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TO MY FATHER






Preface to the Dover Edition

CONTINUING INTEREST HAS ENCOURAGED PUBLICATION OF A SECOND
edition of this book. Because revising it to fit my present thinking and
the new climate of opinion about the foundations of statistics would
obliterate rather than restore, I have limited myself in the preparation
of this edition much as though dealing with the work of another.

The objective errors that have come to my attention, mainly through
the generosity of readers, of whom Peter Fishburn has my special
thanks, have been corrected, of course. Minor and mechanical ones, such
as a name misspelled or an inequality that had persisted in pointing in
the wrong direction, have been silently eliminated. Other changes are
conspicuous as additions. They consist mainly of this Preface, Appendix
4: Bibliographic Supplement, and several footnotes identified as new
by the signt. To enable you to pursue the many new developments
since 1954 according to the intensity and direction of your own
interests, a number of new references leading to many more are listed in
the Bibliographie Supplement, and the principle advances known to me
are pointed out in new footnotes or in comments on the new references.

Citations to the bibliography in the original Appendix 3 are made
by a compact, but otherwise ill-advised, letter and number code; those
to the new Appendix 4 are made by a now popular system, which is
effective, informative, and flexible. Example : The historic papers (Borel
1924) and [D2] have been translated by Kyburg and Smokler (1964).

The following paragraphs are intended to help you approach
this book with a more current perspective. To some extent, they will be
intelligible and useful even to a novice in the foundations of statistics,
but they are necessarily somewhat technical and will therefore take on
new meaning if you return to them as your reading in this book and
elsewhere progresses.

The book falls into two parts. The first, ending with Chapter 7, is a
general introduction to the personalistic tradition in probability and
utility. Were this part to be done over, radical revision would not be
required, though I would now supplement the line of argument center-
ing around a system of postulates by other less formal approaches, each
convincing in its own way, that converge to the general conclusion that
personal (or subjective) probability is a good key, and the best yet

il
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known, to all our valid ideas about the applications of probability. There
would also be many new works to report on and analyze more thoroughly
than can be done in footnotes.

The original aim of the second part of the book, beginning with
Chapter 8, is all too plainly stated in the second complete paragraph on
page 4. There, a personalistic justification is promised for the popular
body of devices developed by the enthusiastically frequentistic schools
that then occupied almost the whole statistical scene and still dominate
it, though less completely. The second part of the book is indeed devoted
to personalistic discussion of frequentistic devices, but for one after
another it reluctantly admits that justification has not been found.
Freud alone could explain how the rash and unfulfilled promise on
page 4 went unamended through so many revisions of the manuseript.

Today, as I see it, the theory of personal probability applied to sta-
tistics shows that many of the prominent frequentistic devices can at
best lead to accidental and approximate, not systematic and cogent, suc-
cess, as is expanded upon, perhaps more optimistically, by Pratt (1965).
Among the ill-founded frequentistic devices are minimax rules, almost
all tail-area tests, tolerance intervals, and, in a sort of class by itself,
fiducial probability.

If T have lost faith in the devices of the frequentistic schools, T have
learned new respect for some of their general theoretical ideas. Let me
amplify first in connection with the Neyman-Pearson school. While
insisting on long-run frequency as the basis of probability, that school
wisely emphasizes the ultimate subjectivity of statistical inference or
behavior within the objective constraint of ‘‘admissibility,’’ as in (Leh-
mann 1958 ; Wolfowitz 1962). But careful study of admissibility leads
almost inexorably to the recognition of personal probabilities and their
central role in statistics (Savage 1961, Section 4; 1962, pp. 170-175),
so personalistic statistics appears as a natural late development of the
Neyman-Pearson ideas.

One consequence of this sort of analysis of admissibility is the ex-
tremely important likelihood principle, a corollary of Bayes’ theorem,
of which I was not even aware when writing the first edition of this book.
This principle, inferable from, though nominally at variance with,
Neyman-Pearson ideas (Birnbaum 1962), was first put forward by
Barnard (1947) and by Fisher (1955), members of what might be
called the Fisher school of frequentists. See also (Barnard 1965; Bar-
nard et al. 1962 ; Cornfield 1966).

The views just expressed are evidently controversial, and if I have
permitted myself such expressions as ‘‘show’’ and ‘‘inexorably,’”’ they
are not meant with mathematical finality. Yet, controversial though
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they may be, they are today shared by a number of statisticians, who
may be called personalistic Bayesians, or simply personalists. This book
has played—and continues to play—a role in the personalistic move-
ment, but the movement itself has other sources apart from those from
which this book itself was drawn. One with great impact on practical
statistics and scientific management is a book by Robert Schlaifer
(1959). This is a welcome opportunity to say that his ideas were devel-
oped wholly independently of the present book, and indeed of other
personalistic literature. They are in full harmony with the ideas in
this book but are more down to earth and less spellbound by tradition.

L. J. Savace
Yale University
June, 1971






Preface to the First Edition

A BOOK ABOUT SO CONTROVERSIAL A SUBJECT AS THE FOUNDATIONS
of statistics may have some value in the classroom, as I hope this one
will; but it cannot be a textbook, or manual of instruction, stating the
accepted facts about its subject, for there scarcely are any. Openly, or
coyly screened behind the polite conventions of what we call a disinter-
ested approach, it must, even more than other books, be an airing of
its author’s current opinions.

One who so airs his opinions has serious misgivings that (as may be
judged from other prefaces) he often tries to communicate along with
his book. First, he longs to know, for reasons that are not altogether
noble, whether he is really making a valuable contribution. His own
conceit, the encouragement of friends, and the confidence of his pub-
lisher have given him hope, but he knows that the hopes of others in
his position have seldom been fully realized.

Again, what he has written is far from perfect, even to his biased
eye. He has stopped revising and called the book finished, because
one must sooner or later.

Finally, he fears that he himself, and still more such public as he
has, will forget that the book is tentative, that an author’s most recent
word need not be his last word.

The application of statistics interests some workers in almost every
field of empirical investigation—not only in science, but also in com-
merce and industry. Moreover, the foundations of statistics are con-
nected conceptually with many disciplines outside of statistics itself,
particularly mathematics, philosophy, economics, and psychology—a
situation that, incidentally, must augment the natural misgivings of
an author in this field about his own competence. Those who read in
this book may, therefore, be diverse in background and interests. With
this consideration in mind, I have endeavored to keep the book as free
from technical prerequisites as its subject matter and its restriction to
a reasonable size permit.

Technical knowledge of statistics is nowhere assumed, but the reader
who has some general knowledge of statistics will be much better pre-
pared to understand and appraise this book. The books Statistics, by
L. H. C. Tippett, and On the Principles of Statistical Inference by

vi
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A. Wald, listed in the Bibliography at the end of Appendix 3, are short
authoritative introductions to statistics, either of which would provide
some statistical background for this book. The books of Tippett and
Wald are so different in tone and emphasis that it would by no means
be wasteful to read them both, in that order.

Any but the most casual reader should have some formal preparation
in the theory of mathematical probability. Those acquainted with
moderately advanced theoretical statistics will automatically have this
preparation; others may acquire it, for example, by reading Theory of
Probability, by M. E. Munroe, or selected parts of An Introduction to
Probability Theory and Its Applications, by W. Feller, according to
their taste. In Feller’s book, a thorough reading of the Introduction
and Chapter 1, and a casual reading of Chapters 5, 7, and 8 would be
sufficient.

The explicit mathematical prerequisites are not great; a year of cal-
culus would in principle be more than enough. But, in practice, read-
ers without some training in formal logic or one of the abstract branches
of mathematics usually taught only after calculus will, I fear, find some
of the long though elementary mathematical deductions quite forbid-
ding. For the sake of such readers, I therefore take the liberty of giv-
ing some pedagogical advice here and elsewhere that mathematically
more mature readers will find superfluous and possibly irritating. In
the first place, it cannot be too strongly emphasized that a long mathe-
matical argument can be fully understood on first reading only when it
is very elementary indeed, relative to the reader’s mathematical knowl-
edge. If one wants only the gist of it, he may read such material once
only; but otherwise he must expect to read it at least once again. Seri-
ous reading of mathematics is best done sitting bolt upright on a hard
chair at a desk. Pencil and paper are nearly indispensable; for there
are always figures to be sketched and steps in the argument to be veri-
fied by calculation. In this book, as in many mathematical books,
when exercises are indicated, it is absolutely essential that they be
read and nearly essential that they be worked, because they constitute
part of the exposition, the exercise form being adopted where it seems
to the author best for conveying the particular information at hand.

