5 5

Situation 1 | Gamble 2 10 25 5

. . Gamble 3 5 5 0

Situation2le 4 |0 25 0

Now, if one of the tickets numbered from 12 through 100 is drawn, it
will not matter, in either situation, which gamble I choose. I therefore
focus on the possibility that one of the tickets numbered from 1 through

11 will be drawn, in which case Situations 1 and 2 are exactly parallel.
The subsidiary decision depends in both situations on whether I would
sell an outright gift of $500,000 for a 10-to-1 chance to win $2,500,000—

a conclusion that I think has a claim to universality, or objectivity.
Finally, consulting my purely personal taste, I find that I would prefer
the gift of $500,000 and, accordingly, that I prefer Gamble 1 to Gamble
2 and (contrary to myinitial reaction) Gamble 3 to Gamble 4.

It seems to me that in reversing my preference between Gambles 3

and 4 I have corrected an error. Thereis, of course, an important sense
in which preferences, being entirely subjective, cannot be in error; but

in a different, more subtle sense they can be. Let meillustrate by a
simple example containing no reference to uncertainty. A man buying

a car for $2,134.56 is tempted to order it with a radio installed, which

will bring the total price to $2,228.41, feeling that the difference is

trifling. But, when hereflects that, if he already had thecar, he cer-
tainly would not spend $93.85 for a radio for it, he realizes that he has

madean error.

One thing that should be mentioned before this chapter is closed is
that the law of diminishing marginal utility plays no fundamental role
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in the von Neumann-Morgenstern theory of utility, viewed either em-

pirically or normatively. Therefore the possibility is left open that

utility as a function of wealth may not be concave, at least in some in-

tervals of wealth. Some economic-theoretical consequences of recog-
nition of the possibility of non-concave segments of the utility function

have been worked out by Friedman and myself [F12], and by Friedman
alone [F111]. The work of Friedman and myself on this pointis criti-

cized by Markowitz [M1].+

+ See also Archibald (1959) and Hakansson (1970).



CHAPTER 6

Observation

1 Introduction

With the construction of utility, the theory of decision in the face

of uncertainty is, in a sense, complete. I have no further postulates

to propose, and those I have proposed have been shown to be equiva-
lent to the assumption that the person always decides in favor of an

act the expected utility of which is as large as possible, supposing for

simplicity that only a finite number of acts are open to him. At the
level of generality that has led to this conclusion there seems to be

little or nothing left to say. To go further now means to go into more

detail, to investigate special types of decision problems. One type of

decision problem of central importance is that in which the person is
called upon to make an observation and then to choose someact in the

light of the outcome of the observation.
The consideration of such observational decision problems is a step

toward those problems of great interest for statistics in which the per-

son must decide what observation to make, that is, of course, what to

look at, not what to see. They are the problems of designing experi-
ments and other observational programs.
Some remarks on observation were made in Chapter 3, but only now

that the theory of utility is established is it possible to give a relatively

complete analysis of the concept.

Observation is a concept essential to the study of statistics proper,

most of what has been said thus far being preliminary to, but not really

part of, statistics; even after this chapter and the next one, on obser-

vation, there will still remain a major transition. One important fea-

ture of much of what is ordinarily called statistics is, according to

my analysis, concerned with the behavior not of an isolated person, but

of a group of persons acting, for example, in concert. In later chapters

I will deal, so far as I am able, with the problem of group action, but
preliminary considerations bearing on it will be made and pointed out

from time to time in this chapter and the next.

Though the details of these two chapters may seem mathematically
forbidding, drastic simplifying assumptions are made in them to keep

105
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extraneous difficulties to a minimum. These typically take the form |

of assuming that certain sets of acts, events, and values of random varia-

bles are finite. Even in elementary applications of the theory, these

simplifying assumptions seldom actually hold. In some contexts,it is

quite elementary to relax them sufficiently; in others, serious mathe-

matical effort has been required; and somearestill at the frontier of
research. Relaxations of the assumptions will be touched on from time

to time, sometimes explicitly but sometimes only implicitly in the choice

of suggestive notation and nomenclature.

Beyond this introduction, the present chapter is divided into four

sections: § 2 analyzes informally and then formally the notion of a cost-

free observation; §§ 3 and 4 discuss certain obvious but important con-

ditions under which one observation, and similarly one set of acts, is

more valuable than another; §5 abstractly discusses problems of de-

signing experiments or, perhaps more generally, observational programs.

2 What an observation is

To begin with an informal survey of observation, consider a decision
problem, that is, a person faced with a decision among several acts.

Calling it the basic decision problem and the acts associated with it
the basic acts, a new decision problem wouldarise, if the person were

informed before he made his decision that a particular event, say B,

obtained. The new decision problem is related to the basic decision

problem in a simple way; for the acts associated with it are also the

basic acts, and the decision is to be made by computing the expected

utility given B of the basic acts and deciding on one that maximizes

the conditional expected utility. The basic problem may be modified
in still another, though closely related, way. Let the person say in ad-
vance, for each possible B;, which of the basic acts he will decide on

when he is informed, as he is to be, which element B; of a given parti-

tion obtains. This will be called the derived decision problem arising
from the basic decision problem and the observation of 7, and its acts

will be called derived acts. Technically speaking, the derived acts are
determined by arbitrarily assigning one basic act to each element of

the partition. For any state s, the consequence of a derived actis the

consequence for s of the basic act associated with the particular B; in

which s lies. The terms informally introduced in this paragraph are

defined formally later in the section.

A derived decision problem is not necessarily different in kind from
the basic problem; indeedit is quite possible that the basic problem can

itself be viewed as derived from some other basic problem and obser-

vation.
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Formidable though the description of a derived problem may seem
at first reading, its solution is, in a sense, easy and has already almost
been given; for it is clear that, if P(B;) > 0, the person will decide to

associate with B; a basic act the expected utility of which given B; is

as high as possible, and, if P(B;) = 0, it is immaterial to the person
which basic act 1s associated with B;.

It is almost obvious that the value of a derived problem cannot be

less, and typically is greater, than the value of the basic problem from

which it is derived. After all, any basic act is among the derivedacts,

so that any expected utility that can be attained by deciding on a basic

act can be attained by deciding on the same basic act considered as a

derived act. In short, the person is free to ignore the observation.

That obvious fact is the theory’s expression of the commonplace that

knowledge is not disadvantageous.

It sometimes happens that a real person avoids finding something

out or that his friends feel duty bound to keep something from him,'

saying that what he doesn’t know can’t hurt him; the jealous spouse

and the hypochondriac are familiar tragic examples. Such apparent

exceptions to the principle that forewarned is forearmed call for anal-

ysis. At first sight, one might be inclined to say that the person who
refuses freely proffered information is behaving irrationally and in vio-

lation of the postulates. But perhapsit is better to admit that informa-

tion that seems free may prove expensive by doing psychological harm
to its recipient. Consider, for example, a sick person who is certain
that he has the best of medical care and is in a position to find out

whetherhis sickness is mortal. He may decide that his own personality
is such that, though he can continue with some cheer to live in the
fear that he may possibly die soon, what is left of his life would be
agony,if he knew that death were imminent. Under such circumstances,
far from calling him irrational, we might extol the person’s rationality,

if he abstaimed from the information. On the other hand, such an in-

terpretation may seem forced. (Cf. Criticism (f) of § 5.6.)
Examples of decisions based on observation are on every hand, but

it will be worth while to examineone in some detail before undertaking
an abstract mathematical analysis of such decisions. Any example
would haveto be highly idealized for simplicity, because the complexity

of any real decision problem defies complete explicit description, but

particular simplicity is in order here.

The person in the example is considering whether to buy some of the

grapes he sees in a grocery store and, if so, in what quantity. To his

taste, the grapes may be of any of three qualities, poor, fair, and excel-

lent. Call the qualities Q generically and 1, 2, and 3 individually. From
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what the person knows at the moment, including of course the appear-

ance of the grapes, he cannot becertain of their quality, but he attaches
personal probability to each of the three possibilities according to

Table 1.
TaBLe 1. P(Q)

Q(uality) | I 2 3
 

P(robability) | 1/4 1/2 1/4

The person can decide to buy 0, 1, 2, or 3 pounds of grapes; these
are the basic acts of the example. Taking one consideration with an-
other, he finds the consequences of each act, measured in utiles, in

each of the three possible events to be those given in the body of Table

2. The expected utilities in the right margin of Table 2 follow, of
course, from Table 1 and the body of Table 2.

TaBLE 2. Utiurty f(Q) FoR EACH f AND EACH Q

 

  

Q

f 1 2 3 E(f)

0 0 0 O 0
1 —1 1 8 1
2 3 0 5 1/2
3 -6 —-2 6 —1

The entries in Table 2 have not been chosen haphazardly, but with
an attempt at verisimilitude. Thus it is supposed that if the person
buys grapes of poor quality his dissatisfaction with the bargain will
accelerate rapidly with the amount bought, which seems reasonable,

especially if the keeping quality of poor grapes is low. He1s, of course,

unaffected by the quality if he buys none. Again, buying a few fair
grapes may be mildly desirable, but overbuying is not. Finally, excel-

lent grapes are worth buying, even in large quantities, but the utility

of the purchaseincreases less than proportionally to the amount bought.

The correct solution of the basic decision problem is to buy 1 pound
of grapes; for that act has, according to the right margin of Table 2,

an expected utility of 1, which is the largest that can be attained.

Now, suppose the person is free to make an observation, that is, a

new observation in addition to those that may have contributed to the
determination of the probabilities in the basic problem. It maybe,for

example, that the grocer invites him to eat a few of the grapes or that

the person is going to ask the woman beside him howthey lookto her.
Let there be five possible outcomes of his observation; call them z
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generically and 1, 2, 3, 4, and 5 individually. I assume, though this

feature is rather incidental to the example, that low values of x tend

to be suggestive of low quality. The joint distribution of x and Q, that

is, the probability that x and Q simultaneously have any given pair of

values, is of central technical importance. Those probabilities, each

multiplied by 128 for simplicity of presentation, are given in the body
of Table 3. The right-hand and bottom margins of the table give,

 

 

TABLE 3. 128P(x 1) Q)

Q

x 1 2 3 128P(2)

1 15 oD 1 21
2 10 15 2 27

3 4 24 4 32
4 2 15 10 27

oD 1 oD 15 21

32 64 32 128

128P(Q)   
also multiplied by 128, the probability of each value of x and of each

value of Q. The marginal entries are, of course, obtained by adding
rows and columns. Asindicated in the lower right-hand corner of the

table, the probabilities assumed do indeed add up to 1, and the bottom

margin recapitulates Table 1.

Conditional probabilities can easily be read from Table 3. Thus, for

example, the conditional probability that x is 2, given that Q is 3, is

2/32, and the conditional probability that Q is 2, given that x is 4, is
15/27. It will be seen in later sections that the distribution of x given

Q is, in @ sense, even more fundamental than the joint distribution of
x and Q.

There are 4° = 1,024 derived acts, since one of the four basic acts

can be assigned arbitrarily to each of the five possible outcomes of the

observation. It is an easy exercise, using Tables 2 and 3, to verify

Table 4, which shows the conditional expectation of the utility of each

TaBLE 4. E(f | 2x)

 

 

x

f 1 2 3 4 5

0 0/21 0/27 0/32 0/27 0/21
1 —7/21 11/27 32/82 43/27 49/21
2 —40/21 —20/27 8/32 44/27 72/21
3 —94/21 —78/21 -—48/32 18/27 74/21  
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basic act given each possible outcome of the observation. For each z,

the highest expected utility, given that value of z, has beenitalicized.
Thus, for example, only if x is 1 will the person refrain from buying

grapes altogether, and only if x is 5 will he risk buying 3 pounds. In

full, the best derived act, call it g, is to buy 0, 1, 1, 2, or 3 pounds,if x
is 1, 2, 3, 4, or 5, respectively. The value of the derived problem is the
expected value of g, which is computed thus:

(1) E(g) = >> E(g| 2)P(2)

= (0+ 11 + 32 + 44 + 74)/128

161/128 ~ 1.26 utiles.

Since the value of the basic problem is 1 utile, the envisaged observa-

tion is worth 0.26 utile; that is, the person would if necessary pay up

to 0.26 utile for the observation.

Exercise

1. Suppose that the person could directly observe the quality of the

grapes. Show that his best derived act would then yield 2 utiles, and
show that it could not possibly lead him to buy 2 poundsof the grapes.

The notion of a decision problem based on an observation will now be

formally described, with special reference to mathematical notation and

other technical details.

1. There is a set of basic acts, F with elementsf, f’, etc.

In the example of the grapes F consisted of the four envisaged acts

of buying 0, 1, 2, or 3 pounds of grapes.

The convention laid down at the end of § 5.4, requiring that the con-

sequences of acts be measured in utiles, will be adhered to, and it will
be supposed that v(F) is finite.

2. The observation is a (not necessarily real) random variable x
associating with each state s an observed value x(s) in some set X of

possible observed values xz, x’, etc.
In the example of the grapes, the states s (of which the postulates

require that there be an infinite number) were never fully described,

and consequently the random variable x was not fully described either.
In the same sense it may be said that the basic acts, which are also
really random variables, were not fully described either. All that is
really important, however, is to know the simultaneous distribution of

the consequences of the acts in F and of the values of x. In the example

of the grapes that information was implicit in Tables 2 and 3.
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For mathematical simplicity in the formal work to follow, it will

generally be assumed that X has only a finite number of elements,
though the assumption can and must be relaxed in many practical
situations. When X is assumed finite, the random variable x is, for
all purposes of the present context, simply a partition of S, namely,
the partition into the sets on which x is constant. Indeed, earlier in
this section, the notion of observation was described in terms of a par-
tition, but the description in terms of a random variable is more familiar

in statistics and may have technical advantages, especially when the
restriction that X be finite is relaxed.

3. The set of strategy functions is the set of all functions associating

an element of F with each element x of X. Let the values of the generic
strategy function be denoted by f(x) and the function itself by f(x).
The notion of strategy function was not introduced in the informal

description of observation, nor in the example of the grapes, because
it is but a mathematical intermediary to the definition of derived acts
and did not seem to call for explicit expression in the less formal con-

texts.

4. To each strategy function f(x) corresponds a derived act g, in the

set of all derived acts F(x), defined by

(2) g(s) = f(s; x(s)) for all s cS.

It was explained that in the example of the grapes there are 4° de-

rived acts. In the same way,it can be seen in general that if X has é
and F has ¢ elementsthere are ¢é derived acts.

5. The value of F given z,

(3) v(F | 2) =r sup E(f | x).

This is the function of x indicated, for the example of the grapes,
by italics in Table 4.

3 Multiple observations, and extensions of observations and of sets
of acts

If several random variables x), ---, Xn, associating elements of S

with elements of sets X,, ---, Xn, are simultaneously underdiscussion,
it is natural to form the new random variable, denoted x = {x,, ---,
Xn}, that associates with each element of S an ordered n-tuple of ele-

ments of X1, --+, Xn, respectively. If the context is such that x, ---,

X, are thought of as observations, then x can also be thought of as an

observation and will sometimes be called a multiple observation—to
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emphasize the manner of its formation. To illustrate, any item such

as profession or body temperature that might be entered on a patient’s

history can be thought of as an observation; but the whole history, or

a filing cabinet of histories, can also be thought of as an observation,

the history being a multiple observation of items, and the cabinet a

multiple observation of histories.
Consider two observations x and y. It is an interesting possibility

that x and y areso related to each other that knowledge of the value

of x would (almost certainly) imply (almost certain) knowledge of y.

In that case, observation of x implies essentially the observation of y

and generally something besides, which suggests the following three

definitions.

If and only if x and y are observations such that, for all s and s’ in
some B of probability one, z(s) = x(s’) implies y(s) = y(s’); then x is an

extension of y, and y is a contraction of x. If x is an extension ofy,
and y is an extension of x, then x and y are equivalent.

Strictly speaking, one should say not that x and y are equivalent,
but rather that they are equivalent regarded as observations, for this

would not be a good concept of equivalence to apply to random varia-

bles regarded as such. For example, a pair of equivalent observations
can obviously bea pair of real random variables with different expected
values. Some properties of the relations of extension, contraction, and

equivalence between observations are given by the following easy but
important exercises. Throughout this set of exercises it is unnecessary

to suppose the observations confined to a finite set of values; in the case

of Exercise 3b, it is impossible to do so.

Exercises

1. x and y are equivalent, if and only if x is both an extension and a

contraction of y.

2a. If P{x(s) = y(s)} = 1, x and y are equivalent.
2b. Any observation x is equivalentto itself.

3a. If there is a value yo such that P{y(s) = yo} = 1, then every
X is an extension of y, and any two such observations are equivalent.

Such an observation, of course, amounts to observing nothing at all

and will therefore be called a null observation.
3b. If x(s) = s for almost all s ¢S, then x extends every y.

4. If x is an extension of y, and y is an extension of z, then x is an

extension of z. State and verify the analogous fact about equivalence.

5a. If y’ is a function associating an element of Y with each element

of X, and x is an observation, then the observation y such that y =

y’(x) is a contraction of x.
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5b. If y is a contraction of x, then there is a function y’ such that

P{y(s) = y’(a(s))} = 1. What freedom is there in the choice of the
function y’?

5c. What are the implications of Exercises 5a and 5b for equivalence

between observations?
6. If x and y are observations and z = {x, y} is the corresponding

double observation, then z is an extension of x and of y. (This exercise

seems to call for a converse saying that every extension can be regarded

as a double observation, but no really neat one suggests itself to me.

Nonethe less, in thinking about extensions and contractions, the sort

brought out by the exercise is a typical and stimulating example.)

7. {x, y} is equivalent to x, if and only if x extendsy.

The relations of extension, contraction, and equivalence have paral-

lels for sets of acts, defined thus:

If F and G are (non-vacuous) sets of acts such that, for some B of
probability one, there is for each g ¢ G an f ¢ F with f(s) = g(s) for all

s ¢ B; then F is an extension of G, and G is a contraction of F. If F is
an extension of G, and G is an extension of F, then F and G are equiv-

alent.

More exercises

8. If F is an extension of (equivalent to) G, then v(F) > (=) v(G).

9. Discuss the analogues of Exercises 1, 2b, and 4 for sets of

acts.

10. If F > G, then F extends G.

11. If F(x) is derived from F on observation of x, then F(x) extends

F.
12. Hyp.

F(x) is derived from F on observation of x;

F(y) is derived from F on observation of y;

F(x, y) is derived from F on observation of {x, y};
F(x; y) is derived from F(x) on observation of y.

CONCL.

1. F(x, y) 1s equivalent to F(x; y).

2. F(x, y) extends F(x) and F(y).

3. If x is equivalent to y, then F(x) is equivalent to F(y).

4. If y extends x; then F(x, y) is equivalent to F(y), F(y) is equiva-
lent to F(x; y), and F(y) extends F(x).
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18a. Under the hypothesis of 12, the equivalences and relations of

extension among the sets of acts arising out of two observations can,

with evident conventions, be diagrammed thus:
 

yY %Y y;x

{ {
x——_> 0<—_y

   

13b. If y extends x, the diagram becomes
 

XY xy y;x ylox-—d.
   

13c. If x and y are equivalent, the diagram becomes
 

x,y x,y y,x

x y
— 0.

   
14. If F(x) and G(x) are derived from F and G,respectively, and if

F extends G, then F(x) extends G(x).

15. o(F(x)) = E(F |x] = f»(F | x(s)) dP(s) > o(F).

4 Dominance and admissibility

According to Exercise 3.14, if one set of acts, regarded as basic, ex-

tends another, thefirst is at least as valuable as the second in thelight

of any observation whatever. This section explores a relation, domi-

nance, which has the same property but is not so strict as extension.

Dominance is of some importance for the theory of personal probability

as it has been developed thus far. But its ‘importance will be even

greater in the study of statistics proper, where interpersonal agreement

is of particular interest; for, as the definition shortly to be given will

make clear, two people having different personal probabilities will agree

as to whether one of two sets of acts dominates another, if only they

agree which events have probability zero—a condition generally met

in practice, and one that could if desired be dispensed with by a slight

change in the definition of dominance.

It will be seen that dominance and notionsrelated to it are intimately

associated with the sure-thing principle. Indeed, probability being

taken for granted, the basic facts about dominance seem to give a com-

plete expression of the sure-thing principle. Dominance and related

concepts were much stressed by Wald, in [W3] for example.
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Twoor three notions, the logical connections among them, and those

between them and extension, are to be treated. The logical connec-

tions being many but simple, I think that the material lends itself bet-

ter to formal than to expository treatment, for in such a context the

reader who looks for the motivating ideas sees them himself moreeasily
than he comprehends someoneelse’s verbalization of them. This sec-

tion will therefore consist primarily of a group of formal definitions and

several exercises.

If and only if P(f(s) > g(s)) = 1, f dominates g. If and only if some

(every) element of F dominates (is dominated by) g, F dominates (is
dominated by) g. If and only if F dominates every element of G,

F dominates G. If and only if f dominates g, but g does not dominate

f, f strictly dominates g. If and only if f <¢ F, and f is not strictly domi-

nated by any element of F, f is admissible (with respect to F).

Involving as they do acts as well as sets of acts, the definitions,

strictly speaking, introduce four different kinds of dominance. How-

ever, this complexity can be alleviated, with a slight lapse of logic, by

identifying each act f with the set of acts of which f is the only element,
for it is easily seen that this identification is in such harmony with the

definition that, once it is made, the four kinds of dominance collapse

into one.

Exercises

la. Consider analogues of Exercises 3.2b and 3.4.

lb. When can two acts dominate each other?

2a. If F extends G, then F dominates G. Discuss the converse.

2b. F(x) dominatesF.

2c. If F D G, then F dominates G.

3a. If F C G, and F dominates G, then each admissible element of G

dominates and is dominated by an element of F.

3b. After any finite number of non-admissible elements is deleted

from F, what remains of any subset of F that dominated F continuesto

dominate F.

3c. Though theset of admissible elements of F may in some instances

dominate F, no proper subset of the set of admissible elements can ever

do so; but, if any other subset dominates F, some proper subset of it

also does so.

3d. If F is finite, the set of admissible elements of F dominates F.

3e. Discuss the role of “finite” in 3b and 3d.
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4a. If the set of admissible elements of F dominates G, and G domi-

nates F, then the set of admissible elements of F is equivalent to the
set of admissible elements of G.

4b. If F and G dominate each other, and either is finite, then the

sets of admissible elements of F and G, respectively, are equivalent to

each other, and each dominates both F and G.

5. If F dominates G, then v(F) > v(G).

6. If F dominates G, then, for any observation x, F(x) dominates
G(x).

5 Outline of the design of experiments

Often, especially in statistics, a decision problem can be seen as the

problem of deciding which of several experiments—or which of several

observational programs, if that is really a more general term—to under-

take.

In this section the notion of the decision problem derived from a

basic decision problem and an observation must be elaborated little,
because, as derived acts have been treated thus far, they correspond to

the possibility of making an observation free of charge. Though obser-

vations are sometimes free, there is typically a cost associated with

making them; information must typically be bought either from other

people or, more often from nature, so to speak. The cost of informa-

tion may be money, trouble, one’s own life, that of another, or any of

innumerable possibilities, but all can in principle be measured in terms

of utility. The cost of an observation in utility may be negative as

well as zero or positive; witness the cook that tastes the broth.

In principle, if a number of experimentsare available to a person, he
has but to choose one whose set of derived acts has the greatest value

to him, due account being taken of the cost of observation. That simple

formulation, like some others in this book, is, in a sense, oversimple; it
abstracts from the enormous variety of considerations that enter into
the careful design of any experiment. The possibility of so abstracting

from variety does not remove the ultimate necessity of studying some

aspects of that variety in detail. R.A. Fisher’s The Design of Experi-

ments [F4], for example, is concerned almost exclusively with experiments

based on a special technique called the analysis of variance, andit is

but an introduction to even that important facet of statistics. Again,

there is a growing literature (in which the work of A. Wald is outstand-
ing) on sequential analysis, which is concernedin principle with all ex-

periments in which later parts of the experiment are conducted in the

light of what happensin earlier parts; but this literature has, by neces-
sity, been confined to a relatively tiny part of that domain.
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Before turning to a more formal recapitulation of the outline of the
design of experiments, this may be a good place for a few speculative
words about the difference, if any, between experiment and observation.

Somesciences are commonly called experimental as opposed to others

that are called observational. Aerodynamics, the psychology of rote

learning, and the genetics of fruit flies would typically be called experi-

mental sciences; and, to take parallel examples, meteorology, the psy-

chology of dreams, and human genetics would be called observational.

But it is widely agreed, and the most casual consideration makes it

clear, that any basic difference that may really be present resides not

in the sciences themselves but in the methods typical of each. Toillus-

trate the role of observation in sciences ordinarily considered experi-
mental and vice versa, observations of wild populations of fruit flies

have been useful in the study of the genetics of fruit flies; the effects of

fatigue, for example, on dream content may well be the subject of an

experiment; and, except for the atom, no topic in science is more popu-

lar today than experimental rain making. The illustrations could be

extended indefinitely, and there is also a less direct sort exemplified by

the discipline called experimental medicine, which typically studies ex-

periments on animals with the hope, often justified, that the findings
thus obtained can be extrapolated to humans.

The problem, then, is to distinguish an experiment from an observa-

tion. Except for brevity, it might be better to say mere observation,
for, in general usage, an experiment would be considered a special sort

of observation.

Thefirst apparent contrast that comes to mind is that experimenta-

tion is generally thought of as active and observation as passive. But,

upon examination, it is seen that observation is also active, for obser-

vations are typically made by going somewhere to observe, or waiting

attentively till something happens. Often it is not only the observer
himself who must be transported and put in readiness to make an ob-

servation, but also a considerable body of apparatus. What demands

more activity than the modern observation of a solar eclipse?
Another apparent contrast is that the experimenter acts on the thing

he observes, whereas the observer acts only on himself and on instru-

ments of observation that may be regarded as extensions of his own

sense organs. If this criterion were accepted altogether naively, there
would be no such thing as a physiological experiment on one’s self;

even sophisticated interpretations might find it difficult to embrace

psychological experiments on one’s self.

Finally, experiments as opposed to observations are commonly sup-

posed to be characterized by reproducibility and repeatability. But
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the observation of the angle between twostars is easily repeatable and
with highly reproducible results in double contrast to an experiment to
determine the effect of exploding an atomic bomb near a battleship.

All in all, however useful the distinction between observation and ex-
periment may be in ordinary practice, I do not yet see that it admits
of any solid analysis. At any rate, no formal use of the distinction will
be attempted in this book.

Return now to the notion of observation subject to cost. It may be

that the value of the random variable x is observable but only at a
cost c, a real-valued random variable measured in utiles. If, as hereto-

fore, F(x) denotes the set of acts derived from F on cost-free observa-

tion of x, let F(x) — c denote the set of derived acts subject to the ran-

dom cost c. This notation is interpreted to meanthat, if f is the generic
element of F(x), then f — c (which, being a utility-valued function of

s, is an act) is the generic act of the set F(x) — c. Very often the cost

of an observation is independentof s, but not, for example, for him that
tests the sharpness of a thorn with his finger. Since observations are

typically paid for before, or simultaneously with, making the observa-

tion, the cost is typically observed along with the observation proper.

Put differently, the cost c is typically a contraction of the observation
x. Thus, if in some special context any advantage were to be gained

by so doing, it would not be drastic to assume the cost of observing x

to be a function of the form c’(x); but, as a matter of fact, no such ad-
vantage has come to my attention. It is not difficult to think of ex-

periments to which the assumption does not apply. For example, in

the present state of uncertainty about the long-term effects of x-rays,

anyone conducting a short-term experiment in which young humanbe-

ings were subjected to large doses of x-radiation would risk costs that

might not overtly manifest themselves for half a century, or even for

generations.

Muchthat would ordinarily be called observation cannot be described
by saying that the random cost is simply to be subtracted from each de-

rived act of the corresponding observation thought of as free of cost.

Allowing that it may be legendary, the form of trial by ordeal in which
the guilty floated safely to be hanged and the innocent drowned to be
exonerated epitomizes such a situation; except in point of absurdity,

ordinary industrial destructive testing of electric fuses and other prod-

ucts is much the same. Strictly speaking, discrepancy occurs even in
the ordinary context in which the cost of observation is a fixed sum of

money; for the utility of money is not strictly linear, so the cost of ob-

servation typically affects different derived acts somewhat differently.

This sort of situation is indeed so common as to introduceat least a
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slight error into almost every application of the notion of cost as a sub-

tractive term. It would therefore be desirable to extend considerably
the notion of cost of observation, but, thus far, I see no way to do so

that does not destroy the mathematical advantage of singling problems

of observation out of the class of decision problems generally.
It is convenient now to analyze the appropriateness of regarding the

number v(F) as a measure of the value of F. As must already be clear
to the reader, if a person is to makea preliminary decision limiting his

next decision to one or anotherof several sets of acts, say, F, G, and H,
then his preliminary decision will select a set that has the highest value

of v, and the preliminary and secondary decisions, regarded as a single
grand decision, amount to the problem of deciding on an act from

FUG UH. Sofar as this use of v is concerned, any increasing mono-
tonic function of v such as v® or 3” would be equally satisfactory, but v

has an advantage in arithmetic simplicity when costs of observation

are involved. Consider, for example, the problem of whether to make

a particular observation at the random cost c or to make no observation

at all. The two sets of acts involved may then be symbolized by

(F(x) — c) and F, respectively. The peculiar simplicity of v as a meas-

ure of the valueof a set of acts, in this context, is exhibited by the almost
obvious fact that v(F(x) — c) = v(F(x)) — E(c). It may be remarked

in passing that v is a particularly good measure in any problem where

F, G, or H is, so to speak, made available by lot, a possibility realized

in (7.3.2), for example.
Finally, if one among several observations is to be chosen, each with

its own random cost (possibly including the null observation), the per-

son will choose an observation for which v(F(x)) — E(c) is as large as

possible. If the number of observations among which decision is to

be madeis infinite, that function may not attain a maximum value,

but the value of the situation to the person can reasonably be regarded

as the supremum of the function; there are, of course, observations

among those available for which the supremum is arbitrarily nearly

attained.



CHAPTER 7

Partition Problems

1 Introduction

In the introduction of the preceding chapter it was explained that

the treatment of decision problems in general had been carried to a
logical conclusion, and that to study decision problems further it had
become necessary to specialize. The notion of observation was accord-

ingly chosen as the subject of specialization. The situation now re-
peats itself at a new level, for I have now covered the main points that
occur to me about observation in general, though I see considerably

more to say about a certain type of observation.

The type of observation problem to which the present chapter is de-

voted, though relatively special, is still very general. Indeed, its gen-

erality is suggested by the fact that no other type of problem is syste-

matically treated in modernstatistics. In objectivistic terms, it would
be described as the type of decision problem in which the consequence

of each basie act depends only on which of several (possibly infinitely

many) probability distributions does in fact apply to the random vari-

able to be observed.

Modern statistics has no name for this type of problem, because it

recognizes no other type; and no particularly suggestive name occurs

to me. I am therefore tentatively adopting the noncommital name

“nartition problem.” Such motivation as there is for that name will
be apparent when the concept is defined.

In non-objectivistic terms, a partition problem has the following

structure. There are, of course, basic acts F and an observation 2.

The peculiar feature is a random variable b, which is typically not sub-
ject to observation, with the property that every f in F is constant

given that b has any particular value b.

In many practical problems b takes on an infinity, even a non-de-

numerable infinity, of values, but systematic consideration of such

problems would involve those advanced mathematical techniques that

are explicitly being avoided in this book. Glossing over such questions

of technique for the moment, the state of the world, which is itself a
120
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random variable, might play the role of b; with respect to this b, any
observational decision problem would presumably be a partition prob-
lem. It may, therefore, be inaccurate to call partition problemsspecial,
but they are special whenever b is not equivalent to the state of the
world.

As has just been mentioned, the general policy of this book with re-
spect to mathematical technique restricts formal treatment of partition
problems here to those in which b assumesonly a finite numberof dif-

ferent values, that is to say, those in which is to all intents and pur-
poses a partition B;, whence the name “partition problem.”’ For the
reader whois not familiar with the elements of the geometry of n-dimen-

sional convex bodies, there will be a distinct expository advantage in

confining the formal treatmentstill further to twofold partitions. At
the same time, by explicit statements and by the use of suggestive no-

tation, all readers will be given at least some idea of the extension of

the theory to n-fold partitions; indeed, a reader familiar, for example,

with Sections 16.1-2 of [V4], or with [B20] will find the extension as

plain as if it had been madeexplicitly. Thus the restriction to twofold

as opposed to n-fold partitions will be to the advantage of some and to

the disadvantage of none.

Partition problems are even closer than are observational problems
generally to the subject matter of statistics proper. In particular, in
the course of this chapter, multipersonal considerations will from time
to time be pointed out in connection with partition problems.

2 Structure of (twofold) partition problems

A central feature of a twofold partition problem is, of course, a two-
fold partition, or dichotomy, B;, 7 = 1, 2. By way of abbreviation let

B(t) = P(B;,), and 8 = {8(1), B(2)}. The 8(2)’s can be any two numbers

such that 6(¢) > 0 and Z6(z) = B(1) + B(2) = 1. Since B(2) = 1 —

B(1), it might seem superfluous to have a special notation for B(2); but
this redundancy more than paysfor itself in symmetry, especially in

the extension of the theory to n-fold partitions. The possibility that
one of the 8(z)’s vanishes has been ruled out, for it is neither typical nor

interesting, and its retention would mar the exposition of the theory.
Each basic act f ¢ F is characterized by a pair of numbers f; such that

(1) P(f(s) =f; |B) =1

for each 7. The technical assumption will be made that as f ranges
over F the numbers f; are bounded from above for each 2, which is a
little more stringent than the now familiar assumption that v(F) < o.
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The assumption expressed by (1) is made for definiteness and sim-

plicity, though its full force will seldom be used. The possibility of re-
laxing (1) in certain contexts will be mentioned from timeto time, es-

pecially since this possibility is of some interest even in the exploitation
of (1) itself. In particular, for several pages now it will scarcely ever

be necessary to assume anything about the structure of F relative to

B,, except that E(f | B;) is bounded from above for each 7; for making

the abbreviation f; = E(f | B;), almost everything from here through

Exercise 1 applies verbatim.
The expected utility of any f ¢ F can be computed in several forms

thus:

(2) E(f) = E(£| B,)P(B,) + E(f | Bz)P(Be)

= fiB(1) + feB(2)

= f(t)

= fo + (fi — fe)B(1).

Thefirst of these forms expresses the expected value in general terms;

the second utilizes abbreviations; the third is an obvious mathematical

transcription of the second, particularly suggestive of extension to the

n-fold situation; the fourth sacrifices the symmetry exhibited by the
preceding three in order to take advantage of the relation between
B(1) and 6(2). From the fourth form of (2), it is clear that, for fixedf,

Ef) is a linear function of 8(1). Henceforth that fact, for example,

would be expressed in symmetric form by saying that E(f) is linear in

8, and the dependence of E(f) on 8 might be explicitly indicated by
writing E(f | GB).

Since in any one decision problem 8 is constant, it might seem point-
less to emphasize that K(f | 8) is linear in 8. But there are, in fact, two

different reasons for being interested in variation of 8. In thefirst place,

once the observation x has been observed to have thevalue z, the basic,

or a priori, decision problem is replaced by an a posteriori problem in

which P(B; | 2) plays the role originally played by P(B;) = B(t). Sec-

ond, interest in comparing different people is becoming increasingly

more explicit as the book proceeds. In particular, it is of interest to
compare people who have available the sameset of basic acts and who,
at least so far as the distribution of x and theacts in F are concerned,

have the same conditional personal probability given B,;, but who at-
tach different probabilities 6(z) to the elements of the partition.
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To emphasize its dependence on £, v(F) will sometimes be written
v(F | 8); its computation in the following fashion is fundamental to

the theory of partition problems.

(3) v(F | 8) = sup E(t | 8)

sup [fi8(1) + feB(2)]

= k(8),

where k(8) is defined by the equation in which it occurs. According to

Exercise 4 of Appendix 2, the function k is convex in 8, that is, k is

convex when recognized as a function of 8(1) alone. Interpreted as a
pair of a priori probabilities, 8 is confined to the open interval defined
by 26(j) = 1, B(z) > 0, but it is valuable to recognize that k is defined,
convex, and continuous on the closed interval 2@(j) = 1, B(t) > 0.

Manytypical features of the relationship between F and B;areillus-

trated graphically by Figure 1. The abscissa of that graph represents
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Figure 1

both 6(1) and 8(2), as indicated, and the ordinate is measured in utiles.

The straight lines, the left ends of which are marked a, b, c, d, and e,
graph as functions of 6 the expected values of the five basic acts of the

particular problem represented. The ordinates at their right and left
ends, respectively, are the corresponding values of the f,’s and fo’s.

The graph of k is marked by heavy line segments. It is seen that the

lines a, c, and e, and they alone, touch the graph of k, for they repre-
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sent the only acts that are optimal for some value of 8. The act repre-
sented by d is inadmissible(if (1) is taken literally), being in fact strictly
dominated by every other act except e, and it is therefore superfluous

to the person, no matter what the value of 8; b is obviously equally

superfluous, but for a different reason.

In many typical problems in which F has an infinity of elements, k
is, unlike the k in Figure 1, strictly convex; that is, its only intervals

of linearity are point intervals.

Exercise

1. Compute and graph k for the set F of dichotomous acts of the
form

fig) =1- (1+ 9)’;

fel) = 1-— (1 — 9);

Answer. k(8) = [8(1) — 6(2)]? = [28(1) — 1)’.

Turn now to the relations between an observation x and the dichotomy

B;. As before, it will be assumed for mathematical simplicity that the

values of x are confined to a finite set X. The probability that x at-
tains the value x given B;, written P(x | B;), is fundamental in connec-

tion with partition problems. For one thing, as has already been indi-

cated, there is interest in considering people who, though differing with

respect to 8, agree with respect to P(x | B;). The probability P(z, B,)

that x attains the value z and that B; simultaneously obtains, the proba-

bility P(x) that x attains the value xz, and the probability B(7 | x) of B;

given that x(s) = x are derived from P(x | B;) and B by means of Bayes’

rule (3.5.4) and the partition rule (3.5.3) thus:

—2<5¢5 +2

(4) P(x, B;) = P(x| ByB(A).

(5) P(x) = 2X P(e,Bi).

(6) B(i| x) = P(x, B;)/P(a),
if P(x) ¥ 0; and Bi | x) is meaningless otherwise. It must be remem-

bered that P(x, B;), P(x), and B(7 | x) dependon the valueof 8 and that

a really complete notation would show that dependence. On the other
hand, the condition that P(x) ¥ 0 is independentof the value of 8.
Whena second observation y is to be discussed, B(i | y) is, in defiance

of strict logic, to be understood as the analogue of B(c | x); that is, as

the conditional probability of B; given that y(s) = y, not as the same

function as B(c| x) with y substituted for x. Corresponding conven-
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tions apply to P(y), P(y| B;), and P(y, B,). Finally, free use will be
made of such contractions as B(x) for {B(1 | x), B(2 | x)}.

Equation (1) implies that

(7) Ef | By, x) = Ef By)
for all f ¢ F andforall x such that P(x | B;) > 0. Equation (7) is the

mathematical essence of the concept of a partition problem, and vir-

tually all that is to be said about partition problems applies verbatim,

if (7), even without (1), applies to such observations as may be under

discussion.

In view of (7),

(8) Ef|B, 2) = 2) E(f| Bi, x)P(B;| 2)

if P(x) > 0.

3 The value of observation

If the observation x is made,and it is found that x(s) = x, then the
a posteriori value of the set of basic acts, written v(F | x), or more fully
v(F | 8, x), will typically be different from the a priori value v(F | B).
Indeed, in view of (2.8),

(1) v(F | 8, 2) = sup E(£| 8, 2)

= o(F | 8(2))

k(8(z)).
Thisis thefirst illustration of the technical convenience of the function k.

It is known on general principles that v(F(x)) > v(F), but there is

some interest in reverifying the inequality in the present context; in

particular, it is possible here to say in interesting terms just when equal-

ity can obtain.

(2) v(F(x) | 8) = E(o(F | B(x) | 8)

= E(k(6(x)) | 8)

> k(E(8(x) | 8),

where the terminal inequality is an application of Theorem 1 of Appen-

dix 2. To appreciate the inequality (2), it is necessary to calculate
E(B(t | x)) explicitly. This calculation, typical of many the reader must

henceforth be expected to make for himself, runs as follows, whereit is
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to be understood that the summation with respect to x applies only

to those terms for which P(z) is different from 0.

(3) E(p(i|x)| 8) = © B(| 2)Pz)

 

= P(B;) = B().

Substituting (3) into (2) leads to the anticipated conclusion that

(4) v(F(x) | 8) > (8) = o(F 8).
According to Theorem 1 of Appendix 2, v(F(x) | 8) is definitely greater

than o(F | 6) unless B(x) is confined with probability one to someinter-

val of linearity of k, in which case the observation x may fairly be

called irrelevant to the basic decision problem at hand. If x is irrelev-

ant, the interval of linearity to which 8(x) is confined must, in view of
(3), contain 6. In theparticularly interesting case—and the only pos-
sible one, if k(8) is strictly convex—in which @(x) is with probability
one equal to a constant value, that value must therefore be 8. An ob-

servation for which 8(x) is with probability one equal to 8 may fairly

be called utterly irrelevant, because it is irrelevant no matter what set

F of basic acts is associated with the dichotomy.