To some mathematicians, and even more to logicians, I must say a
word of apology for what they may consider lapses of rigor, such as
using the same symbol with more than one meaning and failing to dis-
tinguish uniformly between the use and the mention of a symbol; but
they will understand that these lapses are sacrifices to what I take to
be general intelligibility and will have, T hope, no real difficulty in re-
pairing them.
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Few will wish to read the whole book; therefore introductions to the
chapters and sections have been so written as not only to provide orien-
tation but also to facilitate skipping. In particular, safe detours are
indicated around mathematically advanced topics and other digressions.

A few words in explanation of the conventions, such as those by which
internal and external references are made in this book, may be useful.

The abbreviation § 3.4 means Section 4 of Chapter 3; within Chapter
3 itself, this would be abbreviated still further to § 4. The abbreviation
(3.4.1) means the first numbered and displayed equation or other ex-
pression in § 3.4; within Chapter 3, this would be abbreviated still
further to (4.1) and within § 3.4 simply to (1). Theorems, lemmas,
exercises, corollaries, figures, and tables are named by a similar system,
e.g., Theorem 3.4.1, Theorem 4.1, Theorem 1. Incidentally, the proofs
of theorems are terminated with the special punctuation mark @, a
device borrowed from Halmos’s Measure Theory.

Seven postulates, P1, P2, etc., are introduced over the course of
several chapters. For ready reference these are, with some explanatory
material, reproduced on the end papers.

Entries in the Bibliography at the end of Appendix 3 are designated
by a self-explanatory notation in square brackets. For example, the
works of Tippett, Wald, Munroe, Feller, and Halmos, already referred
to, are [T2], [W1], [M6], [F1], and [H2], respectively.

I often allude to a set of key references to a given topic. This means
a set of external references intended to lead the reader that wishes to
pursue that particular topic to the fullest and most recent bibliographies;
it has nothing to do with the merit or importance of the works referred to.

Technical terms (except for non-verbal symbols) that are defined in
this book are printed in bold face or italics (depending on the impor-
tance of the term for this book or for established usage) in the context
where the term is defined. These special fonts are occasionally used
for other purposes as well. Terms are sometimes used informally—
even in unofficial definitions—before being officially defined. Even the
official definitions are sometimes of necessity very loose, corresponding
to the well-known principle that, in a formal theory, some terms must
in strict logic be left undefined.

L. J. Savace

University of Chicago

April, 1954
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CHAPTER 1

Introduction

1 The role of foundations

It is often argued academically that no science can be more secure
than its foundations, and that, if there is controversy about the foun-
dations, there must be even greater controversy about the higher parts
of the science. As a matter of fact, the foundations are the most con-
troversial parts of many, if not all, sciences. Physics and pure mathe-
matics are excellent examples of this phenomenon. As for statistics,
the foundations include, on any interpretation of which I have ever
heard, the foundations of probability, as controversial a subject as one
could name. As in other sciences, controversies over the foundations
of statistics reflect themselves to some extent in everyday practice, but
not nearly so catastrophically as one might imagine. I believe that
here, as elsewhere, catastrophe is avoided, primarily because in prac-
tical situations common sense generally saves all but the most pedantic
of us from flagrant error. It is hard to judge, however, to what extent
the relative calm of modern statistics is due to its domination by a
vigorous school relatively well agreed within itself about the foundations.

Although study of the foundations of a science does not have the
role that would be assigned to it by naive first-things-firstism, it has a
certain continuing importance as the science develops, influencing, and
being influenced by, the more immediately practical parts of the science.

2 Historical background

The concept and problem of inductive inference have been promi-
nent in philosophy at least since Aristotle. Mathematical work on some
aspects of the problem of inference dates back at least to the early
eighteenth century. Leibniz is said to be the first to publish a sugges-
tion in that direction, but Jacob Bernoulli’s posthumous Ars Conjec-
tands (1713) [B12] seems to be the first concerted effort.t This mathe-

t Valuable information on this and other topics of the early philosophic history of
probability is attractively presented in Keynes’ treatise [K4], especially in Chapters
VII, XXTII, and the bibliography.

1



2 INTRODUCTION [1.2

matical work has always revolved around the concept of probability;
but, though there was active interest in probability for nearly a cen-
tury before the publication of Ars Conjectandi, earlier activity seems
not to have been concerned with induective inference.

In the present century there has been and continues to be extra-
ordinary interest in mathematical treatment of problems of inductive
inference. For reasons I cannot and need not analyze here, this ac-
tivity has been strikingly concentrated in the English-speaking world.
It is known under several names, most of which stress some aspect of
the subject that seemed of overwhelming importance at the moment
when the name was coined. ‘“Mathematical statistics,” one of its
earliest names, is still the most popular. In this name, “mathematical”
seems to be intended to connote rational, theoretical, or perhaps mathe-
matically advanced, to distinguish the subject from those problems of
gathering and condensing numerical data that can be considered apart
from the problem of inductive inference, the mathematical treatment
of which is generally relatively trivial. The name “statistical inference’”’
recognizes that the subject is concerned with inductive inference. The
name “‘statistical decision” reflects the idea that inductive inference is
not always, if ever, concerned with what to believe in the face of in-
conclusive evidence, but that at least sometimes it is concerned with
what action to decide upon under such circumstances. Within this
book, there will be no harm in adopting the shortest possible name,
“statistics.”

It is unanimously agreed that statistics depends somehow on proba-
bility. But, as to what probability is and how it is connected with
statistics, there has seldom been such complete disagreement and break-
down of communication since the Tower of Babel. There must be
dozens of different interpretations of probability defended by living
authorities, and some authorities hold that several different interpreta-
tions may be useful, that is, that the concept of probability may have
different meaningful senses in different contexts. Doubtless, much of
the disagreement is merely terminological and would disappear under
sufficiently sharp analysis. Some believe that it would all disappear,
or even that they have themselves already made the necessary
analysis.

Considering the confusion about the foundations of statistics, it is
surprising, and certainly gratifying, to find that almost everyone is
agreed on what the purely mathematical properties of probability are.
Virtually all controversy therefore centers on questions of interpreting
the generally accepted axiomatic concept of probability, that is, of de-
termining the extramathematical properties of probability.
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The widely accepted axiomatic concept referred to is commonly as-
cribed to Kolmogoroff [K7] and goes by his name. It should be men-
tioned that there is some dissension from it on the part of a small group
led by von Mises [V2]. There are also a few minor technical variations
on the Kolmogoroff system that are sometimes of interest; they will be
discussed in § 3.4.

I would distinguish three main classes of views on the interpretation
of probability, for the purposes of this book, calling them objectivistic,
personalistic, and necessary. Condensed descriptions of these three
classes of views seem called for here. If some readers find these descrip-
tions condensed to the point of unintelligibility, let them be assured
that fuller ones will gradually be developed as the book proceeds.

Objectivistic views hold that some repetitive events, such as tosses
of a penny, prove to be in reasonably close agreement with the mathe-
matical concept of independently repeated random events, all with the
same probability. According to such views, evidence for the quality
of agreement between the behavior of the repetitive event and the
mathematical concept, and for the magnitude of the probability that
applies (in case any does), is to be obtained by observation of some
repetitions of the event, and from no other source whatsoever.

Personalistic views hold that probability measures the confidence
that a particular individual has in the truth of a particular proposition,
for example, the proposition that it will rain tomorrow. These views
postulate that the individual concerned is in some ways ‘“‘reasonable,”
but they do not deny the possibility that two reasonable individuals
faced with the same evidence may have different degrees of confidence
in the truth of the same proposition.

Necessary views hold that probability measures the extent to which
one set of propositions, out of logical necessity and apart from human
opinion, confirms the truth of another. They are generally regarded
by their holders as extensions of logic, which tells when one set of prop-
ositions necessitates the truth of another.

After what has been said about the intensity and complexity of the
controversy over the probability concept, you must realize that the
short taxonomy above is bound to infuriate any expert on the founda-
tions of probability, but I trust it may do the less learned more good
than harm.

The great burst of statistical research in the English-speaking world
in the present century has revolved around objectivistic views on the
interpretation of probability. As will shortly be explained, any purely
objectivistic view entails a severe difficulty for statistics. This diffi-
culty is recognized by members of the British-American School, if 1
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may use that name without its being taken too literally or at all na-
tionalistically, and is regarded by them as a great, though not insur-
mountable, obstacle; indeed, some of them see it as the central problem
of statistics.

The difficulty in the objectivistic position is this. In any objecti-
vistic view, probabilities can apply fruitfully only to repetitive events,
that is, to certain processes; and (depending on the view in question)
it is either meaningless to talk about the probability that a given propo-
sition is true, or this probability can be only 1 or 0, according as the
proposition is in fact true or false. Under neither interpretation can
probability serve as a measure of the trust to be put in the proposition.
Thus the existence of evidence for a proposition can never, on an ob-
jectivistic view, be expressed by saying that the proposition is true with
a certain probability. Again, if one must choose among several courses
of action in the light of experimental evidence, it is not meaningful, in
terms of objective probability, to compute which of these actions is
most promising, that is, which has the highest expected income. Hold-
ers of objectivistic views have, therefore, no recourse but to argue that
it 1s not reasonable to assign probabilities to the truth of propositions
or to calculate which of several actions is the most promising, and that
the need expressed by the attempt to set up such concepts must be
met in other ways, if at all.

The British-American School has had great success in several re-
spects. The number of its adherents has rapidly increased. It has con-
tributed many procedures of strong intuitive appeal and (one feels) of
lasting worth. These have found widespread application in many
sciences, in industry, and in commerce. The success of the school may
pragmatically be taken as evidence for the correctness of the general
view on which it is based. Indeed, anyone who overthrows that view
must either discredit the procedures to which it has led, or show, as
I hope to show in this book, that they are on the whole consistent with
the alternative proposed.

Some, I among them, hold that the grounds for adopting an objec-
tivistic view are not overwhelmingly strong; that there are serious log-
ical objections to any such view; and, most important of all, that the
difficulty a strictly objectivistic view meets in statistics reflects real
inadequacy.

3 General outline of this book

This book presents a theory of the foundations of statistics which is
based on a personalistic view of probability derived mainly from the
work of Bruno de Finetti, as expressed for example in [D2]. The theory
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is presented in a tentative spirit, for I realize that the serious blemishes
in it apparent to me are not the only ones that will be discovered by
critical readers. A theory of the foundations of statistics that appears
contrary to the teaching of the most productive statisticians will prop-
erly be regarded with extraordinary caution. Other views on proba-
bility will, of course, be discussed in this book, partly for their own in-
terest and partly to explain the relationship between the personalistic
view on which this book is based and other views.

The book is organized into seventeen chapters, of which the present
introduction is the first. Chapters 2-7 are, so to speak, concerned with
the foundations at a relatively deep level. They develop, explain, and
defend a certain abstract theory of the behavior of a highly idealized
person faced with uncertainty. That theory is shown to have as im-
plications a theory of personal probability, corresponding to the per-
sonalistic view of probability basic to this book, and also a theory of
utility due, in its modern form, to von Neumann and Morgenstern
[V4].

There is a transition, occurring in Chapter 8 and maintained through-
out the rest of the book, to a shallower level of the foundations of sta-
tistics; I might say from pre-statistics to statistics proper. In those
later chapters, it is recognized that the theory developed in the earlier
ones is too highly idealized for immediate application. Some compro-
mises have to be made, and the appropriate ones are sought in an anal-
ysis of some of the inventions and ideas of the British-American School.
It will, I hope, be demonstrated thereby that the superficially incom-
patible systems of ideas associated on the one hand with a personalistic
view of probability and on the other with the objectivistically inspired
developments of the British-American School do in fact lend each other
mutual support and clarification.



CHAPTER 2

Preliminary Considerations
on Decision 1n
the Face of Uncertainty

1 Introduction

Decisions made in the face of uncertainty pervade the life of every
individual and organization. Even animals might be said continually
to make such decisions, and the psychological mechanisms by which
men decide may have much in common with those by which animals
do so. But formal reasoning presumably plays no role in the decisions
of animals, little in those of children, and less than might be wished in
those of men. It may be said to be the purpose of this book, and in-
deed of statistics generally, to discuss the implications of reasoning for
the making of decisions.

Reasoning is commonly associated with logic, but it is obvious, as
many have pointed out, that the implications of what is ordinarily
called logic are meager indeed when uncertainty is to be faced. It has
therefore often been asked whether logic cannot be extended, by prin-
ciples as acceptable as those of logic itself, to bear more fully on un-
certainty. An attempt to extend logic in this way will be begun in
this chapter, differing in two important respects from most, but not
all, other attempts.

First, since logic is concerned with implications among propositions,
many have thought it natural to extend logic by setting up criteria for
the extent to which one proposition tends to imply, or provide evidence
for, another. It seems to me obvious, however, that what is ultimately
wanted is criteria for deciding among possible courses of action; and,
therefore, generalization of the relation of implication seems at best a
roundabout method of attack. It must be admitted that logic itself
does lead to some criteria for decision, because what is implied by a
proposition known to be true is in turn true and sometimes relevant to
making a decision. Should some notion of partial implication be de-
monstrably even better articulated with decision than is implication it-

6
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self, that would be excellent; but how is such a notion to be sought ex-
cept by explicitly studying decision? Ramsey’s discussion in [R1] of
the point at issue here is especially forceful.

Second, it is appealing to suppose that, if two individuals in the same
situation, having the same tastes and supplied with the same informa-
tion, act reasonably, they will act in the same way. Such agreement,
belief in which amounts to a necessary (as opposed to a personalistic)
view of probability, is certainly worth looking for. Personally, I be-
lieve that it does not correspond even roughly with reality, but, hav-
ing at the moment no strong argument behind my pessimism on this
point, I do not insist on it. But I do insist that, until the contrary be
demonstrated, we must be prepared to find reasoning inadequate to
bring about complete agreement. In particular, the extensions of logic
to be adduced in this book will not bring about complete agreement;
and whether enough additional principles to do so, or indeed any addi-
tional principles of much consequence, can be adduced, I do not know.
It may be, and indeed I believe, that there is an element in decision
apart from taste, about which, like taste itself, there is no disputing,.

The next four sections of this chapter build up a formal model, or
scheme, of the situation in which a person is faced with uncertainty;
the final two, in terms of this model, motivate and state some of the
few principles that seem to me entitled to be taken as postulates for
rational decision.

2 The person

I am about to build up a highly idealized theory of the behavior of a
“rational” person with respect to decisions. In doing so I will, of course,
have to ask you to agree with me that such and such maxims of behavior
are “rational.” In so far as “rational” means logical, there is no live
question; and, if I ask your leave there at all, it is only as a matter of
form.t But our person is going to have to make up his mind in situa-
tions in which criteria beyond the ordinary ones of logic will be neces-
sary. So, when certain maxims are presented for your consideration,
you must ask yourself whether you try to behave in accordance with
them, or, to put it differently, how you would react if you noticed your-
self violating them.

t The assumption that a person’s behavior is logical is, of course, far from vacuous.
In particular, such a person cannot be uncertain about decidable mathematical prop-
ositions. This suggests, at least to me, that the tempting program sketched by Polya
[P6] of establishing a theory of the probability of mathematical conjectures cannot
be fully successful in that it cannot lead to a truly formal theory, but de Finetti
[D5] seems more optimistic about the program.t

+ Polya has greatly elaborated his program, but not in the direction of seek-
ing a formal theory. A curious early work by Cérésole (1915) is somewhat
pertinent, and Hacking (1967) argues for the possibility of including math-
ematical uncertainty in a formal theory.
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It is brought out in economic theory that organizations sometimes
behave like individual people, so that a theory originally intended to
apply to people may also apply to (or may even apply better to) such
units as families, corporations, or nations. In view of this possibility,
economic theorists are sometimes reluctant to use the word ‘person,”
or even “individual,” for the behaving units to which they refer; but
for our purpose “person’ threatens no confusion, though the possi-
bility of using it in an extended sense may well be borne in mind.