To say that x is utterly irrelevant is to say that, with probability
one,

P(z | B;)B(2)(5) BG | 2) = “5a

= B(i).
Since (7) > 0, (5) is equivalent to the condition that

(6) P(x | B;) = P(e),
at least when P(x) > 0. Furthermore, it is obvious from (2.5), again
noting that 6(7) > 0, that, if P(x) = 0, then P(x | B;) =0. Therefore

x is utterly irrelevant, if and only if (6) holds for all x and 7; thatis,if

and only if the distribution of x given B; is independent of 7. This form
of the condition is intuitively evoked by the words “‘utterly irrelevant’’

and has the advantage of not involving 8.

It is noteworthy that whether an observation is utterly irrelevant

depends neither on the particular set of basic acts, nor on the value of

B, so pecple will agree on whatis utterly irrelevant independent of their
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personal a priori probabilities and the acts among which they are free
to choose.
The greatest lower bound in x of v(F'(x) | 8), namely v(F | B), and the

circumstances under which this bound is attained having been estab-

lished, it is natural to turn to a parallel investigation of the least upper

bound. A foothold for that investigation is found in the remark that

the chord joining the ends of the graph of k neverlies below the graph.

Analytically,

where [(8) is defined by the context. Unless one of the 8(7)’s vanishes,

equality holds in (7), if and only if &(@) is a linear function. In view of

(7) and (3),

(8) v(F(x) | 8) = E(k(B(x)) | 8) < E(x)| 8) = 16).
The inequality (8) gives an upper bound for v(F(x)). In graphical

terms it says that, for any 8, no observation can add moreto the value

k(@) of F than the vertical distance at 6 between the graph of k and

the graph of the chord joining the endsof k.

Equality obtains in (8), if k is linear, in which case the upper and

lower bounds are equal to each other irrespective of the value of 8 and

the nature of the observation. If. F is dominated by single f, thatis,

if there is a single f optimal given B; for both valuesof7, then k is linear.

It can easily be verified that, provided is finite and’ (1) actually ob-
tains, this is indeed the only circumstance under which is linear, and,
even if these provisions are not satisfied, the possibilities are not much

more interesting.

Suppose, then, that k is not linear; equality can hold in (8), if and

only if 8(x) is with probability confined to the ends of the interval, a

condition that does not depend at all on F. By simple considerations,
which have by nowbeen rendered familiar, this condition on x is equiv-
alent to the condition that

(9) P(x | B,)P(«| Be.) = 0,

for all x An observation satisfying (9) may fairly be called definitive,

because, if (1) obtains, such an observation removes all uncertainty

about the outcome of each f ¢ F, no matter what 6 maybe.

Perhaps many of the observations made in everydaylife are defini-

tive, or practically so. Once Old Mother Hubbard looked in the cup-
board, her doubts were reduced to the vanishing point. Nonetheless,

definitive observations do not play an important part in statistical

theory, precisely because statistics is mainly concerned with uncer-

tainty, and there is no uncertainty once an observation definitive for

the context at hand has been made.
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4 Extension of observations, and sufficient statistics

It was shown in § 6.4 that a statistic, or contraction, y of an obser-
vation x is never worth more than x andis typically worth less. The

purpose of the present section is to explore the relation between an ob-
servation and a contraction of itself in the case of a partition problem,
especially to explore the special conditions in that case under which the
statistic is as valuable as the observation itself.

Let x and y be two observations such that y is a statistic of x, that

is, such that, for some function y’, y(s) = y’(#(s)) with probability one.

The values of F(x) and F(y) can be compared by the following calcula-

tion, which in the light of the preceding section will need butlittle ex-

planation.

(1) v(F(x)) = E(&(6(x)) | 8)

= >> E(k(6(x)) | 8, y)P(y).

(2) E(k(8(x) | 6, y) > k(E(B(x)) | B, y)),
if P(y) > 0.

(3) E(e(i| x) | 6, y) = 2) BG| x)P| y)

_ y bELOPY)
P P(y)

if P(y) > 0.

Because of the special relationship between x and y, P(az, y) = 0 un-

less y’(x) = y, in which case P(x, y) = P(x). Understanding that the

summation indicated by 2’ in (4) below extends only over those values

of x for which y’(x) = y, the calculation is continued thus:

_P(a, Bi) P(x)

P(x) P(y)

>) P(x, B;)

Ply)

_ Py,Bi)

Ply)

= B(i| y).

  (4) E(@(i| x) | 6, y) =

 

Therefore,

(5) »(F(x) | 8) > >> k(B(y))P(y) = »(F(y)| 8).
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After the preceding section, it seems almost superfluous to explain

that the point of the calculation above is not to obtain the inequality
(5), which has already been derived with less labor and greater gener-

ality in Exercises 6.3.8 and 6.3.13b, but to be able to discuss when equal-
ity holds in (5). The calculation makes it clear that equality holds in
(5), if and only if equality holds in (2) for every y of positive probability.

This in turn is equivalent to the condition that, given y, 8(x) is confined

with probability one to an interval of linearity of k. A sufficient con-
dition for that is that, given y, B(x) be confined with probability one to
a single value, which cannotbe other than @(y); if k is strictly convex,
the almost certain confinement of B(x) to B(y) is also necessary. Now,

if, for every y of positive probability, P(@(x(s)) = B(y) | y) = 1, then

it is true that B(2) = 8(y) with unconditional probability one, that is,

(6) P(B(x(s)) = B(y(s))) = 1.

The condition (6) clearly does not depend on F, and the following
calculation so expresses it as to makeclear that it does not depend on 8
either. Equation (6) is satisfied, if and only if

P(z| BBG) — P(y’(x) | BBO)
Pit) = P(x)

when P(x) > 0; or, if and onlyif

P(«| B;) — P(2)

PYy|B) Ply)
when P(x | B,) > 0; or, again, if and onlyif

(9) P(x| By, y) = P(«| y),
when P(y | B;) > 0; or finally if and only if P(x | B;, y) 1s independent
of < for those values of 2 for which it is defined. In this form, and yet

another to be derived in connection with (10), the condition is widely

studied in modern statistical theory and a statistic satisfying the con-

dition is there called a sufficient statistic. The name is well justified;
for, as has just been shown,it is sufficient, for any purpose to which x
might be put, to know y, if and only if y is a sufficient statistic for x.

A different, and perhaps more congenial, approach to sufficient sta-
tistics is the following. If the person observes the particular value y

of y, his original basic decision problem is replaced by a new one with
the same basic acts, but with 6 replaced by B(y). Strictly speaking,

this will fail to be a partition problem, in case B(y) is (0, 1) or (1, 0),or,

for brevity, if B(y) is extreme. To see whether v(F(x) | 8) is really greater

 (7)

 (8)
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than v(F(y) | 8), it is enough to investigate whether, for some y of posi-

tive probability for which 6(y) is not extreme, x is relevant to the par-

tition problem based on 6(y), for if B(y) is extreme there can be no value

in following the observation that y has occurred by the observation of

x. Therefore, x will be a worthless addition to y, if, for every y for

which B(y) is not extreme, x is utterly irrelevant, that is, if y is sufficient
for x. If k is strictly convex, the condition is also necessary.

The recognition of sufficient statistics in explicit problems is often
facilitated by the following factorability criterion. A statistic y is suff-

cient for x if and only if there exists at least one pair of functions R and

S such that

(10) P(x | By) = R(y'(z); 1)S(z).
The necessity of the condition follows from the exhibition of a particu-

lar R and S for a sufficient statistic thus:

(11) P(x | By) = DY P(e| Bi, y)P(y | Bi)

= >) P(x| y)Pty| Bi)

= P(y'(z) | B)P(z| y’(2)).
On the other hand, if P(x | B;) can be expressed in the form (10), y

can be seen to be sufficient for x thus: If P(x | B;, y) is meaningful, it
is given by

(19) P(e| B, y) = y | Bi)
Pty | Bi)

= 0, if y'(x) # y,

_ P(a| Bi)

~ P(y| Bd)
_ 8)
SS Se)

y(x’) ay

which is independent of 7. The reader may be interested in asking

himself, as an exercise, what freedom thereis in choosing R and S when

at least one such pair of factors exists.

Interest in sufficient statistics is not confined, of course, to twofold,

or even finite, partitions. With that in mind, the various criteria for

sufficient statistics have been given in such terms as to be valid for any

finite partition and the usual infinite ones. They require some modifica-

if y’(z) = y,
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tion if the observations are not confined to a finite, or at any rate de-
numerable, set of values, but formal details of that important extension

will not be given here. Elementary treatments are given in most text-

books of mathematical statistics; more advanced and general treat-

ments are given in [B2], [L6], and [H3].

There are several examples of sufficient statistics in the exercises

below, others are given in almost any fairly advanced textbook on sta-
tistics (in particular, in [C9]), and one other general example of extraor-
dinary importance is treated in the next section.

Exercises

In these exercises, let x denote a multiple observation x = {x,, ---,
X,}, where, given B,, the x,’s are independentandidentically distributed.
There will be no real advantage here in thinking of the partition as

twofold, or even finite, and for some of the exercises it will be imprac-

tical to do so.

1. Let P(z,|B) =p, if 2, =1,

=q,  ifz, =0,

= 0, otherwise,

where p; + q; = 1; and let y’(z) = >> a,.

Show that:

(a) P(«| Bi) = piat;
(b) y is sufficient for x, using the factorability criterion;

n n
(c) Piy| B; = ( ) ptar™, where, as always, ( ) = n!/yl(n — y)!;

y y
n \72

(a) P(e| y'@2)) = ( } ) |
y' (x)

2. For each positive integer7, let

P(a,|B) =i, ifz, <i,

= Q, otherwise,

where the values of x, are confined to the positive integers; and let

y’(x) = max 2z,. Show that:

(a) P(x |B,) 1a”, ify <1,

= 0, otherwise;

(b) y is sufficient for x.
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3. In the two exercises above it has been possible to choose the fac-

tor S identically equal to 1. To exhibit a more typical example,let 7,
xy, and y be confined to the positive integers with y’(x) = max 7,, as

in the preceding exercise, and let

22, ; ;
P(x,|B) =———_—*—iiifa, <i,

a(2 + 1)

= 0, otherwise.
Show that:

2 n

P(z| By -(—~) », ify <4,(a) P(x | Bi) 4D ITs ify <i

= 0, otherwise.

(b) y is sufficient for x.
4. Put no restriction on the conditional distributions P(x, | B;), ex-

cept that x, be confined with probability one to somefixed finite set.

Say, for the moment, that two values x and x’ of x are team maies, if
one arises from the other by permutation of the component observa-

tions. This divides the possible values of x into teams, and, academic

though it may seem, the team to which x belongs can betaken as y’(z).

Show that the probability of x given y’(x) and B; is independent of 7
(if it is defined at all), so that the statistic y’(x) is sufficient for x.

If the values of the x,’s happen to be real numbers, then for any x

it 1s possible to permute the component observations to obtain a non-

decreasing sequence of n (not necessarily distinct) numbers, and only
one such non-decreasing sequence can be so obtained from each 7.

The sequence thus attached through x to each s is called in statistical

usage the sequence of order statistics corresponding to x. Since team

mates, and only team mates, have the sameorderstatistics, the set of

order statistics regarded as a single statistic is equivalent to the team

statistic y’(x) defined more generally in the paragraph above andis

therefore sufficient.

5. Let x, given B; be subject to the normal probability density with

mean y,, and variance c,’, that is,

(13) (x, | B;) = (2x07) exp {—(a, — wi)?/20,7}.

This situation, though elementary, does not fall within the technical
scope of this book, because x, is not confined to a finite set of values.

The reader familiar with probability densities will see, however, that
the density of x is

za," Milly My
14 1 °°? B)=(2 2)"ex {= —™nN( ) o(x yon | i) ( Ne ) p 20,2 + a2 20,2
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which suggests that y, defined by

(15) y’ (2) = {Za,”, Ltr},

may fairly be called a sufficient statistic for x.

Show in the same heuristic way that, if o; is independent of 7, then
y'(x) = Ya, defines a sufficient statistic; and that, if uw; is independent
of i, then y’(x) = nZax,? — (Za,)? does so.

6. If w and z are observations independent of each other given B,,
under what conditions can w be sufficient for {w, z}?

7. To break away from independent observations, suppose that, in

the event B;, n cards are dealt from a thoroughly shuffled deck of n + 1

cards each bearing a different serial number from 1 through n + 2.
Let w, be the number on the rth card dealt and w = {w,, ---, Wn}.
Show that max w, defines a sufficient statistic for w and that the w,’s

r

are not independent.

8. If z extends w, andw is sufficient for y, then z is also sufficient for

9. If z is sufficient for w, and y is independent of both z and w, then
{z, y} is sufficient for {w,y}.

10. Every definitive statistic is sufficient.

In virtually all statistics texts it would be said that the y defined by
(15) constitutes not one statistic, but two; similarly, the set of order
statistics would ordinarily be referred to as n statistics rather than as

one. There are contexts in which it is appropriate to try to count sta-

tistics in that fashion, but, so far as the theory of sufficient statistics

is concerned, it often seems fruitless, if not positively detrimental, to

do so.

The concept of sufficient statistics has proved of great value in sta-

tistical theory and practice. The reason for this does not seem to me

altogether easy to analyze, but, as the exercises above illustrate, the

families of distributions most frequently studied in statistics are gen-

erally rich in sufficient statistics. It is hard to separate cause from

effect here; for the distributions that are most studied tend to be those

having the greatest mathematical simplicity, and the presence of strik-

ing sufficient statistics, such as those exhibited by Exercises 1, 2, 3, 5,

and 7, are among the sources of mathematical simplicity most often

met in the study of particular families of distributions.

It must be emphasized that sufficient statistics often providea signifi-

cant saving in the mechanical labor of storing and presenting data.

Thus, in any experiment faithfully represented by Exercise 1, it is
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sufficient, in both the technical and ordinary senses of the word, to
record a single integer y in place of the list of z,’s, which might well be
very long. Several of the other exercises would in principle also lead

to great savings of this sort, but Exercise 5 is the only other that arises

frequently in practice.

The concept of sufficient statistics was introduced, together with

much of the theory associated with it, by R. A. Fisher (cf. index, [F6)).
The subject has been one of continuing interest and has been explored

in several directions; key references are [B2], [E1], [L6], [H3], [K15],
and [M5], and (LeCam 1964).

5 Likelihood ratios

The random variable 6(x) has played so important a role in preced-

ing sections that the reader will probably not be surprised to find that

B(x) is a sufficient statistic for x, a conclusion that, in the light of the
factorability criterion (4.10), can be seen thus:

P(B; | x) P

 

(1) P(z| B) = aH (2)

B(i| 2)
= P(2).
aa”

If a statistic is sufficient, it is sufficient irrespective of the value of 8;

moreover, any multiple of it by a non-zero constant is also sufficient.

Therefore, (1) implies that for any numbers a(z), such that a(z) > 0,
the multiple observation r(a) defined by

P(x| B;)

‘ Za(j)P(x | B;)
 r(x; a) =p

(2)
T(z; a) = Df iri (2, a), ro(x, a) }

is a sufficient statistic for x. Since

(3) Y a(Ari(ar; a) = 1

there is some redundancy in retaining both components, but this re-

dundancy is more than compensated by the advantage of retaining

symmetry, especially when n-fold partitions are contemplated.

Formally, the r(a)’s are an infinite family of sufficient statistics, one

for each a; but to all intents and purposes they represent but one suffi-
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cient statistic, for any r(a) is equivalent to any other, say r(a’), as can
be demonstrated thus:

P(x | B;)/Za'(k)P(x| By)
Za(j) {P(x | B,)/Za’(k)P(« | Bx)}
 (4) ri(X, a) =

_ "s(x, a’)

Za(j)r;(x, a’)

Having such a multiplicity of forms for what is essentially one im-

portant statistic 1s rather embarrassing, so there is some incentive to

pick a standard form. Setting each a(j) = 1 recommendsitself as con-

venient and leads to the particular statistic r = {r,, ro}, where

P(x| B;)

This form is indeed convenient for twofold and, more generally, for n-

fold partitions, but, where infinite partitions are to be dealt with, its

apparent naturalness is misleading, for the sum in the denominator of
(5) is then typically divergent. in the case of twofold partitions, a

convenient form for the statistic is that of a likelihood ratio, in the

sense introduced in § 3.6, for it is easy to see that, infinite numbers
being admitted, P(x | B,)/P(x | Be) is equivalent to r. Henceforth, any
statistic equivalent to r will be called a likelihood ratio of x with re-

spect to the partition B;—a definition that does not seriously conflict

with ordinary statistical usage of the term.
Figure 1 illustrates a geometric interpretation of likelihood ratios

that is sometimes valuable. The figure can best be described bytelling

how to draw it. First draw a pair of cartesian coordinate axes for varia-

bles u; and ue. Next draw the two line segments represented by u; +

ug = 1 and (u;/a(1)) + (ue/a(2)) = 1 with the u,’s non-negative. The

left ends of these segments are indicated in Figure 1 by a and 3,re-

spectively, the particular value a = {1/3, 2/3} being used forillustra-
tion. Now plot the point {P(x | B,), P(x | Bz)}. If x has positive

probability (for any, and thereforeforall, 6); this point will be different

from the origin O, so it will be possible to draw the (dashed) line con-

necting the origin with the point {P(x | By), P(x| Be)}. This line (or
ray through the origin, as it is often called) must necessarily pierce

the line segments a and b. The important geometrical fact, which the

reader will have no difficulty in verifying, is that these intersections

occur at the points {7;(x), re(x)} and {ry(z, a), re(z, a)}, respectively.
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”
7

7

_-°[P(#|By), P(x|Bo)}

   
a“

“try (2, a), lo (x, a)} 
Figure 1

It is also obvious that the ratio P(x | B,)/P(a | Bz) is the reciprocal of

the slope of the ray.

Since, to each x that occurs with positive probability, there corre-
sponds a ray through the origin, the ray can be taken as a statistic;

according to the geometrical construction of the preceding paragraph,

this statistic is equivalent to r and is therefore a likelihood ratio of x

with respect to the partition B;.
The ray connecting the origin with a point {u,, ue} can conveniently

be represented by the suggestive notation u,:U2, though, of course,dif-

ferent pairs of numbers can represent the same ray. More explicitly,

if X is any numberdifferent from 0, Au,:Aue represents the same ray

AS Uy:U2. In analytical projective geometry any pair of numbers rep-

resenting a ray in this fashionis called a set of homogeneouscoordinates

of the ray. The redundancyof the notation w;:w2 may be removed by,

for example, characterizing the ray by thereciprocal of its slope u1/wz.

Such non-homogeneous coordinatization entails a sacrifice in symmetry

and the necessity of admitting infinity as a meaningful value of the
quotient; both losses are quite troublesome in extension of these geo-

metric concepts to cartesian space of n dimensions, which is necessary
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in connection with n-fold partitions. In homogeneous coordinates the

likelihood ratio can conveniently be represented by any of the equally

good sets of homogeneous coordinates, P(x | B,):P(z | Boa), 71(2)i1re(2),
and r(x, @):ro(x, a). Finally, it may be remarked that P(x | B,)/
P(x | Bz) is a non-homogeneous coordinate. Thus the many equivalent

forms in which the likelihood ratio statistics can be naturally expressed
corresponds to the manydifferent notations by which a ray through the

origin can be naturally designated.

The most remarkable fact about the likelihood ratio considered as a

statistic is that it is necessary, so to speak, as well as sufficient. By that

I mean that to have the advantages of knowing x it is necessary as

well as sufficient to know the likelihood ratio. The point can be put
formally thus:

THEOREM | If y is sufficient for x, then y is an extension ofr.

Proor. The theorem is virtually obvious in terms of the factora-

bility criterion for sufficient statistics, for in the notation of (4.10)

R(y(x), 2)
(6) r(x) = ———->

ZR(y(x), j)
with probability one, exhibiting r; as a function of y. @

CoROLLARY 1 If z is sufficient for x, and if every y sufficient for x

is an extension of z, then z is equivalenttor.
By ordinary analytic standards, the likelihood ratio seems to be a

rather complicated statistic, at least in the case of n-fold partitions,

where 7n is at all large; for, to one who takes seriously the idea that a

multiple statistic should not also be regarded as a single statistic, the

likelihood ratio seems at first sight to be n, or perhaps (n — 1), statis-

tics. Yet Theorem 1 and its corollary show that the likelihood ratiois,
in a fundamental sense, the most compact sufficient statistic that a

partition problem admits.

As an explicit example of a likelihood ratio, consider the twofold par-

tition problem arising from Exercise 4.1 on confining attention to two

different values of p, say p; and po. Thelikelihood ratio r is easily

computed thus:

 

(7) P(z| By) = p#U1 — py”
. \ut) \Y

= (1 — pi( a ) = qi" 3)
l1— p; qi

SO ho
Nn. /q.\v

(8) r(x) qi (p;/qi)

Zq;"(p./q;)”
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Theorem 1 is thereby verified in the present instance; for (8) exhibits

r explicitly as a contraction of y, and is easily exhibited as a contrac-

tion of r thus:
ae (2)|

log “fl
r2(x) 1

P1492
log ——

P2q1

In this example, y is, in view of (8) and (9), equivalent to the likelihood
ratio.

 

 (9) y(z) =

Exercises

1. Express k(@(x)) and v(F(x)) in terms of the likelihood ratio thus:

(10) Bi; r) = pe rB(H)/QL iB);

(11) k(B(x)) = k(B(r(z))).

(12) (F(a)| 6) = Dea) |D P| Bye|:
2. This extended exercise develops the personalistic and behavioral-

istic theory of what, following the objectivistic and verbalistic tradi-

tions of statistics, is called the testing of a simple dichotomy, a type of

decision problem that, though seldom very realistic, is a popular and
instructive example with important implications for more realistic prob-

lems. Verbalistically such a problem is described as that of making the

best guess on the basis of an observation as to whetherit is B, or Bz

that obtains. Behavioralistically, this is generally interpreted as the

problem of deciding, on the basis of observation, between two primary

acts one of which is preferable to the other if B,; obtains and vice versa

if By does. Here is one topic in which the assumption that 7 is confined
to two values is rather more than simply a pedagogical simplification;

a reader interested in relaxing the assumption will find pages 127-130

of [W3] stimulating.

Suppose that F contains only two acts f; and f. and is dominated by

neither. Let oij = Df Ec; | B;).

(a) There is no loss of generality in supposing

22 — $12 $11 — $21
37% 2 =pi—_5-__ > 9

which will henceforth be done. That is, it will be supposed that f, is
appropriate only to B, and vice versa.

(13) 61 = pf
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(b) Show that

(14) (8) = 2 d1j8(3) for B(1) > 81/(51 + 2) = Bo(1)

= 2) ¢2;6(j) for B(2) > 62/(1 + 82) = Bo(2)

= Ebr + $01)8(1) + 3(dr2 + $22)8(2) +

|

816(2) — 628(1) |
= 25 ¢8(j) + | 618(2) — 628(1) |,

J

where 8» and the e,’s are defined by the context.

(c) E(f; | 8B) = k(8), if and only if B(7) > Bo(i). This condition ob-
tains for both 7’s simultaneously, if and only if B = Bo.

(d) Show that

(15) (6(r)) = p> €t8(J) + | 8yr28(2) — 82r18(1) }/E r3(3)

= 2 857) for r; > ri*(B, Bo),
Jj

 

where

Bo (7) /B(2)
16 i* ) = nDue) 7B; Po) DE 6o(H)/8@
and that

(17) (F(x) | 8) = 22 8G) + Do OP(r | Be)8(2) — b2P(r | Bia(1)|

= fe + d[1 — 2P(r1 < r1*(8, Bo) | Bx)

— P(r = r*(B, Bo) | Bi)]}8(1)

+ {e+ 6[1 — 2P(re < r2*(8, Bo) | Be)

— P(r = r*(B, Bo) | Be)]}8(2).
(e) Any derived act f(x) determines a function i assigning an 7 to

each z, i being implicitly defined thus: f(x) = fiz). Conversely any i

determines a derived act. Show that E(f(x) | 8) = v(F(x) | 8), if and
only if ry¢2)(x) > itz) *(B, Bo) for every x. Such a function 7(zx) is called
a likelihood-ratio test associated with r*. Show that at least one likeli-
hood-ratio test is associated with every value of r*, and that if P(r = r*)
= 0 (which is typically the case) there is only one.

(f) If f(x) is determined by a function of i, the probability of deciding

on the inappropriate value of i in case B; obtains is generally called
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the probability of an error of the j-th kind. Analytically the probabili-
ties of error of the first and second kind are, respectively,

(18) ey = pe P(i(z) = 2| By), 2 = vs P(i(x) = 1| Ba).

If i* is a likelihood-ratio test associated with r*, show that its errors

of the first and second kind are subject to the bounds

(19) P(r, < r1*| Bi) < e:* < P(r, < 171*| By)

(20) P(r, > ry* | Bo) < eg* < P(r > 11* | Bp).

What about the typical case that P(r = r*) = 0?

(¢) Show that, if 1 is at least as good as i* in the sense that e; < e,*

for both 2z’s, then i is a likelihood-ratio test and i is virtually i* in that
e; = e;* for both 7’s. Hint: Consider an F and a 8 for which r*(@, Bo)

= r*, showing that these exist, and note that, for this decision problem,

E(E,s | B) = {e, — 82(1 — 2e;*)}8(1) + {eg — 51(1 — 2eg*)}8(2)

v(F(x) | 8)

E(f, | 8) = {¢1 — 82(1 — 2¢:)}8(1) + {e2 — 51(1 — 2e9)}8(2)

> v(F(x)| 8),

with equality if and only if i is a likelihood-ratio test.

This important conclusion about likelihood-ratio tests has been much
emphasized, especially by the Neyman-Pearson school.

(21)

The concept of likelihood ratio, sometimes simply called likelihood,

is now one of the most pervasive concepts of statistical theory. It

seems to have been introduced in 1922 by R. A. Fisher (ef. index of

[F3]), who emphasized it in connection with the important method of
estimation named by him ‘‘the method of maximum likelihood.” Its

use in testing hypotheses was apparently first emphasized by J. Ney-
man and E. 8. Pearson (see Vol. II, p. 303 of [K2]). In connection with

likelihood ratios as necessary and sufficient statistics, mathematically

advanced readers will be interested in Section 6 of [L6], [B2], and

[M5]. One of the earliest contributions in this direction was made by
C. A. B. Smith [S14].

6 Repeated observations

If x(n) = {x,, ---, Xn}, where, given B;, the x,’s are independent
identically distributed random variables, then v(F(x(n))) is a non-de-

creasing function of n, for the (n + 1)-tuple is an extension of the n-
tuple. If (8) is strictly convex—a condition that you now recognize
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as interesting—v(F(x(n))) is easily seen to be strictly increasing in n,

unless the individual x,’s are either utterly irrelevant or definitive.

It is to be expected, especially in the light of the approach to certainty
discussed in § 3.6, that, as n becomes very large, x(n) will become prac-

tically definitive. Indeed, § 3.6 makes it possible to state and prove a

formal theorem to that effect.

THEOREM 1]

Hyp. 1. x(n) = {x}, ---, Xn}, where, given B,, the x,’s are inde-
pendent and identically distributed random variables.

2. The x,’s are not utterly irrelevant to B;.

3. o(F | 6) = k(6).
Concn. lim _»(F(x(n))| 8) = 18) =ne B(1)K(A, 0) + 6(2)K(0, 1)
uniformly in B. .

Proor. Writing x as short for x(n),

(1) v(F(x) | 8) = Elk(6(x))).
For an arbitrary ¢ > 0, let the closed interval J on which k is defined
be partitioned into two subsets J and K, where J is the set of those

6’s such that

(2) k(g) = (8) — «,

and K is the complementof J relative to I.
It follows from the continuity of the functions on each side of (2)

that B eJ, if either componentof 8 is sufficiently large.

The computation initiated in (1) can now be carried forward thus:

(3) Elk(8(x))] = E[k(6(x)) | B(x(s)) ¢ JIP(B(x(s)) eZ)
+ E{k(6(x)) | B(x(s)) ¢ KIP(6(2(s)) ¢ K)

> ETL((x)) | B(2(s)) ¢ JIP(B(2(s)) ¢ J)
+ min k(6’)-P((2(s)) ¢K) — «

= E{l(6(x))] — {E[l(8(x)) | B(x(s)) ¢ K]

— min k(6)}P(B(2(s)) ¢K) — ¢

= 1(8) — max| k(6’) |-P@(@(s)) ¢ K) — «

Now, in view of the paragraph in which (3.6.15) occurs and the fact

that, if either componentof 8 is close to 1, 8 ¢J; P(8(x(s)) ¢ K) becomes

arbitrarily small for sufficiently large n. @
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7 Sequential probability ratio procedures

The present section digresses to discuss an interesting application of

the ideas presented in this chapter to what is called sequential analysis.
Sequential analysis refers in principle to the theory of observational pro-
grams in which the selection of what observations to make in later
phases of the program depends on what has been observed in earlier

phases. Such behavior is commonplace in everyday life; for example,

you look for something until you find it, but not longer. Statistics it-
self has always used sequential procedures. For example, it is not rare

to conduct a preliminary experiment to determine how a main experi-

ment should be carried out. Thus, if one were required to estimate

with a roughly preassigned precision the mean of a normaldistribution

of unknown mean and unknown variance, one might reasonably begin

by taking ten or twenty observations, which would give some idea of

the variance and would therefore determine about how many observa-

tions are necessary for achieving the requisite precision.

Commonplace though problems with sequential features are, A. Wald

was thefirst to develop (1943) a systematic theory of a considerable

body of problems of this sort. For early history see the Introduction
of [W2] and the Foreword of Section I of [S17].

Some later ideas on sequential analysis, due mainly to Wald and

Wolfowitz, are the subject of this section. It will not be practical to

proceed with full rigor, primarily because random variables capable of
assuming an infinite number of values are necessarily involved. Full

details are given in [W3] and more compactly in [A7], but not in Wald’s

book on sequential analysis [W2].
Let x = {x(1), ---, x(v), ---}, where the x(v)’s are conditionally an

infinite sequence of independent, relevant, identically distributed ran-

dom variables. Rather informally, a sequential observational program

with respect to x is a rule telling whether to observe x(1) or whether to

make no observation at all; if the particular value x(1) is observed,

whether to observe x(2) or to discontinue observation; if the values

z(1) and x(2) are observed whether to observe x(8) or to discontinue

observation, etc.

More formally, let N be a function of the infinite sequence of values

x = {x(1), ---, z(v), ---} such that, if the sequence x’ agrees with x in
every componentfrom thefirst through the N(z)th, then N(2’) = N(a).
Such a function N determines a sequential observational program,

which is a contraction of x, call it y(x; N), defined thus:

(1) y(x; N) = Df {x(1), a) x(N(x))}.



7.7] SEQUENTIAL PROBABILITY RATIO PROCEDURES 143

It is to be understood that, if N(x) is zero for some2, it is identically

zero, and that y(x; 0) is a null observation.
It will be assumed that the random cost associated with a sequential

observational program is proportional to the number of random varia-

bles observed, that is, c = N(x)y, y > 0. No categorical defense of

this assumption is suggested, but clearly there are interesting problems
in which it is met at least approximately. The domain of applicability

of the theory can actually be considerably extended by modifying the

assumption to includea fixed overhead cost that applies except in case

N is identically zero; this does not greatly complicate the analysis, as

the interested reader will be able to see for himself. The theory would

even remain virtually unchanged, if c were only assumed to be of the

form
N(2)

(2) c=h+ >> civ), if N > 0,
v=1

= Q, if N = 0,

where h, c(1), c(2), --- are independent with finite expected values

E(h) > 0, E(c(r)) > 0, and the c(v)’s are identically distributed.

For any F there are some values of 8 for which it would be unwise to

adopt any sequential observational program other than the null obser-

vation. Suppose, for example, that 8B is so close to an extreme value

that 1(6) — k(8) < y; under this circumstance the most that could be
gained by observing even x itself would be less than y, but the cost of

making so much as one observation is at least y. Let the set of values

of 6 for which it is not Justified to make any but the null observation be

denoted for a while by J(F; y), or simply J, for short.
Now, if 8 ed, the person’s utility can, by the definition of J, be maxi-

mized by refraining from any observation but the null observation and

accepting the utility k(8); otherwise there will be some advantage to

him in observing x(1). If the person does observe the particular value

2(1) of x(1), he finds himself with a posteriori probabilities B(7(1)) in
place of the a priori 8, he has paid (or at any rate entailed) a cost y,

and he must now decide whether to make any further observations.

His new problem is simply the problem he would have faced at the out-
set had his a priori probabilities been 8(x(1)) instead of 8, except that

all utilities are now reduced by y. He Justifiably accepts the utility

k(B(a(1))) — vy, if B(a(1)) e J; otherwise he will observe x(2). Continu-
ing this line of argument step after step, it follows that optimal action

consists in observing successive x(v)’s until an a posteriori probability

in J occurs, and then adopting a basic act consistent with the a posteriori

probability.
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In actual practice, it is far from easy to determine whether a particu-

lar value of 6 belongs to J(F; y), because in principle the whole enormous

variety of sequential observational programs has to be explored to de-

termine whether any one of them has a derived value greater than k(§).

The practical advantage achieved in the preceding paragraph is that

of greatly restricting the class of programs that merit consideration.
Thus the problem of determining whether 8 ¢J(F; y) does not require

a survey of all observational programs, but only of those defined in

terms of some set J’ according to the rule that N(z) is thefirst integer

for which B(x(1), ---, x(n)) eJ’.
If programs corresponding to all sets J’ had to be examined, the

process would still be mathematically impractical; indeed, in all but

special cases, practical solutions have yet to be found. But, if any

special conditions that J must necessarily satisfy are discovered, only

sets J’ satisfying those conditions need be examined. Some very gen-
eral conditions are these: / contains the extreme points of J; J is topo-

logically closed, that is, if a value @p is not in J, then the near neighbors

of Bo are also not in J. Thefirst of these conditions requires no com-

ment, and the second follows easily from the continuity as a function of

B of

(3) E{k(B8(y(x; N))) — yN | 6] — &(8).
These conditions alone do not go far toward narrowing to practical

limits the variety of sets to be explored. Thus far in the development
of the subject, really powerful conditions have been obtained only at

the expense of considerable restrictions on the structure of F or, equiv-

alently, of k.

Suppose, then, that F is dominated by a finite numberof acts or,
what amounts to a little less, that the graph of k is polygonal, as it is

for the k graphed in Figure 2.1. Technically, this restriction on k may

be expressed by saying that the interval J is the union of a finite num-
ber of intervals of linearity of k. Under the restriction, relatively much

can be concluded about the structure of J(F; y), for it is true in general,

as will be shown in the next paragraph, that the intersection of J with
any interval of linearity of k is a closed interval.

Suppose, indeed, that 8; and B2 belong to/ and to a commoninterval

of linearity of k, but that Bo on the interval between 8; and 8, does not

belong to J. A contradiction follows according to the following com-

putation, in which h is any act derived from a sequential observational

program, cost included, that is advantageous at Bo.

(4) x E(h| Bj)Bo(j) > k(Bo),
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for h is supposed to be advantageous at Bo; and

for no derived act is supposed to be advantageous at Bm, since B» ¢J.
Since 8 is a weighted average, say L¥mBm, of the B»’s, and since k() is

linear in the interval between 6, and Bo, it follows from (4) and (5) that

(6) dX, E(h | Bi)Bo(t) < k(Bo),

contradicting (4). The supposition that Bp ¢~J has thus been re-
duced to absurdity.

The demonstration Just given extends directly to n-fold problems.

The general conclusion is that the intersection of J with any domain

of linearity of k is convex, so that, if k is polyhedral, J is the union of a

finite number of closed convex sets, each lying wholly in a domain of

linearity of k. The practical implications of the conclusion are enor-

mously greater for twofold than for higher-fold problems, because

twofold problems lead to one-dimensional bounded, closed, convex

sets, which present no great variety, all of them being closed bounded

intervals. But threefold problems, for example, lead to closed bounded

two-dimensional convex sets, a restriction that leaves great room for

variety.

If k is polygonal, the variety of sets J’ to be surveyed is enormously
reduced, for J’ must be the union of a known numberof intervals, each

of which is confined to a known interval. Suppose that this numberis

m; the class of sequential observational programs to be surveyed can

be characterized by the two end points of each of the m intervals, ex-
cept that the possibility that some of the intervals are vacuous must be

borne in mind. Since the extremes of J are neeessarily in J, and there-
fore necessarily appear as end points of intervals in J, the exploration

has been reduced to a 2(m — 1) parameter family of possibilities.

The possibility that m = 1, which almost means that F is dominated

by a single element ofitself, is trivial; for then all @’s are in J, and ob-
servation is never called for. This can be seen m many ways. In par-

ticular, it follows as an illustration of the machinery that has just been

developed, thus: The end points, or extremes, of J are both in J, as al-

ways, and, since m = 1, they are both in the sameinterval of linearity
of J; therefore the interval between them, namely every value of 8,

lies in J.

The possibility that m = 2—in ordinary statistical usage, the se-

quential testing of a simple dichotomy—is of particular importance.
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It occurs typically when F is dominated by twoacts, neither of which
dominates the other, as in Exercise 5.2. One of the two acts is approp-

riate to one “hypothesis” B,, and the other is appropriate to By. In
case m = 2, it is easily seen, by methods that have now been indicated

more than once, that each of the two closed intervals that constitute J
has as one end point one of the extremes of J. Neither of the two inter-
vals can be vacuous, nor can either consist only of a single point. It is

relatively easy to find, at least approximately, the two values of 6 that
determine J(F; y), and the theory of this situation has correspondingly
been brought to a relatively high degree of perfection; for details, see

[S17], [W2], [W3], and [A7].
Following (or at least paraphrasing) Wald [W2], a sequential obser-

vational program characterized by making successive observations un-

til the a posteriori probabilities fall into some set J, followed by adopt-

ing a basic act appropriate to the a posteriori probability, is called a
sequential probability ratio procedure. The reason for this nomencla-

ture is that to observe until the a posteriori probabilities fall into J is
to observe until the numbers

B()P(@(1), «++, 2(0) | Bd)
D BG)P(@(1), +++, (0) | By)
 (7) B(i| 2(1), ---, x(@)) =

lie in a certain set, or, what amounts to the samething, satisfy certain

conditions. But, the particular value of 8 having been assigned, this

is tantamount to requiring the ratios of probabilities

P(z(1), «++, #(N) | By)

P(x(1), +++, 2(N) | Bs)
 (8)

to satisfy certain conditions.

Since (7) and (8) are ways of expressing thelikelihood ratio, the ob-
servational program together with the act derived from it might also

be referred to as a sequential likelihood-ratio procedure. Indeed, but

for the precedent established by Wald, that would seem the better

name.
As an actual example of a sequential probability ratio procedure,

suppose that the distribution of x(v) given B; attaches the probabilities

p; and g; = 1 — p,; to the values 1 and 0, respectively. The expression

(8) can in any case be written in the factored form

N [Pet | 2),
9 ee

”) P(zx(v) | By)v=]
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and in the present example this takes the special form

(10) ay(ay_ (“yee

P2 q2 q2 P241

where
N

(11) y(N)= dD) xv).
v=]

It is noteworthy, in connection with sufficient statistics, that the con-
dition that the a posteriori probability be in J is in this case expressible,

according to (10), as a condition on y(N) and N. Specializing the ex-
ample further, suppose that J is of the sort appropriate to testing a
simple dichotomy. The condition that the a posteriori probability be

in ~J is then expressed by each of the following equivalent pairs of

inequalities, where a(1) and a(2) are positive numbers such that a(1)

+ a(2) <1.
B(1| 2(1), ---, 2(N)) < 1 — a(1),

(12)
B(2| x(1),«++, 2(N)) < 1 — a(2).

B(1)Q
sca +a@ ~~ *(

0) (2)B

a+ 6a) ~~ %)

where Q for the moment denotes the likelihood ratio (10).

B(2)(1— a(1)) _
(1)a(1)

pQ)a2) _o,
B(I)(1 = @(2))

where Q*, Qx are defined by the context. Since, according to (13), the

structure of ~J is superficially determined by three parameters, say by

B(1), e(1), and (2), it is worthy of some note that the corresponding con-
dition is ultimately expressed in terms of only two special parameters,

Q* and Qs; this is only natural, considering that ~J is an open interval
determined by its two end points. The act that would be appropriate

to B, is called for by values of Q > Q*, and the one appropriate to Bz

is called for by values of Q < Qx.

 Q< Q*,

(14)
 Q>
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Thus far, the particular form (10) of the likelihood ratio has not

really been exploited in the calculation, so (14) applies to the testing of
simple dichotomies generally. Taking account of (10), (14) can by ele-

mentary manipulation be put in the following form.

y(N) < {log Q* + N log (q2/q:)} /log (p192/P291),

y(N) > {log Qx + N log (q2/q1)}/log (p192/p2q1),
(15)

where, for definiteness, it is supposed that p,; > po. Thus, the region

in the (N, y) plane determined by ~/, the region in which further ob-

servations are called for, is a band bounded by two parallel lines of

positive slope.