3 The world, and states of the world

A formal description, or model, of what the person is uncertain about
will be needed. To motivate this formal deseription, let me begin in-
formally by considering a list of examples. The person might be un-
certain about:

1. Whether a particular egg is rotten.

2. Which, if any, in a particular dozen eggs are rotten.

3. The temperature at noon in Chicago yesterday.

4. What the temperature was and will be in the place now covered
by Chicago each noon from January 1, 1 A.p., to January 1, 4000 A.D.

5. The infinite sequence of heads and tails that will result from re-
peated tosses of a particular (everlasting) coin.

6. The complete decimal expansion of .

7. The exact and entire past, present, and future history of the uni-
verse, understood in any sense, however wide.

These examples have a few features in common, though, if there are
more than a few, it is a discredit to my imagination. Thus, in each
there is some object about which the person is uncertain, an egg, a
dozen eggs, a temperature, a sequence of temperatures, etc. Each ob-
ject admits a certain class of descriptions that might thinkably apply
to it. To illustrate, the egg of Example 1 might be rotten or not; and
the terms of the example are meant to exclude any other description
from consideration, though, of course, a real egg has many other fea-
tures. Again, since any subset of the dozen eggs (including the extreme
cases of all and none at all) might be rotten, there are 2! descriptions
associated with Example 2. For Example 3 and each subsequent one,
there are an infinite number of descriptions, though the array of de-
scriptions is more complicated in some than in others, reaching the ulti-
mate of complexity in Example 7. Example 6 is a little anomalous
in that anything the person does not know about the description of =
he could know in principle by thinking sufficiently hard about it, that
is, by logic alone. This point, banal to some readers, needs explanation
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for others. If, for example, = is understood to be the area of a circle of
unit radius, it follows by logic alone that = is not greater than the area
of a square circumscribing the unit circle, that is, # < 4. By an elabo-
ration of this method = can be computed to any degree of accuracy,
and by other purely logical methods many other facts about = can be
established, such as the fact that = is not a rational number.

In connection with the concepts suggested by the preceding para-
graph, the following nomenclature is proposed as brief, suggestive, and
in reasonable harmony with the usages of statistics and ordinary dis-
course.

Term Definition
the world the object about which the person is
concerned
a state (of the world) a description of the world, leaving no

relevant aspect undescribed
the true state (of the world) the state that does in fact obtain, i.e.,
the true description of the world

In application of the theory, the question will arise as to which world
to use in a given context. Thus, if the person is interested in the only
brown egg in a dozen, should that egg or the whole dozen be taken as
the world? It will be seen as the theory is developed that in principle
no harm is done by taking the larger of two worlds as a model of the
situation. One is therefore tempted to adopt, once and for all, one
world sufficiently large, say Example 7. The most serious objection to
this is that Example 7 is vague, and some mathematical and philosophi-
cal experience suggests that the vagueness cannot be removed without
ruining the universality of the example. It may also be added that the
use of modest little worlds, tailored to particular contexts, is often a
simplification, the advantage of which is justified by a considerable
body of mathematical experience with related ideas.

The sense in which the world of a dozen eggs is larger than the world
of the one brown egg in the dozen is in some respects obvious. It may
be well, however, to emphasize that a state of the smaller world corre-
sponds not to one state of the larger, but to a set of states. Thus,
“The brown egg is rotten” describes the smaller world completely, and
therefore is a state of it; but the same statement leaves much about the
larger world unsaid and corresponds to a set of 2'! states of it. In the
sense under discussion a smaller world is derived from a larger by neg-
lecting some distinctions between states, not by ignoring some states
outright. The latter sort of contraction may be useful in case certain
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states are regarded by the person as virtually impossible so that they
can be ignored.

4 Events

An event is a set of states. For example, in connection with the
world of Example 2, the person might well be concerned with the event
that exactly one egg in the dozen is rotten (an event having 12 states
as elements), or, a little less academically, that at least one of the eggs
is rotten (an event having 2'2 — 1 states as elements, i.e., all the states
in the world but one). In connection with the world of Example 3,
the person might be concerned with the event, having an infinite num-
ber of states, that the temperature at noon in Chicago yesterday was
below freezing. To give a final illustration, of a more mathematical
flavor, consider in connection with Example 5 the event that the ratio
of the number of heads to tails approaches 3 as the sequence progresses
to infinity.

In connection with any given world, there are two events that are
of the utmost logical importance, though in ordinary discourse it may
seem banal even to mention their existence. These are the universal
and the vacuous events. The universal event, here to be symbolized
by 8, is the event having every state of the world as element. In so
far as “world” has a real technical meaning, S is the world. The vacu-
ous event, which can here be safely enough symbolized by the 0 of
arithmetic, is the event having no states as elements. To illustrate, in
Example 1 the event that the egg is rotten or good is the universal
event, and that it is both rotten and good is the vacuous event.

It is important to be able to express the idea that a given event con-
tains the true state among its elements. English usage seems to offer
no alternative to the rather stuffy expression, “the event obtains.”

The theory under development makes no formal reference to time.
In particular, the concept of event as here formulated is timeless, though
temporal ideas may be employed in the description of particular events.
Thus, it would not be said that Lincoln’s assassination is an event that
occurred in 1865 and that the next return of Halley’s comet is one that
will occur in 1985, but that Lincoln’s assassination in 1865 and the
return of Halley’s comet in, but not before, 1985 are events that
obtain.

Modern mathematical usage, especially that of a branch of mathe-
matics called Boolean algebra, suggests the following table of defini-
tions in connection with the concepts of state and event. Some of
these are synonyms, others abbreviations, and still others new terms
compounded out of old.
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Though the notations introduced in Table 1 are very elementary
and of great utility, they are not ordinarily taught except in connec-
tion with logic or relatively advanced mathematics. A set of exercises
illustrating their use is therefore given below in the form of a numbered
list of statements. These statements are true whatever the sets 4, B,

TABLE 1. MATHEMATICAL NOMENCLATURE PERTAINING TO STATE AND EVENTS
Term Definition
(Bastc terms)
set event
A4,BC, - generic symbols for events
s, 8, 8" generic symbols for states
the universal event
0 the vacuous event
(Relations)
seA. sis an element of 4, i.e., a state in 4.t

AC B (or BD A).

A is contained in B, i.e., every element
of A is an element of B.

A =B. A equals B, i.e., A is the same set as B,
i.e.,, A and B have exactly the same
elements.

(Constructs)
the complement of A with those elements of S that are not in A
respect to S

~A the complement of A with respect to S

the union of the 4/’s those elements of S that are elements
of at least one of the sets 4;, A,, etc.

Ui A: the union of the A/’s

AUB the union of 4 and B, i.e., those ele-

the intersection of the A;’s

N:A:
AN B

ments of S that are elements of 4 or
B (possibly of both)

those elements of S that are elements
of each of the sets 4, 4,, etec.

the intersection of the A;'s

the intersection of A and B, i.e., those
elements of S that are elements of
both A and B

t Typographical note: The Porson font of the Greek alphabet (e, 8, v, 8, ¢, &, -+ +)
is the one almost always printed, at least in America, when mathematical constants
and variables are denoted by Greek letters. The symbol e used in this and some other
publications to denote ‘“‘element of” is, however, the epsilon of the Vertical font
(2,8 71,3,¢¢% --+). Some publications use the special symbol €; and some use e,
the Porson epsilon, presumably because of its resemblance to €. The latter usage
entails either using ¢ for two different purposes or else changing fonts in mid alphabet
(o, B, 7, 8, ¢, &, -+ ) when constants and variables are denoted by Greek letters.
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C may be. Mathematicians would for the most part verify them by
translating them into English and appealing to common sense, though
in complicated cases explicit use might be made of Exercise 9. Dia-
grams, called Venn diagrams, in which sets are symbolized by areas,
as illustrated by Figure 1, are often suggestive.