8 Standard form, and absolute comparison between observations

If x and y are such that, for every F and 8, v(F(x) | B) > oF) | B);
then x imitates, so to speak, an extension of y, and it may appropriately

be said that x is a virtual extension of y. Correspondingly,if x is a vir-

tual extension of y, and y is a virtual extension of x, it may be said that

x and y are virtually equivalent.
No matter what a priori probabilities a person may have, or what

basic acts are available to him, he will have no preference between a

pair of virtually equivalent observations, so virtually equivalent obser-

vations are indeed equivalent for many practical purposes. Where com-

binations of observations are under consideration, however, the rela-

tion of virtual equivalence does not resemble true equivalence. For

example, if x and y are equivalent, then each is equivalent to the mul-

tiple observation {x, y}, but if x and y are only virtually equivalent,
they may well be independent, in which case neither will typically be

equivalent to {x, y}.
This section explores the notions of virtual extension and virtual

equivalence. In particular, an interesting standard representative of

the class of observations virtually equivalent to a given observation x

is defined and discussed. This material is scarcely referred to later in

the book, and it may without much loss be skipped or glossed over. It

will be couched frankly in the language of n-fold as opposed to twofold

partitions, but readers with the rest of the chapter behind them will

easily be able to concentrate on the twofold situation, if they find it

more understandable.

Most of the ideas to be presented in this section were originated by

H. F. Bohnenblust, L. 8. Shapley, and 8S. Sherman in a private memo-

randum dated August 1949, which I was privileged to see at that time.
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This work was extended and brought to the attention of the public by
David Blackwell in [B16].

It is obvious that, if y is a sufficient statistic for x, then x and y are

virtually equivalent. In particular the likelihood ratio r derived from
X is virtually equivalent tox. Moreover, the reader mayanticipate, and
it will be formally shown in the course of this section, that if and only

if observations are virtually equivalent do their likelihood ratios have

the same distribution for every value of 8, or, what comes to the same

thing, given each B;,1 = 1, ---, n. Thus the n conditional distribu-

tions of the likelihood ratio given each B; could be taken to characterize
the observations virtually equivalent to a given one, say x. Actually,

as will be shown, the class of observations virtually equivalent to x can

be represented by the distribution of the likelihood ratio for any single
non-extreme value of 8. For definiteness, the particular value 6* =

{1/n, --+, 1/n} will be used, but the interested reader will find it a
simple exercise to extend all the considerations based on 8* to any
other non-extreme 8, as would be necessary in any extension of the theory
to infinite partitions.

Let m(r) be the probability that the likelihood ratio in the standard
form (5.5) attains the particular value r when 6 = 6*. With self-evi-
dent abbreviations,

(1) m(r) = P(r | 6*)
= D P(r | Bi)(1/n)

1

=-)) Dd P(x| B)).
N 3 r(x)=r

The second line of (1) exhibits m(r) expressed in terms of the n distri-

butions P(r | B;). It is rather moreinteresting to see that those n dis-

tributions can themselves all be expressed in terms of the single dis-

tribution m, as follows from the definition (5.5) of r and the third line

of (1) thus:

(2) P(r| B) = x P(x | B,)

= 2 r;(2) DX P(z| B;)
r(z) =r j

= nrym(r).
Similarly,

(3) P(r| 8) =n 1x ra} m(r).
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Regarded as a probability measure on theset of all n-tuples of num-
bers r, m has the following three important properties.

P(r; > 0| m) = 1;

(4) P(Dy= tlm) =1,

E(x; |m) = n—,

Of these, the first two are obvious from the definition of r, and the third
follows by calculation from (2) thus:

(5) 1= PCr |B) =n Dram) |

= nE(r; | m).

Conversely, suppose that m is any mathematical probability defined

on the set of n-tuples r of numbers, subject to the conditions (4), then,
as can easily be verified, » mathematical probabilities are formally
defined by the equation P(r|B,) = nrym/(r). Mathematically, r dis-
tributed thus can be regarded as an observation. The following calcu-
lation demonstrates the expected conclusion that the likelihood ratio
of this observation is the observation itself and that its distribution
given 6* is m.

P(r | B;) _ nrym(r) _

DX P(r | B;) on x rjm(r) 7

P(r | B*) = DX nrgm(r)(1/n) = m(r).

 

(6)

It is interesting and fruitful to compute v(F(x) | 8) in terms of m.

(7) o(F(x) | 8) = ERG) | 8)
= Elk({r8()/22 148(9)}) | 6)

= nF [k( {r8(i)/2, 198(9)}) Lo 148(A) | mi}.

Temporarily adopt the convention that, if a is any n-tuple of positive
numbers and h any function of r (not necessarily convex), T(a)h is a
function of r defined thus:

(8) T(a)h(r) = ps h({rea(t)/2) r30(9)}) Zrja(J).

Then (7) takes the abbreviated form

(9) E(k(6(x)) | 8) = nE(T(B)k(x)| m).
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To see the implications of (9), it is necessary to know something about
what the operation 7'(8) does to the function k, in particular to know

that 7(6)k is convex in r. The derivation of these necessary facts is
straightforward and is left to the reader as a sequence of exercises.

Exercises

la. T(a)T(6)h = T({a(1)B(1), ---, a(n)8(n)})h = T(B)T(a)h.
lb. h = T({a(1)7}, «++, a(n)})T(a)h.

1
2. T(g*)h = —h.

nN

3. If h(r) > g(r) for r between 7’ and r”; then T(a)h(r) > T(a)g(r)
for r between r;aO/X rj/a(7) and r'al/X r;’a(j).

If h is linear, then so is 7'(a)h.
. If h is convex (strictly convex), then so is T'(a)h.

Fxercise 5 is obvious in the light of Exercises 3 and 4, but some may
prefer the demonstration suggested by the following calculation, where
\+ w= 153A, w => 0; and obvious abbreviations are used.

(10) T(a)hAr + pr’)
Narr r par’ r

= (—“"_ --ea)a: (Ar + pr’)
a: (Ar + ur’) ar a (Ar + pr’) arr’

r r’
<A (~ «) ar + ph (—— ) ar’

ar ar

= AT(a)h(r) + wT(a)h(r’).

It is amusing to establish once more that observation generally pays,

this time by meansof (10), (4), and Exercises 5 and 2.

(11) nE(T(6)k(r) | m) > nT(6)k(E(e | m))
= nT(B)k(6*)

= k(6).

If x and x’ are observations and m and m’are the corresponding dis-

tributions, it is now easy to say in terms of m and m’ when x is utterly

irrelevant, whenit is definitive, and when x is virtually an extension of x’.

More exercises

6. The observation x is utterly irrelevant if and only if P(r = 6* | m)

= 1.

7. The observation x is definitive; if and only if P(r; = 1 | m) = I/n,
or, equivalently, if and only if P(r; = 0 | m) = (n — 1)/n.
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8a. The observation x is a virtual extension of x’, if and only if, for
every convex function h defined forr,

(12) E(h(r) | m) > E(h(r) | m’).
8b. The two observations are virtually equivalent, if and only if, for

every convex function’h,

(13) E(h(r) | m) = E(A(z) | m’).
The conclusion reached in Exercise 8b can be much improved. In-

deed, it will be shown that the two observations are virtually equiva-
lent, if and only if m and m’ are the same probability measures. This

will be achieved if, for example, it is shown that m and m’ have the
same moments, for it 1s well known that two different countably addi-

tive probability measures confined to a boundedset of n-tuples of num-

bers cannot have the same moments.t The moments in question are

expected values of monomials of the form

(14) g(r) = ry 87g? ++ ry,

where the e,’s are non-negative integers. In general, g will not be

convex, so it cannot be concluded immediately that g has the same
expected value with respect to m and m’. If, however, a highly convex
function is added to g, then the sum will be convex andits expected

value will be the same with respect to m and m’. Since, by hypothesis,

this is also true of the convex term of the sum, it must also be true of

the not necessarily convex term. Specifically, let

(15) h(r) = g(r) + Dor’,

whereA is a positive number to be determined later. To test h for con-

vexity, let s be for the moment an arbitrary n-tuple of numbers and co

a real variable, and compute the second derivate of h(r + os) with re-

spect toc ato = 0.

d?h(r + os) > 079(r)
2

do o=0 ty, j ON; OT;

 

(16) $8; +X >» s;”.

j

Considering that each r; is between 0 and 1, the absolute values of the
derivatives of g that appear in (16) have a common upper bound, say

t See, for example, Corollary 1.1, p. 11, of [S13].
Under our usual simplifying assumption that x is confined to a finite number of

values, m is certainly countably additive. Actually, the whole theory can be de-
veloped mutatis mutandis assuming only that the distribution of x is countably

additive on somesuitable Borel field.
+ Morse and Sacksteder (1966) show, in effect, that the test can be confined

to the very special convex functions max p;,r;, where the p; are arbitrary posi-
tive numbers.
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u; 80, if \ > yn”, h is convex in the region where each r; lies between 0
and 1 and is a fortiori convex in the intersection of that region with
the hyperplane 2r; = 1.

Now that it has been established that m and m’ represent virtually

equivalent observations, if and only if m and m’are identical, it is ap-
parent that m—or, more exactly, the set of conditional distributions

P(r| B;) = nrym(r)—is a unique standard form for all observations
virtually equivalent to x.

If x virtually extendsy, it is to be expected that, no matter what rea-
sonable definition of “informative”? may be suggested, x will be at least
as informative as y. In particular, it is to be expected that the infor-

mation of B; with respect to B; (as defined in § 3.6) will be at least as
large for x as for y, which the following calculation verifies, supposing
for simplicity that, for both observations, infinite information is im-

possible. The point in question depends on the convexity of the func-

tion h defined by

(17) h(r) = r;(log r; — log r;),

because

(18) l,j = E(log |io log rj | B;)

nE[r;(og r; — log r;) | m].

The required convexity can be demonstrated much as it was in (15)t
for a different function also momentarily called h:

q? 07h(r) d7A(r) d7A(r)
19) —~A(r+ as = s;°7 2———- s,s; ——s;
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= rary (758: — 138;)" > 0.

It would be interesting to know whether every virtual extension is
realized by an actual extension, that is, whether whenever x is a vir-

tual extension of y there exist random variables x’ and y’ such that x
and x’ are virtually equivalent, y and y’ are virtually equivalent, and
x’ extends y’. To the best of my knowledge that conclusion has thus
far been established only in the case of twofold problems, the demon-

stration for that case being given by Blackwell in [B16].

+ Actually, this calculation depends only on the convexity of (log r; —
log r;) in rj/Ty



CHAPTER 8

Statistics Proper

1 Introduction

I think any professional statistician, whether or not he found himself

in sympathy with the preceding chapters, would feel that, even allow-

ing for the abstractness expected in a book on foundations, those chap-

ters do not really discuss his profession. He would not, I hope, find the

same shortcoming in this and the succeeding chapters, for they are con-
cerned with what seems to meto bestatistics proper. The purpose of

the present short chapter is to explain this transition and to serve as a

general introduction to its successors.

2 Whatis statistics proper?

So far as I can see, the feature peculiar to modernstatistical activity
is its effort to combat two inadequacies of the theory of decision, as I

have thus far discussed it. In thefirst place, there are the vagueness

difficulties associated with what in § 4.2 were called ‘‘unsure probabili-

ties.” Second, there are the special problems that arise from more than

one person’s participatingin a decision.

From the personalistic point of view, statistics proper can perhaps be

defined as the art of dealing with vagueness and with interpersonal
difference in decision situations. Whether this very tentative defini-

tion is Justified, later sections and chapters will permit the statistical
reader to judge. At any rate, vagueness and interpersonal difference

are the concepts that, directly or indirectly, dominate the rest of this

book.
I will not try to discuss vagueness in this chapter, but something

may profitably be said here about interpersonal differences.

3 Multipersonal problems

As I havealready frequently said, it seems to me that multipersonal
considerations constitute much of the essence of what is ordinarily
called statistics, and that it is largely through such considerations that
the achievements of the British-American School can be interpreted in

154
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terms of personal probability. This is a view that can best be defended
by illustration, and the requisite illustrations will be scattered through-
out later chapters; but some support is lent to it by those critics of

personal probability who say that personal probability is inadequate

because it applies only to individual people, whereas the methods of
science are, more or less by definition, those methods that are accepta-
ble to all rational people.

The sort of multipersonal problems I mean to call attention to are

those arising out of differences of taste and judgment, as opposed to
those, so familiar in economics, arising out of conflicting interests. As a

matter of fact, the latter type of multipersonal situation can, if one

chooses, be regarded as among the former; it may, for example, be
said that you and I have different tastes for the process of taking a dol-
lar from me andgiving it to you.

Though modern statisticians do not at all deny the existence of dif-
ferent tastes in different people, only occasionally do they take that

difference explicitly into account. In particular, the theory of utility

has scarcely ever entered explicitly into the worksof statisticians. Our

intellectual ancestors who believed in the principles of mathematical
expectation were less tolerant than modern statisticians in so far as
they denied rationality in those whose tastes departed from that prin-
ciple, and some of their bigotry is occasionally met with today.

In dealing with multipersonal situations, it is clearly valuable to
recognize those in which the people involved mayall reasonably be

expected to have the same tastes, that is, utilities, with respect to the

alternatives involved in the situation. Explicit attempts to discover
general circumstances under which people’s tastes will be identical are

rare. The most important and fruitful attempt of this sort is repre-

sented by D. Bernoulli’s idea that utility functions will typically be
approximately linear within sufficiently confined ranges of imcome.

Consciously or unconsciously, that principle is repeatedly appealed to
throughoutstatistics; it was, for example, brought out in § 6.5 that the
very idea of an observation dependsfor its practical value on Bernoulli’s
principle of approximate linearity.

Relatively inexplicit exploitations of similarity of taste are sometimes

madein statistics. The idea is often expressed, for example, that the
penalty for making an estimate discrepant from the number tobeesti-
mated will, for everyone concerned, be proportional (within a reason-
able range) to the square of the discrepancy; an argumentfor this prin-
ciple as a rule of thumb appropriate to many contexts will be given in

§ 15.5. Again, there are situations in which it is agreed that the pen-
alty will depend only on the discrepancy and not on the true value of
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the number to be estimated. Of course, there are problems in which
both rules are invoked simultaneously, the penalty being supposed to
be proportional to the square of the discrepancy and independent of

the value to be estimated.
Turn now to differences in judgment, that is, to differences in the

personal probability, for different people, of the same event. Though
modern objectivistic statisticians may recognize the existence of dif-

ferences of judgment, they argue in theoretical discussions that statis-

tics must be pursued without reference to the existence of those differ-

ences, indeed without reference to judgmentat all, in order that con-
clusions shall have scientific, or general, validity. To put the same

idea in personalistic terms, I would say that statistics is largely devoted

to exploiting similarities in the judgments of certain classes of people

and in seeking devices, notably relevant observation, that tend to min-
imize their differences.

The tendency of observation to bring about agreement has been il-
lustrated in § 3.6. Some of the other general circumstances in which
different people may be expected to agree, or at least nearly agree, in
some of their judgments have also been mentioned. For example, it
may well happen that different people are faced with partition prob-
lems that are the same in that the same variable is to be observed by

each person, but differ in that each person has his own a priori proba-

bilities 8 and his own set of available acts F. If, however, the condi-
tional distribution of x given B; is the same for each person, then the

people will, for example, agree as to whether a contraction y of x is

sufficient, which is often of great practical value. Again, there arecir-

cumstances under which each of these same people will agree that cer-
tain derived acts are nearly optimal.

4 The minimax theory

In recent years there has been developed a theory of decision, here
with due precedent to be called the minimax theory, that embraces so
much of current statistical theory that the remaining chapters can

largely be built around it. The minimax theory was originated and

much developed by A. Wald, whose work on it is almost completely
summarized in his book [W3]. Wald’s minimax theory, of course, de-
rives from, and reflects the body of statistical theory that had been
developed by others, particularly the ideas associated with the namesof

J. Neyman and E. 8. Pearson. It seemslikely that, in the development
of the minimax theory, Wald owed much to von Neumann’s treatment

of what von Neumanncalls zero-sum two-person games, which though
conceptually remote from statistics, is mathematically all but identical
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vith study of the minimaxrule, the characteristic feature of the mini-
nax theory.

Wald in his publications, and even in conversation, held himself

iloof from extramathematical questions of the foundations of statistics;

ind therefore many of the opinions expressed in later chapters on such
yoInts in connection with the minimax theory were neither supported

10r opposed by him. It mayfairly be said, however, that he was an

objectivist and that his work was strongly motivated by objectivistic
ideas.

Mypolicy here of holding difficulties of mathematical technique to a
minimum by makingstringent simplifying assumptions will be adhered

to in connection with the minimax theory. A large part of Wald’s book

[W3] is concerned with overcoming thedifficulties in technique that are

here avoided by simplifying assumptions, but that must be faced in

many practical problems. Despite Wald’s able effort, important prob-

lems of analytic technique still remain in connection with the minimax

theory. It should also be appreciated that the individual mathematical

problems raised by applications of the minimax theory are often very

awkward, even when stringent simplifying assumptions are complied

with; consequently much work on specific applications of the theory is

still in progress.



CHAPTER 9

Introduction to

the Minimax Theory

1 Introduction

This chapter explains what the minimax theory is, almost without
reference to the theory of personal probability. This course seemsbest,

because the theory was originated from an objectivistic point of view

and as the solution of an objectivistic problem. Moreover, a philo-
sophically more neutral presentation seemsto result, if the ideas of per-
sonal probability are here kept out of the foreground.

The minimax theory begins with some of the ideas with which the
theory of personal probability, as developed in this book, also begins.
In particular, the notions of person, world, states of the world, events,
consequences, acts, and decisions presented in §§ 2.2-5 apply as well

to the minimax theory—from which they were in fact derived—as to
the theory of personal probability.
The point at which the two theories depart from each otheris § 2.6,

which postulates that the person’s preferences establish a simple order

among all acts. That assumption is necessarily rejected by objectivists,

for it, together with the sure-thing principle (which they presumably

accept), implies the existence of personal probability. For objectivists,
of course, conditional probability does not apply to all ordered pairs of
events. Morespecifically, it seems to be a tacit assumption of objecti-
vistic statistics that the world envisaged in any one problem is parti-
tioned into events with respect to each of which the conditional proba-

bilities of all events (ignoring the mathematical technicality of measura-
bility considerations) are defined, but that conditional probability with
respect to sets other than unions of elements of the partition are not

defined. That, incidentally, is why partition problems dominate objec-
tivistic statistics. The partition in question is in general infinite, but,
for mathematical simplicity, it will here be assumedto be a finite par-
tition B;.

The objectivistic position is not in principle opposed to the concept

of utility. In particular, the minimax theory is predicated on the idea
158
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that the consequences of those acts with which it deals are measured
numerically by a quantity the expected value of which the person
wishes to have as large as possible, whenever (from the objectivistic

point of view) the concept of expected value applies. It will therefore

be doing the minimax theory little or no injustice to postulate here, as
elsewhere, that the consequences of acts are measured in utility.

These preliminaries disposed of, the general objectivistic decision

problem is to decide on an act f in some given F, by criteria depending
only on the conditional expectations E(f | B;), and therefore without
reference to the ‘‘meaningless’”’ P(B,).

Taking any personalistic or necessary point of view literally, it is

nonsensical to pose an objectivistic decision problem, that is, to ask
which f of F is best for the person, without reference to the P(B;). On

the other hand, many,if notall, holders of objectivistic views, like Wald,
find themselves logically compelled by two widely held tenets to con-
sider such problems meaningful. First, for reasons I have alluded to in
Chapter 2 and will soon expand upon, many theoretical statisticians
today agree, at least tacitly, that the object, or at any rate one object,
of statistics is to recommend wise action in the face of uncertainty—a
point of view that Wald was particularly active in bringing to thefore.
Second,statisticians of the British-American School, of which Waldis

to be considered a member,are objectivists and are therefore committed
to the view that the probabilities P(B;) are meaningless, or, at any
rate, that they cannot be legitimately used in solutions of statistical
problems.

So far as I know, Wald is the only one who has proposed any solution

to the general objectivistic decision problem, barring minorvariations.
His proposal, which is here called the minimax theory, is rather compli-
cated to state. In view of its complexity and the importance of this

theory for the rest of this book, and for statistical theory generally, I
hope the reader will have particular patience with the present chapter.

2 The behavioralistic outlook

Prior to Wald’s formulation of what is here called the objectivistic
decision problem, the problems of statistics were almost always thought
of as problems of deciding what to say rather than what to do, though
there had already been someinterest in replacing the verbalistic by the
behavioralistic outlook. Thefirst emphasis of the behavioralistic out-
look in statistics was apparently made by J. Neyman in 1938 in [N3],
where he coined the term “inductive behavior” in opposition to “‘in-

ductive inference.”’ In the verbalistic outlook, which still dominates
most everyday statistical thought, the basic acts are supposed to be
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assertions; and schemes based on observation are sought that seldom
lead to false, or at any rate grossly inaccurate, assertions.
The verbalistic outlook in statistics seems to have its origin in the

verbalistic outlook in probability criticized in § 2.1, which in turn is

traceable to the ancient tradition in epistomology that deductive and in-
ductive inference are closely analogous processes.

I, and I believe others sympathetic with Wald’s work, would analyze
the verbalistic outlook in statistics thus: Whatever an assertion may

be, it is an act; and deciding what to assert is an instance of deciding
how to act. Therefore decision problems formulated in terms of acts

are no less general than those formulated in terms of assertions.

If, on the other hand, a sufficiently broad interpretation is put on the
notion of assertion, perhaps every decision to adopt an act can bere-
garded as an assertion to the effect that that act is the best available,

in which case the difference between the verbalistic and the behavioral-

istic outlooks is only terminological; but I do think that, even under
such an interpretation, the behavioralistic outlook with its tendency
to emphasize consequencesoffers the better terminology.

Fallacious attempts to analyze away the difference between the ver-

balistic and behavioralistic viewpoints are also sometimes put forward,
especially in informal discussion. For example, it is sometimes said

that one should act as though his best estimate of a quantity were in

fact the quantity itself. But on that basis few of us would buylife
insurance for next year, for we do not typically estimate the year of

our death to be so close. Other examples are discussed by Carnap in

Section 50 of [Cl].

If assertions are, indeed, to be interpreted as a special class of acts
of particular importance to statistics, I have no clear idea what that

class may be; but it would presumably exclude certain acts, such as the

design of an experiment, that surely are of importance to statistics.

Actually the verbalistic outlook has led to much confusion in the foun-

dations of statistics, because the notion of assertion has been used in

several different, but always ill-defined, senses, and because emphasis
on assertion distracts from the indispensable concept of consequences.
I conclude that the behavioralistic outlook is clearer, fuller, and better

unified than the verbalistic; and that such value as any verbalistic con-

cept may haveit owes to the possibility of one or more behavioralistic

interpretations.

This analysis is really too brief and must be supplemented by certain

remarks. To begin with, the reader may wonder whether the verbalistic

outlook has adherents who defend it against the behavioralistic, and if
so what their arguments may be. Actually, the statistical public seems
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to greet the behavioralistic outlook as a relatively new idea—howold
it may actually be is beside the point here—which as such must bere-
garded with some skepticism. To the best of my knowledge, however,
only one objection against the behavioralistic outlook has been pre-
sented. It must be discussed next.

It has been seen as an objection to the behavioralistic outlook that

the consequences of some assertions, particularly those of pure science,

are extremely subtle and difficult to appraise. As a function of the true
but unknown velocity of light, what, for example, will be the conse-
quences of asserting that the velocity of light is between 2.99 x 10?°

and 3.01 X 10'° centimeters per second? But, if some acts do have
subtle consequences, that difficulty cannot properly be met by denying
that they are acts or by ignoring their consequences. Certain practical

solutions of the difficulty are known. For example, considerations of

symmetry or continuity may, as is illustrated in Chapters 14 and 15,

make a wise decision possible even in some cases where the explicit
consequencesof the available acts are beyond humanreckoning. Again,

analysis sketched in the next two paragraphs tends to show that asser-

tions with extremely subtle consequences play a smaller role in science

and other affairs than might at first be thought.

No worker would actually publish—indeed no journal would accept

—as research the hypothetical assertion about the.velocity of light men-

tioned in the paragraph above. The consequences might be subtle, if

he did; but they would not be very important, for no one would take

him seriously. An actual worker would do as much as was practical

to say what observations relevant to the velocity of light he, and per-
haps others, had performed and what had been observed. Tobe sure,
his statement of the observations would typically be much condensed;
he would resort to sufficient statistics or other devices to put his reader

rapidly in position to act as though the reader himself had made the

observations. Assertions about the velocity of light, and countless

others of that sort, are of course published in textbooks and handbooks.

These assertions do indeed have complicated consequences, so judgment
is called for in the compilation of such books; but the seriousness of the

consequences of their assertions is limited because of the possibility of

referring to original research publications, a possibility serious text-

books and handbooksfacilitate by the inclusion of bibliographies.
On the other hand, it is obvious that many problems described ac-

cording to the verbalistic outlook as calling for decisions between asser-
tions really call only for decisions between much more down-to-earth
acts, such as whetherto issue single- or double-edged razors to an army,
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how much postage to put on a parcel, or whether to have a watch re-

adjusted.
It is time now to turn back to objectivistic decision problems.

3 Mixed acts

Speaking with pedantic strictness, it might be said that Wald does
not propose a solution for the general objectivistic decision problem,

because, before undertaking a solution, he insists that F be subject to
a certain condition. On the other hand, he argues that the condition
is typically met in practice; he might fairly have insisted that it is the
very heart of much actual statistical practice. Before discussing the

issue in detail, let me give a small but typical illustration of it.
Suppose that in a rental library I am confronted with the choice be-

tween two detective stories, each of which looks more horrifying than

the other. At first sight it would seem that only two acts are open to

me, namely, to rent one book or the other, but Wald points out that

there are other possibilities, not ordinarily thought of as such. In par-
ticular, I can eliminate one of the books by flipping a coin. More accu-

rately and more generally, I can let my choice depend on the outcome
of a random variable that is utterly irrelevant to the fundamental par-
tition—in this example, a random variable the outcome of which is in-
dependent of the relative merits of the two books. The random varia-

ble may as well be confined at the outset to two values corresponding to
the rental of one or the other of the books, and random variables as-
signing the same probabilities to the books are equivalent for the pur-

pose at hand. In practice, especially serious statistical practice, such

random variables are, taking reasonable precautions, readily provided
by coins, cards, dice, tables of random numbers, and other devices.

In terms of the general objectivistic decision problem, Wald’s point

can (except for mathematical technicalities) be formulated thus: If f,
represents a finite number of elements of F, and ¢(r) is a corresponding

set of non-negative numbers such that 2¢(r) = 1, then the person can

make the mixed act

(1) f= D7) o(rf,

available to himself by observing at no appreciable cost a random varia-

ble taking the values r with corresponding probabilities ¢(7) irrespec-

tive of which B; obtains, so F may be assumed to include f. Techni-

cally, the sum in (1) should, for full generality, be replaced by an inte-

gral with respect to a probability measure. But such integrals become

superfluous under the simplifying asssumption, which is herewith made,
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that there are in F a finite set of acts f,, to be called primary acts, with

respect to which every act in F can be represented in the form (1). In
the rental-library example, the two acts corresponding to the two books

can be regarded as primary.

Since mixed acts are also available from the personalistic point of
view, it may well be asked whetherit is advantageous to consider them
in connection with that point of view, and, if not, how they can be of
advantage from one point of view but not the other. The answer to
the first part of the question is easy. Indeed,if f is defined by (1) then
it is personalistically impossible that f should be definitely preferred to
every f,, that is, that

(2) E(f) = 2) d(r)E(é-) > max E(f,),

for a weighted mean cannot be greater than all its terms. Technical
explanation of the efficacy of mixed acts from the objectivistic point of
view can best be presented after the whole statement of the minimax

rule, but those at all familiar with modern statistical practice will de-
rive some insight from the remark that the usual preference of statis-

ticlans for random samples represents a preference for certain mixed
acts.

4 Income and loss

It is sometimes suggestive, and in conformity with some statistical

(though not quite with economic) usage, to refer to E¢| B;) as the

income of f when B; obtains, and, correspondingly, to use the notation

I(f; 2). An important concept associated with the incomeis that which
I shall refer to as the loss (symbolized by L(f; 7)) incurred by the act f

when B; obtains. By that I mean the difference between the income
the person could attain if he were able to act with the certain knowledge
that B; obtained and that which he will attain if he decides on f when

B; does in fact obtain. Formally,

(1) L(f; 1) = p¢ max I(f’; 7) — If; 2).
’

If the person decides on f when B; obtains, L(f; 7) measures in terms of

income the error he has made. If he were himself informed of B; after

f had been chosen, which is not typically the case, L(f; 7) would, so to
speak, measure his cause for regret. On that account, some have pro-

posed to call loss “regret,’’ but that term seems to me charged with
emotion and liable to lead to such misinterpretation as that the loss
necessarily becomes known to the person. On the other hand, the
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term “loss” has been used by Wald in the sense of negative income,

but in contexts where loss as defined hereis, of the two senses, the only
defensible one, as will be explained in § 8. I hope the sense proposed
here will not cause serious confusion.

Exercises

1. For each 7, there is at least one primary act f, such that

(2) I(f,; 2) = max I(f; 2).

Such a primary act mayfairly be called correct for 1.
2. L(f; 2) = Zd(r)LE,; 2) > 0, equality holding if and only if f is a

mixture of acts correct for 7.

3. L(f; 7) = max [(f,-; 4) — I(£; 72).

4. L(f;2) = —I(f; 7), if and onlyif

(3) max I(f,; 7) = 0.
r

5 The minimax rule, and the principle of admissibility

The most characteristic feature of the minimax theory is a certain

rule of behavior, or recommendation to the person. This rule, to be
called the minimax rule, can now be formulated thus: Decide on an

act f’, such that

(1) max L(f’; 7) = min max L(f; 2),
‘ f ¢

wheref and f’ are, of course, confined to F.
In words, the minimax rule recommends the choice of such an act

that the greatest loss that can possibly accrue to it shall be as small as

possible. An f satisfying the recommendation of the minimax rule will
be called a minimax act, and the greatest loss that can accrue to a mini-
max act will be called the minimax value of the (objectivistic) decision
problem and written L*. Under the simplifying assumptions that have

been made, it is not technically difficult to show that at least one mini-
max act exists. The statement of the rule can be reasonably extended

to mathematically more general situations, but a digression about this
possibility is not appropriate here. The nameof the rule is presumably

derived from the abbreviation “min max” in (1) or from the Latin
phrase “minimum maximorum”’ thus abbreviated.
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It may well happen that F contains more than one act that is mini-

max for the problem, in which case the minimax rule recommends, not

a particular act, but only that the choice be narrowed to the set of

minimax acts. Some other criterion must then be invoked to narrow

the choice further. In particular, it can be shown that at least one of
the minimax acts is admissible, in the sense of § 6.4. As Wald indicates,
it would, therefore, be an inexcusable violation of the sure-thing prin-
ciple not to narrow the choice to admissible acts. This application of

the sure-thing principle will be called the principle of admissibility.
The minimax rule and the principle of admissibility constitute the sub-
ject matter of, and thereby define, the minimax theory.

6 Illustrations of the minimax rule

It would be hard to imagine an objectivistic decision problem simpler

than that of whether to make an even-money (or more accurately, even-
utility) bet in favor of a certain event or to refrain from betting. That
problem, therefore, provides a convenient first example of the minimax
rule and the concepts associated with it. Supposing, as one may with-

out loss of generality, that the bet is for one utile, the objectivistic de-
cision problem is completely described by Table 1, which gives the in-

TaBLE 1. THE INCOME OF AN EVEN-MONEYBET, I(f,; 2)
 

 

 

Event

Act

By By

Bet, f;| 1 —1
Don’t bet, fe 0 0  
 

come of each of the two primary acts for each of the two elements of

the partition corresponding to the event in question and its com-

plement.

In view of Exercises 4.2 and 4.3 the corresponding loss function is
described by Table 2. Therefore,

(1) max L(f; 7) = max 2¢(r)L(f,; 7)

= max ¢(i) > 3,
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equality obtaining if and only if ¢(1) = ¢(2) = 4. Therefore, L* = 3,
and the only minimax act is f = $f, + 3fo.

TaBLE 2. THE LOSS OF AN EVEN-MONEY BET, L/(f,; 2)
 

 

 

Event

Act

By, By

f; 0. 1
fy 1 0  
 

In this problem, therefore, the minimax rule recommends that the
person decide, in effect, by flipping a fair coin. If the odds in the bet
had not been even, the minimax rule would have recommended the
use of a coin with a certain bias; this more general example will be

worked out in detail in § 12.4. It is noteworthy in connection with the
present problem—forit happens in many others—that, for the minimax
act f, L(f; 7) = L* for every value of7.
The following more elaborate example, illustrating the mechanism of

observation, is paraphrased from a slightly incorrect example in [S2].
Of three numbered coins, two are pennies and oneis a dime,orelse one
is a penny and two are dimes. This givesrise to a sixfold partition B,,
because any of the three coins may be the singularone, and in two ways.

The available primary acts are described in two stages thus: First, the
person may select one of the coins by numberfor observation, or he

may refrain from so doing; second, he must guess at the denomination
of the singular coin. His income in utiles is defined by the following
conditions:

1. If the singular coin is a penny, he must pay a tax of 10; if it is a
dime, he receives a bonusof 20.

2. If he chooses to observe a coin, he must pay an inspection fee of
1, regardless of the particular coin selected for observation.

3. If his guess is incorrect he pays a penalty of 8.

It is easy to see that the first of the three terms in the person’s in-

comeis irrelevant to his loss, since his decision does not affect the mag-
nitude of that term. His loss is therefore the sum of two terms. The

first of these is 1 or 0 depending on whether he decides to make an ob-
servation; the secondis 0 or 8, depending on whetherhis guess is correct.
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If the person chooses not to pay the inspection fee, it is clear from the
preceding example that, no matter what he does, his loss may be as
high as 4, and that it 1s certain to be that small if and only if he governs
his guess (essentially) by the flip of a fair coin.

Suppose next that the person decides to make an observation. If
he selects any particular coin for observation, he is as badly off as he

was before the observation, and he has in addition incurred the inspec-
tion fee. Thus, even if the person knowsthat the first coin is a penny,
there is nothing he can doto be sure that his total loss will not be more
than 5, and, as before, he can guarantee that small a loss only by govern-

ing his guess with the flip of a fair coin.

I think every practicing statistician would say that, if an observation
is to be madeatall, one of the three coins should beselected at random
(i.e., the probability 1/3 should be attached to observing each of them)
and after the observation the person should guess that the singular

coin is opposite in denomination to the one observed. It will be shown
in the next paragraph that this common-sense act is minimax.

In thefirst place, the loss L(fp; 7) for the act fo in question is, for each

t, equal to 1 + 4 X 8 = 33, which is less than 4; for the inspection fee

is 1 and the probability of making a wrong guess, which wouldresult
in the loss of 8, is 1/38. To show that fp is minimax,it will be enough to
show that every act can result in a loss of at least 32. One possibility

for doing this (which in § 12.3 will be shown to be a natural oneto try)

is to show that, for a certain set of weights, the weighted average of
L(f; <) with respect to 7 is at least 32 for all f. In fact, it is sufficient,
in view of Exercise 4.2, to establish such an inequality for the primary

acts. In the present example, it happens that the weights can be cho-
sen to be equal. What is to be shown, then, is that the following in-
equality obtains for every primary f.

(1) Lf) =pr§ 2 Lf; 4) = 33.

Now, if the primary act f does not involve observation, L(f) = 4; be-
cause three of the six terms to be averaged are then 8, and the other
three are 0. Suppose next, for definiteness, that f involves the obser-
vation of the first coin; there are then three possibilities to consider.

First, the guess is made without regard for the denomination observed,
in which case the observation is, so to speak, thrown away, making
L(f) = 5. Second, the denomination guessed may be the same as the
denomination observed, in which case the guess will be wrong for four

of the six values of 7, making L(f) = 63. Finally, the denomination
guessed may be the opposite of the one observed, in which case the guess
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will be wrong for two of the six values of 7, making L(f) = 33. This
argument shows that L* > 32; and, since L(fp; 1) = 3% for every i, fy
is a minimax act and L* = 32. It would not be difficult to show that
fp is the only minimaxact for this problem.

7 Objectivistic motivation of the minimax rule

The minimax rule recommendsanact for the person to choose; more

strictly, 1t recommends a sharp narrowing of his choice. But how can

this particular recommendation be motivated? To the best of my
knowledge no objectivistic motivation of the minimax rule has ever
been published. In particular, Wald in his works always frankly put

the rule forward without any motivation, saying simply that it might

appeal tosome. Though myheart is no longer in the objectivistic point
of view, I will in the next few paragraphs suggest a relatively objecti-

vistic motivation of the rule.
I evolved this far from satisfactory argument at a time when I took

the objectivistic view for granted. Now, as a personalist, it still seems
interesting to me in that it shows, or at least suggests, how statistical

devices combat vagueness, a topic I find very difficult to discuss di-
rectly. On a different level, the argument may shed light on theper-
sonalistic view by suggesting how personalistic ideas entered the mind
of at least one objectivist.

A categorical defense of the minimax rule seems definitely out of the
question. Suppose, for example, that the person is offered an even-

money bet for five dollars—or, to be ultra-rigorous, for five utiles—

that internal combustion engines in American automobiles will be obso-

lete by 1970. If there is any event to which an objectivist would refuse
to attach probability, that corresponding to the obsolescence in ques-
tion is one. As the example centering around Tables 6.1-2 makesclear,
the minimax rule recommendsthat the bet be taken or rejected accord-
ing as a fair coin falls heads or tails. Yet, I think I may say without
presumption that you would regard the bet against obsolescence as a

very sound investment, agreeing that provision for adequate interest
and compensation for changes in the value of money is implicit in meas-
urement of income in utiles.
On the other hand, there are practical circumstances in which one

might well be willing to accept the rule—even one who,like myself,
holds a personalistic view of probability. It is hard to state the cir-
cumstances precisely, indeed they seem vague almost of necessity.
But, roughly, the rule tends to seem acceptable when L* is quite small

compared with the values of L(f; 7) for some acts f that merit serious
consideration and some values of z that do not in commonsense seem
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nearly incredible. Suppose, for example, that I were faced with such
a decision problem, in which it may be assumedfor simplicity that there
is only one minimax act f, and consider how I might defend the choice
of that act to someone who proposed another to me. He might, for
example, tell me that he knows from long experience, or by a tip from
his broker, that some act g is preferable to f. ‘‘Well,”’ I might say, ‘I
have all the respect in the world for you and your sources of informa-
tion, but you can see for yourself—for it is objectively so—that the
most I can lose if I adopt f is L*.”’ He will not be able to say the same
for g, and in many actualsituations the greatest possible loss under g
may be many times as great as L* and of such a magnitude as to make

a serious difference to me should it occur, which may well end the argu-
ment so far as I am concerned.

It is of interest, however, to imagine that my challenger presses me

moreclosely, reminding me that I am a believer in personal probability,

and that in fact I myself attach an expected loss L to g that is several
times smaller than L*. Even then, depending on the circumstances, I
might answer frankly that in practice the theory of personal probability
is supposed to be an idealization of one’s own standards of behavior;
that the idealization is often imperfect in such a way that an aura of
vagueness is attached to many judgments of personal probability; that

indeed in the present situation I do not feel I know my own mind well

enough to act definitely on the idea that the expected loss for g really

is L; but that I do, of course, feel perfectly confident that f cannot re-

sult in a loss greater than L*, a prospect that in the case at hand does

not distress me much.
It seems to me that any motivation of the minimax principle, ob-

jectivistic or personalistic, depends on the idea that decision problems
with relatively small values of £* often occur in practice. The mecha-

nism responsible for this 1s the possibility of observation. The cost of

a particular observation typically does not depend at all on the uses to
which it is to be put, so when large issues are at stake an act incorporat-

ing a relatively cheap observation may sometimes have a relatively
small maximum loss. In particular, the income, so to speak, from an

important scientific observation may accrue copiously to all mankind
generation after generation.

8 Loss as opposed to negative incomein the minimax rule

As a variant to the minimaxrule as I have stated (or perhaps I should
say interpreted) it, one might consider the possibility of letting the
negative of income play therole of the loss in (5.1). Indeed, strictly
speaking, Wald himself always proposed the minimax rule in that
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form. I believe he never made written allusion to the rule formulated
in terms of loss (as “loss” is defined here); orally he took the position
that loss and the form of the minimaxrule based on it were inventions
of mine, toward which he was tentatively sympathetic. There is vir-
tually no mathematical difference between the two rules, and it was
characteristic of Wald’s approach to the foundations of statistics to be
reluctant to commit himself with respect to any other differences.

Though the minimax rule founded on the negative of income seems
altogether untenable, as will soon be explained, and though no one but
myself seems to question that I originated the variant of the theory
based on loss, little or no originality is attributable to me in this re-
spect. Wald more than foreshadowed the idea, for, though he based
his minimax rule on the negative of income, he madeit clear in publica-
tions, including [W3], that he regarded as typical problems in which
the income has, for every 7, the property specified in Exercise 4.4.

Therefore, in the situations Wald regarded as typical, the distinction
between the two forms of the rule vanishes, so, until hearing his ex-
plicit disavowal, I considered the idea of loss as opposed to negative

income his.

To see that the minimax rule founded on the negative of incomeis
utterly untenable for statistics, consider, for example, a twofold parti-
tion problem with two primary acts in which the incomeis as in Table 1.