~(AUB)

" |t

Figure 1

It is a remarkable and useful fact that any universally valid state-
ment about sets remains so if, throughout, U is interchanged with N,
0 with S, and C with D. The dual in this sense of each exercise should
be studied along with the exercise itself. For example, the dual of
Exercise 7 is: A D B, if and only if A = A U B. Note that the first
parts of Exercises 1 through 6 are dual to the second parts.

It may be remarked that, if Exercises 1-6 are taken as axioms and
7 as a definition, Exercises 821 and also the duality principle follow
formally from them. For example, 10 can be proved thus: By 7, if
ANBis A, then A C B; but, by 1, A N A is A; therefore 4 C A.
Again, 8 can be proved, using 6, 3, 2, 1, 3, and 6 in that order, thus:

1) 0NA=AN~A)NA=(~ANA)NA
=~ANUANA) =~ANA=A4AN~4=0.

Such formal demonstration is fun and helps develop mathematical skill.
In the present exercises the novice, however, should consider it as a
possible supplement to, but not as a substitute for, demonstration by
interpretation.

If the exercises fail to render the notations familiar, it would be best
to talk with someone to whom they are already familiar or failing that,
to read in any elementary book where the subject is treated, for ex-
ample, Chapter II, ‘“The Boole-Schroeder Algebra,” in the text of
Lewis and Langford [L7].

Exercises illustrating Boolean algebra

1.LANA=A=A4UA.

2. ANBNC=ANBNC); AUB)UC=4U@BUO.
(These facts often render parentheses superfluous.)

3.3 ANB=BNA;AUB=BU A.
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4ANBUCO=ANBUM@ANC);AUBNC) =
(4UB)N (AU Q).

58NA=4;0UA4 = 4A.

6. AN (~4) =0; 4 U (~4) = 8.

7. AcCB,ifandonlyif A = A N B.

8

.0N4=0.
9. A =B,ifandonlyif A C Band B C 4.
10. A c A.

11. (A N B) C A.

122 If AC B,then (A NC)c (BN C),and (4 UC)c (BUDUOQ).
13. AUB)c C,ifand onlyif A € C and B C C.

14. 0cACS.

15. AN (A UB)=A4.

16. ~(~A) = A.

17. ~(A U B) = (~A4) N (~B) (De Morgan’s theorem).
18. ~0 = 8.

19. AN (~4UB)=40NB.

20. A C B, if and only if (~B) C (~A).

21. ACB,ifand onlyif A N (~B) = 0.

22. ~(UJ:4:) = i (~4,) (General De Morgan’s theorem).
23. AU (N:By) = N:(4 U B,.

24. AN (N:B) = N:(4 N B)).

25. (U:4) U (U;Bj) = U:j(4: U B)).

26. (:4) U (N;B) = (s (4: U By).

27. A < (N By), if and only if A C B; for every 1.

28. (N:B:) < B; < (U:By) for every j.

b6 Consequences, acts, and decisions

To say that a decision is to be made is to say that one of two or more
acts is to be chosen, or decided on. In deciding on an act, account
must be taken of the possible states of the world, and also of the con-
sequences implicit in each act for each possible state of the world. A
consequence is anything that may happen to the person.

Consider an example. Your wife has just broken five good eggs into
a bowl when you come in and volunteer to finish making the omelet.
A sixth egg, which for some reason must either be used for the omelet
or wasted altogether, lies unbroken beside the bowl. You must de-
cide what to do with this unbroken egg. Perhaps it is not too great an
oversimplification to say that you must decide among three acts only,
namely, to break it into the bowl containing the other five, to break it
into a saucer for inspection, or to throw it away without inspection.
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Depending on the state of the egg, each of these three acts will have
some consequence of concern to you, say that indicated by Table 1.

TABLE 1. AN EXAMPLE ILLUSTRATING ACTS, STATES, AND CONSEQUENCES

State
Act
Good Rotten
break into bowl | six-egg omelet no omelet, and five good eggs
destroyed
break into saucer | six-egg omelet, and a saucer | five-egg omelet, and a saucer
to wash to wash
throw away five-egg omelet, and one good | five-egg omelet
egg destroyed

Even the little example concerning the omelet suggests how varied
the things, or experiences, regarded as consequences, can be. They
might in general involve money, life, state of health, approval of friends,
well-being of others, the will of God, or anything at all about which the
person could possibly be concerned. Consequences might appropriately
be called states of the person, as opposed to states of the world. They
might also be referred to, with some extension of the economic notion
of income, as the possible incomes of the person. In any one problem,
the set of consequences envisaged will be denoted by F, and the indi-
vidual consequences will be denoted by f, g, h, etc. In the omelet ex-
ample, F consists of the six consequences tabulated in Table 1: six-egg
omelet; no omelet, and five good eggs destroyed; etc.

If two different acts had the same consequences in every state of the
world, there would from the present point of view be no point in con-
sidering them two different acts at all. An act may therefore be iden-
tified with its possible consequences. Or, more formally, an act is a
function attaching a consequence to each state of the world. The nota-
tion f will be used to denote an act, that is, a function, attaching the
consequence f(s) to the state s. The notation f is logically a better
name for a function than the more customary f(s) for exactly the same
reason that the word ‘“logarithm’ is a better term for logarithm than
“logarithm of z”’ would be. The notational distinction involved here is
often justifiably neglected in mathematical work, but we will have spe-
cial need to observe it, at least in connection with acts, as will soon be
explained. When several acts are to be discussed at once, they may be
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denoted by different letters thus: f, g, h; by the use of primes thus: f,
f', f'; or by subscripts thus: f;, f;. The set of all acts available in a
given situation will be denoted by F or a similar symbol. In the ex-
ample of the omelet, F has three acts as elements. If, for example, f
denotes the first of the three acts listed in Table 1, then f is defined
thus:

1)

f(good) = six-egg omelet;
f(rotten) = no omelet, and five good eggs destroyed.

The argument might be raised that the formal description of decision
that has thus been erected seems inadequate because a person may not
know the consequences of the acts open to him in each state of the
world. He might be so ignorant, for example, as not to be sure whether
one rotten egg will spoil a six-egg omelet. But in that case nothing
could be simpler than to admit that there are four states in the world
corresponding to the two states of the egg and the two conceivable
answers to the culinary question whether one bad egg will spoil a six-
egg omelet. It seems to me obvious that this solution works in the
greatest generality, though a thoroughgoing analysis might not be triv-
ial. A reader interested in the technicalities of this point or that of
the succeeding paragraph will find an extensive discussion of a similar
problem in Chapter II of [V4], where von Neumann and Morgenstern
discuss the reduction of a general game to its reduced form.

Again, the formal description might seem inadequate in that it does
not, provide explicitly for the possibility that one decision may lead to
another. Thus, if the omelet should be spoiled by breaking a rotten
egg into it, new questions might arise about what to substitute for
breakfast and how to appease your justifiably furious wife. But, just
as in the preceding paragraph an apparent shortcoming of the proposed
mode of description was attributed to an incomplete analysis of the
possible states, here I would say that the list of available acts envisaged
in Table 1 is inadequate for the interpretation that has just been put
on the problem. Where the single act “break into bowl” now stands,
there should be several, such as: “break into bowl, and in case of dis-
aster have toast,” “break into bowl, and in case of disaster take family
to a neighboring restaurant for breakfast.” Appropriate consequences
of these new acts can easily be imagined.

As has just been suggested, what in the ordinary way of thinking
might be regarded as a chain of decisions, one leading to the other in
time, is in the formal description proposed here regarded as a single de-
cision. To put it a little differently, it is proposed that the choice of a
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policy or plan be regarded as a single decision. This point of view,
though not always in so explicit a form, has played a prominent role
in the statistical advances of the present century. For example, the
great majority of experimentalists, even today, suppose that the func-
tion of statistics and of statisticians is to decide what conclusions to
draw from data gathered in an experiment or other observational pro-
gram. But statisticians hold it to be lacking in foresight to gather data
without a view to the method of analysis to be employed, that is, they
hold that the design and analysis of an experiment should be decided
upon as an articulated whole.

The point of view under discussion may be symbolized by the prov-
erb, “Look before you leap,” and the one to which it is opposed by the
proverb, “You can cross that bridge when you come to it.”” When two
proverbs conflict in this way, it is proverbially true that there is some
truth in both of them, but rarely, if ever, can their common truth be
captured by a single pat proverb. One must indeed look before he
leaps, in so far as the looking is not unreasonably time-consuming and
otherwise expensive; but there are innumerable bridges one cannot
afford to cross, unless he happens to come to them.

Carried to its logical extreme, the “Look before you leap” principle
demands that one envisage every conceivable policy for the government
of his whole life (at least from now on) in its most minute details, in
the light of the vast number of unknown states of the world, and decide
here and now on one policy. This is utterly ridiculous, not—as some
might think—because there might later be cause for regret, if things
did not turn out as had been anticipated, but because the task implied
in making such a decision is not even remotely resembled by human
possibility. It is even utterly beyond our power to plan a picnic or to
play a game of chess in accordance with the principle, even when the
world of states and the set of available acts to be envisaged are artifi-
cially reduced to the narrowest reasonable limits.

Though the “Look before you leap” principle is preposterous if car-
ried to extremes, I would none the less argue that it is the proper sub-
ject of our further discussion, because to cross one’s bridges when one
comes to them means to attack relatively simple problems of decision
by artificially confining attention to so small a world that the “Look
before you leap” principle can be applied there. I am unable to formu-
late criteria for selecting these small worlds and indeed believe that
their selection may be a matter of judgment and experience about which
it is impossible to enunciate complete and sharply defined general prin-
ciples, though something more will be said in this connection in § 5.5.
On the other hand, it is an operation in which we all necessarily have
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much experience, and one in which there is in practice considerable
agreement.

In view of the “Look before you leap’ principle, acts and decisions,
like events, are timeless. The person decides ‘“now” once for all; there
is nothing for him to wait for, because his one decision provides for all
contingencies. None the less, temporal modes of description, though
translatable into atemporal ones, are often suggestive. Thus, there
will be occasion to analyze and make frequent use of the idea of defer-
ring a decision until an observation relevant to it has been made.

6 The simple ordering of acts with respect to preference

Of two acts f and g, it is possible that the person prefers f to g.
Loosely speaking, this means that, if he were required to decide between
f and g, no other acts being available, he would decide on f.

This procedure for testing preference is not entirely adequate, if only
because it fails to take account of, or even define, the possibility that
the person may not really have any preference between f and g, re-
garding them as equivalent; in which case his choice of f should not be
regarded as significant. If the person really does regard f and g as
equivalent, that is, if he is indifferent between them, then, if f or g
were modified by attaching an arbitrarily small bonus to its conse-
quences in every state, the person’s decision would presumably be for
whichever act was thus modified. This test for indifference does not
provide an altogether satisfactory definition, since it begs the question
to some extent by postulating in effect that the tester knows what con-
stitutes a small bonus. Another attempted solution would be to say
that the person knows by introspection whether he has decided hap-
hazardly or in response to a definite feeling of preference. This sort of
solution seems to me especially objectionable, because I think it of
great importance that preference, and indifference, between f and g be
determined, at least in principle, by decisions between acts and not by
response to introspective questions. In spite of the difficulty of dis-
tinguishing between preference and indifference, I think enough has
been said for us to proceed to a postulational treatment of them.

The very meaning of the relationship of preference that I have at-
tempted to establish in the preceding paragraph implies that the per-
son cannot simultaneously prefer f to g and g to f. In the postulational
treatment of the relationships of preference and indifference, it will be
technically convenient to work with the relation “is not preferred to”
rather than directly with its complementary relation “is preferred to.”
Thus, rather than say that it is impossible that both f is preferred to
g and g to f, I might say that, of any two acts f and g, f is not preferred
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to g or g is not preferred to f, possibly both. Again, the definition of
preference suggests that, if f is not preferred to g, and g is not preferred
to h, then it is impossible that f should be preferred to h.

The two assumptions just made about the relation ‘‘is not preferred
to’”’ is sometimes expressed in ordinary mathematical usage by saying
that the relation is a simple ordering among acts. Formally, a relation
<. among a set of elements z, y, z - - -, is called a simple ordering, in
this book, if and only if for every z, y, and z:

1. Either z <.y, ory <-z.
2. Ifzx <-y,and y <-2, then z <. 2.

Borrowing from arithmetic the suggestive abbreviation < for the re-
lation “is not preferred to,” the assumption that < is a simple order-
ing can be expressed formally by a postulate, thus:

P1 The relation < is a simple ordering among acts.

It is noteworthy that P1 makes no explicit reference to states of the
world. Except possibly for mathematical refinements,{ it seems to me
that no additional postulates can be formulated without making such
reference—at any rate none will be in this book.

P1 by itself is not very rich in consequences, but one easily proved
theorem following from it may be mentioned.

THEOREM 1 If F is a finite set of acts, there exist f and h in F such

that for all gin F
f<g<h

Theorem 1 is especially relevant to application of the theory of de-
cision, because I interpret the theory to imply that, if F is finite, the
person will decide on an act h in F to which no other act in F is pre-
ferred, the existence of at least one such h being guaranteed by the
theorem.

It is often appropriate to consider infinite sets of available acts. In
economic contexts, for example, it is generally an inappropriate com-
plication to take explicit account of the possibility that all transactions
must be in integral numbers of pennies. If infinite sets of available acts
are set up and interpreted without some mathematical tact, unrealistic
conclusions are likely to follow. Suppose, for example, that you were
free to choose any income, provided it be definitely less than $100,000
per year. Precisely which income would you choose, abstracting from
the indivisibility of pennies?

t For example, such topological assumptions about the space with neighborhoods
defined in terms of < as connectedness, local compactnesss, or density.



2.6] THE ORDER OF ACTS WITH RESPECT TO PREFERENCE 19

It is sometimes convenient to supplement the relation < by other
relations derived from it in accordance with the definitions in Table 1,
analogous definitions being applicable to any simple ordering. The as-
sumption of simple ordering, P1, has several implications for the de-
rived relations >, <, >, and =. These are generally strongly sug-
gested by the properties of the corresponding relations in arithmetic.

TaBLE 1. TABLE OF RELATIONS DERIVED FROM <

New Relation Definition
f>g. g<i
f < g, ie., g is preferred to f. It is false that g < f.
f>g g <f.

f=g ie,fisequivalentto (or f< g andg<f.
indifferent with respect to) g.

g is between f and h. f<g<hoh<g<f

A few such implications of P1 are listed below, with no intention of
completeness, as exercises for those who may not already be familiar
with the elementary properties of simple ordering.

Exercises

1. The relation > is also a simple ordering.

2. All the relations <, >, <, >, and = are transitive, that is, they
can be validly substituted for < in the second part of the definition of
simple ordering.