Taste 1. I(f,; 1)
 

 

 

Event

Act

B, Bo

f; —l —1
fo —10 1  
 

Now, if the person were interested in minimizing the maximum of the
negative income, he would have norecourse but to decide on f;, in which

case (but in no other) he could be sure that the negative income would

be at most 1, whichever B; obtained. This may notin itself seem ob-

jectionable, but suppose now that the person has available free of cost
an observation, howeverrelevant to B;. Then, no matter what derived

act he chooses, if B, obtains, his negative income will be at least 1
utile; and, to be sure that it is not more, he again has norecourse but
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to decide on f;. In short, for the problem at hand, the person’s behavior
would not be influenced by any observation, however relevant. This

seems to me absurd ontheface of it, but perhaps the absurdity can be
brought out by a less abstract situation paralleling the example just

given. A person has a ladder, and, just as he is about to useit, it oc-
curs to him that the ladder may possibly be dangerously defective.
He envisages two basic primary acts: f;, to throw the ladder away and
buy a new one, which will cost 1 utile in either event; and fe, to use the

ladder, which will, if the ladder is defective, result in his injury to the
extent of 10 utiles, and will, if the ladder is sound, accomplish his ob-

ject, which is worth 1 utile. Now, if the person acts on the principle of

minimizing the maximum of negative income, he will throw the ladder
away, no matter what tests tend to show that it is sound.



CHAPTER 10

A Personalistic Reinterpretation

of the Minimax Theory

1 Introduction

In this chapter a reinterpretation of the minimax theory, based on
the theory of personal probability and the idea that statistical problems
are typically multipersonal, is tentatively put forward. The reinter-
pretation is based on a model or scheme that captures, I believe, much
of the essence of actual statistical situations, but 1t may be possible to
effect that end with other equally simple and even morerealistic models;
for the one to be presented here leaves much to be desired. In struc-
ture, this chapter is kept roughly parallel with Chapter 9, to enable the
reader to examine as closely as he may wish theparallelism between the
objectivistic interpretation given there and the personalistic one given

here. In particular, the liberty is taken of giving old symbols new mean-
ings in order to bring out the parallelism between the two interpreta-
tions.

2 A modelof group decision

Consider a group of people, indexed by numbers 7. These people are
supposed to have the sameutility function, at least for the consequences
to be considered in the present context, but their personal probabilities
are not necessarily the same. The group of people is placed in a situa-
tion in which it must, acting in concert, choose an act f from a finite
set of available acts F, the consequences of the acts being measured in
terms of the commonutility of the members of the group.
The situation just described will be called a group decision problem.

It is epitomized by a jury. The members of the jury, in legal theory,

are supposed to have common value judgments in connection with the
legal matters at hand; for these are incorporated in the law as stated

in the instructions of the court. But it is part of the very concept of a
jury that its members maybeof different opinions; that their judgments
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as to questions of fact may differ; that, to put it technically, they may

have different systems of personal probability. Still other situations

resembling the group decision problem are widespread in science and

industry, though the group decision problem does by no meansrepre-
sent the only sort of social interaction tending to make the theory of
personal probability, confined to a single person, inadequate. When-

ever a hospital or a factory modifies its procedures, whenevera doctrine

is adopted with little reservation by virtually all the workers in a

science, or whenever a panel of experts drafts a report, something like

group decision is taking place.

Since the members of the group in a group decision problem, though

required to act in concert, typically differ from one another in their

probability judgments, it is too much to expect that any rule can be

formulated that will be acceptable to, or in any sound sense properfor,

all groups underall circumstances. On the other hand, there may be

one or more rules of thumb that will lead the group to an acceptable

compromise in many practical circumstances. Two such suggestions,

the group minimax rule and the group principle of admissibility, will
be made and explored in the next section.

3 The group minimax rule, and the group principle of admissibility

In the first place, the possibility of using mixed acts is to be pointed

out. If, for example, you and I, walking together, disagree about which

branch of a fork in the road leads home, we can, and in fact may, de-
cide which to try by flipping a coin.

In general, mixed acts are available in a group decision problem for

reasons analogous tc their availability in objectivistic decision prob-

lems, for, though the members of a group may generally differ in the

probabilities they personally assign to some events, there is in practice
an abundance of events associated with coins, cards, random numbers,
and the like that make it possible for the group to mix the primary acts

in any proportion, all members of the group being in agreement about

what the proportions are. The example of the fork in the road illus-

trates how the use of mixed acts can effect such a compromise as to

make decision possible in what might otherwise be an impasse. As in

the account of the objectivistic decision problems, it will therefore be
taken for granted from now on that F contains all mixtures of its ele-
ments, and once more, for mathematical simplicity, it will be assumed
that there are a finite number of primary acts f, in F, of which all

others are mixtures.

The ith person in the group attaches a certain expected utility, or

(personal) income, to the act f; call it 7(f; 7). In the judgment of the
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ith person, adoption of the act f would represent a (personal) loss,

(1) L(f; 7) = max If’; 7) — I(f; 2).

(possibly zero) as compared with the income or expected utility that

in his opinion would result from an act he considers most promising.
The group minimax rule is the suggestion that an act be adopted

such that the largest loss faced by any memberof the group will be as
small as possible. To put it formally, the suggestion is that an f’ be

adopted such that

(2) max L(f’; 7) = L* =p- min max L(f; 7).
i f i

The parallelism between the group minimax rule and the minimaxrule

stated in § 9.5 is great. In particular, (2) is identical in appearance

with (9.5.1). This is really only a pun, though a fruitful one, because

L, zt, and even f have altogether different meanings in the two contexts.

Asindicated at the outset, it cannot be expected that the group mini-
max rule will, or reasonably should, be accepted by every group faced

with every problem. But, much as in the corresponding objectivistic

decision problems, it may happen that, if L* is small, in a rather vague

sense, the group will accept the group minimax rule. Indeed, if L* is

small, the group minimax rule requires no memberof the group to face

a large loss, so no memberwill feel that the suggestion is a serious mis-

take. In any event, no memberof the group can suggest an alternative

that will not make some member’s loss as great as L*, for there is none.
Moreover, in many problems the group minimaxrule will lead to the
same loss L* for every memberof the group (as is explained in § 12.3),

a circumstance which, when it occurs, may add to the acceptability of

the suggestion by making it seem fair.

Of course it is possible that, as in the objectivistic interpretation,
more than oneact fulfilling the minimax principle exists. Here, a para-

phrase of the principle of admissibility will further narrow the choice,

for if

(3) L(g; 1) < L(t; 2)

for every 71, with inequality obtaining for some i, the group cannotseri-
ously considerf.

4 Critique of the group minimax rule

Some of the criticisms that have been, or may be, raised against the
minimax rule can as well be discussed in connection with one interpre-
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tation as with the other, and Chapter 13 will be devoted to such criti-
cisms. But some that bear specifically on the multipersonal interpre-

tation in this chapter should be discussed here.

In thefirst place, the group minimaxrule is flagrantly undemocratic.

In particular, the influence of an opinion, under the group minimaxrule,

is altogether independent of how many people in the group hold that

opinion. In general, it is difficult to give a formal analysis of the concept

of democratic decision, a point discussed at length by Arrow [A5], Hil-
dreth [H4a], and others. Perhaps, considering that the people in the
group are postulated to have a commonutility function, a satisfactory

analysis of democratic decisions could be given in the case of a group

decision problem by some such procedure as minimizing the average
with respect to z of L(f;2). But, in manysituations in which I envisage
application of the group minimaxprinciple, the group will in fact be a
rather nebulous body of people, for example the group ofall specialists

in somefield. The principle would in such a case be administered by a
single member of the group somewhat in the following fashion. In

planning an investigation, the results of which he intends to publish,
he will endeavor to take account of all opinions, so far as he can know

or guess them, that are considered at all reasonable in his field of

investigation. And when he publishes his results he will say, in

effect, ‘““Whatever reasonable opinions have heretofore been held by

members of this specialty, in the light of my investigation and the min-
imax rule, it is now proper for the membersof the specialty, in so far

as they are called upon to act in concert, to agree to such and such an
action.” To put it a little differently, in such an application the group

is rather fictitious, and the individual investigator is admitting as rea-
sonable a rather large class of opinions, but excluding many that he

is sure his confreres will agree are utterly absurd. Hewill, for example,

feel quite free to exclude those opinions that almost all educated people

regard as superstitious.

The group minimax rule is also objectionable in some contexts, be-

cause, if one were to try to apply it in a real situation, the members of
the group might well lie about their true probability judgments, in
order to influence the decision generated by the minimax rule in the
direction each considers correct. This objection is, however, scarcely

serious in the fictitious sort of application suggested above.

It is appropriate, in terminating this section, to discuss a certain dis-

tinction, neglect of which can, as was pointed out to meorally by Bruno

de Finetti, lead to serious misunderstanding of the group minimaxrule.
Voluminous observation typically tends to make any one person almost
certain of the truth, and also, when a group of people is involved, it
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typically tends to make L* small. These two tendencies, though re-
lated, are separate phenomena, as an illustration will bring out.
Suppose that Peter and Paul are required to bet 1 utile in concert

either that the majority of a large electorate has voted for, or that it

has voted against, a certain issue; but that before betting they are to
be allowed to examine a random sampleof 1,001 ballots.

If specific opinions about the division of the electorate are assigned
to Peter and Paul, the situation can be regarded as a group decision
problem. To start with an interesting extreme possibility, suppose

that it 1s Peter’s unequivocal opinion that 55% of the electorate is for

and 45% is against the issue and Paul’s that the division is 45% for

and 55% against; that is, Peter, for example, is supposed to act as
though he knows that the division 1s 55%—-45%.

If, finally, it is understood that the group decision problem consists

in the two people, Peter and Paul, deciding, before the sample is ac-

tually observed, how their bet is to be determined by the composition
of the sample; then the unique minimax act is to bet that the electorate

majority is whatever the sample majority happens to be. Granting

this easily established solution of the minimax problem, it is obvious

that the two people both face the minimax loss L*. Peter, to be specific,

regards L* as the probability that through random fluctuation the sam-
ple will accidentally fail to corroborate his ‘‘knowledge” that the ma-
jority is for the issue. Numerically, L* is about 0.0008.

Peter and Paul, recognizing that the possibility of observing the

sample reduces the minimaxloss to about 0.0008 as compared with the

0.5 that it would be if no sample were available, may well find the min-

imax act a satisfactory compromise; at any rate, it is hard to see in
this situation how they could arrive at any other.

Though the incorporation of the sample into the problem hasgreatly

reduced L*, observation of the sample does not affect the opinion of

either person in the slightest, for unequivocal opinions such as they

hold are not subject to modification in the light of evidence. At least
one of the two people is immovably wrong, and the observation of no

sample, however large, can bring them both close to the truth. This
brings out a contrast between the reduction of L* and the approach to
certainty of the truth, both of which typically occur with the accumu-

lation of evidence.
The same contrast is expressed by remarking that, though the two

people may readily adopt the minimaxact, each feeling that at the ex-

pense of a small risk he is diverting the obstinacy of his colleague to

their common good; after the observation of the sample, one or the

other of them is bound to feel that the prize has been lost by a sad

and improbable accident.
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The wary will ask, ‘‘Who will feel how, when the actual majority is
lisclosed and settlement made? What if Peter’s unequivocal opinion
turns out to be false?”’ Such questions suggest that paradox lurks in

an example in which different people unequivocally hold mutually in-
30nsistent opinions, so there is some interest in considering a modifica-

tion of the example, free of that objectionable feature.

Suppose then that Peter and Paul, though strongly opinionated about,

the division of the electorate, are not absolutely unequivocal in their

ypinions. To be quite definite, suppose that Peter attaches probability

\-10—!° to the division 55%-45% and probability 107!° to the divi-
sion 45%-55%, and that Paul attaches the same probabilities but in

the opposite order to the two divisions. Here, as in the example of the

unequivocal opinions, the unique minimaxactis to let the bet be chosen

in accordance with the sample majority; L* is a trifle lower than before.

Observation of the sample does now generally affect the opinions of the

two people, but, though it radically reduces the minimaxloss, it does
not typically bring the two people into close agreement. If, for ex-

ample, the division is in fact 45%-55%, Paul’s strong a priori belief

that that is the actual division is almost sure to be strengthened by the

sample, and Peter’s equally strong but false belief is almost sure to be

weakened. Still, the probability is only about 1/2 that Peter will be

led by the sample to attach an a posteriori probability even as great

as 0.05 to the actual division. Thus, speaking loosely but practically, the

approach to certainty of the truth is here not typically nearly so far

advanced by observation as is the reduction of the minimaxloss.*
It may not be superfluous to point out that the preceding paragraph

alludes not only to the two different personal probability systems of

Peter and of Paul, but also to certain conditional probabilities that

you and I have accepted hypothetically in setting up the example.

Whichever division does actually obtain, it is rather probable that,
once the sample is observed, either Peter or Paul will wish he could

break his contract. This seems to meto reflect a serious objection to

the group minimax principle, especially in those applications in which
the membersof the group are not literally consulted, for people cannot

be expected to abide by disappointing contracts they might have made

but didn’t.
For other approaches to the group decision problem see de Finetti

[D6], [D7a], de Finetti (1954), Staél von Holstein (1970, p. 65 andff.).

and Winkler (1968).

+ As de Finetti has remarked, the separation between the two phenomenais
more clearly brought out if Peter and Paul decide which bet to make on the
basis of a tennis match between themselves. For, if each thinks himself much
the superior player, L* will be depressed, though the opinions of Peter and
Paul about the election remain completely unaffected by the outcome of the



CHAPTER 11

The Parallelism between

the Minimax Theory and

the Theory of Two-Person Games

1 Introduction

John von Neumann, in 1928 [V3], developed a theory of games in
which two people play each other for money.t This theory is mathe-

matically so closely akin to that of the minimaxrule and has had such

influence on its development that it would be artificial to give an expo-

sition of the minimax rule without saying something of the theory of

what von Neumanncalls zero-sum two-person games, though the ac-

count given here must necessarily be highly compressed. The most
convenient references in English to the theory of zero-sum two-person

games, should the reader be interested in a fuller account, are [B18],
[M3], and Chapters IT and III of [V4]; though those who read German
may find it best to start with the expository sections of the paper [V3]

in which von Neumannfirst discussed the subject.

The sort of systematic punning by which the formal parallelism be-

tween the objectivistic and personalistic minimax theories was empha-

sized in Chapter 10 will be used once more, to bring out the formal
parallelism between those theories and that of zero-sum two-person
games. Logic will be still further sacrificed to clarity and convenience

by calling the two people who play the game “‘you”’ and “I.”

2 Standard games

A certain sort of game, here called a standard game, is defined thus:
You secretly choose a number r from finite set of possibilities, and I
secretly choose a number7, also from a finite set of possibilities. The

numbers r and 7 having been chosen, you pay me the sum of money

(possibly negative) L(r; 7), where L is an arbitrary function of r and7,
known to both of us. It is assumed that, for the sums involved, each

of us finds money proportional to utility.

+ In this completely independent development he was to some extent anticipated

by Emil Borel. Consult [F9], [F10], and [B21] for details and further references.
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Atfirst sight, standard gameslook very dull, though it is immediately
recognized that some such games are played. A tiny but typical ex-

ample is the gameof ‘‘Button, button, who’s got the button?”’; “Stone,

paper, scissors” is almost as familiar an example; and others could be

mentioned. But, and this seems remarkable at first, any game, except

possibly those dependent on physical skill, can be viewed as a standard
game. The great generality of standard games is demonstrated in de-

tail in Chapter II of [V4], but informal discussion of a single example

will render the idea intuitively clear. Suppose then that you and I are

to play a game of poker (of a specified variety). At first sight poker
does not seem to be a standard game, because it involves several ran-

dom events, and several decisions on the part of each of us, some to be
made in the light of others. But, it can be argued, there are only a

finite number of different situations that can arise in the course of a

game of poker. You could, therefore, in principle write into a notebook

exactly which choice you would makein each of the possible situations

with which you might be faced in playing poker with me. The number

of possible ways of compiling such notebooks, or policies of play, is

finite; so, except for limitations of time and patience, you will be at
no disadvantage in playing one game with me, if you simply chose

once andforall that one of the many possible policies of play that seems

best to you. Similarly, from my point of view, the game consists, in

principle, in choosing one policy of play. Once you have chosen one

of the policies possible for you, say the rth, and I have chosen one of

the policies possible for me, say the 7th, the amount you will have to

pay me at the termination of the game is a random variable. Since it
is agreed that the payments are effectively in utiles for both of us, your

payment to meis effectively the expected value of this random variable,
which may be called L(r; 7) and which is in principle known to both

of us as a function of r and 7. The elaborate game of two-person poker

is thus exhibited, at some expense to realism, as a standard game.

Regarding the choice of an r by you or an 7 by meas a primary act,

both of us are at liberty to use mixed acts. Indeed, explicit attention

apparently was first called to the possibility of using mixed acts by
Borel (see [B21]), in just this context.

Let f and g represent mixed acts assigning probabilities ¢(r) and y(z)
to the values r and 7, respectively. The standard gameis now replaced
by a somewhat different game in which you choose an f; I choose a g;

and you pay me the amount L(f; g), where

(1) L(f; 8) = pt L(r; or)v1).
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3 Minimax play

Von Neumann adduces an argument, the statement of which will be

briefly postponed, that, if you have respect for my intelligence, you will

see to it that the most I can possibly take from you shall be as small

as possible, that is, you will choose an f’ for which

(1) max L(f’; g) = L* =p; min max L(f; g).
g f g

Symmetrically, according to his argument, I should choose a g’ such
that

(2) min L(f; g’) = Lx = ps max min L(f; g).
f g f

Since, making the recommended choice, you are sure that you will
not pay me more than L*, and I am correspondingly sure that you will

not pay me less than Lx; it follows that L+ < L*. This inequality
would, of course, have obtained even if mixed acts were not permitted.
It is a remarkable mathematical fact (not to be proved in this book)

that, permitting mixed acts, equality always obtains; so the special
symbol L+ is superfluous here.

The argument for the recommended choices rests on the equality of
L* and Lx. You realize that I can take at least L* from you andthat,
if you are not careful, I may take more. On the other hand, I realize

that you can prevent my taking more than L* from you and that,if
I am not careful, I may get less. This suggests to many that a pair of

intelligent players, each respecting the intelligence of the other, will

each adopt one of the recommendedacts.

4 Parallelism and contrast with the minimax theories

Some formal parallelism between the minimax theories of decision

and the theory of zero-sum two-person gamesis evident, but the paral-

lelism is much more complete than may appearat first sight. The mix-

tures g are without counterpart in the two minimax theories of deci-

sion, and the appearance of g in (3.1) at the place where 7 appears in

(9.5.1) may seem to marthe parallelism between these two equations.
But, letting

(1) Lif; 1) =p D2 L(r; i) o(r),

in the game theory (in close parallelism with the decision theories),

(2) Lif; g) = 2, Lif; i)7(2) < max Lf; é),
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and

(3) max L(f; g) = max L(f; 2).

Therefore (3.1) is equivalent to

(4) max L(f’; 2) = min max L(f; 27) = L*.

Thus from the point of view of the minimax theories of decision the

g’s represent no material innovation and are at worst useless baggage.

Actually, though of little if any relevance in the interpretation of the

minimax theories, the g’s constitute a useful mathematical device.

Their usefulness has in fact been illustrated in working out the second
example in § 9.6 and will be systematically demonstrated in the next

chapter, along with the usefulness of the apparently irrelevant ‘‘maxi-

min” problem posed by (8.2) and of the fact that Lx = L*.
Some remarks on the possibility of interpreting the g’s in the minimax

theories are postponed to the end of this section.

In the game theory, L may be any function whatsoever of its argu-

ments r and 7, but, in the decision theories, L is subject to the condition
that, for every 1,

(5) min L(r; 7) = 0,

where L(r; 2) is of course to be interpreted as L(f,; 7). Here is the only

mathematical difference between the game theory and the decision

theories, the former being mathematically slightly more general than

the latter.

Though the mathematical differences are negligible, the intellectual
difference between the situations leading to the game theory on the
one hand and to the decision theories on the other is great. Serious
misunderstandings of the (objectivistic) minimax theory have often re-

sulted from identifying it with the game theory. Among other things,

loss is then confounded with negative income, and the misconception

that the (objectivistic) minimax rule is ultrapessimistic is created. I
have even heard it stated on this account that the minimax rule amounts
to the assumption that nature is malevolently opposed to the interests
of the deciding person.

Though mathematical convenience seems to be the basic reason for

introducing the g’s in the minimaxtheories, it is tempting to ask whether

the g’s have also some natural interpretation in those theories. At the

moment, I do not see a convincing interpretation in either theory, but

completeness demands an account of an interpretation suggested by
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Wald for his version of the objectivistic theory, especially since this

interpretation influenced some of Wald’s most widely used terminology.
The objectivistic problem of deciding on an act in ignorance of which

partition element B; obtains, the P(B;) being regarded as meaningless,

suggests a new problem that may perhaps also be called objectivistic.

The new problem arises on postulating that P(B,) 1s meaningful but

utterly unknown, that is, P(B;) = y(¢), where the y(z)’s are the com-

ponents of a g here interpreted as the a priori distribution unknown to

the deciding person.

Since for Wald ‘“‘loss’’ was synonymous with “negative expected in-
come,” he naturally calculated the loss of the new problem thus:

(6) L(f; g) —E(£| g)

> —E(f | B)P(B,)

= D Le;0,

arriving thus at the very function suggested by the game theory. In
Wald’s version of the theory, the new problem therefore amounts to
the formal introduction of the g’s in connection with the old one, which
neatly fulfills the reasonable expectation that there should be no ma-

terial difference between regarding P(B;) as meaningless and regarding

it as meaningful but utterly unknown.
The suggested interpretation of a g as an unknown—or, to mirror

Wald more faithfully, fictitious—a priori distribution does not work,
however, if the loss function of the new problem is defined by (9.4.1),
for the new function L(f; g) is not then generally the same as the func-
tion L(f; g) suggested by the game theory; thus

(7) Lif; g) max E(f’ — f| g)

max 2) Ef’ — £| Bi)r(@)

max 2, (Lif; 4) — Lt’; )}v@

L(f; g) — min L(f'; g)

< Lif; g),

equality holding for a typical g (i.e., a g such that y(z) > O for every 27)

only in the altogether trivial situation that F is dominated by oneof

its elements.
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Does this mean that, contrary to expectation, there is a material dif-

ference between the new problem with loss L and the old one? Thefol-
lowing exercises show that it does not.

Exercises

1. max L(f; g) = max L(f; 2).
g $

2. min max L(f; g) = L*.
f &

3. max D(f; g) = L*, if and only if max L(f;7) = L*.
& i



CHAPTER 12

The Mathematics

of Minimax Problems

1 Introduction

Since the two different minimax decision theories and the theory of

zero-sum two-person games have a common mathematical core, it will

be worth while to digress for a chapter even at the expense of some

repetition, to discuss this common core mathematically, that is, vir-

tually without reference to its various possible interpretations. The

discussion will have to be drastically confined relative to the large body
of relevant literature, but the reader who wishes to pursue the subject

much further will find [B18], [V4], [W3], and [M3] to be key references.

2 Abstract games

To begin with a very general situation, which will later be specialized

to the one of main interest, let f and g denote generic elements of any
two abstract sets, and let L(f; g) be the value of an essentially arbitrary

real-valued function. It will, however, be assumed for simplicity that

for every f’ and g’ the quantities

max L/(f’; g), min L(f; g’)
g f

(1)
* = pr min max Le; g), Lx = p¢ Max min Lf; g)

f 6g ef

exist. To say that a maximum, for example, exists is not only to say

that the function in question is bounded from above, but also that the

maximum valueis actually attained for at least one value of the argu-

ment. For want of a more neutral term, call the function L(f; g) an

abstract game.

An f’ is called minimax, if and only if

(2) max L(f’; g) = L*;
g

and a g’ is called maximin, if and only if

(3) min L(f; g’) = Lx.
f

184
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The existence of minimax and maximin values of the variables is im-
plicit in (1). It is an easy exercise to show that f’ is minimax, if and
only if

(4) Lf’; g) < L*

for every g.

The corresponding characterization of maximin g’’s as those such

that

(5) L(f; g’) > Lx

for every f could similarly be shown. But the symmetry of the situa-

tion is such that it would be superfluous to derive this characterization

of a maximin explicitly. Indeed, every theorem, or general conclusion,
about L(f; g) obviously has a dual, which arises on applying the theo-

rem to the new abstract game L(g; f) with L(g; f) = —L(f; g). This

is typical of what is known in mathematics as a duality principle. Hence-

forth the duals of demonstrated conclusions, even when not explicitly
stated, will be as freely used as the demonstrated conclusions them-
selves. Some conclusions are of course self dual. Incidentally, another
example of a duality principle was used in § 5.4, and a very important
one was pointed out in connection with Boolean algebra in § 2.4.
An argument showing that Ls < L* was given in connection with

the theory of games. More formally,if f’ and g’ are, respectively, mini-
max and maximin, then from (4) and (5)

(6) L* > L(f’; g’) > Lx.

It is possible, indeed typical, that Lx < L*. Suppose, for example,
that f and g are variables that take only two values and that L(f; g)
is described by Table 1. Here, as the reader should verify, both f’s

TaBLE 1. L(f; g)

&
1 2

1;0 1
f
2,1 0

and both g’s are minimax and maximin, respectively, and L* = 1,

In = 0.
The following theorem is frequently applicable to the identification

of minimax and maximin values of f and g, and of L* and Lx.
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THEOREM 1 If f’, g’, and the numberC are such that L(f’; g) < C
< L(f; g’) for every f and g; then L* = Lx = C = L(f’; g’), f’ is mini-
max, and g’ is maximin.

Proor. First, C > L*, because

(7) C > max L(f’; g) > min max L(f; g) = L*;
g f g

and, dually, C < Lx. But Le < L*; so C < Lx < L* < C, that is,
L* = Lx =C. Now (4) and (5) apply. @

CoROLLARY 1 If f’ and g’ are such that L(f’; g) < L(f; g’) for every
f and g; then f’ and g’are, respectively, minimax and maximin, and L*
= Ty = L(f’; g’).

3 Bilinear games

If one stumbles somehow onto a pair f’, g’ satisfying the hypothesis
of Corollary 2.1, then he has discovered a minimax, a maximin, and
the values (in this case equal to each other) of L* and Lx. But that

possibility of discovery does not exist unless L* = Lx, which at the
level of generality of the last section is unusual. Almost all real inter-
est, however, centers on a very special class of abstract games, here to
be called bilinear games, for which it is demonstrable that L* is in-

variably equal to Lx.
The definition of bilinear games involves several steps. First, con-

sider an abstract game, L(r; 27), based on a pair of variables, r and 7.
The two variables are here assumed for simplicity to have only a finite
number of possible values, an assumption that can, and for statistics

must, be considerably relaxed. Next, let f and g be non-negative func-
tions of r and 7, respectively, arbitrary except for the constraint that

(1) Life) = De® =1,

in short, probability measures on the r’s and 2’s, respectively. Finally,
the bilinear game L(f; g) is defined thus.

(2) Lf; 8) =pe DL; Df).

It is important to recognize that the duality principle continues to

hold, that is, if L(f; g) is a bilinear game, then L(g; f) = —L/(f; g) is

also one.
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In terms of the auxiliary functions

Lf; t) =ve Do L(r; f(r),

(3) ‘1
L(r; 8) =p 2, L(r; t)9(0),

the following equalities and inequalities can easily be verified by the

reader.
max L(f; g) = max L(f; 2),
g ;

(4) , ,
min L(f; g) = min L(r; g).

f r

(5) min max L(r; 7) > min max L(f; 2) = L* > Lx
i f ¢r

= max min L(r; g) > max min L(r; 1).
g r 3 r

But more can be said in connection with (5), for it has been shown by
von Neumann [V3] that for the special class of functions now under
discussion L* is actually equal to Zx. This important equality cannot
conveniently be proved here, but the interested reader can refer to the
relatively simple proof given by von Neumann and Morgenstern in
Section 17.6 of [V4] (readingfirst, if necessary, the introduction to the
mathematics of convex sets that constitutes Chapter 16 of that book)

or to the version of it presented in [B18].

In the light of the equality of L* and Lx, (5) becomes

(6) min max L(r;7) > min max L(f; 7) = L*
r 1 f t

= max min L(r; g) > max min L(r; 2).
g r $ r

In view of (4) and (6), Theorem 2.1 can be much improved upon for

bilinear games:

THEOREM | For bilinear games, the following three conditions on
f’, g’, and C are equivalent:

1. ff minimax, g’ maximin, and L* = C.
2. L(f’;g) < C < Lif; g’) for every f and g.

3. Lf’;7) <C < L(r; g’) for every 7 andr.

Proor. Condition 2 implies 1, by Theorem 2.1; 1 implies 3 by (6);
and 3 implies 2 by (4). @
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CoROLLARY 1 A necessary and sufficient condition that f be mini-

max is that, for some g, L(f; 7) < L(r; g) for every r and 7. Under
that condition L* = L(f; g), and g is maximin.

Corollary 1 seems an especially appropriate expression of Theorem 1

in connection with the minimax decision theories, where the g’s are, after

all, not really of interest in themselves. Theorem 1, and equivalently
Corollary 1, are of great practical value. To be sure, there are algo-

rithms, or rules (given by Shapley and Snow in [S812]), by which L*

and all minimax values of f can in principle be computed, but these al-

gorithms are so awkward to apply that in practice one generally guesses

one or more minimax f’s, and also a maximin g, on the basis of some

clues, verifying the guess and evaluating L* by Corollary 1. To finish
the job, one then finds, if one can, an argument to show that the mini-

max f’s thus discovered are all there are. This rather imperfect pro-

cedure is especially important, since it can relatively easily be extended

to many situations in which r and 7 are not confined tofinite ranges, as
does not seem to be true of the algorithms.

As was mentioned in § 10.3 and as the examples that have been given
illustrate, if f is mmimax, then L(f; 7) is in practice often actually equal

to L* for all, or at least many, values of 7. Insight into that phenome-

non is given by the following theorem.

THEOREM 2 If z is such that there exists a maximin g for which

g(t) > 0, then L(f; +) = L* for every minimaxf.

Proor. L(f; 7) < L*, because f is minimax. Therefore L(f; g), be-

ing a weighted average of the L(f; 7z)’s, is at most L*; and it is actually
less, if any term with positive weight is not equal to L*. But L(f; g)
> L*, because g is Maximin. @

It can happen, and in statistical practice it often does happen, that

every 7 satisfies the hypothesis of Theorem 2, in which case L/(f; 7) =
L* for every 7 and every minimaxf.
Theorem 2 often provides a basis for guessing a minimax f, a maximin

g, and the value of L*, which can then be checked by application of

Corollary 1. To take a simple example, suppose that there are n values

of r, and n of t. There may be some reason to conjecture that each 7

is used by some maximing, that is, that each 7 satisfies the hypothesis
of Theorem 2. If the conjectureis in fact true, then f(r) and L* satisfy

the system of equations

> I(r) + OL* = 1

”) >, Lr; f(r) — 1L* = 0.
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Typically, (7) as a system of n + 1 linear equations in n + 1 variables

will have exactly one solution (f(r), £*). This solution, if the conjec-
ture is valid, will actually consist of the components of a minimax f
(in this case the only one) and the value of L*. But the conjecture is

not yet confirmed. In particular, if any f(r) mn the solution of (7) 1s

negative, it is contradicted; if not, the investigation can proceed. The

candidates for maximin valuesof g are now, by the dual of Theorem 2,

among the solutions of the system.

D Ig(é) + OL* = 1

(8)
> L(r; tg) — 1L* 0,
4

wherer is confined to the values for which f(r) > 0. To consider only

the simplest and most typical case, suppose f(r) > 0 for every r. Re-

garding L* as known, (8) consists of » + 1 equations for n variables,
which at first sight might be expected generaliy to have no solution.

To put the matter differently, if one forgets for the moment that L*

has been determined by (7), it might seem possible that (8) could lead

to a different value, say L*’. But, using the latter part of (8) and then
the first part of (7), it is seen that

(9) LLMOO = DIOL” = L*,

and dually the double sum equals L*; so discrepancy between L* and

L*’ is not among the real snags in the tentative program—irrespective

of the numberof r’s participating in (8). Finally, if (8) leads to even

one set of positive g(2)’s, it follows from Corollary 1 that the f and L*

derived from (7) are the unique minimax and the true value of L*, re-
spectively.

The converse of Theorem 2 has been proved by Bohnenblust, Karlin,

and Shapley in [B19], though their proof cannot be reproduced here.

Asis pointed out by these authors, the converse does not extend at all

readily to situations involving infinite ranges of r and 7. Theorem 2
and its converse can be summarized thus:

THEOREM 3 There exists a maximin g for which g(z) > 0, if and

only if L(f; 7) = L* for every minimaxf.

4 An exampleof a bilinear game

It is now convenient to discuss a certain example, or rather a class of

examples, of bilinear games, namely those in which 7 takes only two
values, say 1 and 2. Two preliminary remarks will help to orient the
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discussion. First, bilmear games in which 7 takes only one valueare

devoid of interest, for the minimax problem in that case is simply a
problem of finding an ordinary minimum. Second,the discussion of bi-
linear games in which 7 takes only two values includes, in effect, be-
cause of the duality principle, the discussion of those in which r takes

only two values.

If « takes only the two values 1 and 2, the values g = {g(1), g(2)}

can be represented graphically by points on an interval, as illustrated
at the foot of Figure 1. For every r, L(r; g) is linear as a function of

L

      A—g(l) ~ g(2) =

Figure 1

g, as is L(f; g) for every f. It is, of course, just because the L(f; g) of a

bilinear gameis linear in this sense and its dual that I use the term ‘‘bi-
linear.”’” In Figure 1 the five slanting solid lines represent the five linear

functions L(r; g) of a bilinear game in which r (for illustration) takes
five values and 7 takes two. The dashedlines represent two valuesoff,
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each of which hasfor simplicity been so chosen as to use, or mix, only

two valuesof r.
As may be verified by inspection, the particular bilinear game rep-

resented by Figure 1 has the special property that min L(r; 7) = 0 for

each 7, which is the distinguishing property of those bilinear games that

arise in connection with the minimax decision theories described in
Chapters 9 and 10.

Figure 1 bears a more than accidental resemblance to Figure 7.2.1.

In particular, the concave function

(1) min L(r; g)

marked by heavy line segments in Figure 1 is closely analogous to the
convex function so marked in Figure 7.2.1. The particular g empha-
sized by Figure 1 is that for which the function (1) attains its maximum
value, which according to (38.6) is L*. This g is therefore the unique

maximin. It has been shown quite generally in [B19] that bilinear games

with more than one minimax or maximin are, in a sense, unusual;
Figure 1 makes it graphically clear that the special bilinear games now

under consideration do usually have a unique maximin, because there
is more than one Maximin only in case (1) happens to havea horizontal

segment.

Whatare the minimaxf’s for the bilinear game represented by Figure
1? According to the dual of Theorem 3.2, an r cannot be used in the
formation of a minimax f unless L(r; g) = L* for the (in this case

unique) maximin g. That consideration eliminates all but two of the

r’s from consideration, and it is graphically clear that this will usually
be the case for bilinear games in which 7 takes only two values. Theo-
rem 3.2 itself, applied to the particular game under discussion, shows

that the graph of L(f; g) as a function of g must be horizontal for any

minimax f. The two preceding conditions together eliminateall values

of f except the one corresponding to the horizontal dashed line in Fig-
ure 1; and that f is indeed minimax, because L(f; 7) = L* for both
values of 7.
To specialize still further, suppose that 7 as well as 7 takes only two

values. Such a game can, of course, be represented graphically in the

spirit of Figure 1. Several qualitatively different situations can occur,

which might, for example, be classified by the retation of the two linear
functions L(r, g) to each other. The reader should graph and consider

many or all of these possibilities for himself. The only one treated

here will be that in which the two functions cross each other at an in-
terior g, with one function sloping up and the other down. It is graphi-
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cally clear that there will then be a unique minimax and a unique maxi-

min, as will now be shownanalytically.
The condition postulated can be expressed without loss of generality

thus:

2) L(1;2) > 00;1),  L(2;1) > L(2; 2),

L(2;1) > £(1; 1), L(1; 2) > L£(2; 2).

Or, more mnemonically,

(3) L(1; 2), L(2;1) > L(1; 1), L(2; 2).

It is conjectured, in this case on graphical grounds, that the program

outlined in connection with (3.7—-8) applies, and the reader can indeed
verify that that program leads to the conclusion

(4) L* = {L(1; 2)L(2; 1) — L(1; 1)L(2; 2)}/4,

where

(5) A = L(1; 2) + £(2; 1) — £01; 1) — LQ; 2);

and that the unique minimax f and maximin g are

6) io = [L(2; 1) — L(2; 2)]/A

f(2) = (LG; 2) — £0; DI/A,

am " = [L(1; 2) — L(2; 2)]/A

g(2) = [L(2; 1) — L(1; 1)]/A.

If the gamearises from an application of the minimaxdecision theory,

(3) almost always applies. More precisely, in this case, except possibly

for the order of numbering,

(8) L(1; 1) = L(2; 2) =0 and L(1; 2), L(2; 1) > 0;

so, if only the inequalities in (8) are both strict, (3) applies. Then

(4-7) specialize to

(9) L* = L(1; 2)L(2; 1)/4,

where

(10) A = L(1; 2) + L(2; 1);

(11) fl) = £2;1)/4, f(2) = LC; 2)/A,

(12) g(1) = L(1;2)/A, g(2) = L(2; 1)/A.
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5 Bilinear games exhibiting symmetry

Mathematically the solution of a bilinear gameis often simplified by

considerations of symmetry. For statistical applications, the implica-

tions of symmetry for bilinear games are of fundamental importance

in so far as they represent a counterpart in the minimax theory of the
disreputable but irrepressible principle of insufficient reason. This sec-

tion discusses these implications in an elementary, but formal, way.

It can be skimmed over or skipped outright without much detriment
to the understanding of later sections.
Any discussion of symmetry involves, at least implicitly, the branch

of mathematics known as the theory of groups. Though what is to

be said here about games exhibiting symmetry is intended to be clear
without prior knowledge of the theory of groups, it may be mentioned
that introductions to that subject are to be found in manyplaces, for

example in [B14].

It can, and in practice often does, happen that a bilinear game has
some symmetry.{ This means that there are permutations, here sym-

bolized by T, 7”, etc., of the values of r among themselves and the values
of ¢ among themselves such that

(1) L(Tr; Tt) = L(r;1)

for every r and 7, where, of course, 7’r and 71 are the values into which

T carries r and 7 respectively. Permutations satisfying (1) are said to
leave the game invariant, or to belong to the group (of symmetries) of the

game. The permutation U that leaves every r and every 7 fixed must

be counted among the permutations in the group of the game, but the

game has no symmetry (worthy of the name) unless there are other

permutations besides U in its group.
An example of a game with high symmetry is the game implicit in

the second example of § 9.6, for, to any permutation whatsoever of the

six 7’s in that game among themselves,there is a corresponding permu-

tation of the r’s such that the two permutations taken together leave
the game invariant. It was, of course, the exploitation of symmetry

that made the treatment of that example relatively simple.

Returning to bilinear games in general, if 7 and 7” are in the group

of the game, then the product 77” defined by the condition that

(2) (TT')r =pt T(T’r), (TT")t =p: T(T'2)

is obviously also a permutation in the group of the game. This multi-

+ This concept must not be confused with that of ‘symmetrical games,’’ which are

symmetrical in the sense that the equation L(r; 7) = —L(1;r) is meaningful and true

for every r and.1.
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plication of permutations somewhat resembles the ordinary multipli-

cation of numbers. In particular, (77’)T” is evidently the same as

T(T’T’’), though it is not necessarily true that 77’ = T’T.
Relative to this multiplication the permutation U plays the role of

the unit, or number 1, in arithmetic, for it is obvious that TU = UT

= T for any permutation T7.

For every permutation 7, there is evidently a permutation 7’, and
one only, that undoes 7’, that is, one such that T-!7 = U. It is easy
to see also that 77! = U and that, if T is in the group of the game,
T—'is too. The notation 7is of course motivated by the considera-
tion that, relative to the multiplication of permutations, 7’! plays the

role of the reciprocal of 7.

It will be adopted as a definition that Tf and Tg are the functions
such that Tf(r) = f(T'r) and Tg(t) = g(T~12) for every permutation
of T and for every r and 7. The intervention of 7! in this definition
may at first seem arbitrary, but it is motivated by the following con-

siderations. First, if f is, for example, the function such that f(ro) = 1
and f(r) = 0 for r ¥ ro, then Tf should be such that 7f(7'ro) = 1 and
Tf(r) = 0 for r# Tro. Second, S(Tf) should be (S7')f rather than

(TS)f. The definition having been adopted, L(Tf; Tg) can be calcu-
lated thus:

(3) L(T£; Tg) = Ler; f(T)g(T,)

= }) L(Tr; Tif(TTr)g(TT1)
r,4

= DLP; THF),

where the basic fact is exploited that, if 7, 7 runs once throughall pairs

of values, then 7'r, T7 also does so. It follows from (1) and (8) that, if

T is in the group of the game, then

(4) L(T£; Tg) = Lf; g).

An f (g) is called invariant under the group of the game, if and only if
Tf = f (Tg = g) for every T in the group. There is a natural way to

construct from any f an f invariant underthe group, and dually forg.

Namely,let
1

f=pr— >, Tf,
nT

(5)
1

&=p:— > Tg,
a
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where (here and throughout this section) n is the number of elements
in the group and the summation is over all elements of the group. The

definition (5) accomplishes its objective, because

. 1

(6) Din =-Dvr
r nT -

1

[Dingo
and

(7) T’f(r) = f(T’)

==Sr7
nT

1 -
=- 2) T'TS(r) = fr)
nT

for every r and for every 7” in the group. In (7) use is made of the
easily established facts that T7~!7’—' = (T’T)~' and that as T runs
once through the group so does 7”7'. The justification of & is, of course,
dual to that of f. It is noteworthy that f = f, if and only if f is invariant
under the group of the game.

Suppose Ff (J) is a set of the r’s (2’s). Then, by definition, re TR
(¢ e TI), if and only if T—'r e R (T—1i ¢ J); and theset R (J) is invariant
under the group of the game, if and only if TR = R (TI = I) for every

T in the group.

Exercises

la. If R is invariant, so is ~f.

lb. If R and PR’ are invariant, so are Rf) R’ and Rk U R’.
lc. The vacuous set and theset of all r’s are invariant.

2. For every R, let R =p Ur TR, where T is of course confined to
the group; and, for every r, define the trajectory of r as |r], where [r] is,

as is customary, the set whose only elementis r.

(a) R is the smallest invariant set containing R.

(b) R is the intersection of all invariant sets containing R.

(c) R= Ufr.
reR

(d) [r] is the smallest invariant set of which r is an element.

3a. If R is invariant, and RN [r] ¥ 0, thenR > [r].
3b. If R is invariant, and re R, then & D [r].
3c. If [r] N [r’] 0, then [r] = [r’].
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4a. The following conditions are equivalent:
a. R is invariant.

6B. R=R.
y. For every r ¢R, [r] C R.

6. R is partitioned into sets each of which is a trajectory.
4b. The following conditions are equivalent:

a. f is invariant.

8. The set of r’s for which f takes any given value is invariant.

y. f is constant on every trajectory.

5a. If T’r = 1, then (TT’T!)Tr = Tr.
5b. If {r} denotes the number of elements of the group that leave r

fixed, then {r} = {Tr}.
5c. If || r || denotes the numberof elementsin [r], then n = {r}|| r ||.
5d. Both {r} and || r || are divisors of n.
5e. The value of f everywhere on the trajectory of r is

(8) v7 Df).
| r | r & [r]

6. Note the dual of each of the preceding exercises.

In the establishmentof all these preliminaries, the theory of bilinear

games has been almost lost sight of, but it is now possible to say much

about the significance of invariant functions and sets for bilinear games.

I begin with a theorem valued for some of its corollaries rather than
for any charm of its own.

THEOREM 1 If L(f’; Tg) < L(f’’; Tg) for every T, then L(f'; g) <
L(t”; &). If in addition L(’; g) < L(t’; g), then L(@’; g) < L(t’; 8).

Proor.

(9) L(T~"f'; g) = L(f’; Tg) < Lf”; Tg).

Therefore

(10) L@38) = — DLT)
1

<->) Lit”; Tg) = L(t”; 2).
nT

If Lf’; g) < L(f’”’; g), then (9) is strict for 7 = U, and therefore (10)
is also strict. @

CoroLuaryY 1 If L(f’; Tg) = L(f"’; Tg) for every 7’, then L(f’; g) =

L(f"; ).
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Corottary 2 If L(f’; g) = L(f’”’; g) for every g, then L(f’; g) =
L(f"’; &) for every g.

CorotLtary 3 ~=—L:(f; g) = L/(f; &) = L/(f; &) for every f and g.

COROLLARY 4 If f is invariant under the group of the game, L(f; g)

= L(f; &) for every g.

Paraphrasing some of the nomenclature of § 6.4, if L(f’; g) < L(f”’; g)

for every g, say that f’ dominates f’’; if f’ dominates f’’, but f’’ does not
dominate f’, say that f’ strictly dominates f'’; if f’ dominates f’’, and f’’
dominatesf’, say that f’ and f’’ are equivalent; if f’ is not strictly domi-
nated by any f, say that f’ is admissible.

CoROLLARY 5 If f’ dominates, strictly dominates, or is equivalent
to f’’, then f’ dominates, strictly dominates, or is equivalent to f’’, re-
spectively.

Corotuary 6 If Lif; Tg) < L(f; Tg) for every T, then L/(f; g) =

Lif; g).

CoroLttaRy 7 If L(f; 1) < L(f; 7) for every 7 ¢ I, where I is invari-
ant under the group of the game, then L(f; 7) = L(f; 7) for? ¢ J.

CoroLLaRy 8 It is impossible that f strictly dominatesf.

THEOREM 2 max L(f;g) < max L(f;g), equality holding, if and only
& &

if the right-hand maximumis attained for a g invariant under the group

of the game.

PRoor.

(11) max L(f; g) = max L(f; &)
g g

< max L(f; g).
&

The inequality in (11) follows from the fact that every & is a g; equality

holds, if and only if the final maximum is attained for some , thatis,
for some invariant g. @

CoroLLaRy 9 If f is minimax,so is f.

CoroLuary 10 There exists a minimax f invariant under the group
of the game.

If a game has more than one minimaxf, it is tempting to suppose

that in statistical, if not in all, applications of the theory an invariant,
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or symmetrical, minimax f would recommenditself at least as highly

as any other minimax f. This supposition, being vague, cannot be

really proved, but certain facts tend to support it. In particular, the

following theorem is a reassuring improvement of Corollary 10.

THEOREM 3 There is at least one admissible, invariant, minimaxf.

Proor. It is a direct consequence of a theorem (Theorem 2.22, p. 54,
of [W3]) of Wald’s, too technical for statement or proof here, that at
least one invariant minimax is strictly dominated by no invariant f’.
If that f were strictly dominated by any f” (invariant or not), it would

also, according to Corollary 5, be dominated by f’’, which is impossible.
Therefore f is admissible. @

If the bilinear game has high symmetry or, more explicitly, if the

number of trajectories into which the r’s or the 2’s, or both, are parti-

tioned is small; the search for invariant minimax f’s and invariant

maximin g’s is relatively simple. An invariant minimax is character-

ized as an invariant f’ such that

(12) max L(f’; g) = min max L(f; g) = L*
g f g

But, since at least one invariant minimax exists, the criterion (12) is

not changed if the minimization on its right side is confined to invari-
ant f’s; with f so confined, the criterion remains unchanged, if both
maximizations are confined to invariant g’s (as Corollary 3 shows).

Thus the search for invariant minimax f’s and invariant maximin g’s

amounts to the solution of an abstract game that arises from the origi-

nal bilinear game by ruling out certain values of f and g, namely the

un-invariant ones.

This new and smaller abstract game can be exhibited as a bilinear

game thus: Let it be understood for the moment that r’ ranges over
such a set of the r’s that there is exactly one r’ in every trajectory [r];

dually for 2’. For invariant f and g,

(13) Lit}g) = DULG; M9)

=LLL LLG Oa@
rat rée(r] ie [i]

= 2 LXfra) be dL Lr; 4)
re([r} ie {i}

= DLLMEOw,
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where

(14) L'(r'; 0’) =e Da LY Lr;4),[| rTWhPrll 44 AG
and

(15) f(r’) =ne|| 7 F793 9'@) =del| 7 [lo@.

Finally, it is easily verified that, except for the conditions f'(r’) > 0,

g' (a) > 0, and Zf’(r’) = Zg’(e’) = 1, the coefficients f’(r’) and g’(7’) are

arbitrary. The new gameis therefore to all intents and purposes a bi-

linear game with only as many r’’s and 7’’s as there are r-trajectories.

and i-trajectories, respectively, in the original game. The new game,

incidentally, may well have symmetryof its own.

If there is only one r- or one 7-trajectory, the new gameis so simpleit

scarcely deserves to be called a game. This occurs, for example, in the

second example of § 9.6, where there is only one 7-trajectory. In that

situation there is only one invariant g, and it is equal at every 2 to the

reciprocal of the total number of 7’s (which is here the valueof || 7||
for every 7). That g must therefore be an admissible maximin. The

value of L* is therefore given by

(16) L* = min >> L(r; 2).
r 4 t

The invariant minimax f’s are those and only those invariant f’s such

that f(r) = 0 for every r that fails to minimize the sum in (16). More-
over, here the minimaxf’s (invariant or not) are all equivalent, as can

be argued thus: Any invariant minimax f is such that

(17) Lf; g) = Lif; g) =

for every g. If any minimax f whatsoever failed to satisfy (17), it
would strictly dominate f; but according to Corollary 8 that is impos-

sible. Therefore in the very special situation at hand all minimax f’s

satisfy (17) and are accordingly equivalent.

It is, of course, important to extend consideration of symmetry to
bilinear games with infinite sets of r’s and 2’s, and infinite groups of
symmetries, but the task has not yet proved straightforward. Two key

references bearing on it are [L4] and [B17].



CHAPTER 13

Objections to

the Minimax Rules

1 Introduction

I have already expressed and supported my opinion that neither the

objectivistic nor the personalistic minimax rule can be categorically de-

fended (§ 9.7 and § 10.3). On the other hand, certain objections have

been leveled against the objectivistic rule (that being the well-known

one) that seem to me to call for reinterpretation, if not outright refu-

tation.

2 Aconfusion between loss and negative income

Some objections valid against the minimax rule based on negative

income are irrelevant to that based on loss. The notions that the mini-

max rule is ultrapessimistic and that it can lead to the ignoring of even

extensive evidence have already been discussed as examples of such ob-
jections.

Another example I would put in the same category has been suggested

by Hodges and Lehmann [H5]. In this example a person who bas ob-

served n independent tosses of a coin for which the probability of heads

has an unknown value p is required to predict the outcome of the

(n + 1)th toss. Hodges and Lehmann here interpret prediction in the
following somewhat sophisticated, but reasonable, sense. The person

is, in the light of his observation, required to choose a number p be-

tween 0 and 1 and to pay a fine of (1 — p)” or p” according as the
(n + 1)th toss is in fact heads or tails. Thus the (expected) mcome
attached to the primary act p and event p is

(1) I(p; p) = —p(1 — p)? — (1 — p)p’

= —(p — p)? — p(l — p).

As Hodges and Lehmann show,the only derived act (mixed or pure)

that yields the minimax of the negative incomeis to set p = 3 irrespec-

tive of the observation. But it is, in commonsense, absurd thus to ig-
200
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nore the observation of the first n tosses. In view of this absurdity,
almost everyone would agree that applying the minimax rule directly

to the negative of (1) is a foolish act for the person to employ.

The absurdity of minimizing the maximum of negative income in

this example is of course no valid argument against minimizing the
maximum loss. It is easy to see that the loss corresponding to (1) is

(2) L(p; p) = (p — p)?.

As Hodges and Lehmann happen to show in the same paper [H5]

(though in a diffcrent context), and as will be discussed in some detail
in §4, the unique minimax derived act does use the observations to
advantage, resulting in a loss of

(3)
1

4(1 +n”)?

irrespective of p. The absurd act of setting p = 4 irrespective of the
observation results in the loss (p — 4)*, which in any ordinary context
would be inferior to (8), especially for large n.

Incidentally; the minimax derived from (2), though not nearly so

bad as setting p identically equal to 4, is itself open to a serious objec-

tion, which will be explained in § 4.

3 Utility and the minimax rule

Some objections to the objectivistic, and mutatis mutandis to the

group, minimax rule are in effect objections to the concept of utility,

which underlies the minimax rules. Criticisms of the concept of utility
have already been discussed in Chapter 5, particularly in § 5.6, but
certain aspects of the discussion need to be continued here.

It is often said, and I think with justice, that, even granting the

validity of the utility concept in principle, a person can seldom write
down his income function [(r; 7) with much accuracy. This idea is

put forward sometimes with one interpretation and sometimes with

another. Of these, only the first is strictly an objection to the utility
concept.

That one is a dilemma raised by the phenomenon of vagueness.

Vagueness may so blur a person’s utility judgments that he cannot ac-

curately write down his income function. I suppose that no one will

seriously deny this; I would be particularly embarrassed to do so, for
it is almost a recapitulation of the very argument that leads me, though

in principle a personalist, to see somesensein the objectivistic decision

problem. On the other horn,if all meaningis denied to utility (or some
extension of that notion) no unification of statistics seems possible.
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Three special circumstances are known to me under which escape from
the dilemma is possible. First, there are problems in which some
straightforward commodity, such as money,lives, man hours, hospital
bed days, or submarines sighted, is obviously so nearly proportional to

utility as to be substitutable for it. Second, there are problems in
which exact or approximate minimax decisions can be calculated on
the basis of only relatively little, and easily available, information about

the income function, such as symmetry, monotoneity, or smoothness.

The possibility of cheap extensive observation, which (when it occurs)
makes the minimax principle attractive, also tends to make many de-
cision problemsfall into both of the two types in which the difficulty

of vaguenessis alleviated. For example, in a monetary decision prob-

lem with cheap observation available, it often happens that the weak
law of large numbers, and the like, can be invokedto justify regarding
cash income as proportional to utility income.

Third, there are many important problems, not necessarily lacking

in richness of structure, in which there are exactly two consequences,

typified by overall success or failure in a venture. In such a problem,

as I have heard J. von Neumannstress, the utility can, without loss

of generality, be set equal to 0 on the less desired and equal to 1 on the

more desired of the two consequences.
The second sense in which it may, though not quite properly, be

said to be impossible to write down the income function is typified by
this example. A manufacturer of small short-lived objects, say paper

napkins, is faced with the problem of deciding on a program of sam-

pling to control the quality of his product. He complains that, though

for this problem his utility is adequately measured by money, he can-
not write down his income function because he does not know how the
public will react to various levels of quality—that, in particular, the

minimax rule does not tell him at all how much he ought to spend on

the sampling program, though it may say how any given amount can

best be employed. The manufacturer has a real difficulty, though he

expresses it inaccurately. He forgets that the lack of knowledge that

gives rise to the decision problem involves not only the state of his
product, but also the state of the public; taking the state of the public

into account, there is no real difficulty in writing down the incomefunc-

tion. But, if it is not practical for the manufacturer to make observa-

tions bearing on the state of the public as well as those bearing on the

state of the product, the minimaxrule is not a practical solution to his
problem; for, rigorously applied, it would remove him from the paper-

napkin business. I believe that in practice the personalistic method
often is, and must be, used to deal with the unknown state of the pub-
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lic, while objectivistic methods, particularly the minimax principle, are
now increasingly often used to deal with the state of the product—a
sort of dualism having some parallel in almost all serious applications

of statistics. This is not to deny that relatively objectivistic methods

of market research can sometimes be used, nor that there are personal-
istic elements aside from those concerning the state of the public in
much of even the most advanced quality control practice.

4 Almost sub-minimax acts

Another sort of objection to the objectivistic minimax rule is illus-

trated by the following example attributed to Herman Rubin and pub-

lished by Hodges and Lehmann [H5]. An integer-valued random
variable x subject to the binomial distribution

n

(1) P(z| p) = @ p*(1 — p)"*

is observed by a person who knows n but not p. His decision problem
is to decide on a function p of x subject to the loss function:

(2) L(p; p) = E((p — p)? p)

=) (p(x) — p)? (") p*(1 — p)”*.

In other terms, he must estimate p on the basis of an observation of x

and subject to a loss equal to the square of his error. The traditional

estimate of p is defined by fo(x) = x/n. This estimate has manyvir-

tues; it is the maximum-likelihood estimate, the only unbiased esti-
mate, and (as is shown in [G1]) the only minimaxestimate for a some-
what different problem from that posed by (2). But for (2) the unique
minimax is (as is shown in [H5]) defined by

1 A
, , 3 — Po(x))

(3) Pi(z) = Po(z) + “V408

As it is straightforward to verify for every p,

p(l — p)
(4) L(Bo; p) =i

and

5 L(p1; = —————;:

which constant is, therefore, L*. The ratio of thefirst of these functions
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to the secondis ,
1

(6) 4p(1 — p) (1 + =) ,
n

the maximum of which occurs at p = 1/2 and is

1 2

(7) (1+).

Thus, for large n, the maximum loss of fp is larger than L* by only a
slight fraction. Moreover, the loss of po is less than L* except when p
lies in the interval where

(8) 4p(1 — p) > (1+ 27%)~’,

that 1s, where

(9) lp -— $1 S3{1 -— +04)7} 4~ (dn)

To take a numerical example, consider n = 10° (which the practical

will note is rather big for a sample). The advantage of p; over po at
p = 1/2 is then only 0.64%, and, once p departs by as much as 0.04

from 1/2 in either direction, the advantage is with po. It amounts,
for example, to 3.5%, 15.5%, ©% in favor of fo, when is 0.6, 0.8,
1.0, respectively.

Many agree that in such an example good judgmentwill, under ordi-
nary circumstances, prefer fo to the recommendation of the minimax

rule, p;. To my mind, this example constitutes a valid objection against

the minimax rule, in the sense that it demonstrates once more that,
whatever value that rule may have,it is at best a rule of thumb.
The example is a good illustration of the role of personal probability

in ordinary statistical thinking, for the source of the dissatisfaction a
person would ordinarily feel for p; as opposed to po stems from the fact
that he would not ordinarily attach enough personal probability to the
immediate neighborhood of p = 1/2 to justify preference for p,. It
follows from the numbers given above, for example, that, if the person

attaches a probability of less than 0.84 to the interval [0.4, 0.6], he will

prefer fp to p;; the sameconclusion can be derived from the supposition
that the standard deviation of the personal distribution of p is at least
0.04. Of course, situations can be imagined in which the personal prob-

abilities would be so concentrated about 1/2 as to justify preference for
pi; the point of the example is only that there are situations in which
that would clearly not be the case.

Interesting material and important references bearing on the phe-

nomenonillustrated by the decision problem under discussion are given



13.5] NO SIMPLE ORDERING 205

by Wolfowitz in [W17]. It seems to be suggested there that the diffi-
culty can be met by postulating some small amount e by which the

person does not mind having his income deereased. Taken literally,

this postulate implies on repeated application that all incomes are

equivalent for the person, but Wolfowitz makes it clear that he does
not mean to propose the postulate in a sense that allows repeated ap-

plications. The idea is reminiscent of those theories of probability
that permit the neglect of an occasional improbable event (mentioned
in the last paragraph of § 4.4) and seems to me open to an objection

similar to the one raised in connection with them. In particular, the
choice of the « would be not only personal, but ill defined as well.

5 The minimax rule does not generate a simple ordering

Finally, an objection made by Chernoff [C7] to the objectivistic mini-

max theory must be discussed. This will entail statement and illus-

tration of the phenomenon on whichthe objection is based, and state-
ment and analysis of the objection itself.

The phenomenon pertains to the relation between two objectivistic

decision problems, to be called for the moment the narrow and the

wide problems. The narrow problem is determined by certain primary

acts f,; and the wide one is determined by those primary acts and one

more, say fo. In other words, the wide problem presents the person
with one more choice than the narrow. Calling the two income func-

tions [(f; 7) and Jo(f; 7), it is to be understood, of course, that I(f; 7)

= I)(f; 7) for any f that does not use, that is, give positive weight to,
fp. The corresponding equation does not necessarily obtain for the

loss functions; indeedit clearly does so, if and only if the maximum of
Io(f; 7) in f can be attained for each 7 without using fp. Even in case

no minimax of the wide gameusesfo, it is therefore to be expected that
the minimax f’s of the wide game will be different from those of the

narrow game. In fact, it can happen that no minimaxof the wide game

uses either fy or any f, used by a minimax of the narrow game;this is

the phenomenon to be discussed in this section.

To see how the phenomenon can occur, suppose that Figure 12.4.1

represents the loss function of the narrow problem; and consider what

the corresponding figure is for the wide problem, supposing that fo is
such that

A =prz lI (fp; 2) — max I(f,; 2) > 0,
r

(1)
= =p; max I(f,; 1) — I(fy; 1) > 0.
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It is clear that A and 2 can attain any positive values, irrespective of
the structure of the narrow problem. The figure for the wide problem
is constructed thus: The graph corresponding to each f, is left fixed at

its right end and raised by the amount atits left, and fp is represented
by a line sloping up with slope 2 from the lowerleft-hand corner. It is
easy to see that the raising of the left ends of the graphsof the f,’s can
make any f, with a positive slope horizontal. If, further, such an f,

minimizes L(f; g) for some g, it can be made a minimax by choosing 2

sufficiently large. Thus, speaking specifically of Figure 12.4.1, the f,
corresponding to the left segment of the heavy concave graph, which is
not used in the minimax of the narrow problem, can become the unique

minimax. Figure 12.4.1 is a little special in that the heavy concave

graph has only one vertex to the left of the maximin of the narrow prob-
lem. If there were more than one, the phenomenon could also be ex-
hibited by making the second vertex to the left the unique maximin,

which would occurfor all A’s and 2’s in a certain range. Thus the phe-

nomenon occurs not only for isolated values of A and 2 but typically
for whole domains of values.

Suppose, to take a striking case, that one f,, say f,-, is the unique

minimax for the narrow problem and a different one,f,-, is the unique
minimax for the wide problem. It is absurd, as Chernoff says in effect,

to recommend f,, as the best act among the f,’s when only the f,’s are

available and then to recommend f,, as the best for an even wider

class of possibilities. Fancy saying to the butcher, ‘Seeing that you
have geese, I’ll take a duck instead of a chicken or a ham.”’

It is absurd, then, to contend that the objectivistic minimax rule
selects the best available act. But that is not so devastating to the rule

as might at first appear, for it is not contended by anyone known to

me that the rule does select the best. On the contrary, the rule is in-
voked only as a sometimes practical rule of thumb in contexts where

the concept of ‘“‘best” is impractical—impractical for the objectivist,
where it amounts to the concept of personal probability, in which he

does not believe at all; and for the personalist, where the difficulty of
vagueness becomes overwhelming. To have a consistent concept of

“best,” that is, to have a mode of decision that does not exhibit the
phenomenon, amounts, as Chernoff himself points out, to the establish-
ment of a simple ordering of preference among acts. In so far as that

can be doneconsistently with the sure-thing principle, personal proba-

bility is practically defined thereby. If the sure-thing principle is vio-
lated, the ordering is absurd as an expression of preference. For ex-
ample, the rule of minimizing the maximum of the negative of income
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does not exhibit the phenomenon. It amounts to considering f < f’, if
and only if

(2) max I(f;7) < max I(f’; 7).

This establishes a simple ordering, but one that violates the sure-thing
principle by violating P2.

The phenomenon has a particularly natural interpretation for the

group minimax rule. It would not be strange, for example, if a

banquet committee about to agree to buy chicken should, on being in-
formed that goose is also available, finally compromise on duck.



CHAPTER 14

The Minimax Theory

Applied to Observations

1 Introduction

In this chapter the concept of observation is re-explored from the

point of view of the minimax rule. In principle, objectivistic and group
minimax problems should here be treated on an equal footing. But,

since mathematically the two theories are identical, it seems wisest to

focus on one, interjecting occasional digressions about the other. I

have chosen to focus on the objectivistic problems. That choice, being

in accordance with other literature on the minimaxrule, will facilitate
the reader’s further study of the subject, and it also renders more ob-

vious the intimate connection between the minimaxrules and the theory

of partition problems presented in Chapter 7. The present chapter
can indeed be regarded largely as a paraphrase of Chapter 7, so there

will unavoidably be many references to the notations and conclusions

of that chapter.

2 Recapitulation of partition problems

Paralleling the treatment of observation in Chapters 6 and 7, an

objectivistic observational problem will be roughly defined to consist of
an objectivistic problem, regarded as basic; an observation; and a sec-

ond objectivistic problem, derived from the basic one and the obser-
vation.

More explicitly, the basic problem may be any objectivistic problem.

It will be characterized by the values of E(f | B;), where f ranges over

a set of acts F subject to the conditions laid down in § 9.3, and B; is a

partition.
The observation is a random variable x (confined, as usual in this

book, to a finite set of values), subject to the conditional distributions

P(« | B;), and so articulated with F that E(f | B,, x) = Ef | B;) for

every x such that P(x | B;) > 0. The last condition is (7.2.7); as men-

tioned in connection with that equation, the condition will in particu-
208
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lar be met, if every f is constant on every B;, a specialization costing

but little in real generality.
The derived problem (paralleling § 6.2) consists of F(x), the set of all

functions assigning elements f of the basic acts F to values x of the

observation x. The values of E(f(x) | B;) for f(x) ¢ F(x) are computable

from the E(f | B;) and the P(x | B;) thus:

(1) E(£(x) | B;) = E(E(£(x) | B,, x))

= »° E(f(x)| By, z)P(r| By

= ) E(f(z) | B)P(x| B:)

It will now be shown that the set of derived acts F(x) satisfies the

technical conditions imposed on the set of basic acts F, so that the

derived problem is also an objectivistic decision problem. In fact, if

every f <¢ F is expressible in the form Zf(r)f, (with the usual condition
on the f(r)’s), primary acts for F(x) analogousto the f,’s can be defined

by attaching to every function r = r(x) an element f(x; r) of F(x),

where

(2) f(x; r) = pe f(z).

There are only a finite numberof f(x; r)’s, and all elements of F(x) are

expressible as weighted averages of them; the first assertion is obvious,
and the second poses the problem of finding, for any system of proba-

bility measures ¢(r; x) on the r’s, at least one probability measure on

the set of functions r with respect to which P(r(x) = r) = ¢(r; x) for

every rand x. The problem typically has many solutions; the simplest

is to let the r(x)’s, regarded for each x as functions of r, be independent

random variables on the set of r’s considered as a probability space,

that is, to set

P(t) = [I ¢(r(@);2).

Formally, this particular solution leads to the identity

(3) f(z) = 2) o(r; xf,

= dX I o(r(x’); 2)| f(z).

The identity and the fact that the coefficients in braces are non-nega-

tive and add up to 1, are easy to check analytically, if it is recognized
that summation with respect to r means multiple summation with re-
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spect to r(1), r(2), --- (the z’s being for definiteness supposed to take

integral values). Equation (3) shows incidentally that it is immaterial

whether it is before or after the observation that mixed acts are intro-

duced.
Turn momentarily to the idea of observation in group decision prob-

lems. Here the E(f; B;)’s are replaced by I(f; 2)’s, the expected income

of f in the opinion of the 7th person. There is no partition B;, except

in a special, though theoretically important, case, namely that of the

ith person holding unequivocally that B; obtains.

The P(x | B;)’s are here replaced by P(x; 2)’s, the personal distribu-

tion of x for the 7th person. It is postulated that, for each person, the

conditional expectation of f is unaffected by knowledgeof zx.
The derived acts are formally the sameasfor an objectivistic decision

problem, and the income function of the derived group decision prob-

lem is

(4) I(f(x); 4) = 2 T(£(x); 4) P(a; 2).

Returning to objectivistic problems, (9.4.1) defines the loss function

of the basic objectivistic problem and, mutatis mutandis, that of the

derived problem also, thus:

(5) L(f(x); 4) = max E(£’(x) | B;) — E(£(x) | B).

The right side of (5) admits some simplification, for, if the person knew
which B; obtained, observation would be valueless to him. Accord-

ingly,

(6) L(£(x); 7) = max E(f’ | B;) — E(£(x) | B)).

Analytically, the simplification is justified thus:

(7) max E(f| B;) < max E(f(x) | B,)
f f(x)

max > E(é(x) | B)P(x | Bi)

< max E(f | B,).
f

In discussing application of the minimax rule to the basic and de-

rived loss functions, it is doubly advantageous to introduce mixtures
of the 2’s, for thereby the theory of bilinear games presented in Chapter
12 and that of partition problems (with some reinterpretation) can

both be brought to bear. Letting 8 denote a generic system of weights

B(t), B(t) > 0 and ZB(7) = 1, and using the notation of Chapter 7, the
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bilinear games associated with the primary and derived problemsare,
respectively,

(8) Lif; 8) = (8) — E(£| 8),

(9) L(£(x); 8) = 1(8) — E(E(x) | 8)

= 1(8) — >) E(e(z) | By)P(x | BBW)
Jj

= 1(8) — >> E(£(z) | 8, x)P(z 8).

If necessary, (9) can be interpreted and verified by comparison with
(7.3.7) and (7.2.8), in that order.

In Chapter 7, 6(2) was generally required not only to be non-negative,
but also strictly positive; on examination, this slight difference from

the present context will be found innocuous. Again, in Chapter 7, the

statement and derivation of conclusions were, for simplicity, nominally

confined to twofold partition problems. Here the extension of those

conclusions to n-fold problems will be freely used, though some readers
may prefer here, as there, to focus on twofold problems.

Letting L* denote the minimax (and maximin) value of the basic,
and L*(x) that of the derived problem, it is obvious, since F(x) > F,

that L*(x) < L*; but there is some interest in viewing this inequality

as a consequence of (7.3.4):

(10) L*(x) = max min L(f(x); 6)

= max [1(6) — o(F() | 6)]

< max [1(6) — o(F | 8)]

= max main L(f; 8) = L*.

It is clear that the maximin §’s for the basic and derived problems are
the 6’s that maximize the concave functions

(11) h(8) = ps 1(8) — v(F | 8) = (6) — k(6)
and

(12) (8; x) = pe L(8) — v(F(x) | 8) = (8) — E(k(G(x))| 8),
respectively. The search for minimax f(x)’s, for example, is greatly

narrowed by the consideration that, if f(x) is minimax, E(f(x) | 8) =
v(F(x) | 8) for some 8, indeed for every maximin B. Accordingto § 7.3,
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equality obtains in (10), if and only if there is a maximin Bp of the

basic problem such that .

P(x | B;)Bo(2)

8) Bots) = nr Ls P(2| B,)Bo(i)
 

is also a maximin of the basic problem for every x such that

ZP(x | B;)Bo(j) > 0.
The most typical possibility, and the only one to be explored here, is

that the basic problem has a unique maximin 8p with 89(7) > 0 forall

j. Under this assumption, L*(x) = L*, if and only if x is utterly ir-
relevant, as is easily shown.

In the samespirit, as can easily be shown, L*(x) = 0, if x is defini-

tive, but not typically otherwise; and, if x extends y, then L* (x) <
L* (y) with equality if, and typically only if, y is sufficient for x.

3 Sufficient statistics

Digressing from the minimaxrule for a moment, something more fun-

damental can be said about a sufficient statistic y of x. Namely, for

every f(x) e F(x), there exists an f(y)eF(y) such that J(f(y); 7) =

I(£(x); 1) for every 7. Indeed f(y) = >> f(x)P(x | y) defines such an

act. Without appeal to so weak a step as the minimax rule, this re-

mark demonstrates that even an objectivist loses nothing by exchang-
ing knowledge of an observation for knowledge of a sufficient statistic

of it. The remark might as well have been expressed in § 7.4, except

that there it would have involved some circumlocution, mixed acts not
yet having been introduced.

4 Simple dichotomy, an example

Much of what has been said thus far is well illustrated by the mini-

max counterpart of Exercise 7.5.2. The reader is accordingly asked to

review that exercise and continue it thus:

Exercises

1. For the problem in question:

(a) h(8) = 68(1) + 6:8(2) — | 616(2) — 628(1) |.
(b) A(B; x)

628(1) + 86(2) — D2 | 61728(2) — 82718(1)| {x P(r| B,|
r j

= §4[2P(r) < 71*(8, Bo)| Bi) + P(r = r*(8, Bo) | By)18(1)

+ 6:[2P(re < r2*(B, Bo) | Bs) + P(r = 7*(B, Bo) | Bz)]8(2).
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2a. A 8 is maximin,if and onlyif r*(6, Bo) is such that

(1) 62P(r < 171*(B, Bo) | Bi) < 6:P(r2 < 71*(B, Bo) | Bo)

and

(2) 6oP(r1 < 11*(B, Bo) | Bi) > 8:P(r2 < 11*(8, Bo) | Ba).

2b. There is typically only one maximin, but there may be a closed

interval of them.

3. Though the acts of F and F(x) as defined by Exercise 7.5.2 do not
provide for mixed acts, it will suffice to consider mixtures of the f(x)’s.

Each of these will be determined by an i, and nothing will be lost by
requiring i to be of the form 7(r(x)).

4a. Any minimax will be equivalent to a mixture of f(x)’s each corre-
sponding to a likelihood-ratio test associated with r*(8, 89) for every

maximin £.

4b. In view of Exercise 3, the only likelihood-ratio tests that need
be considered for a minimax are:

u(r) = 1, if and only if 7; < 7;*(@, Bo).

i(r) = 1, if and only if r; < 7,*(@, Bo).

These are not necessarily different tests.

5a. If the maximin 8 is unique, the minimax act is unique (except
possibly for equivalent acts) and is a mixture of exactly two f(x)’s corre-

sponding to the twolikelihood-ratio tests defined in Exercise 4b.
This conclusion calls for some comment, for, in ordinary statistical

practice, one or the other of the extremelikelihood-ratio tests is used,

never a mixture. This practice is not in serious conflict with the mini-

max rule, because the maximum loss associated with either extreme is

typically only slightly greater than L*(x). Moreover, vagueness about

the exact magnitude of 6; and 6g would usually frustrate any attempt

to calculate the coefficients of the mixture. Incidentally, mixture 1s

not cailed for at all when r is continuously distributed, for h(@, x) 1s

then smooth rather than polygonal; that is, if P(r = r’| B,) = 0 for
every r’ and both 7’s, then h(6; x) has a continuousfirst derivative in @.

To show this and to show that the derivative is 62P(r; < 1;* | B,) -

6,P(r2 < re* | B,) may be taken as an exercise only slightly beyond the

usual mathematical level of this book.

5b. If there is more than one maximin 8, then any one that is not

extreme has only one likelihood-ratio test associated with it, and the
same onefor all. The f(x) corresponding to that test is essentially the
only minimax.
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5 The approach to certainty *

In concluding the paraphrase of § 7.1-6 that has thus far been the

subject of the present chapter, it should be mentioned that the approach

to certainty studied in § 7.6 obviously implies that the corresponding

L*(x(n)) approaches zero with increasing n.

6 Cost of observation

A cost c associated with an objectivistic observational problem di-

minishes the income by E(c | B;) for each 7, regardless of f; that is, al-
lowing for the cost, J(f; 1) = E(f—c|B,). But the cost, being un-
avoidable, does not affect the loss function, so the minimax problem
associated with the observation is independent of the cost. The costs
do intervene, however, in an essential way in the problem of deciding
which to choose of several available observations, say X, at cost Ca; it

is important to bear in mind in connection with this problem that a null

observation at zero cost is typically among the choices available in real

life. The generic act of this compound problem can conveniently be

symbolized by 2A(a)f(x,z), or sometimes simply by ». Here, of course,

A(a) > 0, ZA(a) = 1; for choice of \ means choice, for each a, of the

probability \(a) that the ath observation x, will be made andalso choice
of the derived act f(x.) to be adopted in case x, is made. It is intuitively

evident, and follows easily from (1) below, that the mixture of several

\’s is also a A as far as income is concerned, so mixtures of \’s do not
require explicit consideration. The income function can be written

 

(1) I(A; 1) = ZA(a)E(£(Xa) — €a| Bi).
Whence

(2) max I(\; 7) = max E(f| B; — min E(ca | B;).

The loss function is accordingly

(3) L(A; 8) = D2 A(a) {La(£(Xa); 8) + da(8)},

where °

(4) da(8) =ot 2X {E(ca| B;) — min E(Cq B:)}8(2),

and L,(f(X.); 8) is the loss function of the observational problem de-

rived from the ath observation.
The compound minimax problem is intimately related to the concave

functions h(8; x,) and the linear functions d,(8), as is explained by the
following exercises.

+ Some recent references appropriate to this title are Blackwell and Dubins
(1962), Chao (1970), Fabius (1964), and Freedman (1965).
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Exercises

1. Show that

(5) hy\(8) = ove min L(A; 8) = min [h(B; Xa) + da(@)I.

2. If \ = 1-f'(x,-), then L(A; 8) = hy(6); if and only if: first,

(6) Lia(f' (Xa); 8) = A(B; Xa’)

(in which casef’ (xq) will be called well adapted to xq and 8); and, second,

(7) h(B; Xa) + dar(B) = min [A(B; Xa) + da(8)]

(in which case xX,’ will be called well adapted to 8).

3a. Show that

(8) Ly* =ps min max L(A; 8) = max hy (8)

< min max[A(6; Xa) + da(8)].
a B

3b. Under the important special condition that the d,(8) are equal
to constants d,, (8) specializes to

(9) Ly* < min [L*(x_) + dal.

3c. When can equality hold in (8) and (9)?

3d. 6’ is maximin,if and only if h)(6’) = Ly*.
4. AX = DA(a)f(xa) 18 minimax,if and only if:
(x) For every a for which A(a) > 0, x, is well adapted to every maxi-

min £, and f(x.) is well adapted to x, and every maximin 8.
(8) L(A; 7) < Ly* for every 7. (Of course (8) is alone necessary and

sufficient; the point of the exercise is that the necessary condition (a)
may conveniently confine the search for minimax )’s to relatively few

candidates.)

5. Suppose that: (@) r and 7 are confined to the values 1 and 2, and

L(f,; 2) = | r—1 |; (8) x is confined to the values 1 and 2, and P(1 | B,)

= 1/2, P(1 | By) = 1/4; (y) a is confined to the values 1 and 2, and the

\’s of the compound problem attach weight \(1) to a basic act at zero

cost and \(2) to an act derived from x at a non-negative constant cost

d. Compute and graph: h(8), A(@; x), and (for various values of d)

h(8). Graph L,* as a function of d, and discuss the minimax )’s for

various valuesof d.

7 Sequential probability ratio procedures

The type of decision problem that in § 7.7 led to the concept of a
sequential probability ratio procedure has an intimate counterpart in
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an important type of compound objectivistic decision problem, for

which the concept was in fact originally developed by Wald [W2].

The x,’s of a problem of this type range over the enormousvariety of

sequential observational programs associated with a sequence of (con-

ditionally) identically distributed random variables x(1), x(2), ---.
The technical assumption that the a’s havea finite rangeis not fulfilled;
but, as in § 7.7, I proceed with some lapse of rigor, referring to Wald’s

book [W3] or [A7] for the full details. Exercise 6.4 shows that atten-
tion may be confined to a’s that are well adapted to at least one 6, and
that for those a’s it may be confined to f(x,)’s that are well adapted to

xX, and the corresponding 8. The way is paved by § 7.7, which states

sharply restrictive properties of the x,’s and f(x,)’s that are so adapted.

In some cases, recognition of these properties contributes greatly to the

possibility of actually computing minimax, or nearly minimax, pro-

cedures for sequential problems.

8 Randomization

Another important type of compound problem is illustrated by the

second example of § 9.6. A generalization of part of that example is

presented here to show how the minimaxrule explains, or implies, the
process called randomization, which is one of the most striking features
of modern statistics, and one long antedating the minimax rule. Ran-

domization represents the only important use of mixed acts that has

thus far found favor with practicing statisticians, as will be discussed

in the next section. The exact meaning of randomization seemsa little

elusive; no sharp definition is attempted here. But, roughly, random-

ization is the selection of an observation at random; that is, of a d
with more than one A(a) actually positive, the choice of the A(a)’s and

of the derived acts being governed largely by symmetry. The follow-

ing example provides at least a fairly general illustration of the concept.

To set the stage and provide motivation for a formal statement, the
example will first be stated in language that is suggestive though a

little vague. The consequences of the basic acts in the example de-

pend on the composition of a population of n objects, which may be

thought of as numbered from 1 through n. It may be known of some
compositions that they cannot occur; but, if a composition is considered

possible, all populations having that composition (irrespective of order-

ing) are also considered possible. Each observation in the compound

problem consists in the cost-free observation of some m of the objects,
every subset of exactly m objects being available for observation.

Formally, the index 7 of the partition B; runs over a certain set J of

n-tuples, {71, ---, t1}, of elements considered for definiteness to be in-
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tegers. If 7 = {t,, ---, t,} ¢ 7, then any permutation 77 of 7 is also in
I. It 1s assumed that

(1) E(f| B,) = Ef | Bri)
for every f ¢ F, 2 ¢ J, and permutation T.

To every subset A of m integers, 1 < a,(A) < ao(A) <--+< Gm_,(A)

< dmn(A) <n, there corresponds an observation x(A) the possible val-

ues of which are m-tuples {7(A), ---, %(A)}. The conditional dis-

tributions of the x(A)’s are defined thus: If 271(A) = t4,:4), etc., then

P(2x;(A), ++, Lm(A) | B;) = 1.

It is obvious that D*(x(A)) is the same for every A. In typical ap-

plications this common valueislittle, if at all, less than L*.

If a compound act 2A(A)f(x(A)) is to be chosen, statistical common

sense asserts that nothing is to be lost by:
—1

(a) Letting (A) be independentof A, and therefore equal to (”)

for every A; that is, letting every sample of size m have the same prob-

ability of being chosen, or randomizing, as it is said.

(b) Letting f(71(A), ---, %m(A)) be symmetric in its m arguments

and independentof A.

It can in fact be shown, by the method illustrated in the second ex-
ample of § 9.6 and discussed more generally in § 12.5, that there is at
least one minimax satisfying (a) and (b), and even that there is an ad-

missible one. Typically, if m is large, but small compared to n, Ly*

is much smaller than the common value of the L*(x(A))’s.