3. Between any pair of acts f, g, one and only one of the three rela-
tions <, =, and > holds.

4 Iff < g ,and g =h, then f <h.

5 Iff =g theng="f.

6. For any f, f = f.

7. At least one of three acts f, g, h is between the other two. When
can there be more than one such?

Two very different sorts of interpretations can be made of P1 and
the other postulates to be adduced later. First, P1 can be regarded as
a prediction about the behavior of people, or animals, in decision situa-
tions. Second, it can be regarded as a logic-like criterion of consist-
ency in decision situations. For us, the second interpretation is the
only one of direct relevance, but it may be fruitful to discuss both,
calling the first empirical and the second normative.
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Logic itself admits an empirical as well as a normative interpreta-
tion. Thus, if an experimental subject believes certain propositions,
it is to be expected that he will also believe their logical consequences
and disbelieve the negations of these consequences. This theory of hu-
man psychology has some validity and is of great practical utility in our
everyday dealings with other people, though it is very crude and ap-
proximate. For one thing, people often do make elementary mistakes
in logic; more refined theories would attribute these mistakes to such
things as accident or subconscious motivation. For another, if any-
one who believed the axioms of mathematics also believed all that they
imply and nothing that they contradict, mathematical study would be
superfluous for him; such a person would, as has been explained, be
able to state the ten-thousandth or any other term in the decimal ex-
pansion of 7 on demand. To summarize, logic can be interpreted as a
crude but sometimes handy empirical psychological theory.

The principal value of logic, however, is in connection with its norma-
tive interpretation, that is, as a set of criteria by which to detect, with
sufficient trouble, any inconsistencies there may be among our beliefs,
and to derive from the beliefs we already hold such new ones as con-
sistency demands. It does not seem appropriate here to attempt an
analysis of why and in what contexts we wish to be consistent; it is
sufficient to allude to the fact that we often do wish to be so.

Analogously, P1 together with the postulates to be adduced later can
be interpreted as a crude and shallow empirical theory predicting the
behavior of people making decisions. This theory is practical in suitably
limited domains, and everyone in fact makes use of at least some as-
pects of it in predicting the behavior of others. At the same time, the
behavior of people is often at variance with the theory. The departure
is sometimes flagrant, in which case our attitude toward it is much like
that we hold toward a slip in logic, calling the departure a mistake and
attributing it to such things as accident and subconscious motivation.
Or, the departure may be detectable only by a long chain of argument
or calculation, the possibilities becoming increasingly complicated as
new postulates are brought to stand beside P1.

Pursuing the analogy with logic, the main use I would make of P1
and its successors is normative, to police my own decisions for consist-
ency and, where possible, to make complicated decisions depend on
simpler ones.

Here it is more pertinent than it was in connection with logic that
something be said of why and when consistency is a desideratum, though
I cannot say much. Suppose someone says to me, “I am a rational
person, that is to say, I seldom, if ever, make mistakes in logic. But I
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behave in flagrant disagreement with your postulates, because they vio-
late my personal taste, and it seems to me more sensible to cater to my
taste than to a theory arbitrarily concocted by you.” I don’t see how
I could really controvert him, but I would be inclined to match his in-
trospection with some of my own. I would, in particular, tell him that,
when it is explicitly brought to my attention that I have shown a pref-
erence for f as compared with g, for g as compared with h, and for h as
compared with f, I feel uncomfortable in much the same way that I do
when it is brought to my attention that some of my beliefs are logically
contradictory. Whenever I examine such a triple of preferences on my
own part, I find that it is not at all difficult to reverse one of them. In
fact, I find on contemplating the three alleged preferences side by side
that at least one among them is not a preference at all, at any rate not
any more.

There is some temptation to explore the possibilities of analyzing
preference among acts as a partial ordering, that is, in effect to replace
part 1 of the definition of simple ordering by the very weak proposition
f < f, admitting that some pairs of acts are incomparable. This would
seem to give expression to introspective sensations of indecision or vacil-
lation, which we may be reluctant to identify with indifference. My
own conjecture is that it would prove a blind alley losing much in power
and advancing little, if at all, in realism; but only an enthusiastic ex-
ploration could shed real light on the question.

T The sure-thing principle

A businessman contemplates buying a certain piece of property. He
considers the outcome of the next presidential election relevant to the
attractiveness of the purchase. So, to clarify the matter for himself,
he asks whether he would buy if he knew that the Republican candidate
were going to win, and decides that he would do so. Similarly, he con-
siders whether he would buy if he knew that the Democratic candidate
were going to win, and again finds that he would do so. Seeing that he
would buy in either event, he decides that he should buy, even though
he does not know which event obtains, or will obtain, as we would ordi-
narily say. It is all too seldom that a decision can be arrived at on the
basis of the principle used by this businessman, but, except possibly
for the assumption of simple ordering, I know of no other extralogical
principle governing decisions that finds such ready acceptance.

Having suggested what I shall tentatively call the sure-thing prin-
ciple, let me give it relatively formal statement thus: If the person
would not prefer f to g, either knowing that the event B obtained, or
knowing that the event ~B obtained, then he does not prefer f to g.
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Moreover (provided he does not regard B as virtually impossible) if he
would definitely prefer g to f, knowing that B obtained, and, if he would
not prefer f to g, knowing that B did not obtain, then he definitely pre-
fers g to f.

The sure-thing principle cannot appropriately be accepted as a postu-
late in the sense that P1 is, because it would introduce new undefined
technical terms referring to knowledge and possibility that would ren-
der it mathematically useless without still more postulates governing
these terms. It will be preferable to regard the principle as a loose one
that suggests certain formal postulates well articulated with P1.

‘What technical interpretation can be attached to the idea that f
would be preferred to g, if B were known to obtain? Under any rea-
sonable interpretation, the matter would seem not to depend on the
values f and g assume at states outside of B. There is, then, no loss
of generality in supposing that f and g agree with each other except in
B, that is, that f(s) = g(s) for all s e ~B. TUnder this unrestrictive as-
sumption, f and g are surely to be regarded as equivalent given ~B,;
that is, they would be considered equivalent, if it were known that B
did not obtain. The first part of the sure-thing principle can now be
interpreted thus: If, after being modified so as to agree with one an-
other outside of B, f is not preferred to g; then f would not be preferred
to g, if B were known. The notion will be expressed formally by say-
ing that f < g given B.+

It is implicit in the argument that has just led to the definition of
f < g given B that, if two acts f and g are so modified in ~B as to agree
with each other, then the order of preference obtaining between the
modified acts will not depend on which of the permitted modifications
was actually carried out. Equivalently, if f and g are two acts that do
agree with each other in ~B, and f < g; then, if f and g are modified
in ~B in any way such that the modified acts f' and g’ continue to
agree with each other in ~B, it will also be so that f < g’. This as-
sumption is made formally in the postulate P2 below and illustrated
schematically in Figure 1, a kind of diagram I find suggestive in many
such contexts.

In Figure 1, the set S of all states s and the set F of all consequences
f are represented by horizontal and vertical intervals respectively. In
any such diagram an act f, being a function attaching a value f(s) ¢ F
to each s ¢S is represented by a graph. This particular diagram graphs
two actsf and g that agree with each other in ~B, and two other acts
f’ and g’ that also agree with each other in ~B and arise by modifying
f and g respectively only in ~B, that is, acts agreeing with f and g
respectively in B.

+ In this edition, the corresponding definition D1 on the end papers has

been slightly strengthened to compensate an inadvertent weakness in the end
paper version of P2, pointed out to me by Peter Fishburn.
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Figure 1

P2 If f, g, and f', g’ are such that:
1. in ~B, f agrees with g, and f’ agrees with g/,
2. in B, f agrees with f', and g agrees with g’,
3. f<g;

then f’ < g'.

Each of the relations “< given B’ is now easily seen to be a simple
ordering, and the relations “>, <, >, = given B” are to be defined
mutatis mutandis. It is noteworthy though obvious that, if f(s) = g(s)
for all s ¢ B, then f = g given B.

It is now possible and instructive to give an atemporal analysis of
the following temporally described decision situation: The person must
decide between f and g after he finds out, that is, observes, whether B
obtains; what will his decision be if he finds out that B does in fact
obtain?

Atemporally, the person can submit himself to the consequences of
f or else of g for all s ¢ B, and, independently, he can submit himself to
the consequences of f or else of g for all s € ~B; which alternative will
he decide upon for the s’s in B?

Finally, describing the situation not only atemporally but also quite
formally, the person must decide among four acts defined thus:

hyo agrees with f on B and with f on ~B,
hy; agrees with f on B and with g on ~B,
h,, agrees with g on B and with f on ~B,
h;; agrees with g on B and with g on ~B.