The importance of randomization in applied statistics can scarcely
be exaggerated. From the personalistic viewpoint it is one of the most

important ways to bring groups of people into virtual unanimity; from

the objectivistic viewpoint it not only makes possible great reductions

In maximum loss, but it 1s seen aS an invention by which the theory of

probability 1s brought to bear on situations to which probability on

first (objectivistic) sight would seem irrelevant.t

9 Mixed acts in statistics

Many have commented that modern applied statistics makes one,

but only one, important use of mixed acts, namely in deciding, through

the process of randomization, what to observe. Thus, for example,

once the observation has been made,the derived act is in practice al-

most always chosen, without mixing, from a set of basic acts natural to

the problem. This might seem to imply a sharp conflict between the

minimax rule and ordinary statistical practice; but actually it reflects

+I would express myself very differently today (Savage 1962, pp. 33-34).
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agreement, for mixed acts greatly reduce the minimax loss in decision-

problem interpretations of typical practical statistical situations, when

and only when ordinary practice calls for mixed acts of the samesort,
namely when randomizationis called for.
There are certain mechanismsthat systematically tend to make mixed

acts have relatively little, or even absolutely no, advantage over un-

mixed acts. In the following discussion of these mechanisms,let L(r; 1)

be the abstract game on which a bilinear game L(f; g) is based.

In the first place, supposing that L(r; 7) is non-negative for every r

and 7 (as is appropriate to the context now at hand), (12.3.6) can be

completed, so to speak, thus:

(1) L* min (&, f) > min max L(r; 2),

where FR and J denote for the moment the numberof values of r and 1,

respectively, and min (R, J) is of course the minimum of the two inte-
gers & and J. An inequality stronger than (1) will actually be proved.

Consider a minimax f for which the smallest possible number FR’ of

the f(r)’s are actually positive:

(2) R’L* = max R’ > Lr; Of(r)

> max L(t’; 1)

> min max L(r; 7)

where r’ is so chosen that R’f(r’) > 1, as can obviously be done. It is

known [B19] that R’ < min (R,J).
The important lesson of (1) is that, unless R and J are both large,

the introduction of mixed acts cannot reduce the minimax loss to a

very small fraction of the value it would otherwise have.

To mention a different mechanism, Figure 12.4.1 suggests that, if
there are many 7’s, the corners of the concave function emphasized in

that figure may well be very blunt, in which case a minimax mixed act

has almost as high a maximum loss as any one of its components. When

the numberof 7’s is infinite, the concave function may well be differen-

tiable, in which case mixed acts have absolutely no advantage. The

remark appended to Exercise 4.5a is pertinent here.
This mechanism can be related to a certain large class of infinite ab-

stract (i.e., not necessarily bilinear) games, discovered by Kakutan!

(K1], for which L* = Lx. Bilinear games are but a special case of

these, and numerous others seem to arise frequently in applications.
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If L* = Ls for an abstract game, nothing at all can be gained by ad-

joining mixed acts, as (12.3.5) shows.
Finally, it may be mentioned that in many cases where an observa-

tion x might be followed by a mixed derived act, the same, or nearly
the same, consequences can often be realized by a pure act. Speaking
a little loosely, this occurs whenever x has a continuous or nearly con-

tinuous contraction y that is irrelevant, or nearly irrelevant, for then

y can play the role in selecting a basic derived act that would otherwise

be assigned to a table of random numbers. If, for example, x is con-
tinuous, y(x) can be taken as the last few digits in the decimal expansion
of x to an extravagant number of places. Again if, conditionally, x =

{xX}, °°°, Xn} 1s an n-tuple of continuously, identically, and independ-

ently distributed real random variables, y(x) may be taken as the per-

mutation that ranks the x’s in ascending order, provided that n! is

fairly large: 10! should satisfy almost any need.
A recent technical reference on the superfluousness of mixed acts in

the presence of continuous observationsis [D13].

I have occasionally heard it conjectured that any mixed act made

after the observation (in an observational decision problem) is wrong in
principle. I would argue that the conjecture is mistaken thus: Any ob-
servational problem that calls for randomization can be simulated, so

far as its loss function L(r; 7) is concerned, by a basic problem. A mixed

act will be as appropriate to the basic problem as it was to the obser-

vational problem from which the basic one was derived. In this way a

great variety of situations calling for mixed acts having nothing to do

with choice of observation can be constructed, though they seem to be
atypical in practice. Moreover, any basic problem can obviously oc-

cur as the decision problem remaining after some particular value x of
an observation has been observed, so the situations just constructed

lead to closely related ones calling for mixed acts after observation.
Less abstractly, consider a person choosing from a tray of assorted

French pastries. Even after extensive visual observation and interro-

gation of the waiter, the person might justifiably introduce considera-

ble mixture into his choice.
I think that the conjecture that mixed acts are necessarily inap-

propriate after observations stems partly from the mechanisms that do

tend to make such acts inappropriate or unimportant in many typical
cases and partly from justifiable dissatisfaction with specific mixed acts

that have from time to time been suggested by statisticians. For ex-

ample, the suggestion that ties in rank arising in non-parametric tests

be removed by ranking the tied observations at random may in many,

or perhapsall, cases fairly be regarded with suspicion.



CHAPTER 15

Point Estimation

1 Introduction

This chapter discusses point estimation, and the next two discuss the
testing of hypotheses and interval estimation, respectively. Definitions

of these processes must be sought in due course; but, for the moment,

whatever notions about them you happen to have will afford sufficient

background for certain introductory remarks applying equally well to
both kinds of estimation and to testing.

Estimating and testing have been, and inertia alone would insure

that they will long continue to be, cornerstones of practical statistics.

Their development has until recently been almost exclusively in the

verbalistic tradition, or outlook. For example, testing and interval

estimation have often been expressed as problems of making assertions,

on the basis of evidence, according to systems that lead, with high prob-
ability, to true assertions, and point estimation has even been decried

as ill-conceived because it is not so expressible.

Wald’s minimax theory has, as was explained in § 9.2, stimulated in-

terest in the interpretation of problems of estimation and testing in be-

havioralistic terms; to objectivists this has, of course, meant interpre-

tation as objectivistic decision problems. For reasons discussed in

§ 9.2, it does seem to me that any verbalistic concept in statistics owes

whatever value it may haveto the possibility of one or more behavioral-

istic interpretations.

The task of any such interpretation from one framework of ideas to

another is necessarily delicate. In the present instance, there is a par-

ticular temptation to force the interpretation, namely, so that criteria

proposed by the verbalistic outlook are translated into applications of

the minimax theory, that is, of the minimax rule and the sure-thing

principle (as expressed by the criterion of admissibility), for these are

the only general criteria thus far proposed and seriously maintained

for the solution of objectivistic decision problems. Of course it is to

be expected, and I hopelater sections of this chapter and the next dem-
onstrate, that unforced interpretations do often translate verbalistic

220



15.3] EXAMPLES OF PROBLEMS OF POINT ESTIMATION 221

criteria into applications of the behavioralistic ones. In evaluating any

such interpretations, it must be borne in mind that an analogy of great

mathematical value may be valueless as an interpretation; correspond-

ingly, what is put forward as mere analogy should not be taken to be

an interpretation, much less branded as a forced one. For example,

attention has already been called (in § 11.4) to the dangerof regarding

the analogy between the theory of two-person games and that of the

minimax rule for objectivistic decision problems as an interpretation.

In fact, minimax problems are of such mathematical generality that

they arise, even within statistics, in contexts other than direct applica-

tion of the minimax rule to objectivistic decision problems; a striking,

though technical, example is Theorem 2.26 of Wald’s book [W3].

The literature of estimation and testing is vast; indeed it has, I

think, been seriously contended that statistics treats of no other sub-

jects. This chapter and the next two cannot, therefore, pretend to

present a complete digest of that literature, even so far as it pertains to

the foundations of statistics. For further reading certain chapters of

Kendall’s treatise [K2] may be recommendedas a key reference to the

verbalistic tradition (Chapters 17 and 18 for point estimation; 19 and

20 for interval estimation; 21, 26, and 27 for testing). Many newer
aspects are treated in Wald’s book [W3]; and a recent review of testing

by Lehmann [L4] is recommended.

2 The verbalistic concept of point estimation

Abstractly and very generally, but in verbalistic language (which is

necessarily vague), the problem of point estimation is this: Knowing

P(x | B;) for every 7 and having observed the value x, guess the value

\ of a prescribed function, or parameter as it is often called, A(z) with

values in a set A. Semi-behavioralistically this is, I think universally,

understood to mean that a function | associating a value I(x) ¢ A with

each x (or possibly a mixture of such functions) is to be decided on, the
function | being called an estimate (or, to be complete, a point esti-

mate) of the parameter ». A problem of point estimation has, thus,

some of the structure of an objectivistic observational problem; but,

since nothing has yet been said about the income, or consequence, re-

sulting from the act / in case B; obtains, it is at the moment impossible

to advancecriteria for the choice of 1.

3 Examples of problems of point estimation

It will now be well to present some examples after a few words of

preparation. For simplicity, A will henceforth generally be supposed

to be an interval (possibly unbounded) of real numbers. If A(z) =
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A(z’) implies 7 = 7’, then » rather than 7 can be used to index the par-

tition; such an estimation problem is said to be free of nuisance param-

eters. This usage corresponds to the fact that the 2’s can typically be

represented as ordered couples (A, @), where ) is of course A(z) and @ is

called the nuisance parameter; if 6 in turn happens to be represented
as an ordered n-tuple, ordinary usage calls 6 an n-tuple of nuisance

parameters. It must be recognized as atypical in estimation problems

for 7 or A to be confined to a finite set of values, and often x is not so

confined either. It will therefore be necessary to proceed heuristically
into domains where the mathematically limited theory developed in

this book does not rigorously apply.

The specific estimation problems most commonly cited as examples,

and most important in practice, are summarized in Table 1, together

with their maximum-likelihood estimates, that is, estimates constructed

in accordance with a rule to be defined in § 4. All but the last two ex-

amples of Table 1 are free of nuisance parameters.

4 Criteria that have been proposed for point estimates

As a matter of fact, verbalistic treatments typically do give some

inkling of the consequence of the act 1 when B; obtains. Thus, in the
examples commonly cited, such as those in Table 3.1, A is a set of real

numbers or a set of n-tuples of real numbers and, therefore, a set of

objects between which the notion of proximity. has some meaning.

Work in the verbalistic tradition has made it clear in connection with
such examples that, if / = A(7) for the B; that obtains, the guess is

considered perfect and that, roughly speaking, it is considered rather
poor if J is far from A.

In spite of the apparently hopeless indefiniteness of estimation prob-

lems even as thus formulated, various criteria, or desiderata, for esti-

mates have been suggested. A list of these criteria, intended to be es-
sentially complete, is now presented. Each item is annotated and il-

lustrated to make its meaning clear, and sometimesto call attention
to related criteria not explicitly listed; motivation and criticism are,

however, deferred until later sections, where they are treated in, connec-
tion with explicit hypotheses about the consequences of misestimation.

No attempt is made to includecriteria like intellectual simplicity or

facility of computation that depend not only on the estimate but also

on the capabilities of the people who contemplate using it. The list

is in a sense logically inhomogeneous. For example, no onereally con-

siders it a virtue in itself for an estimate to be a maximum-likelihood

estimate (Criterion 4); rather, it is believed that such estimates do

typically have real virtues.
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It has, to begin the list of criteria, been suggested by one person or

anotherthat:

1. If y is sufficient, nothing is to be lost by requiring the estimate1

to be a contraction of y.

It will be instructive to bear in mind that necessary and sufficient
statistics of the examples (a)-(f) in Table 3.1 are, respectively, 2, z,

#, > 2”, (€, > 2”), (@ D> 2”).

2. If, of two estimates | and I’,

(1) E(t — @)P| By) < EW —P| By)
for every 2, with strict inequality for some 7, then 1 is better than I’.

There are countless variants of this idea. In particular, the square

of the difference may be replaced by any other positive power of the

absolute difference. Again, (1) may be imposed at only one valueof 2,

if 1 and I’ are subjected to some other condition, freedom from bias

(Criterion 6 below) being the popular one.

Example (f) gives rise to a good illustration of this criterion, which

is also interesting in a later connection. Letting Q =p; >. 2? — n#2,”
it is well known that E(Q| pu, 0”) = (n — 1)o” and that E(Q?| u, 7)
= (n? — 1)o*. Therefore

(2) E({eQ — o7}? p, 0”) {a?(n? — 1) — 2a(n — 1) + L}o*

(o-e-o)-“ n+l in n+1 °

204
=
n+l

for all real a, with equality if and only if a = (n + 1)7!, omitting the
pathological but trivial case that n = 1. By the criterion in question,

Q/(n + 1) is therefore better than any other estimate of the form aQ,

including the maximum-likelihood estimate Q/n and the unbiased es-

timate Q/(n — 1).

 

3. If, of two estimates 1 and I’,

(3) P(-—a <U(x) -A@) < @| B) > P(-a <U(@) — dD < @| By)

for every non-negative «; and e, and for every 7, with strict inequality

for some €1, €g, and some 7, then | is better than I’.

+ This example was given by Leo A. Goodman (1953).
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Acceptance of this criterion 1s obviously implied by acceptance of

Criterion 2, of which it may therefore be regarded as a skeptical] coun-

terpart; formal demonstration of a much more general assertion will be

given in connection with (5.2—4). The criterion implies, for example,in

connection with (c) of Table 3.1 that # is superior to any other weighted

average of the x,’s. A more interesting example will be mentioned in

connection with Criterion 5.

That modification of Criterion 3 in which it is concluded only that

lis at least as good as I’ is of some technical interest. Incidentally, if
equality held identically in (3), there would presumably be nothing to

choose between the two estimates by any reasonable criterion, for they

would then both have the same system of conditional distributions.

4. A maximum-likelihood estimate is often a rather good estimate.

A maximum-likelihood estimate is an estimate 1 such that, for some

function i of 2, (x) = A(i(x)) and

(4) P(«| Byzy) > P(x | By)

for every 2 and x. In many natural problems there is only one maxi-

mum-likelihood estimate. Taking into account the analogy between

probabilities and values of probability densities, the reader should verify

that the estimates listed in Table 3.1 are indeed the unique maximum-
likelihood estimates of the problems to which they refer. When there
is a unique maximum-likelihood estimate, it is obviously a contraction

of the likelihood ratios and, therefore, of any sufficient statistic; which

fits neatly with Criterion 1.

5. A good estimate should have the same symmetry as the problem.

More precisely, if a permutation 7 of the 2’s and the x’s is such that

(5) P(Tx | Br;) = P(x| Bi,
and such that A(z) = A(z’) implies A(7T7) = A(T7’); then 1 should be
such that, if l(7) = A(z), (Tx) = A(T2).

For example, adopting also Criterion 1, a good estimate for y» in (c)

may be sought of the form l(#). Symmetry then dictates l( + a) =

l(@) + a and l(—#) = —l(#); in short, l(#) = Z.

The same conclusion can be drawn for (e), though with a little more

trouble. The criterion applied to (f) leads to estimates of the form aQ.

The constant a might be fixed by appealing, for example, to Criterion

2, 4, or 6. These alone give three slightly different determinations—

a~' = (n+ 1), n, and (n — 1), respectively.
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Again, it can be shown for Examples (c) and (e) that, among all es-

timates satisfying Criterion 5, < is best according to Criterion 3.

6. It is desirable that the estimate be unbiased.

An estimate 1 is called unbiased, if and only if

(6) E(\| B,) = X(2)
for every 1.

It is easy to verify that the maximum-likelihood estimates of (a)—(e)

in Table 3.1 are all unbiased; that of (f), however, is not, for E(Q/n | L,

o”) = (1 — 1/n)o” instead of o?. Again, if 1 is a maximum-likelihood
estimate of \, e is a maximum-likelihood estimate of e*. But, if 1 is

not definitive, and 1 is an unbiased estimate of A, e' is not an unbiased

estimate of e*, as Theorem 1 of Appendix 2 implies.

7. If P1—a@| <| i — x) || B) > 1/2 for every é, then 1 is
better than I’.

Any resemblance between this criterion and Criterion 3 seems to be

dispelled by the following example. Supposethat, for every 7, P(l — A(2)

=a, l’ — A(t) = 5 | B;) equals 2/11 if a and b are integers such that

0<a<b < 2, equals 5/11 if a and b are 2 and O respectively, and

equals 0 otherwise. According to Criterion 7, 1 is better than I’, be-

cause 6/11 > 1/2; but, according to Criterion 3, 1’ is better than 1,

because 5/11 > 4/11 and 7/11 > 6/11. The example can easily be

modified to suit any taste for symmetry and continuity. But, if 1 and

l’ are conditionally independent (which is not a natural assumption),
and | is better than I’ according to Criterion 7; then, as may easily be

shown, |’ cannot be better than | by Criterion 3.

The list of criteria is here interrupted by several paragraphs of ex-

planation in preparation for two concluding criteria.

The approach to certainty treated in §§ 3.6 and 7.6 has its counter-

part in the theory of estimation. In particular, if x(n) = {x,, ---, Xn}

is an n-tuple of conditionally independent and identically distributed

observations, there will typically exist sequences of estimates I(n) based

on x(n), such that

(7) lim P(| U(a(n), n) —A(t)| < €| B,) = 1

for every positive « and every 7. A sequence of estimates satisfying (7)

relative to any sequence of observations x(n) (not necessarily n-tuples

of conditionally independent observations) is called consistent.
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The condition of consistency is often realized in a very special way,

namely that the error [l(x(n); n) — A(z)] 1s, for every B; and for large

n, practically normally distributed about zero with variance inversely

proportional to n. More formally, a sequence of estimates may be

such that
% . _ . a© tm P(" a(n) 00p= ofa

o(2) (Qn)
for every 7 and a, where o(2) is some positive function of 7; it is then

said that n”[I(x(n); n) — X(2)] is asymptotically normal about zero with

asymptotic variance o”(i). If, in addition, for every 7, o°?(z) is not less
than a certain function, the differential information, to be defined in
§ 6, then the sequence1, is called efficient.
There is a possible pitfall in connection with the idea of asymptotic

normality. Though (8) implies that, for large n, the distribution of

the error is, in a sense, almost the normal distribution with zero mean

and variance o7(7)/n, it does not imply that the mean of theerroris
close to zero, or even finite or well defined. Similarly, the variance of

the error may be muchlarger than o7(7)/n, infinite, or ill defined; but

it cannot, for large n, be smaller than o”(z)/n by a fixed fraction orless.

Muchliterature on estimation has concentrated on sequences of es-

timation problems in which x(n) is an n-tuple consisting of the first n

elements of an infinite sequence of conditionally independent and con-
ditionally identically distributed random variables or, as it will be
called in the present chapter, a standard sequence; because these are

the simplest examples of sequences of increasingly informative obser-

vations. Examples (c)—(f) in Table 3.1 refer directly to standard se-

quences; the binomial distributions (a) can be regarded as the distri-

bution of the sufficient statistic >) x, of the standard sequence x(n)
in which each x; takes the values 1 and 0 with probabilities p and 1 — p,
respectively (cf. Exercise 7.4.1); again, if each x; is Poisson-distributed

with parameter u, then >> x; is sufficient for x(n) and is itself Poisson-

distributed with parameter nu. Thus, all the examples in Table 3.1
give rise more or less directly to examples of standard sequences.

In speaking of standard, and occasionally of other, sequences the

ellipsis of referring to a sequence of estimates simply as ‘‘an estimate’”’

has been widely adopted, so one reads recommendations that ‘“‘an es-

timate’ should be consistent or efficient. This ellipsis, though often

convenient, sometimes proves dangerous. It distracts from the fact

that a person is called upon to make an estimate, not a sequence of es-

timates; so that the question of what constitutes a good sequence does
not arise. Again, it makes one feel that if an estimate, say 113, has been

 

n—
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defined for x(13), then the definition of 1,4 is thereby implied. Onefor-

gets, for example, that ‘‘the’’ average of n observations is a whole se-

quence of statistics, a sequence singled out by human tastes and in-

terests, rather than by any mathematical necessity. In short, the

ellipsis establishes the atmosphere of the logically nonsensical (though

perhaps psychologically revealing) questions on intelligence tests such as:

‘‘What are the two missing terms in the sequence ____ 18281828?”f

The recommendations of consistency and efficiency quoted above can

be added to the numberedlist of suggestions, in a form that avoids the

ellipsis:

8. If each l(n) is a good estimate for the corresponding x(n) of a

standard sequence, then the sequence I(n) is consistent.

The sequence of maximum-likelihood estimates of the sequences of

problems (a), (c)-(f) are consistent; and, for the sequence of problems

of estimating from an observation y, Poisson-distributed with parame-

ter nu, the maximum-likelihood estimates y,/n are consistent.

If there is one consistent sequence of estimates, for a sequence of

problemsthereis a plethora. Each term of a consistent sequence can,

for example, be multiplied by (1 + n—”) without destroying consist-
ency. Again, the sample medians f{ are in (c) a consistent sequence

different from the sequence of maximum-likelihood estimates.

9. Under the hypothesis of Criterion 8, the sequence 1(n) is efficient,
at least if any efficient sequence of estimates exists.

The six sequences of maximum-likelihood estimates mentioned under

Criterion 8 are all well known to beefficient, as sequences of maximum-
likelihood estimates for standard sequences typically are. The asymp-
totic variances and certain other interesting quantities associated with

these six sequences are presented in Table 1. It is remarkable that,

for each of the examples in Table 1, the expected values of the estimates

approach the estimated parameter; n times the variance of the esti-

mate, and n times the expected squared error, both approach the asymp-

totic variance of n” times the error. For the first five examples the

relations mentioned hold, indeed, not only in the limit, but exactly,

for all n. All six examples are rather special, or magical, but the limit-

ing relations Just mentioned may fairly be expected to hold in some

generality, though they are not (as has already been mentioned) really

implied by the asymptotic normality of the sequence of errors times

n”. To illustrate the exceptions that can occur, | z | is, in (c), the

{ ¢ = 2.7182818285 to eleven significant figures.

{See any statistics text for definition, if necessary.
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maximum-likelihood estimate of | Ls |? for u» ~ 0; this sequence of es-

timates is efficient; and n”(| @|—! — | «|—!) is asymptotically normal
about zero with asymptotic variance u—*; but the other three entries

for Table 1 are infinite in this example.

TABLE 1. EXAMPLES OF BEHAVIOR OF MAXIMUM-LIKELIHOOD ESTIMATES

 

 

Asymp-
n X expected totic

Sequence Mean n X variance square of variance
error of n”% xX

error

(a) p pq pq pq
Poisson pn Ub Ub iv Ub

(c) iv 1 1 1

(d) o” 20% 204 204
(e) U o” o” o?

(f) (1 - =) o 2(1 - =) o* (2 - =) o* 204

As in the case of consistency, where there is one efficient sequence,

there are many, but efficiency is, of course, a much more restrictive

property than consistency. For example, multiplication by (1 + n~”)

typically destroys efficiency, though multiplication by (1 + n—') never
does. Again, the consistent sequence of medians mentioned under Cri-

terion 8 is not efficient. Indeed, it is well known of that sequence that
the sequence of errors times n” is asymptotically normal about zero

with asymptotic variance 7/2 rather than 1.

 

5 A behavioralistic review of the criteria for point estimation

It is time now to introduce the notion of consequences, or (equiva-

lently, I believe) of loss, thereby interpreting estimation problems as

decision problems. Let it be said then that an estimation decision prob-

lem is an observational decision problem with the following distinguish-

ing feature. There is a one-to-one correspondence between the basic

acts f and the values attained by a real-valued function A(z), such that

Lc; 2) = 0, if f is the act that corresponds with A(z). It is simpler,

more suggestive, and harmless to let the number / that corresponds to

f replace f itself in all further discussion of estimation decision problems.

To illustrate the new notation, it may be said that L(l/;7) = 0, if l = A(z).

I believe that any situation ordinarily said to call for (point) estima-

tion can be analyzed as an estimation decision problem. For example,
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estimating how much paint will cover a wall may, depending oncir-

cumstances, mean deciding: how much paint to buy, what to bid for a

contract, or what number to enter in a guessing pool. Under each of

those interpretations there will be zero loss, if and, typically, only if

the estimate is ‘‘correct,’’ as one says.

The consequences of an estimate may, like those of many real life

decisions, be difficult to appraise. It is hard to say even in relatively

concrete situations what it will cost to misestimate the speed of light,
a particular mortality rate, or the national income. If, to revert to an

example already discussed, the estimate is to be published somewhere
for the use of whoever has a use for it, the consequences of publication

may seem beyondall reckoning. None theless, I reaffirm the convic-

tion that the concept of consequence measured in income or loss is

valuable in dealing with such situations, as I hope the present treat-

ment of estimation will illustrate Incidentally, it seems indifferent,

as I have already said, whether loss or incomeis taken as the starting
point. It is easily shown that the decisions of the idealized person of
the personalistic probability theory will be the same in two problems

having possibly different income, but the same loss, functions. This

feature I would expect to be acceptable even to objectivists, and I

also think it appropriate to theories of group decision.

I know of nothing interesting that distinguishes estimation decision

problems as a class from observational decision problems generally.

But actual estimation situations suggest certain relatively wide classes

of estimation decision problems about which interesting and valuable

conclusions can be drawn. Indeed,it will be shownin this and the next

two sections that seven of the nine listed criteria for estimation can be

justified to some extent as flowing from application of the principle of

admissibility and the minimax rule to such classes of estimation de-

cision problems.

Before making any real specialization, it may be most systematic to

mention that Criterion 1 is simply an instance of the general principle,

which we have now studied from several points of view, that nothing
is lost by confining attention to sufficient statistics, at least if mixtures

are allowed.

It is clear in almost any estimation situation, even in those for which

the notion of Joss is vaguest, that if two errors have the same sign the

larger entails at least as great a loss as the smaller. Analytically,

(1) L(l; 1) < LW; 2)

for \(7) <1 <I’ and for A\@) > 1 > 1’. Situations to which (1) fails
to apply can readily be imagined. William Tell, for example, in esti-

+ This idea was expressed by Gauss (1821, Section 6).
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mating the angle by which to elevate his cross-bow for the apple shot

might have preferred a downward error of 10° to one of 1°; but such
circumstances seem exceptional. Furthermore, it is usually justifiable

to assume that strict inequality holds in (1), though there are many

exceptions in which, for example, ‘‘a miss is as good as a mile” or one

hit is as good as another.
As is, I think, intuitively evident, when strict inequality holds in

(1), Criterion 3 is simply an application of the principle of admissibility.

That conclusion can be shown in complete generality without serious

difficulty, but, in compliance with the usual mathematical limitations

of this book, it will here be shown only under the assumption that x

is confined to a finite number of values.
Whatis to be shownis this: If 1 and I’ are a pair of estimates satisfy-

ing the hypothesis of Criterion 3, and if (1) holds with strict inequality;

then Lil; 7) — L(’; 7) < 0 for every 7, with strict inequality for some

1. To begin the proof calculate thus:

(2) LA;2) — LW;2) = LG; d[Pd@) = 1| BY) — PU(2) = 1| Bd]
l

> Lil; )Q(; 7)
l

~ LU, )AG)+ VLGa; 4),
L<d(Z) L>X(z)

where the definition of Q(l; 7) is clear from the context, and whereit

has been taken into account that L(A(2); 7) = 0. It will be shown that

both sumsin the last part of (2) are non-positive and that for some 7 at

least one of them is negative. Focus, for definiteness, on the second

sum. Let Jo = A(z) and 1, le, --- be, in order of increasing magnitude,

the values of / > A(z) for which Q(l; 7) ~ 0. With the abbreviations

L(k) =pr LU; 2), ACK) =pe L(A) — L(k — 1), and Q(k) =vr Qh; 2),
the sum to be investigated is

(3) >» LQ = >) Qk) DI Ak’)
0<k 0<k 0<k’ sk

= 2) Ak’) DD Qh).
0 <k’ ke k’

(This rearrangement may seem bizarre on first encounter, but it is

widely used in mathematics generally and is in fact an exact analogue,

for sums, of the more familiar integration by parts, for integrals.) It

follows from (1) read with strict inequality that A(k) > 0; and it fol-

lows from the hypothesis of Criterion 3 that Q(k) < 0, and that some
Q(k)—or an analogous term associated with the first sum in the last
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line of (2)—1is strictly negative for some 7. This completes the deduc-

tion of Criterion 3 from the strict form of (1) and the principle of ad-
missibility. Essentially the same argument leads from (1) as actually

written to the modification mentioned in the note under Criterion 3.

A very slight strengthening of (1), together with the minimax rule,

provides a widely applicable justification of Criterion 8 (consistency),

as will now be explained. Suppose that (1) not only holds but also is

strict, if J = A(z); that is, in addition to (1) suppose only that L(l’; 7)

> 0 for all l’ ¥ A(z). In this context, let x(n) be a sequence of obser-

vations such that the minimax L*(n) of the corresponding estimation

problems approaches zero with increasing n; then any sequence of mini-

max estimates l(n) is consistent. Indeed, if the sequence l(n) is not

consistent, then, for some 7, and somepositive e and6,

(4) P(| U(an;n) — Ma) | > €| Bi) > 6
for somearbitrarily large values of n. This implies

(5) L*(n) = Lil(n); 7) = 6 min {LA(2) + €; 2), LAG) — €52)} > 0,

which contradicts the hypothesis.

Turn next to Criterion 5 (symmetry). Suppose that the estimation
decision problem has symmetry in the sense defined under Criterion 5.

That does notin itself really call for estimates with the same symmetry.

But, if ZL also has the symmetry, that is, if D(A(2’); 7) = LACT’); T2)
for all appropriate 7’, then the discussion of symmetry in § 12.5 sug-

gests that typically there is, at any rate, a symmetrical, admissible,

minimax estimate. Whether LZ has the requisite symmetry is a ques-

tion that can often be answered without detailed knowledge of L.
It is often justifiable to suppose that the function L(l; 7) is smooth

enough to be differentiated twice with respect to J, at least when | is

near A(z). This condition, though very often met, is not quite so de-

void of content as it may seem to a reader brought up in the tradition

that it makes no practical difference whether a function has a few sharp

corners because they can always be rounded off with almost no change

in the function. If, for example, Z(J; 7) is for all practicable purposes

equal to |7 — |; then L cannot be regarded as differentiable even
once when / = 4, and the theory to be developed here for twice differen-

tiable L(l; 2)’s in the presence of extensive observation does not apply.

It will therefore be useful to digress to the consideration of an example,

illustrating how corners can arise and the phenomenathat tend to round

them off.

Suppose that a person must estimate the amount \ of shelving for

books, priced at $1.00 per foot, to be ordered for some purpose. It is
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possible that the following economic analysis of the situation would be

sufficiently realistic. The person holds every foot of shelving less than

the numberof feet, A, uf books to be shelved to be worth $a, a > 1,

but superfluous shelving he holds to be worthless. Formally,

(6) Ll; dA) = (a -DA-D) forl <A

= (1 — X) for! > X.

There is then a corner, or kink, at 1 = ); so differentiation, even once, is

impossible.

But the following analysis is much morelikely to be sufficiently real-

istic. The urgency of the shelving of the books is variable. Some would
be worth shelving, even if the cost of shelving were very high; at the

other extreme, there are some that would not be worth shelving unless

the cost were very low. More fully, the value of / feet of shelving is a

function 7(l) that presumably has the following features. It is mono-

tonically increasing, strictly concave, and twice differentiable in 1;
1(0) = 0; (0) < 0; 7’(0) > 1. The income attached to ordering L

feet of shelving, at the price $1.00 per foot, is clearly

(7) I(l; 4) = i(l) — 1.

It is maximized at the one and only value \ for which di(A)/dA = 1, so

that

(8) Lil; 2) = [(A) — A] — fe) — JO,

which is of course twice differentiable in 1.

The moral of these two possible economic analyses of one exampleis

of wide applicability, as is well known among economists. Where a

superficial analysis suggests a kink, or even a discontinuity, in an in-

come function, deeper analysis will often show that the function is

smoothed out by various economic phenomena such as the inhomo-

geneity and the mutual substitutability of commodities.

To return from the digression, if L is twice differentiable in / (at

least when / is close to A), L can be expandedin a Taylor series thus:

@) Lis) =L0;)+0-N=G9

 

l=) (7)

2

$idSLGa) —+o-»)
2 az?" l=) (12)

 

where, following standard usage, o((J — )”) is a function of J and 7, not

necessarily the same fromone context to another, such that o((J — A)”) +
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(1 — \)? approacheszero as 1 approaches A(z) for fixed 7. The first term

on the right side of (9) vanishes by the definition of estimation; the
second must vanish also, for otherwise L could be negative. Therefore,

2

(10) Ll; 7) = , (1 — n)? = L(I; 1) + o((1 — d)?)
2 al l=)

= (1 — X(2))*a(z) + o((l — d)?),

where a(z) is defined by the context.

In view of (10), it is plausible that L may, in many problems where

estimates of great accuracy are possible, be supposed to be practically

of the form

(11) L(l; i) = (1 — A(2))’a(2),

where a(z) > 0 for every 7. This does not exactly mean that a reason-

able LZ can be closely approximated by functions of the form (11) for

all 7. In particular, the absurd assumption that L is unbounded (which

such approximation would typically imply) is not to be made. It means,

rather, that under favorable circumstances (11) may lead to a reason-

ably good evaluation of L(1; 7). In so far as the form (11) can be sup-

posed adequately to represent L, Criterion 2 is obviously an applica-

tion of the principle of admissibility. An interesting discussion and
application of (11) is given by Yates [Y2].

6 A behavioralistic review, continued

Thus far, Criteria 1, 2, 3, 5, and 8 have been discussed in behavioral-

istic terms. In fact, under suitable hypotheses, each has been found to

have considerable behavioralistic justification. Criteria 4 and 9 also

have such justification, but my discussion of them is so bulky it had

better be isolated in a special section. As for Criteria 6 and 7, the only
ones remaining, they do not seem to me to have anyserious justifica-

tion at all, as will be discussed in still another section.

Criterion 4, the recommendation of maximum-likelihood estimates,is

of extraordinary interest, for, of all the criteria of the verbalistic tradi-

tion, it is essentially the only one that selects a unique estimate in al-

most every estimation situation of practical importance. The present

section demonstrates that, in the presence of extensive observation,

maximum-likelihood estimates are often almost minimax estimates; it

also gives some analysis of Criterion 9, which refers to efficiency. The

way to these goals is roundabout; it begins with a study of information

in the technical sense mentioned in § 3.6. In this section it will be as-
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sumed for mathematical simplicity that each observation under discus-
sion is confined to a finite number of values, each having positive prob-

ability for every element of whatever partition is under discussion.

If B; and B; are elements of a partition, not necessarily finite, and x

is an observation, say, in the spirit of (3.6.11), that the information of

7 relative to 1 for the observation x is

rj
B;) = —E log —| B;}-

r;

The expression of J in termsof likelihood ratios is important, especially

for the extension of the discussion to more general observations than
those contemplated here. The reader should, therefore, try to bear in
mind that the whole discussion could be carried on in terms of likeli-
hood ratios; I refrain from so doing only for momentary reasons of no-
tational convenience. The theory of J can conveniently be presented

in a series of exercises.

P(x | B;)

P(x | Bi)

 

 
(1) J(t,j;x) =pe -B (tog

Exercises

la. If y is a contraction of x, then J(7,7;x) > J(t,j;y). With equality

when? Hint:

 

P(x B; Py B;
(2) -B (tog P(e!Bi) i ) > —log Pu!By

P(x | Bi) Pty | Bi)

lb. J(t,7;x) > 0. With equality when?

2a. If xX}, ---, X, are conditionally independent, then

(3) T(t, 5; 1, +++, Xn) = LEI(6, 5; Xe)

2b. If in addition the x,’s are conditionally identically distributed,

then

(4) J(i, J; Xi, °°"; Xn) = nJ(1, J; X}).

It is interesting to evaluate the information J(\, \ + Ad; x) where A

and \ + Ad are two closely neighboring values of the parameter of an

estimation problem, supposed, for simplicity, to be free of nuisance
parameters. If P(x | A) is continuous in X, it is almost obvious that

J(A, \ + AA; X) approaches zero as Ad approaches zero. If P(x | A) 18

differentiable in , it is easy to show further (considering that J is non-

negative) that even J(A, 4 + Ad; x)/AX approaches zero as AA ap-
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proaches zero. But in this case much more can and will be shown,

namely,

 
(5) i J(A, A + AA; xX) 1 HO

i =— >x
Moo An? 2

1 0 log P(x \)\?

2 On

 

The function H is generally, following Fisher, called information, but

here we had better call it differential information. Chronologically, as

explained at the end of § 3.6, the concept of differential information is

older than that here called simply information and of whichit is, ac-

cording to (5), a limiting case.

The demonstration of (5) begins with the consideration that

  

 

 

(6) log (1 + ) = ¢ — $@ + o(#?).

Therefore,

P(z|’+ Ar) | | P(x| + AA) — P(x| »|
(7) log Pald) = log ;1+ Paty

- [Pee d+ Ad) — P(x | »|

7 P(x| a)

1 PEIN a) — Fein} 9
_ =| Pal y + o(And*).

Since the expected value given \ of the term in the second line of
(7) is easily seen to be exactly zero, it will be tactful to leave that term

alone; but the second may be approximated thus:

 
Pein +o) PEIN" [Rerel i

°) | P(x |») ~

|

P(w| a) ar F (AN)
2

= ayo 210FEIN) + 0(AX?).

Therefore,

(9) J(A, \ + AA; x) = GH(A; x)Ad+ 0(Ad’),
which establishes (5).

More exercises

3. If the kth derivative (k > 0) with respect to \ of P(x | A) exists
for every x, then

(10) E( = P(e|2) |) = (EPel») =o.
P(x |-n) ar*
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4. If the requisite second derivative exists, then
Q”

(11) H(\;x) = -2(5 log P(x | d)| \).

5. If y is a contraction of x (and H(A; x) is well defined), then H(A; y)

< H(A; x).

Remark: The inequality is obvious in the light of Exercise la and the

first part of (5). But it can also be derived from the following applica-

tion of Theorem 1 of Appendix 2, which is useful in the next exercise.

2119) 1 PIN)" 2( 1 PEIN|»)

Piy|d) an P(x|d) aa

wr),

( 1 aP(z| a
<E

P(z|r) aa

0
with equality for every y and X, if and only if an log P(x | \) can be ex-

  

 

 

pressed as a function of y and alone.
6a. If y is a contraction of x, H(A; x) = H(); y) for every ); if and

only if y is sufficient for x.
6b. H(A; x) = 0 for every X, if and only if x is utterly irrelevant.

7a. If x1, --+, X, are independent given A, then

(13) H(A; X1, +++, Xn) = 2, H(A; %).

7b. If, in addition, the x,’s are identically distributed given \, then

(14) H(a; Xr, ° °°; Xn) = n(n; X}).

8. If 1 is a real-valued contraction of x, and H(); x) is well defined,

then

 

(a)
d@ _ d log POY| )

(15) > E(1| \) = B (uw oD r

(b)

— ]?7|\)AA;) > |<a |(16) E({l x? | HA; = >

with equality if and only if

é
(17) > 108 P(l| xX) = @— Nk

for some constant k. Hint: Use Exercise 3 and apply the Schwartz in-

equality to (15).



238 POINT ESTIMATION [15.6

(c) If H(A; x) > 0, then
2

(18) B(0 — »P| a) > | E(i| | /H(d; x).

Exercise 8c is an important, and now famous, inequality. It, together

with its n-dimensional generalization, has been called the Cramér-Rao

inequality because of its independent publication by Rao and Cramér
in 1945 and 1946 respectively (see [H6]). But the nameis not atall

well justified historically. Fréchet presented the inequality in 1948

[F8], and Darmois extended Fréchet’s inequality to » dimensions, at

least for unbiased estimates, in a publication [D1] not later than Rao’s.

The inequality has also, though I think erroneously, been attributed to

an early paper by Aitken and Silverstone [A1]. and to one by Doob

[D10]. My point is, of course, not to give a definitive history of the in-

equality, but merely to suggest that for the time being an impersonal

name would be better. I tentatively propose calling it the znformaton
inequality. Some recent references pertinent to the information in-

equality and other topics treated thus far in this section are [W15],

[M5], [C6], and [H6]. The techniques used in the remainder of this

section, which revolve around the information inequality, were pub-

lished posthumously by Wald [W5].

The information inequality has an important bearing on application of

the minimax rule to estimation, of which the following theorem may,

in view of (5.11) be taken asa first illustration.

THEOREM 1

Hyp. 1. For every ) in a closed interval of length 6, H(\; x) < H,

where H is a constant.

2. 1is a real-valued contraction of x.

%, 2\”?
CONCL. For some J in the interval, E((1 — )? | A) = (x‘nn ;] ,

Proor. Suppose that the theorem is false. Then according to Ex-

ercise 8c,

(19) 1> w*(H* +2)> |< za »)
5 dd

for every \ in the interval. Therefore,

2
(20) ° [\

—

E|»)] > 1-4” (1 + ‘\-TF
dn 5 (5H+ 2)
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for every \ in the interval. Therefore, at one end of the interval or
the other,

2 5 \—}
21 \ — E(1| \)| > —————_- -- = (H” -)(21) | (1 A) | GHA 4D 2 ( +;

This leads to a contradiction through the well-known inequality

(22) E(t. — a}? |) > {FA — a] a)}? =|a — FA] a)|,

which can be derived as a direct application of Theorem 1 of Appendix

2, or of the Schwartz inequality, or of the useful identity

(23) E((l— a}? |) = Vda) + (Fd -A]d)}2.@

In the remaining portion of this section, let it be understood that:

1. The x,’s are an infinite sequence of observations that are, given X,

identically distributed and independent.

2. x(n) = {x,, ---, Xn} forn = 1, 2, ---.
3. l(n) is a real-valued contraction of x(n).

The contraction I(n) is to be thought of as an estimate of \ based on

observation of x(n). In the spirit of the minimax theory it is really

mixed, rather than ordinary, estimates that should be treated here.

But this entails no essential change in the following discussion once it

is recognized that a mixed estimate is, in effect, an ordinary estimate

based on observation of y(n) = ps (I(m), x(n)), where x(n) is sufficient

for y(n), so that H(A; y(m)) = H(A; x(n)) forall A.

4. e and 6 are positive numbers.

5. Ao is a closed interval of length 6 contained in the range of \ and

including a given value Apo.

The next theorem shows that, if L(/; A) is of the form (5.11), L(l(n);

) cannot ordinarily be kept much smaller than a(Ao)/nH (Ao; x1) for

large n, even in a small interval about Ao.

THEOREM 2 If H(A; xX) is continuous and positive at Ao, and if

a(\) is a non-negative function continuous at Ao, then, for sufficiently

large n, E((I(n) — d)?a(d) | 4) > (1 — e)a(An)/nAH (Ap; X1) for some

rN & Ao.

Proor. There is no loss of generality in supposing that « < 1 and

Ao such that, for A Ao, a(A) > a(Ao)(1 — 62)” and H(A; x,)% <
H(do; ¥1)% [1 + (1 — €)~*]/2. Using Exercise 7b,

ns
(24) H(\; x(n))* = nH(5 m1)" S — H(do; m1) ll + (1 —4
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for XeAo. By Theorem 1, if n > 16/6?H(Xo; x;)[(1 — 6)~* — 1],

then
% ) —2

(25) E(I(n) — »)2] a) > “S H(do; x) {1 + (1 —4] + “|

(1 — 6)”

~ NH(Xo; X1)
for some A ¢ Ap. @

The next theorem extends Theorem 2 to practically any loss function

that is twice differentiable in / for 1 and X close to Apo.

THEOREM 3

Hyp. 1. H(A; X,) is positive and continuousat Xo.

2

2. a(A) =pr -— Lil; v is continuous at Apo.Q) =ves sah d)| 0

3. Inequality (5.1) holds for \ in Ao.

CoNCL. Forsufficiently large n, L(I(n);r) > (1 — €)a(Ap)/nH(Ao; X1)
for some A é€ Ag.

Proor. It may be supposed without loss of generality that « < 1;

and that, for 1, \ ¢ Ao, L(l; A) > (1 — €)“a(a)(I — A)?.
It may also be supposed that I(x; n) ¢ Ap. This is so, because it would

suffice to prove the theorem for a new estimate I’(n), where l’(x; n) is

defined to be the number in Ag closest to l(x; »), which in turn follows

from the fact that L(’(n); A) < L((n); d) for A € Ao.

These suppositions having been made, the theorem is a direct con-

sequence of Theorem 2. @

CoROLLARY | If L(l; \) satisfies (5.1) and has two derivatives with

respect to / continuous in A for every \ and for every / sufficiently close

to A, and if H(A; x,) is continuous and positive, then, for sufficiently

large n,

(26) L*(n) > (1 — €) sup a(A)/nH(; x,),

where L*(n) is the minimax value of the estimation decision problem

derived from L(l; \) and x(n), unless the supremum in question is in-

finite, in which case nL*(n) approaches infinity.

Of course, it would be enough to assumeonly that L(J; \) and H(A; x;)

are well behaved at some sequence of values of \ on which the supremum
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in question is approached. In particular, if the supremum is actually

attained at some \, they need only be well behaved there.

Now, turning to the sequence of maximum-likelihood estimates, let

them be denoted for the moment by I(n). It is known that under

rather general hypotheses n”*(i(n) — d) is asymptotically normal about

zero with asymptotic variance 1/H(A; x,).{ This suggests, and ex-

amples tend to confirm, that, under some supplementary conditions,

 27 lim nE((i(n) — )?) =(27) im ((I(n) d)*) Hacx,)

Indeed, one set of conditions implying (27) is stated in [W5], but one

that seems difficult to apply. It can be shown that (27), together with

the usual asymptotic behavior of 1(n), implies

. : a(n)
(28) lim nL(1(n); A) = ————__

n— H(; x1)

provided, for example, that L(l; \) is bounded for each A and that the

second derivative of L(l; \) with respect to / exists when / = dX. Easily

applied rigorous theorems implying (28) much less (27) do not seem to

have been formulated yet; but examples suggest that, under conditions
general enough for many applications, (28) actually does hold uni-

formly, in the sense that, for n sufficiently large,

1— r - 1+ »
(29) C=920) < iin); ) < SLE

nH(v; X1) nH; X;)

for all X simultaneously. If (29) holds, then, in view of Corollary 1,
1(n) is nearly minimax for large n, in the sense that

(30) L*(n) > (1 — €) sup L(I(n); a).

Good examples can be based on (a) of Tables 3.1 and 4.1, letting

Lil; p) be any loss function having two continuous derivatives in |

throughout 0 <1, p< 1. In particular, the example discussed in

§ 13.4 arises, if L(l; p) = (1 — p)*®. It can be argued that the phenome-
non discussed in connection with that example is probably not rare;

+ Some key references for the asymptotic behavior of T(n) are [K2], [C9], [L3],

[W16], [N4]. The literature on this subject is extraordinarily complicated. There

are acknowledged mathematical mistakes in someof its most sophisticated publica-
tions; others prove much less than any but the most attentive reader would be led
to suppose; few give an adequate statement of their relations to their predecessors;

and those that make serious pretentions to rigor involve complicated hypotheses.

For documentation of this lament see [N4], [W4], and [L3].
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because, for minimax I(n), L(1(n); A) is, Judging from examples, often

constant and, therefore, nearly equal to sup a(A)/nH(A; x1), but L(1; A)
r

closely follows the rise and fall of a(A)/nH(\; x;).
Turn now to Criterion 9, efficiency. It seems difficult to defend the

criterion as it has been defined in connection with (4.8); for what vir-
tue is there in the asymptotic normality required by (4.8)? It is per-
haps noteworthy that the sequence of minimax estimates, p(n), aris-

ing in connection with § 13.4 does not satisfy (4.8). Indeed, (13.4.3)
implies that n”(pi(n) — p) is asymptotically normal not about zero,

but about (5 — p).

It is my impression that the essence of the efficiency concept resides

not in asymptotic normality, but in the overall behavior of the mean

square error of a sequence of estimates. I therefore propose tentatively

to modify the definition and to call a sequence of estimates 1(n) effi-
cient, if and only if its mean square error behaves at least as well as

can typically be expected for a sequence of maximum-likelihood esti-

mates.

Formally, I propose to call 1(n) efficient, if and only if, for n suffi-

ciently large,

(31) (Mn) — xP) < S12
nH(A; X1)

for every \ simultaneously.

I think the main objection that is likely to be raised to this proposed
definition is associated with the possibility that in some problems of

theoretical, and perhaps also of practical, importance (31) is not satis-

fied by any sequence of estimates whatsoever, though the maximum-

likelihood sequenceis efficient in the ‘‘official’’ sense. In such a prob-

lem, are the maximum-likelihood estimates not as good forall practical

purposes for sufficiently large n as though their variances were actually

equal to those of the normal distributions to which they approximate?
It is natural to think so by analogy with other contexts in the theory

of probability, but approximate normality is actually no substitute for

(31) in the present context. The next paragraph is devoted to an ex-

ampleillustrating the inadequacy of asymptotic variance as a measure

of asymptotic loss. It can be skipped without loss by anyone not in-

terested in such technicalities.
The best example I have been able to construct is derived from a se-

quence of observations that is not a standard sequence. Whether the

interesting features that it exhibits can actually be realized by standard

sequences, I do not know; but the example will do to illustrate the is-

sue. Let y(n) be any real random variable subject to the density
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no((y — \)n”; n), defined thus: ¢(z; n) is the standard normal density

inside the interval [—6(n), 5()], 6(m) being such that the standard

normal probability of this interval is (1 — n~!); ¢(z; n) = 2776(2n)/4
for 6(2n) <|z| <n”; $(z; 7) is so defined elsewhere as to be a sym-
metric positive probability density with the first two moments finite,

with a bounded derivative approaching zero like z~* with increasing z,
and with unique absolute maximum at z = 0. It is evident that n”
(y(n) — d) is asymptotically normal about zero with unit variance.

The information H(A; y(n)) is well defined (even according to the strict

conditions imposed by Cramér, Lemma 1, Section 32.2 of [C9]). The

maximum-likelihood estimates of \ are y(n), and these are also (accord-

ing to Theorem 3.3 of [G1]) minimax for the simple quadratic loss

function (J — \)?. But

(32) E(ly(n) — A? |) = E(y(n)? | 0)
1

> 2n7 f y*o(yn™; n) dy
5(2n)n—4

= in] _ §(2n)n—”*| 6(2n),

which does not satisfy (31). Even for the bounded, and therefore more

realistic, loss function,

(33) L(l; x) = min {1, [2 — }*},

it follows easily from Theorem 3.3 of [G1] that every estimate must

somewhere incura loss at least as great as the lower bound established
by (32). To summarize, there are no estimates efficient in the sense
of (81), nor even in the sense that would arise from (31) on replacing
the simple quadratic loss function by a bounded loss function; the se-

quence of estimates y(n) is efficient in the official sense, so to speak,

but does not, of course, result in losses of the order of n7!.

What can besaid in positive Justification of the criterion of efficiency

as defined bv (81) or the like? Roughly, the elements of such a se-

quence nearly dominate every estimate for every smooth loss function.

A little more precisely, for large n, the loss associated with an element

of a sequence efficient in the sense of (31) is at most larger by a small

fraction than that of any other estimate, except possibly in some short

intervals.t| The maximum loss of such an element is at most larger by

a small fraction than the minimax loss, so the elements of the sequence

are typically nearly minimax. Moreover, they typically have consid-

+ It has actually been demonstrated that the total length of these exceptional

intervals (within any fixed interval) is small [L3].
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erably smaller losses than any minimax estimate, except in short inter-

vals that are typically very improbable a priori in the personal sense.

Thus the principle of admissibility, the minimaxrule, and the personal-
istic concept of probability combine to suggest that efficiency as de-

fined by (31) is a promising guide in the search for good estimates.
An extensive critique of the concept of efficiency, including much

material on its history, has been given by LeCam in [L3], which unfor-

tunately was not available to me in its entirety as I wrote this section.

R. A. Fisher’s nameis the most prominent in the history of maximum-

likelihood estimation and efficiency. Some historical details are given

in [N4] and on p. 45 of Vol. II of [K2].

7 A behavioralistic review, concluded

Criteria 6 (unbiasedness) and 7 are now the only onesin thelist for

which I have not suggested some justification in terms of the theory of

decision problems, and, indeed, I cannot. Unbiased estimates fascinate

many theoretical statisticians, including myself, and the study of them

undoubtedly has certain valuable by-products. Yet it is now widely

agreed that a serious reason to prefer unbiased estimates seems never
to have been proposed.

Three weak defenses are sometimes heard. First, unbiasedness is as-

serted to have an intuitive appeal; whether it does or not depends, of

course, on the experience of the intuiter. Second, averages of increas-

ingly many unbiased estimates are typically consistent. If this is a

virtue, it is a limited one and pertains to the unbiased estimate not as

an estimate, but as a step in the definition of other estimates. Third,

an allusion is made to equity. If, for example, it has been agreed that
one party will buy a sack of sugar from another at so much per pound,

it seems fair that the nominal weight of the sack be determined by un-

biased estimate. This ethical conclusion could perhaps be given some

justification in terms of approximately linear utility functions or a long-

run argument, though there is danger of falling into such pitfalls as the

conclusion that accuracy is unimportant for equity; and it might find

some application in the theory of barter; but it seems, at best, tangen-

tial to estimation in the sense of the present chapter.

For a proper appraisal of the criterion of unbiasedness it should be

realized that, even if \) admits an unbiased estimate, many not-at-all
pathological functions of \ (which can in turn be regarded as parame-

ters), may fail to do so and that such unbiased estimates as \ does admit
may be preposterous. ‘These phenomena are both illustrated by the

following simple example. Let x be confined to two values, say 1 and

2; let PU | 1) =1-— PQ | \) = A; andlet \ be confined to the interval
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[1/3, 2/3]. Then, by definition, 1 is an unbiased estimate of ¢(A), if
and only if 1(1)A + 1(2)(1 — A) = 1(2) + (11) — U(2))A = o(A)—a con-
dition that can be met,if and only if ¢ is linear. Suppose, for example,

#(A) = J for every A, then /(1) = 1, 1(2) = 0 defines the only unbiased

estimate of ¢(A). This estimate is worse, according to an emphatic

variant of Criterion 3, than the biased estimate I’ such that l’(1) = 2/3

and 1'(2) = 1/3; for Il’ (whenit errs at all) errs in the same direction as

1, but never nearly asfar.

As for Criterion 7, it is on first encounter appealing to postulate that,

if 1 is usually closer to \ than I’ is, then 1 is better than 1’. But, speaking

at least for myself, the initial appeal of Criterion 7 seems to have been

bound up with the conjecture that Criterion 7 is in some sense of the
same sort as Criterion 3. The example given under Criterion 7 almost

entirely evaporates the conjecture, and with it the appeal.

In the paper [P5] in which thecriterion is put forward for considera-

tion and exploration, Pitman mentions that the criterion seems ac-

ceptable in contexts where ‘‘the devil takes the hindmost.”’ This allu-

sion to the devil seems to offer no justification for the criterion as a cri-

terion of estimation, for I understand the allusion to refer only to the

following kind of decision problem, which is quite remote from estima-

tion as ordinarily understood and is hardly ever encountered: A person

must choose between | and 1’, winning a prize if the estimate of his

choice falls closer to \ than does the other one.

According to Pitman, the relationship of “better than,” or ‘closer

than”’ as hecalls it, defined by Criterion 7, is not necessarily transitive.

He argues, I think with someJustice, that this breakdown oftransitivity
does not in itself invalidate the criterion when the criterion is applied

to select the ‘‘best’’ from some prescribed class of estimates; but ‘‘best”’

cannot here be taken literally.

Criterion 7 is unusual in that it depends on the joint conditional dis-

tributions of pairs of estimates rather than on the distributions of each

estimate considered separately. On any ordinary interpretation of es-

timation known to me, it can be argued (as it was under Criterion 3)

that no criterion need depend on more than the separate distributions.



CHAPTER 16

Testing

1 Introduction

In principle, this chapter on the statistical process of testing (often

referred to more fully as making tests of hypotheses or significance

tests) might have been organized on the pattern of the preceding chap-

ter on point estimation: a statement of verbalistic ideas, followed by
motivation and criticism in terms of behavioralistic ideas. But I am
dissuaded from repeating that pattern by several considerations. It

would, in the first place, be needlessly repetitious. Thus, in the pres-
ence of the preceding chapter I need mention only in passing that suffi-

cient statistics and symmetry play the samerole in testing as in other

observational decision problems, and that a certain scheme of testing,

closely related to maximum-likelihood estimation, has asymptotic, or

large sample, virtues. Again, the pattern of the preceding chapteris

less attractive here, because the criteria for tests developed in the ver-

balistic tradition do not on the whole seem to have such satisfying be-

havioralistic motivation as do their counterparts in the theory of point

estimation. Finally, it is Inappropriate to attempt anything like a

complete list of verbalistic criteria for tests here, especially in view of

the availability of two excellent and mutually complementary keyref-

erences (Chapters 21, 26, and 27 of [K2]; and [L4]).

The organization actually adopted is this: First, testing andcriteria
for tests are discussed from a frankly behavioralistic viewpoint. In

this discussion ideas stemming from the verbalistic tradition are used

freely, and somecriteria of the verbalistic tradition are criticized. Sec-
ond, an attempt is made to analyze some of the important statistical

situations to which the theory of testing is ordinarily applied. It is

becoming increasingly recognized that many of these applications are

very crude, and that their replacement by sounder procedures consti-

tutes some of the most important and provocative statistical problems

of today.

Terms introduced in boldface in this chapter are among the most

frequent in ordinary statistical usage. The definitions given are in-

246
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tended to be in reasonable accord with that usage, but some small con-

cessions are made to the particular form in which the theory of testing
is expressed here.

2 A theory of testing

Verbalistically, the problem of testing means to guess, on the basis

of observation, which of two disjoint and mutually exhaustive hypoth-

eses obtains. Behavioralistically, this would generally be agreed to
point to the definition: A é<sting problem is an observational decision
problem derived from exactly two basic acts fo and f;. These two basic
acts are called (for a reason that will soon be clear) accepting and re-

jecting the null hypothesis, respectively.
Considered abstractly as bilinear games, testing problems may, so

far as I know, have no special feature beyond the uninteresting one

that one of two f’s is appropriate to each 7. But, considered as obser-

vational problems, testing problems do present someinteresting special
features. In the first place, since at least one of the two basic acts is

appropriate to each 7, the set J of all 2’s can be partitioned into three

sets, Ho, Hi, and N, defined thus:

L(fo;t) =O and L(fi;7) >0 forze Hp,

(1) L(fp37) >O and L(fi;7) =O fori e Ay,

L(fo;7) = 0 and L(f;;7) =0 forieN.

Whenit is recalled that the 2’s correspond to a partition B; of S, the

sets Ho, Hi, and N may,with slight clash of logical gears, be regarded
as three events partitioning S. The traditional names of Ho and A,

are the null and the alternative hypothesis, respectively; NV, being quite
unimportant and often either ignored or made vacuous by sometrick
of definition, has no such name. Rejecting the null hypothesis when it

does in fact obtain and accepting it when it does not obtain are called

errors, more specifically errors of the first and second kind, respec-

tively.

A test is a derived act of a testing problem. A test may conveniently

be identified with the real-valued contraction z of the observation x,
such that z(x) is the probability prescribed by the test for rejection of

the null hypothesis in case x is observed. An unmixed test (which was

until recently the only kind contemplated) corresponds to a z confined

to the two values 0 and 1, which respectively imply outright acceptance

and rejection of the null hypothesis.
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Theloss associated with the test z when 7 obtainsis clearly

(2) L(z; 4) = Lo; )E(1 — z| 4) + Li; EC| 4)
= Li{f,; i)E(z | 7) fori e Ho

= L(fo;i)[1— E(7z|a)] forte Hy

= 0 forzeN.

The functions E(z | 7) and [1 — E(z | i)] are, respectively, the proba-

bility of rejecting and accepting the null hypothesis with the test z
when 7 obtains. There is obviously nothing to choose between them

in importance or convenience, each being equivalent to the other.

They are commonly called the power function, and operating charac-
teristic, respectively.

In view of (2), one test z dominates another z’, if and only if

E(z|\i) < E(z'|1) fori e Hp
(3) . ie .

E(z|1) > E(z | 2) for 7 ¢ Hy;

or, again, if and only if the probability of error with z’ is at least as
great as with z for every 7. Thus, dominance, admissibility, and equiv-
alence depend on the basic loss function, L(f,; 7), only in so far as that

function determines Hp and H,. This is not only remarkable but also

useful; for Hp and H,; may well be clearly defined in contexts where

the basic loss is vague, or otherwise ill determined.
If z is admissible in the spirit of (3) relative to a pair of sets Ho and

Hy, then (if ~ is for the moment admitted as a possible value for a loss)
there exists a basic loss function leading to Ho and Hy and having z

as its essentially unique minimax. Indeed,let

L(fp;}2) = (1 — E(z|a)}"! fori e Hy

= 0 elsewhere;

(4) . I ;L(f\; 2) = E(z| 7) for ie Ho

= 0 elsewhere.

With this loss and reckoning 0-« = 0 (as is appropriate here), L(z | 1)

= 1 or 0, according as there is or is not positive probability of making

an error at 2 with z. In view of (2) and (4), any minimax z’ not equiva-

lent to Z would strictly dominate z, contrary to the assumption that z
is admissible. The moral of that conclusion can be put thus: Without

special assumptions about the basic loss, the principle of admissibility
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and the minimaxrule lead to nocriteria expressible solely in terms of
Ho, H,, and the conditional distributions of the observation x other
than that of admissibility itself. Whether someother objectivistic prin-

ciple could justify such criteria may be considered an open question,

but, as I have already said (in § 15.1), no other general objectivistic
principles have been seriously maintained.

It is natural, for example, to demand that z have the same symmetry
as P(x | ?) and Hp and Hi; but that criterion can surely not be justified

at all, unless the basic loss is also assumed to have the same symmetry,
the justifiability of which in turn depends onthe case.
To take another important example,it is often proposed that a satis-

factory test must be unbiased,{ that is, its power function must never

be higher in Hp than in H,. More formally, the test z is unbiased,if
and only if

(5) E(z| tp) < E(z| i)

for every %) ¢ Hp and every 72; ¢ Hj.

Assuming that L(fp; 7) and L(f,; 7) are constant in H, and Hp,re-
spectively, it will be shown that any mmimax must be unbiased. As a

step toward that demonstration, consider a testing problem as a mini-

max problem, without any special assumption about the basic loss.

It is possible that L* = 0, in which case the minimaxtests areall equiv-

alent and all unbiased. Putting that possibility aside, I assert, and will
show, that (under the usual mathematical simplifications)

(6) max L(z; 7) = max L(z;7) = L*
te Ho 1é Hy

for any minimax z. It is obvious that neither maximum exceeds L”*,
and also that one or the other must equal L*. But suppose, for exam-

ple, that the second maximum wereactually less than L*, and consider

z’ = az with 0 <a< 1. According to (2), if z’ is substituted for z,

the first maximum in (6) will be depressed, and, for a sufficiently close

to 1, the second would remain actually less than L*, which contradicts

the assumption that z is minimax, establishing (6).
Now make the special assumption that

7) L(fo; 1) = A for 7 ¢ Hy

L(f1;7) = B for 7 ¢ Ho,

and suppose that z could be minimax but biased. There would then

} A definition unifying the various concepts of unbiasedness in statistics is put

forward in [L5].
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exist 79 ¢e Hp and 7; ¢ H; such that

(8) L* = L(z;%)) = BE(z|%) = A — AE(z| 71) = L(z; 14),

and such that H(z; t) > H(z; 7,;). But consideration of the test that

simply assigns to every + the number 8 midway between E(z; 79) and

E(z; 11) shows that z could not be minimax.
The condition (7) is a reasonable assumption in sometesting problems,

and, where (7) is satisfied, the criterion of unbiasedness has such sup-

port as the minimaxrule can give. In manyother typical testing prob-

lems, however, there are borderline errors that hardly matter at all but

can scarcely be prevented, and serious errors that can largely be pre-

vented. The following example, which can be varied to suit diverse

tastes, shows that it can be folly to insist on unbiasedness in such

problems.

Let 7 take the three values 0, 1, 2, and let x take the values 0 and 1
with conditional probabilities defined thus:

(9) P(0|0) = 99/100, P(O|1)=0, P(O|2) =1.

Let the basic loss be defined by the condition that 7 ¢ Hp or 7 ¢ Hy, ac-

cording as 7 = 0 or not, and by

(10) L(f,; 0) = 1, L(fo; 1) = 1, L(fo; 2) = 1/101.

Then

L(z; 0) = [992(0) + 2(1)]/100

(11) L(z; 1) = 1 — 2(1)

L(z; 2) = [1 — 2(0)]/101.

It is easily verified that the only minimax z* is defined by z*(0) = 0,
2*(1) = 100/101, and that L(z*; 7) = L* = 1/101 for every 7. But it

is also easily verified that the only unbiased tests are absurd in that

they ignore the observation x; they are in fact just those for which

2(0) = a(1).
It has until quite recently been said by many that attention should

be confined to tests such that there is a fixed probability a (called the

size of the test) of making an error of the first kind for every 7 ¢ Ho.

Indeed, the criterion of size has often been taken so seriously as to be
incorporated into the very definition of a test. Though many impor-

tant tests happen to have a size, others equally important do not; so

it now seems to be recognized [L4] that the possession of a size cannot
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be taken seriously as a criterion.t To take an everyday example, con-

sider the binomial distributions

101
(12) P(z| p) = ( ; ) wa — p=,

where the parameter p confined to [0, 1] plays the role of 7 and x = 0,

--+, 101; and suppose that Hp is the hypothesis that p < 1/2. A test
of size a is a test for which

100
(13) D 2(2)( . rae — p= =a

for all p < 1/2. This obviously implies

(14) D ete) - al (""(2)= 0
x 1—p

for all p < 1/2, whence z2(x) = a for every x. So only absurd tests

have size, in this example, though there are clearly tests here that are

quite satisfactory for many applications, for example, let z(x) equal 0

or 1 according as x < 50 or x > 50.

In view of the criticism just made, there is a tendency to redefine

size so that any test has a szze a, namely,

(15) a = pz max E(z| 2).
t&€ Ho

In terms of this definition of size, a concept of testing somewhatdiffer-

ent from that proposed in this section has been defined and defended

(Wald, p. 21 of [W3], and Lehmann, pp. 17-18 of [L4]; namely, it is
postulated that a test is to be chosen not from amongall possible tests,

but only from among those having size a (in the sense of (15)) given

as part of the testing problem.{ This concept of testing is not defended
to the exclusion of the one proposed here, but it is asserted by the

authors cited to be morerealistic for some problems. The argumentsof

both authors on this point are similar and, I think, quite weak in two

crucial places, for the advantage is supposed to flow in some unspeci-

fied way from the undemonstrated impossibility of comparing prefer-

ences for consequences of qualitatively different kinds. It seems,if I

may be allowed such a conjecture, that the concept of testing under a

| Statisticians interested in the Behrens-Fisher problem may be interested in pp.

35.173a—-b of [F6], which hinge on the question of size as a criterion.
t The constraint actually imposed, especially by Lehmann [L4], is that the size

be at most a. But, as Lehmann explains, this difference is more apparent thanreal.
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constraint of size represents a Procrustean attempt to fit the (older)

Neyman-Pearson theory of testing hypotheses too closely with the

(newer) minimax theory. It is not to be denied, of course, that there

may sometimes be a mathematical advantage in studying and compar-

ing tests of given size.

It should be mentioned, before concluding the subject, that any the-
ory taking size seriously introduces an asymmetry of the theory with

respect to Hp and A, an asymmetry that is surely not always appropri-

ate.

Significance level, or level of significance, is a synonym (neglecting

a slight distinction made in [L4]) of size, probably more widely used
than size itself.

3 Testing in practice

The theory of testing admits some fairly realistic applications, but
the present state of statistics is such that the theory of testing is in-
voked more often than not in problems on which it does not bear

squarely. This section discusses typical applications of the theory,

pointing out the shortcomings I am aware of.
The development of the theory of testing has been much influenced

by the special problem of simple dichotomy, that is, testing problems

in which Hy and Hihave exactly one element each. Simple dichotomy
is susceptible of neat and full analysis (as in Exercise 7.5.2 and in
§ 14.4), likelihood-ratio tests here being the only admissible tests; and
simple dichotomy often gives insight into more complicated problems,

though the pointis not explicitly illustrated in this book.

Coin and ball examples of simple dichotomy are easy to construct,

but instances seem rare in real life. The astronomical observations
madeto distinguish between the Newtonian and Einsteinian hypotheses

are a good, but not perfect, example, and I suppose that research in Men-

delian genetics sometimes leads to others. There is, however, a tradi-

tion of applying the concept of simple dichotomy to some situations to

which it is, to say the best, only crudely adapted. Consider, for ex-

ample, the decision problem of a person who must buy,fo, or refuse to

buy, f,, a lot of manufactured articles on the basis of an observation x.

Suppose that 7 is the difference between the value of the lot to the per-

son and theprice at which thelot is offered for sale, and that P(x | 1) 18

known to the person. Clearly, Ho, H,, and N are sets characterized

respectively by 1 > 0,7 < 0,72 = 0. This analysis of this, and similar,
problems has recently been explored in terms of the minimax rule, for
example by Sprowls [S16] and a little more fully by Rudy [R4], and by

Allen [A3]. It seems to me natural and promising for manyfields of
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application, but it is not a traditional analysis. On the contrary, much
literature recommends, in effect, that the person pretend that only two

values of 7, i9 > 0 and 7, <0, are possible and that the person then

choose a test for the resulting simple dichotomy. Theselection of the

two values zp and 7; is left to the person, though they are sometimes

supposed to correspond to the person’s judgment of what constitutes
good quality and poor quality—terms really quite without definition.

The emphasis on simple dichotomy is tempered in some acceptance-

sampling literature, where it is recommended that the person choose
among available tests by some largely unspecified overall consideration

of operating characteristics and costs, and that hefacilitate his survey

of the available tests by focusing on a pair of points that happen to in-
terest him and considering the test whose operating characteristic
passes (economically, in the case of sequential testing) through the

pair of points. These traditional analyses are certainly inferior in the

theoretical framework of the present discussion, and I think they will
be found inferior in practice.

To make a small digression, there is a complication in connection with

testing whether to buy that is not ordinarily envisaged by statistical

theory; namely, the economic reaction between the buyer and the sup-
plier. If, for example, the supplier knows the test the buyer is going

to apply, that knowledge will influence the quality of the lot supplied.

There seemsto belittle, if any, successful work oh the economic prob-

lem thus raised about the game-like behavior of the two people involved
(cf. pp. 331, 340, and 346 of [W6)}).

The problem whether to buy a lot obviously has many formal coun-

terparts in other domains. In some of them it is particularly clear that
purely objectivistic methods do not suffice. To illustrate, imagine two

experiments: one designed to determine whether it is advantageous to
add a certain small amount of sodium fluoride to the drinking water of
children, the other to determine whether the same amount of oil of
peppermint is advantageous. Granting that each of the two additions

can be made at the same cash cost for labor and material and that the
designs of the two hypothetical experiments differ only in the inter-

change of the roles of sodium fluoride and oil of peppermint, the corre-

sponding testing problemsare objectivistically completely parallel, that

is, the same with regard to loss function and conditional probability of

the observations. But it must be acknowledged, I: think, that the people

actually charged with the decision in either of these two cases would

and should take into account opinions they had before the observation.

For example, they might originally have considered it nearly impossible

that the oil of peppermint could result in any hygienic advantage large
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enough to compensate for even the small cost of its administration, but,

in view of recent dental researches on the subject, they might not have
considered it at all unlikely that the sodium fluoride should have an

overall advantage. In that case, parallel observations in the two ex-

periments would not always lead to parallel decisions. Objectivists
typically admit such a possibility but go on to say that it is unreasonable
to isolate the experiment and that it is the totality of information bear-

ing on the subject that should be treated objectivistically. If objectiv-

ists could give a more detailed discussion of how to deal with such a
totality of information, it might do muchto clarify their position.

I turn now to a different and, at least for me, delicate topic in connec-

tion with applications of the theory of testing. Much attention is given

in the literature of statistics to what purport to be tests of hypotheses,

in which the null hypothesis is such that it would not really be accepted

by anyone. The following three propositions, though playful in con-

tent, are typical in form of these extreme null hypotheses, as I shall call

them for the moment.

A The mean noise output of the cereal Krakl is a linear function of

the atmospheric pressure, in the range from 900 to 1,100 millibars.

B The basal metabolic consumption of sperm whales is normally
distributed [W11].

C New York taxi drivers of Irish, Jewish, and Scandinavian extrac-

tion are equally proficient in abusive language.

Literally to test such hypotheses as these is preposterous. If, for ex-

ample, the loss associated with f, is zero, except in case Hypothesis A

is exactly satisfied, what possible experience with Krakl could dissuade

you from adopting f,?
The unacceptability of extreme null hypotheses is perfectly well

known; it is closely related to the often heard maxim that science dis-

proves, but never proves, hypotheses. The role of extreme hypotheses

in science and otherstatistical activities seems to be important but ob-

scure. In particular, though I, like everyone whopractices statistics,

have often ‘‘tested’’ extreme hypotheses, I cannot give a verysatisfac-

tory analysis of the process, nor say clearly how it is related to testing

as defined in this chapter and other theoretical discussions. None the

less, it seems worth while to explore the subject tentatively; I will do

so largely in terms of two examples.

Considerfirst the problem of a cereal dynamicist who must estimate

the noise output of Krakl at each of ten atmospheric pressures between

900 and 1,100 millibars. It may well be that he can properly regard the
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problem as that of estimating the ten parameters in question, in which
case there is no question of testing. But suppose, for example, that

one or both of the following considerations apply. First, the engineer

and his colleagues may attach considerable personal probability to the

possibility that A is very nearly satisfied—very nearly, that is, in terms

of the dispersion of his measurements. Second, the administrative,

computational, and other incidental costs of using ten individualesti-

mates might be considerably greater than that of using a linear formula.

It might be impractical to deal with either of these considerations very
rigorously. One rough attack is for the engineerfirst to examine the

observed data x and then to proceed either as though he actually be-

lieved Hypothesis A or else in some other way. The other way might be

to makethe estimate according to the objectivistic formulae that would

have been used had there been no complicating considerations, or it

might take into account different but related complicating considera-

tions not explicitly mentioned here, such as the advantage of using a

quadratic approximation. It is artificial and inadequate to regard this

decision between one class of basic acts or another as a test, but that

is what in current practice we seem to do. The choice of which test

to adopt in such a context is at least partly motivated by the vague
idea that the test should readily accept, that is, result in acting as though

the extreme null hypotheses were true, in the farfetched case that the

null hypothesis is indeed true, and that the worse the approximation of

the null hypotheses to the truth the less probable should be the ac-

ceptance.

The method just outlined is crude, to say the best. It is often modi-

fied in accordance with commonsense, especially so far as the second

consideration is concerned. Thus, if the measurements are sufficiently

precise, no ordinary test might accept the null hypotheses, for the ex-

periment will lead to a clear and sure idea of just what the departures
from the null hypotheses actually are. But, if the engineer considers

those departures unimportant for the context at hand, he will justifiably

decide to neglect them.

Rejection of an extreme null hypothesis, in the sense of the foregoing
discussion, typically gives rise to a complicated subsidiary decision

problem. Someaspects of this situation have recently been explored,

for example by Paulson [P3], [P4]; Duncan [D11!, [D12]; Tukey [T4],
(T5]; Scheffé [(S7]; and W. D. Fisher [F7].

To summarize abstractly, I would say that, in current practice, so-

called tests of extreme hypotheses are resorted to when at least a little

credence is attached to the possibility that the null hypothesis is very

nearly true and when there is some special advantage to behaving as
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though it were true. One otherillustration will makeit clear that point

estimation is not essential to the situation and that belief in the approxi-

mate truth of the null hypothesis alone does not always justify testing.

Consider the personnel manager of a great New York taxi company.

Wishing, of course, that his drivers should be as proficient as possible,

he would, under simple circumstances, hire exclusively from the na-

tional-extraction group that had obtained the highest mean scores in a

standard proficiency examination; for why should he not be guided by

a positive indication, howeverslight? A statistical test of the extreme
Hypothesis C would not, therefore, be called for, as has been pointed

out in general terms by Bahadur and Robbins [B3]. Even strong be-

lief that ethnic differences are extremely small in the respect in question

would not alone be any reason for departing from this simple policy,

dictated by the principle of admissibility—quite in contrast to the ex-

ample framed around Hypothesis A. If, however, public opinion, a

shortage of labor, or administrative difficulty militates against any dis-

crimination at all, the manager may resort to a test based on the ex-

amination scores.

In practice, tests of extreme hypotheses are typically chosen from a

relatively small arsenal of standard types, or families, each family con-

sisting of one unmixed test at every significance level (as size is always

called in this context). In publications, it is standard practice not

simply to report the result of a test, but rather to report that level of

significance for which the corresponding test of the relevant family

would be on the borderline between acceptance and rejection. The

rationale usually given for this procedure is that 1t enables each user

of the publication to make his own test at the significance level he deems

appropriate to his particular problem. Thus the significance level 1s

supposed to play much the samepractical role as a sufficient statistic.

An interesting contribution to the theory of extreme hypotheses is
given by Bahadur[B1] in the special context of the two-sided ¢-test.



CHAPTER 17

Interval Estimation

and Related Topics

1 Estimates of the accuracy of estimates

The doctrine is often expressed that a point estimate 1s of little, or
no, value unless accompanied by an estimate of its own accuracy. This

doctrine, which for the moment I will call the doctrine of accuracy est-

mation, may be little old-fashioned, but I think somecritical discus-
sion of it here is in order for two reasons. In thefirst place, the doctrine
is still widely considered to contain more than a grain of truth. For
example, many readers will think it strange, and even remiss, that I

have written a long chapter (Chapter 15) on estimation without even

suggesting that an estimate should be accompanied by an estimate of

its accuracy. In the second place, it seems to me that the concept of

interval estimation, which is the subject of the next section, has largely

evolved from the doctrine of accuracy estimation and that discussion

of the doctrine will, for some, pave the way for discussion of interval

estimation.

The doctrine of accuracy estimation is vague, even by the standards

of the verbalistic tradition, for it does not say what should be taken
as a measure of accuracy, that is, what an estimate of accuracy should

estimate. Any measure would be rather arbitrary; a typical one, here

adopted for definiteness, is the root-mean-square error,

(1) E“(1— AGP | B) = {(Va| B) + [EA] BY — MP},

using (15.6.23). The root-mean-square error reduces to the standard
deviation, V’*(1 | B;), in case the estimate | is unbiased.

Faking the doctrine literally, it evidently leads to endless regression,

for an estimate of the accuracy of an estimate should presumably be

accompanied by an estimate of its own accuracy, and so on forever.

Even supposing that the doctrine were somehow purged of vagueness
and endless regression, it would still be in clear conflict with the be-
havioralistic concept of estimation studied in Chapter 15. If a decision

257



258 INTERVAL ESTIMATION AND RELATED TOPICS (17.1

problem consists in deciding on a numberin thelight of an observation,

the person concerned wants to adopt an | that is, in some sense or

other, as good as possible; but, since he must make some decision, it
could at most satisfy idle curiosity to know how good the best is—

idle, I say, because, his decision once made, there is no way to use knowl-
edge of its accuracy.

Since it seems to me that the kind of problem envisaged in Chapter

15 is of frequent occurrence and may properly be called estimation,

I am inclined to say that the doctrine of accuracy estimation is errone-
ous. However, it is possible that someone should point out a different

class of problems, also properly called problems of estimation, with re-

spect to which the doctrine has somevalidity; though, so far as I know,

this has not yet occurred.
One sort of situation that might, through what I would consider

faulty analysis, seem to support the doctrine of accuracy estimation is

illustrated by the following, highly schematized example. A person
has to estimate the number n of replacement parts of a certain sort

that should be carried by an expedition. He can conduct a trial the

outcome of which will, let us say, be an observation x distributed in
the Poisson distribution with mean equalto acn; that is,

(2) P(x | n) =e*"(acn)”/x!,

where a@ is a known constant and c, which the person can choose, is the
cost (beyond overhead) of the trial. Under reasonable hypotheses,
once c has been chosen and the value x observed, n(x) = x/ac is a good

estimate of n; and in so far as the problem is of the type envisaged in
Chapter 15, that is the end of the matter.
But there may be features of the problem that have not yet been

stated, though in principle they should have been. In particular, it

may be that the person is free to conduct a second trial, though there

will typically be a high penalty for doing so. One rough, but sometimes

natural and practical, step toward deciding whether a secondtrial is

called for is to remark that (n/ac)” is a good estimate of the root-mean-

square error of n and maygive a fairly good basis on which to judge
whether the risk of misestimation warrants the expense of a second
trial.

My own conviction is that we should frankly regard such a problem

as has just been described as a special problem in sequential analysis

and treat it as an organic whole. Viewed thus, c is to be chosen in the

light of the possibility of making a second trial. The decision to be

based on x is the complex one of whetherto go to the expenseof a second

trial; if so, of what magnitude; and, if not, what estimate of n to adopt.
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Anothersort of situation that seems to have stimulated the doctrine
of accuracy estimation is the following. Suppose that a research worker

has observed x1, ---, Xn, which are independent and normally distributed
about the mean yu with variance o” given » and oc. If he wishes to pub-
lish the results of his investigation for all concerned to use as their own

needs and opinions may dictate, he should, ideally, publish a sufficient
statistic of his observation, stating how it is distributed given yp and o.

Any other course may deprive some reader of some information he
might be able to put to use. So far as the primary aim is concerned,all
sufficient statistics are equivalent, but secondary considerations greatly

narrow the research worker’s choice. To illustrate, consider the five

sufficient statistics the values of which for {2, ---, x,} are:

(a) {21, +++, Ln}.
(b) The n orderstatistics of {21, ---, tn}.
(c) DS a, and >) 2,’.

(d)  =pr D ai/n and 8? =p; (D2? — & D) 2i)/n — 1.
(e) Zand s/n”.

If n is at all large, (c), (d), and (e) are cheaper to publish than (a)

and (b). Moreover, for almost any use to which a reader might wish

to put the data, (c), (d), and (e) will save him a considerable amount

of computation. In so far as it is true that almost any reader who has

a use for the data at all will use Z, but not necessarily >> 2;, statistics
like (d) and (e) are slightly preferable to (c). There is something to be

said both for (d) and for (e), in view of the ready availability of certain

tables; but, at least when 7 is very large, there is a slight advantage to
(e) for those calculations a reader is most likely to perform. In par-

ticular, a reader using (e) can, when 7 is large, often ignore the actual

value of n. Even if the distributions of the x;, ---, X, are not exactly
normal, (c), (d), and (e) often can play almost the samerole as suff-

cient statistics. It is no wonder then that (e) is often chosen as a con-

venient way to present data. But, in my opinion, it is a mistake to

lay great theoretical emphasis on the fact that (e) happens to consist
of what is ordinarily a good estimate of u, namely z, together with what

is ordinarily a good estimate of the root-mean-squareerror of that es-

timate, namely s/n”.

2 Interval estimation and confidence intervals

The verbalistic tradition has suggested a procedure different from

point estimation but somehowrelated to it. This other procedure, here

called interval estimation, can be defined as follows, though the defini-
tion is necessarily vague. Where x is an observation subject to the
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conditional distributions P(z | B;) and (2) 1s a function of 7, guess
that A(z) lies in some set M(x) (to be called an interval estimate) de-

termined for each value of x. It is almost a part of the definition to

say that the function M(z) is to be so chosen that P(A(2) ¢ M(x) | B;)

shall be nearly 1 for every 7 and that M(x) should tend to be small and

“close knit’”’ in a geometrical sense, some compromise beingeffected be-
tween these two conflicting desiderata. The parameter A(z) could in

principle be a very general function, but it will here be enough to sup-

pose for definiteness and simplicity that A(z) is real. Though more
general possibilities are contemplated in principle, the set M(x) is in

practice typically a bounded interval, which corresponds with what I

meant in saying that M(x) is supposed to be ‘‘close knit.”

Theidea of interval estimation is complicated; an exampleis in order.
Suppose that, for each \, x is a real random variable normally distrib-

uted about A with unit variance; then, as is very easy to see with the

aid of a table of the normaldistribution, if (x) is taken to be the in-

terval [x — 1.9600, x + 1.9600], then

(1) P(e M(z)|a) = a,
where a is constant and almost equal to 0.95.

It is usually thought necessary to warn the novice that such an equa-

tion as (1) does not concern the probability that a random variable »

lies in a fixed set M(x). Of course, d is given and therefore not random

in the context at hand; and, given X, a@ is the probability that M(x),

which is a contraction of x, has as its value an interval that contains X.

Whyseek an interval estimate? One sort of verbalistic answer runs

like this: At first glance, the problem of estimation seems to require
that a person guess, on observing that x takes the value z, that A(z)

has some particular value I(x); but, since it is virtually impossible that

such a guess should be correct, it seems better to try something else.

In particular, it is often possible to assert that A(z) 1s in a comparatively
narrow interval M(x), chosen according to such a system that it 1s very

improbable for each 7 that the assertion will be false. Less extreme ver-

balistic explanations tend to give the impression that point estimation

need not be altogether rejected, but that interval estimation satisfies
a parallel need.

The first part of the explanation just cited is specious, since no one

really expects a point estimate to be correct, and since, when onereally

is obliged by circumstances to make a point estimate in the behavioral-

istic sense, there is no escaping it. None the less, that part of the ex-

planation does seem to give some insight into the appeal of interval es-
timation. The second part of the explanation is a sort of fiction; for it
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will be found that wheneverits advocates talk of making assertions that
have high probability, whether in connection with testing or estima-

tion, they do not actually make such assertions themselves, but end-

lessly pass the buck, saying in effect, ‘““This assertion has arisen accord-

ing to a system that will seldom lead you to makefalse assertions, if
you adopt it. As for myself, I assert nothing but the properties of the

system.”

From the behavioralistic point of view, I maintain that point estima-

tion fulfils an important function. On the other hand, I can cite no
important behavioralistic interpretation of interval estimation. More-

over, in such direct and indirect contact as I have had with actual sta-
tistical practice, I have—with but one extraordinary exception, which

will soon be discussed—encountered no applications of interval estima-

tion that seemed convincing to me as anything more than an informal

device for exploring data or crudely summarizing it for others. In

short, not being convinced myself, I am in no position to present con-
vincing evidence for the usefulness of interval estimation as a direct

step in decision. The reader should know, however, that few are as
pessimistic as I am about interval estimation and that most leaders in
statistical theory have a long-standing enthusiasm for the idea, which
may have moresolid grounds than I now know.

The following is a schematized example of one sort of decision prob-

lem that does call for something like interval estimation. An observa-

tion x bears on the position ) of a lifeboat, the occupants of which will

be saved or lost according as the boat is or is not sighted by a search-

ing aircraft before nightfall. The decision problem is, therefore, to

choose, from all the domains that the airplane could search in time, one
domain M(x); and the loss must, in effect, be reckoned as 0 or 1 accord-

ing as M(x) does or does not contain }. This type of problem seems,

however, too rare and too special to be taken as representative of those

for which interval estimation is so widely advocated.

Manycriteria have been put forward for interval estimation, but I

am of course in no position to discuss them critically. J. Neyman has

gone about the search for criteria systematically, setting up a parallel-

ism between the theory of interval estimation and of testing. In par-

ticular, paralleling the criterion of fixed size for tests, he has emphasized

interval estimates such that

(2) P(d(i) ¢ M(x) | Bi) = @
for a fixed a (typically close to 1) and for every 7. Such interval esti-

mates are called confidence intervals at the confidence level a. The
interval estimate mentioned in connection with (1) 1s obviously a con-
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fidence interval. Wald [W3] sought to include the theory of confidence

intervals in the minimax theory, but in my opinion he did not succeed
in giving interval estimation a behavioralistic interpretation.

Though I am in no position to criticize any criterion of interval es-

timation, I venture to ask whether (2) is not gratuitous, as I have more
positively asserted of its analogue in the theory of testing.

Chapters 19 and 20 of [K2] will serve as key references for interval

estimation.

3 Tolerance intervals

There has recently been considerable study of what are called toler-
ance intervals (or limits). They are related to the problem of guessing

the actual value of a real random variable y, on the basis of an obser-
vation of x. A tolerance interval for y at tolerance level o and confi-
dence level @ is an interval-valued function Y(x) such that

(1) P[P(y « Y(x) | Bi, t) > |B) =8

for every 1.

The concept expressed by (1) is a slippery one; perhaps it will help

to express it in words thus: For every B;, there is probability 6 that z is
such that y will fall in Y(x) with probability at least a, given B; and
z. In typical applications y is independent of z; this permits a slight

simplification of the definition. The notion of tolerance interval seems
to me at least as unamenable to behavioralistic interpretation as that

of confidence interval, and I therefore venture no discussion of it here.

Key references are [B22] and [W7].

4 Fiducial probability

This is not really a section on fiducial probability, but rather an

apology for not having such a section. The concept of fiducial proba-

bility put forward and stressed by R. A. Fisher is the most disputed

technical concept of modern statistics, and, since the concept is largely

concerned with interval estimation, I wanted to discuss it here. I

have, however, been privileged to see certain as yet unpublished manu-

scripts of R. M. Williams [W12] and J. W. Tukey which convince me

that such discussion by me now would be premature.

Some key references to fiducial probability and to the Behrens-Fisher

problem, which is the most disputed field of application of fiducial

probability, are Fisher’s own papers, especially [F5], and Papers 22,

25, 26, 27, and 35 of the collection [F6]; Kendall [K2], Chapter 20;
Yates [Y1]; Owen [01]; Segal [S9]; Bartlett [B6]; Scheffé [S6], [S5];

Walsh [W9]; and Chand [C5].*

+ And I can now add Barnard (1963), Dempster (1964), Fisher (1956, Sec-

tions III 3, IV 6, V 5, V 8, VI 8, VI 12), Linnik (1968, Chapters VIII-X),
Patil (1965), Scheffé (1970), Tukey (1957), and Williams (1966).
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Expected Value

This appendix, a brief account of somerelatively elementary aspects

of the badly named mathematical concept, expected value, is presented

for those who might otherwise be handicapped in reading this book.

No proofs are given here, but the reader who needs this appendix will

probably be willing and able to accept the facts cited without proof,
especially if he acquires intuition for the subject by working the sug-

gested exercises. The requisite proofs are, however, given implicitly

in any standard work on integration or measure (e.g., Chapters I-V of

[H2)).
Throughout this appendix, let S be a set with elements s and subsets

A, B, C, --- on which a (finitely additive) probability measure P is

defined. Bounded real random variables, that is, bounded real-valued
functions, defined for each s <S, will here be denoted by x, y, ---, and
real numbersby 2, y, z, and lower-case Greek letters.

The expected value of x, generally written E(x), is characterized as

the one and only function attaching a real number to every bounded

random variable x, subject to the following three conditions for every

X, y, p, 0, and B:

(1) E(ox + oy) = pE(x) + cE(y).

(2) E(x) >0 whenever P(z(s) < 0) = 0.

(3) E(c(| B)) = P(B).

In (3), c(| B) is the characteristic function of B, that is, c(s| B) = 1,
if s ¢ B, and c(s | B) = 0, if se~B. In mathematical contexts remote

from the topics in this book, the term ‘characteristic function’ has at
least two other meanings virtually unconnected with the one at hand,

one in connection with linear operators on function spaces, and another
in connection with the Fourier analysis of distributions.

Often the expected value of x is referred to as the integral of x over

S, in which case it is generally written [2(s) dP(s).
263
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Exercises

1. If x takes only a finite numberof values, 21, ---, tm, except on a

set of probability zero; then

(4) E(x) = 2. 2,P(2(s) = 2),
i=l

that is, the average of the z,’s, each weighted by the probability of its

occurrence.
2. If P(x(s) < y(s)) = 0, E(x) => E(y); andif, in addition, P(a(s) >

y(s) + «) > 0 for some e > 0, then E(x) > E(y).T

3. If x is a real random variable, B; a partition, p; and o; real numbers

such that p; < x(s) < o; for s ¢ B,, then

(5) piP(Bi) < E(x) < 2o,P(Bi).

4. c(| A N B) = e(| A)e(| B),

c(| ~A) = 1 — (A),

c(| A U B) = ¢(| A) + e(| B) — e(| A)e(| B).

As is explained in texts on measure theory, the expected value can

(at least for countably additive measures), and in practice must, be ex-

tended to many unbounded random variables.

Since, provided P(B) > 0, the conditional probability, defined by

P(C| B) = P(CN B)/P(B), is itself a probability measure, the ex-
pectation of x with respect to a conditional probability is a meaningful

concept. This conditional expectation is written E(x | B) and read

‘“‘the expected value of x given B.”’

More exercises

5. E(x| B) = E(xc(| B))/P(B). Hint: It suffices to verify that the
expression on the right satisfies the three conditions parallel to (1-3)

that define E(x B).
6. If B; 1s a partition of S, then

(6) > c(s | B;) =1 for every Ss.

7. E(x) = > E(x| B)P(B;). Hint: Use x = Ix.

+t Technical note: In the event that P is countably additive, P(z(s) > y(s)) > 0
implies the existence of a suitable «, so then « need not be mentionedatall.
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Suppose y is a (not necessarily real) random variable that takes on
only a finite number of values. It will be understood that E(x | y) 18
the expected value of x given that y(s) = y, provided y is such that

this event has positive probability. Furthermore, it will be understood

that E(x | y) is a bounded real random variable that for each s takes

the value E(x| y(s)). The definition leaves E(x | y) undefined on the
null set of those points s where y(s) is a value that y takes on with prob-

ability zero. It is immaterial how this blemish is removed; in particu-
lar E(x| y) may as well be set equal to 0, whereit has not already been
defined.

Still more exercises

8. E(E(h| y)) = E(h).
9. If f is a real-valued function defined on the values of y; then f(y)

is a boundedreal variable, and

(7) E(f(y)x) = E(fQy)E(«|y)).
10. If h(x) is such that, forall f,

(8) E(f(y)x) = E(fMhy)),

then h(y(s)) = E(x | y(s)), except possibly on a set of s’s of probability

zero.

Exercise 9 and its corollary, 8, present the most frequently used prop-

erties of conditional expectation. Exercise 10 shows that the property

presented in 9 characterizes conditional expectation. Through this

characterization Kolmogoroff [K7] extends the ideas of conditional ex-

pectation and also of conditional probability (for countably additive
measures) to random variables y not necessarily confined to a finite or

even denumerable set of values; though the definition in terms of ordi-

nary conditional probability then breaks down completely, the proba-
bility that y(s) = y often being 0 for every y.
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Convex Functions

This appendix gives a brief account of convex functions in the same
spirit as the preceding onegives an account of expected value. Reason-
able facsimiles of the proofs omitted here are scattered through [H4],
where they may be found by anyone not content to skip them.

An interval is a set J of real numbers; such that, if z,z¢ 7 anda < y
<z,thenyel. It is not difficult to see that intervals can beclassified
according to Table 1, where it is to be understood that z < z.

TABLE 1. THE VARIOUS TYPES OF INTERVALS

 

Theset of
Symbolic real y’s

designation such that Verbal description

(—00, +00) y=y The infinite interval (the set of
all real numbers)

(x, +2) a< ut
(—2, x) zr>y Open

half-infinite intervals

[z, ++) aS |(—c0, 2] > y Closed

(2, 2) rey<Z Open

te * . s , Ss ‘| Half-open boundedintervals

(x, z] acy <2 Closed

[x, x] r=y One-point intervals
y<y The vacuous interval (the vacu-

ous set)

A real-valued function t defined for z in an interval J is convex,if
and only if the graph of the function never rises above any chordofit-
self. Analytically, if p and o are positive, p + o = 1, and 2, y eJ; then

(1) t(pr + oy) < pt(x) + ot(y).
266
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If equality holds in (1) for some p; then, as is easily verified, it holds
for every p, and t is linear, i.e., of the form az-+ 8, in the closed
interval [z, y]. An interval in which is linear will here be called an
interval of linearity. If and only if there are no intervals of linearity
other than the one-point and vacuous intervals, t is strictly convex.

Exercises

1. Verify, at least graphically, that the following functions are con-
vex in the indicated intervals; discuss their intervals of linearity; and
say which are strictly convex.

[ = (—0, +0):

(a) e°for every p, (b) x? + px + o for every p and o,

(c) |x|, (d) |x|? for p > 1,
(e) x.

I = (0, ©):

(f) —log 2, (g) 2? for -~ <p <0.

I = (-—1, +1):

(h) (1 — 2?)~%, (i) 1 — cos (rz/2).

2. In an interval where t is convex, if d7(x)/dzx” exists at z, then
d*t(x)/dx? > 0; andif, for every z in an interval I, d?t(x)/dz? exists and
is non-negative, then t is convex in I.

3. Re-explore Exercise 1 in the light of 2.
4. Let T be a non-vacuousset of functions, t, t’, ---, convex in J,

and let

(2) t*(s) = sup t(s).
t

In (2), as always in mathematics, the sup, or supremum,of a set of
numbers is the Jeast number, possibly ©, that is not less than anyele-
ment of the set. If ¢*(s) < © for every s eJ, then t* is convex in I.
Explore the proposition just stated, first graphically, especially for a
finite set of linear t’s, and then analytically. What if the elements of
T are all strictly convex?

5. In an openinterval where t is convex, it is also continuous. What
are the facts for closed and half-closed intervals?
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6. If t is convex in J, x, eI, px > 0, and Xp, = 1, where k = 1,---,

r; then

(3) D, pat(te) > (D pts)
i i

Equality obtains, if and only if all the x;’s are in a single interval of
linearity oft.

(a) Interpret the propositions above in terms of probability.

(b) Prove them by arithmetic induction on r.
(c) What if t is strictly convex?

Exercise 6 suggests, and indeed provesa special case of, the following
well-known and most useful theorem, which cannot be proved here in
full generality.

THEOREM 1 If t is convex and bounded in the interval J, and x(s) eI
for all s eS, then

(4) E(t(x)) 2 U(x).

Equality obtains, if and only if the values of x are with probability one
contained in a single interval of linearity of t. Here and throughout this
appendix, such conditions for equality are to be understood to apply

only in the event that either P is countably additive or the random
variable is with probability one confined to a finite set of values; the
general situation for finitely additive measures is a little more compli-
cated.

More exercises

7. The variance of x, often written V(x), is defined thus:

(5) V(x) = E({x — E(x)/).

Show that

(6) V(x) = E(x”) — E*(x) > 0,

with equality if and only if P(a(s) = H(x)) = 1.
8. Show that, if x is never smaller than some positive number,

(7) log E~1(x—!) < E(log x) < log E(x).

When can either equality obtain? Write the analogue of (7) suggested

by (3), and show thereby that (7) is a generalization of the familiar
fact that the arithmetic mean (of positive numbers) is at least as great
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as the geometric mean and the geometric mean is at least as great as

the harmonic mean.

One of the most famousof all inequalities is the Schwartz inequality,
which can, though not quite obviously, be derived from Theorem 1,
and which can be stated in terms of expected values thus:

(8) E*(xy) < E(x’)E(y’),

with equality obtaining if and only if for some numbers p and o not
both zero

(9) P(px(s) = oy(s)) = 1.

Note that (9) expresses (perhaps too compactly) that, except on some

set of probability zero, either x or y vanishes identically or else each is

a fixed multiple of the other.

Statistically speaking, the Schwartz inequality expresses, in effect,

the familiar fact that any correlation coefficient must lie between +1

and —1, one of the extremes occurring if and only if at least one of the

two random variables involvedis a linear function of the other.

The concept of convex functions and its implications can easily be
extended to real-valued functions defined on vectors in an n-dimensional
vector space, the role of intervals there being replaced by convex sub-

sets of the vector space; but an understanding of this extension, though
desirable, is not absolutely essential in reading this book.

One good introduction to convex subsets of vector spaces is Sections

16.1-2 of [V4], and another especially adapted to statistical applica-

tions is incorporated in [B18]. The standard treatise on the topic is
that of Bonnessen and Fenchel [B20].
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Bibliographic Material

The bibliography of about 170 items that terminates this appendix
lists not only all works referred to in this book but also someothers,
for it 1s intended to serve not only as a mechanicalaid to reference but

also as a briefly and informally annotated list of suggested readings in

the foundations of statistics. In addition to the notes incorporated
into the bibliography, information about many of the workslisted there

is given in other parts of the book, where it can be found byreferring
to the author’s name in the author index. References that have come to

my attention since the first edition are in Appendix 4: Bibliographic

Supplement. They are cited by the convention according to which the

first of them is called (Aczél 1966).

Todhunter has abundant references scattered in chronological order
through [T3], emphasizing the mathematical aspects of probability up
through the period of Laplace. Keynes, in [K4], gives a formal bibli-
ography which purposely does not overlap Todhunter’s material very

extensively, the emphasis being on more philosophical aspects of prob-

ability and on the period between Laplace and Keynes. Carnap in
[C1] also gives a formal bibliography, which emphasizes publications
since Keynes. Carnap promises an even fuller bibliography in the

projected second volume of his work, and he recommendsthe bibliog-

raphy of Georg Henrik von Wright in [V5].
Bibliographies of statistics proper are of some, though diluted, rele-

vance. Of these, the most useful is that of M. G. Kendall in Vol. II
of [K2]. Carnap at the beginning of his bibliography gives reference to

some otherstatistical bibliographies. The enormous work of O. K. Bu-

ros In statistical bibliography, [B23], [B24], and [B25], should also be
mentioned. His volumes bring together pointed excerpts from reviews
of statistical books. Buros also directed a bibliographic department,
entitled ‘Statistical Methodology,” in the Journal of the American Sta-

tistical Association from September 1945 to September 1948,listing cur-

rent articles, books, theses, and chapters dealing with statistics. In
270
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Volume 20 (1949) of the Annals of Mathematical Statistics, an important

journal of statistical theory, there are two cumulative indexes of Vol-

umes 1-20, one arranged by author, the other by subject.
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Bibhographic Supplement

Since the publication of the first edition of this book, the literature

of the foundations of statistics, like that of all science, has been grow-

ing with awesome rapidity. The relatively short list of about 180 items

below ineludes a few older references overlooked in the first edition,

but most are more recent. They are chosen in the spirit of those in the

first edition, Appendix 3: Bibliographic Material. Some support new

assertions madein this edition, some bring up to date reading lists and

key references for certain topics, and someare selected for their quality

andoriginality.

Pages in this edition that cite a given entry in the list below are

shown by italic numbers following the entry—a neglected invention

going back at least to (Coolidge 1940). Where there is neither such a

page number nor a comment, the entry is supposed to speak foritself.
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George 1968 ; Greenwoodet al. 1962; Joiner et al. 1970: Lancaster 1968,
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indexes as shown bythetable below.
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(and Volumes)
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(and Volumes)
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1959 Testing Statistical Hypotheses, New York, John Wiley and

Sons.
Excellent illustration of Neyman-Pearson theory, showing

older and neweraspects in tension with each other.
Lindley, Dennis V.
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1957 Games and Decision, New York, John Wiley and Sons.
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in Vol. 3 of Handbook of Mathematical Psychology, eds. R. Dun-
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nal of the American Statistical Association, 66, 783-801.
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Shelly, Maynard W., II, and Glenn L. Bryan (eds.)
1964 Human Judgments and Optimality, New York, John Wiley and

Sons.
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1958 “On the smoothing of probability density functions,” Journal

of the Royal Statistical Society, Series B, 20, 334-343.

These two references are suggestive for personalistic technique.
Williams, J. S.
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Chapel Hill, University of North Carolina Press.

43

283

283

262

177

aw



Technical Symbols

This index is intended to lead to the definitions of all technical symbols that are

defined in the text and used extensively. Some symbols have more than one page
reference, corresponding to their use in more than one sense, depending on context.

A, B, C, 11, 263
B,(B], 85
c(s | B), e(| B), 263
E(x), 263
E(x| B), 264
E(x| y), E(x| y), 265
F, 14
f, 9, h, 14, 82
F, f g; h 85

F, 14
f, g, h, 14, 82
f,f, 85
f, g, h, 71

GLB, 80
Ho, Hi, 247

H()\; x), 236
inf, 80
I(£; 7), 163, 173
1, 75
J(F; 7), J, 148
J, 235
k, 123
LUB, 80
L*, 164, 174, 180, 184
Lx, 180, 184
L(r; 2), L, 178
Lif; g), 179, 180, 184, 186

L(f; 1), 163, 174, 180, 187
L(r; g), 187
i(g), 127
1, 1, 221
T(n), 241
m(r), 149

N, 247

(1
P, 33

R, R,[r], 195
R, S, 130

r, 135

sup, 267
S, 8, 11, 263
S, 85
5, 3’, 85

T, T’, 193
T—, 194
U, 193
U, 69

V(x), 268

v, 82
v(F 8), 123

o(F 8, 2), oF | x), 125

B, B(2), 121
B*, 149
B(x), 125
Bi | x), 124
e, e, 11

=p, 47
f, 263
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Author Index

This index is intended to lead to every reference made in the text to an author’s

works or opinions. Only a few of the authorsreferred to do not have works listed in

the bibliography (p. 271).
A few examplesillustrate the use of this index: F. J. Anscombeis not referred to

in the text proper, but there is a reference to him, beyond the merelisting of his
name, in the bibliography under [A4]. A paper of which David Blackwell is a co-

author, but whose first listed author is Kenneth J. Arrow, is somewherereferred to

without mention of Blackwell’s name, but only a bibliographic symbol of the form
[An]. A workof S. R. Searleis listed in the bibliography, but not otherwise mentioned.
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Bayes, Thomas, [B8]
Bell, E. T., 93
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Bernoulli, Jacob (= James), 1, 92, [B13]

Bernoulli, Nicholas, 93
Birkhoff, G., 193
Bizley, M. T. L., 64

Blackwell, David, 149, 153, 178, 184, 187,

199
see also Kenneth J. Arrow

Bohnenblust, H. F., 148, 189, 191, 218

Bonnessen, T., 121, 269
Borel, Emil, 178, 179
Boulding, Kenneth E., see Stigler in
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Bowker, A. H., 262
Brambilla, Francesco, 90

Buros, O. K., 270

Carnap, Rudolf, 56, 61, 62, 160, [C1],
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Chapman, Douglas G., 238  

Chernoff, Herman, 205, 206
Churchman, C. West, [C8]
Coombs, Clyde H., see Robert M. Thrall
Cramer, Gabriel, 81, 92, 94, 95
Cramér, Harald, 131, 238, 241, 248, [C8]

D’Alembert, Jean le Rond, 65
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Davis, Robert L., see Robert M. Thrall
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51, 52, 58, 60, 62, 175, 177, [D2], [D6]

Delorme, S., [D8]
Deming, W. Edwards, [B8]
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Duncan, D. B., 255

Dvoretzky, A., 219
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Frick, Ludwig, [B11]
Friedman, Milton, 83, 97, 104
Fry, Thornton C., 30
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Graves, Lawrence M., 73

Halinos, Paul R., ix, 41, 131, 134, 263,
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Hammer, P. C., 35
Hardy, G. H., 266

Haussner, R., [B13]
Hildreth, Clifford, 175
Hodges, J. L., Jr., 200, 201, 203, 238
Hume, David, [H7]

Jeffreys, Harold, [J1]
Jenks, James, Jr., see Paul D. White

Kakutani, 8., 218
Karlin, 8., 189

see also H. F. Bohnenblust
Kendall, Maurice G., 67, 140, 221, 241,

246, 262, 270, [K2]

Keynes, John Maynard, 1, 39, 56, 61,
270, [K4]

King, Robert L., see Paul D. White
Kneale, William, [A4]

Kolmogoroff, A. N., 3, 52, 264, [K8]
Koopman, B. O., 38, 39, 48, 44, 56, 60,
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Kuhn, H. W., [K13], [K14]

Kullback, S., 50, 134

Langford, Cooper Harold, 12
Laplace, Pierre Simon de, 95, [L2]
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Lehmann, E. L., 131, 134, 140, 200, 201,
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Lewis, Clarence Irving, 12
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Markowitz, Harry, 104
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See also Technical Symbols, p. 299, and Index of Authors, pp. 301-3.

Acceptance sampling, 253
Accepting, 247
Accuracy estimation, doctrine of, 257ff
Act, definition of, 14

examples of, 14
generic symbols for, 14, 15
proper interpretation of, 15

Acts, constant, 25

equivalent (or indifferent), 19
generic symbolfor sets of, 14

infinite sets of, 18
Actuarial value, 94

Admissibility, 115
in theory of games, 197
of a test, 148
principle of, 26, 165, 231

group, 174

Agreement between acts, on events, 22
Agreement between a probability meas-

ure and a quantitative prob-
ability, 34

Agreement between people, 26, 66ff, 114,

126, 127, 217
as to judgment, 156

as to utility, 155

complete, 7
Almost equivalent events, 37
Almost exact science, 101

Almost uniform partition, 34

Alternative hypothesis, 247
Analysis of variance, 116
Annals of Mathematical Statistics, 272
A posteriori probability, 47
Approach to certainty, 141, 176ff, 214,

226
A priori probability, 47
Aristotle, 1

Ars conjectandi, 1, 2, 92

Asymptotic normality, 227

Asymptotic variance, 227  

Banach-Tarski paradox, 42
Basic act, 106

definition of, 110
Basic decision problem, 106, 208

Bayes’ rule (or theorem), 45
Behavioral interrogation, 28

strictly empirical, 28, 29
Behavioralistic and verbalistic outlooks,

17
Behavioralistic outlook, 60, 159ff, 220,

261
applied to point estimation, 229ff

Behrens-Fisher problem, 251, 262
Bets, 63, 64
Betweenness, 19
Bibliographies, 270, 271

Binomial distribution, 131, 146ff, 222

definition of, 203
Boolean algebra, 10, 11

duality principle of, 12

exercises in, 11ff
Borel field, 42
Bounded act, 79
Boundedutility, 81, 82

British-American School, 3, 4, 26, 154,
155, 159

Certainty, approach to, 141, 176ff, 214,
226

Characteristic function, 263
Cogent reason, principle of, 64

Communication, 68
Complementof an event, 11

Compoundproblem, 214

Concave function, 94
Conditional expectation, 264
Conditional preference, 22
among consequences superfluous, 25,

26
Conditional probability, 43ff
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Conditional probability, wide sense, 52
Confidenceinterval, 261

Confidence level, 261
of a tolerance interval, 262

Consequence, 13, 14
generic symbols for, 14

variety of, 14

Consequences, ignorance of, 15
symbolfor set of, 14

Consideration, cost of, 30

Consistent sequence of estimates, 226

Constant acts, 25
Containing events, 11

Contraction, 128ff
of an observation, 112

of a set of acts, 113

Convex function, 94, 266ff
strictly, 267

Convexset of gambles, 75

Convex sets, 269
Correct act, 164
Correct estimate, 230
Cost of consideration, 30

Cost of observation, 116, 118, 214, 215

Countable additivity, 40, 43, 78
Cramér-Rao inequality, 238

Decision, 13
after observation, 23
logic and, 6

Decision problem, group, 172ff
and observation, 210

objectivistic, 172ff
Decisions, consecutive, 15, 16
Definitive observation, 127, 133, 212
Degree of conviction, 30

Democracy, 175

De Morgan’s theorem, 13
general, 13

Derived act, 106
definition of, 111

Derived decision problem, 106
Derived problem, 209
Design of experiments, 16, 105, 116
Dichotomy, 121

Differential information, 236ff

Disagreement between people, 67, 68
Dominance, 115

in theory of games, 197

of one test by another, 148  

GENERAL INDEX

Dualistic views on probability, 2, 51, 62,
63

Duality principle, 185
of Boolean algebra, 12

of personal probability, 78
of theory of games, 185, 186

Efficient sequence of estimates, 227,
242ff

Empirical interpretation of postulates,
19, 20

Epsilon, Porson, 11
vertical, 11

Equal events, 11

Equity, 63, 92

Equivalence, of sets of acts, 113
of tests, 148

Equivalent acts, 19

Equivalent observations, 112

Equivalent sequence of events, 52
Error, mean square, 224

see also Root-mean square error and
Squared error

of an estimate, definition of, 227

Errors of first and second kind, 140,
247

Estimation, interval, 259

point, 220ff

definition of, 221

Estimation decision problem, 229ff
Event, complementof, 11

definition of, 10

examplesof, 10
generic symbols for, 11
null (or virtually impossible), 24

universal, 10

vacuous, 10

Events, almost equivalent, 37
containing, 11

equal, 11
intersection of, 11

union of, 11
Expectation, conditional, 264
Expected value, 263ff

definition of, 263

Experience, 44, 46, 55, 62
Experiment and observation, 117, 118
Extension, of an observation, 112

of a set of acts, 113

Extreme £8, 129
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Factorability criterion for sufficiency,

130ff
Fair coin, 33
Fiducial probability, 262
Fine, 37, 40
Foundations of sciences, role of, 1

Foundations of statistics, deep, 5

history of, 1ff
shallow, 5

Gamble, 70, 71
Gambling, 638, 64, 91, 94
Gambling apparatus, 66
Game, abstract, 184ff

bilinear, 186ff
standard, 178ff
two-person, 178ff

Games, in relation to minimax theories

of decision, 180ff

mathematics of, 184ff
theory of, 156, 178ff

Given, 22, 44

Grand world, 84

Greek fonts, 11
Group, mathematical, 193
Group action, 105
Group decision problem, 172ff
and observation, 210

Group minimaxrule, 207

Hausdorff moment problem, 53, 55, 152

Homogeneous coordinates, 136

Hyper-utility, 75
Hypothesis, alternative, 247
extreme null, 254

null, 247

Income, 163
negative, 164, 169, 170
and loss, 182, 200

personal, 173
Inconsistency, 20, 21, 57
Indecision, 21
Independence in qualitative probability,

44, 91
Independent events, 44
Independent random variables, 46

Indifference, 17, 59

difficulty of testing, 17

Inductive behavior, 159  
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Inductive inference, 2

Inexact science, 59
Infimum, 80

Infinite sets in applied mathematics, 39,
77

Infinite utility, 81

Information, 50, 153, 235ff
differential, 236ff

Information inequality, 238

Insufficient reason, principle of, 64, 65,

193
Integral, 263
Interrogation, behavioral, 28

intermediate mode of, 28

strictly empirical, 28, 29
Intersection of events, 11
Interval, 266
Interval estimation, 257

definition of, 259, 260

Interval of gambles, 75
Interval of linearity, 267
Invariance of a game, 194ff
Invariant minimax, 197, 198

Irrelevant, 126
utterly, 126

Irrelevant event, 44

Journal of American Statistical Associa-
tion, 270

Judgment, 156

Large numbers, strong law of, 54

weak law of, 49, 54, 91
Learning, 44, 55

see also Experience
Lebesgue measure, 41

Likelihood ratio, 48, 135ff, 225
Likelihood-ratio test, 1389, 213

Linear function, 267
Logic, 3

decision and, 6
empirical interpretation of, 20

criticism of, 20

incompletenessof, 59
normative interpretation of, 20

Logical behavior, implications of, 7, 8, 20

“Look before you leap principle,” 16

criticism of, 16, 17
Loss, 163, 164, 169, 170

personal, 174
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Loss, uniformity of, 166, 174

Loss and negative income, 182, 200

Marginal utility, 103, 104
diminishing, 94ff

Mathematical expectation, principle of,

91, 92

Maximin, 184
Maximum-likelihood estimate, 140, 203,

222ff, 241

definition of, 225

Mean-squareerror, 224
see also Root mean-square error and

Squared error

Measurable random variable, 45
Median, 228
Microcosm, 86
Minimax, 184

Minimaxact, 164

Minimax equality, 179, 187
Minimaxestimate, 232, 240, 241
Minimaxrule, 157, 180ff
and simple ordering, 205

group, 174ff, 207
objectivistic, 164ff

definition of, 164
illustrationsof, 164ff

objectivistic motivation of, 168, 169
Minimaxrules, criticism of, 200ff
Minimaxtest, 249, 250

Minimax theories, mathematics of, 184ff

Minimax theory, 156

objectivistic, definition of, 165
objectivistic approach to, 158ff

Minimax theory and observation, 208
Minimax value, 164

Mixed act, 162, 163

in group decision problem, 173
Mixedacts in statistics, 213, 216, 217ff
Mixture of gambles, 71

Moment problem, Hausdorff, 53, 55,

152
Moral expectation, 93, 94
Moral worth, 93ff

Multipersonal considerations, 122, 124,
126, 127, 148, 154ff, 172ff

see also Agreement, Certainty, and
Disagreement

Multiple observation (or statistic), 111

counting of, 133  

GENERAL INDEX

Necessary statistic, 137, 224

Necessary views of probability, 3, 60, 61,
67

Negative income, 164, 169, 170
and loss, 182, 200

Neyman-Pearson school, 140

Neyman-Pearson theory of testing, 252
non-Archimedean probability, 39
Normal distribution, 132, 222
Normative interpretation, of postulates,

19ff

of theory of utility, 97
Normative theory, 102

Nuisance parameter, 223
Null event, 24, 26

Null hypothesis, 247
extreme, 254

Null observation, 112

Objectivistic decision problem, 159

Objectivistic observational problem, 208
Objectivistic views of probability, 3, 60,

61, 67, 253, 254

central difficulty of, 4
probability of isolated propositions

under, 4

Observation, 105ff, 125ff

cost of, 116, 118, 169, 214, 215
decision after, 23
definition of, 110

Observational problem, objectivistic, 208

Observation and experiment, 117, 118
Observed value, 110

Obtains, 10
Operating characteristic, 248
Optimism, 68

Orderstatistic, 132

Parameter, 221
nuisance, 223

Partial ordering, 21

Partition, 24
almost uniform, 34

Partition formula, 45

Partition problems, 120ff

Personalistic view, 56
difficulties with, 57

possible incompletenessof, 59
Personalistic views of probability, 3, 67
Personal probability, 27, 30
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Personal probability, criticism of verbal-

istic approach to, 27, 28

other terms for, 30
Person as economic unit, 8
Pessimism, 68

Plan as a single decision, 16
criticism of, 16, 17

Point estimation, 220ff
definition of, 221

Poisson distribution, 222

Power function, 248
Preference, 17

as simple ordering, 18
as partial ordering, 21

conditional, 22

superfluous for consequences, 25, 26
irreflexivity of, 17
transitivity of, 18

Preference among consequences, 25

distinguished from preference among
acts, 25

Pre-statistics, 5
Primary act, 163
Prize, 31

Probabilities of higher order, 58
Probability, mathematical properties of,

2,3

unknown, superfluousnessof in person-
alistic theory, 50, 51

views on, dualistic, 2, 51, 62, 63
necessary, 3, 60, 61, 67

objectivistic, 3, 60, 61, 67, 253, 254
personalistic, 3, 67

see also Personalistic view
Probability measure, 33

Probability space, 45

Propositions, probability of, under ob-

jectivistic views, 4, 27, 61, 62
Pseudo-microcosm, 86
Psychological probability, 30

Qualitative probability, definition of, 32
example, 28

fine but not tight, 41

neither fine nortight, 41

tight but not fine, 41

Quantitative probability, 33

Randomization, 66, 168, 216, 217
Random numbers, 67  
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Random variable, 45

real, 263

Rational behavior, 7
Ray, 135
Regret, 163
Rejecting, 247

Root-mean-squareerror, 257
see also Mean-squareerror and Squared

error

St. Petersburg paradox, 93ff

Schwartz inequality, 269
Science, almost exact, 101

Sequential analysis, 116, 142ff, 215, 216
Sequential observational program, 142

Sequential probability ratio procedure
146

Significance level, 252
reporting of, 256

Significance tests, 246ff

Simple dichotomy, 138, 145, 146, 148,
212, 213, 252

Simple ordering, 18

and the minimax rule, 205

exercises on, 19
Size of a test, 250
Small world, 9, 16, 82ff

Squarederror, 81, 234

see also Mean-square error and Root
mean-square error

Standard deviation, 257
Standard game, 178ff

Standard sequence of observations, 227

| State, 9
true, 9

States, generic symbolsfor, 11

Statistic, 128
Statistics, other namesfor, 2

scope of, 2
Statistics proper, 5, 105, 114, 121

definition of, 154
Strategy function, 111

Strictly convex function, 267
Subjective probability, 30

Sufficient statistic, 129ff, 212, 224, 230,

237, 246, 256, 259
factorability criterion for, 130ff

Supremum,80, 267
Sure personal probabilities, 57, 58, 66

Sure-thing principle, 21ff, 114, 207
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Symmetric dual, 78
Symmetric sequenceof events, 50ff

Symmetry, 232, 246
in probability, 63ff
of games, 193ff

Tastes, 155

Team mate, 132
Test, definition of, 247

of hypotheses, 246ff

Testing, 221

Testing problem, 247
Ties in rank, 219
Tight, 37, 40

Time in theory of decision, 10, 17, 23,
44

Tolerance interval, 262
Tolerance level, 262

Topological assumptions possible for a

simple ordering, 18

Transitivity, 19
True state, 9

Unbiased estimate, 203, 224, 244, 245
definition of, 226

Unbiased test, 249
criticism of, 250

Uniform distributicn, 131

Union of events, 11
Universal event, 10

symbolfor, 11

Utile, 82  

GENERAL INDEX

Utility, 69
and the minimaxrules, 201ff

bounded, 95
criticism of, 91ff
definition of, 73

history of, 91ff
logarithmic, 94, 95

probability-less, 91, 95, 96
Utterly irrelevant observation, 126, 212,

237

Vacillation, 21

Vacuous event, 10
symbolfor, 10, 11

Vagueness, 59, 168, 169
Value of observation, 151

Variance, 268
Venn diagram, 12
Verbalistic and behavioralistic outlooks,

17

Verbalistic outlook, 159ff, 220, 260, 261
inadequacyof in definition of personal

probability, 27, 28

Virtual extension, 148

Virtually equivalent acts, 148
Virtually impossible event, 24

World, choice of, 9

definition of, 9
examples of, 8
grand, 84

small, 9, 16, 82ff





Postulates of a Personalistic

The seven postulates (P1 through P7) scattered through the first
five chapters of this book are reproduced here for ready reference along

with a minimum of explanatory material. The languageof the postu-

lates is here changed somewhat for conciseness and to show analterna-
tive mode of expression, but the logical content of each postulate is
left unaltered.

The formal subject matter of the theory

Thestates, a set S of elementss, s’, -- + with subsetsA, B,C, --+ (page 11).

The consequences, a set F of elements f, g, h, --+ (page 14).

Acts, arbitrary functions f, g, h, --- from S to F (page 14).

Therelation ‘‘is not preferred to” between acts, < (page 18).

The postulates, and definitions on which they depend

Definitions of terms not in general mathematical use are given here

as D1 through D5; for others consult the General Index (page 289)
and the Technical Symbols (page 283).

Pl The relation < is a simple ordering (page 18).

D1 f < g given B,if and only if f’ < g’ for every f’ and g’ that

agree with f and g, respectively, on B and with each other on ~B

and g’ < f’ either for all such pairs or for none (page 22).



Theory of Decision

P2  ~==For every f, g, and B, f < g given B org < f given B (page23).

D2 g<qg’;if and only if f < f’, when f(s) = g, f’(s) = g’ for every
s eS (page 25).

D3 _sC@B is null, if and only if f < g given B for every f, g (page 24).

P3 If f(s) = g, f’(s) = g’ for every se B, and B is not null; then

f < f’ given B,if and only if g < g’ (page 26).

D4 A<B; if and only if f4 < fg or g < g’ for every fa, fz, g, g’

such that: fa(s) = g for se A, fa(s) = g’ for se~A, fa(s) = g, for

se B, f(s) = g’ for se ~B (page 31).

P4 Forevery A, B, A <BorB<A (page 31).

P5 ‘It is false that, for every f, f’, f <f’ (page 31).

P6 Supposeit false that g < h; then, for every f, there is a (finite)
partition of S such that, if g’ agrees with g and h’ agrees with h except

on an arbitrary element of the partition, g’ and h’ being equal to f
there, then it will be false that g’ < h or g < h’ (page 39).

D5 f<g given B (g <f given B); if and only if f <h given B

(h < f given B), when h(s) = g for every s (page 72).

P7 If f < g(s) given B (g(s) <f given B) for every se¢B, then

f < g given B (g < f given B) (page 77).