The question at issue now takes this form. Supposing that none of
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the four functions is preferred to the particular one h;;, is 7 = 0, or is
7 = 1; that is, does h,; agree with f on B or with g on B?

It is not hard to see that ¢ can be 1, if and only if f < g given B. In-
deed, if ¢ = 1, hy; < h;;, which means that f < g given B. Arguing in
the opposite direction, if f < g given B; then hyy < h;g, and hy; < hy;.
Suppose now, for definiteness, h;o < h;;, then none of the four possi-
bilities is preferred to h;;; this proves the point in question.

It may fairly be said that the person considers B virtually impossible,
or that B is null; if and only if, for all f and g, f < g given B. Indeed,
if B is null in this sense, the values acts take on elements of B are irrele-
vant to all decisions.

Several trivial conclusions about null events are listed as a compound
theorem, all components but the last of which have immediate intuitive
interpretations.

THEOREM 1

. The vacuous event, 0, is null.

B is null, if and only if, for every f and g, f = g given B.
If B is null, and B D C; then C is null.

If ~Bisnull;f < ggiven B, if and only if f < g.

f <ggivensS, if and only if f < g.

. If Sisnull, f = g for every f and g.

e N

Component 6 of Theorem 1 requires comment, because it corresponds
to a pathological situation. In case S is null, it is not really intuitive
to say that S (and therefore every event) is virtually impossible. The
interpretation is rather that the person simply doesn’t care what hap-
pens to him. This is imaginable, especially under a suitably restricted
interpretation of F, but it is uninteresting and will accordingly be ruled
out by a later postulate, P5.

A finite set of events B; is a partition of B; if B; N B; = 0, for ¢ # j,
and |J:B; = B. With this definition, it is easily proved by arithmetic
induction that

THEOREM 2 If B; is a partition of B, and f < g given B; for each 1,
then f < g given B. If, in addition, f < g given B; for at least one j,
then f < g given B.

COROLLARY 1 The union of any finite number of null events is null.

There are still other interesting consequences of Theorem 2, which
may be most conveniently mentioned informally. If, in Theorem 2,
B = S (or, more generally, if ~B is null), it is superfluous to say “given
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B” in the conclusions of the theorem. If f = g given B; for each ¢,
then f = g given B. So much for the consequences of P2.

Acts that are constant, that is, acts whose consequences are inde-
pendent of the state of the world, are of special interest. In particular,
they lead to a natural definition of preference among consequences in
terms of preference among acts. Following ordinary mathematical us-
age, f = g will mean that f is identically g, that is, for every s, f(s) = g¢.
A formal definition of preference among consequences can now con-
veniently be expressed thus. For any consequences g and ¢, g < ¢’;
if and only if, whenf = gand f' =g’ f < f'.

In the same spirit, meaning can be assigned to such expressions as
f <g,g < fgiven B, etc., and I will freely use such expressions without
defining them explicitly. In particular, f < g given B has a natural
meaning, but one that is rendered superfluous by the next postulate,
P3.

Incidentally, it is now evident how awkward for us it would be to
use f(s) for f; because f(s) < g(s) is a statement about the consequences
f(s) and g(s), whereas f < g is a statement about acts, and we will
have frequent need for both sorts of statements.

Suppose that f = ¢, and f’ = ¢/, and that g < ¢/, is it reasonable to
admit that, for some B, f > f’ given B? That depends largely on the
interpretation we choose to make of our technical terms, as an example
helps to bring out.+

Before going on a picnic with friends, a person decides to buy a
bathing suit or a tennis racket, not having at the moment enough money
for both. If we call possession of the tennis racket and possession of
the bathing suit consequences, then we must say that the consequences
of his decision will be independent of where the picnic is actually held.
If the person prefers the bathing suit, this decision would presumably
be reversed, if he learned that the picnic were not going to be held
near water. Thus the question whether it can happen that f > f’
given B would be answered in the affirmative. But, under the interpre-
tation of “act” and ‘“consequence’”’ I am trying to formulate, this is
not the correct analysis of the situation. The possession of the tennis
racket and the possession of the bathing suit are to be regarded as acts,
not consequences. (It would be equivalent and more in accordance
with ordinary discourse to say that the coming into possession, or the
buying, of them are acts.) The consequences relevant to the decision
are such as these: a refreshing swim with friends, sitting on a shadeless
beach twiddling a brand-new tennis racket while one’s friends swim,
ete. It seems clear that, if this analysis is carried to its limit, the ques-
tion at issue must be answered in the negative; and I therefore propose

+ The role of such freedom throughout science is hrilliantly discussed by
Quine (1951).
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to assume the negative answer as a postulate. The postulate is so
couched as not only to assert that knowledge of an event cannot estab-
lish a new preference among consequences or reverse an old one, but
also to assert that, if the event is not null, no preference among conse-
quences can be reduced to indifference by knowledge of an event.

P3 If f=g¢,f =g, and B is not null; then f < f' given B, if and
only if g < ¢'.

Applying Theorem 2, it is obvious that

THEOREM 3 If B; is a partition of B; and if (for all 7 and s) f; < g;,
f(s) = fi, and g(s) = g; when s ¢ B;; then f < g given B. If, in addi-
tion, f; < g; for some j for which B; is not null, then £ < g given B.

Theorem 3 is logically equivalent to P3 in the presence of P1 and P2,
and Theorem 3 can as easily be given an intuitive basis as the postulate
P3. Therefore the assumption of P3 as a postulate instead of Theorem
3 is only a matter of taste.

Theorem 3 has been widely accepted by the British-American School
of statisticians, special emphasis having been given to it, in connection
with his notion of admissibility, by the late Abraham Wald. I believe,
as will be more fully explained later, that much of its particular sig-
nificance for that school stems from the implication that, if several
different people agree in their preferences among consequences, then
they must also agree in their preferences among certain acts.

This brings the present chapter to a natural conclusion, since the
further postulates to be proposed can be more conveniently introduced
in connection with the uses to which they are put in later chapters.



CHAPTER 3

Personal Probability

1 Introduction

I personally consider it more probable that a Republican president
will be elected in 1996 than that it will snow in Chicago sometime in the
month of May, 1994. But even this late spring snow seems to me more
probable than that Adolf Hitler is still alive. Many, after careful con-
sideration, are convinced that such statements about probability to a
person mean precisely nothing, or at any rate that they mean nothing
precisely. At the opposite extreme, others hold the meaning to be so
self-evident as to be unanalyzable. An intermediate position® is taken
in this chapter, where a particular interpretation of probability to a
person is given in terms of the theory of consistent decision in the face
of uncertainty, the exposition of which was begun in the last chapter.
Much as I hope that the notion of probability defined here is consistent
with ordinary usage, it should be judged by the contribution it makes
to the theory of decision, not by the accuracy with which it analyzes
ordinary usage.

Perhaps the first way that suggests itself to find out which of two
events a person considers more probable is simply to ask him. It might
even be argued, though I think fallaciously, that, since the question
concerns what is inside the person’s head, there can be no other method,
just as we have little, if any, access to a person’s dreams except through
his verbal report. Attempts to define the relative probability of a pair
of events in terms of the answers people give to direct interrogation
has justifiably met with antipathy from most statistical theorists. In
the first place, many doubt that the concept “more probable to me
than” is an intuitive one, open to no ambiguity and yet admitting no
further analysis. Even if the concept were so completely intuitive,
which might justify direct interrogation as a subject worthy of some
psychological study, what could such interrogation have to do with the
behavior of a person in the face of uncertainty, except of course for his
verbal behavior under interrogation? If the state of mind in question
is not capable of manifesting itself in some sort of extraverbal behavior,

27
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it is extraneous to our main interest. If, on the other hand, it does
manifest itself through more material behavior, that should, at least
in principle, imply the possibility of testing whether a person holds
one event to be more probable than another, by some behavior express-
ing, and giving meaning to, his judgment. It would, in short, be pref-
erable, at least in principle, to interrogate the person, not literally
through his verbal answer to verbal questions, but rather in a figurative
sense somewhat reminiscent of that in which a scientific experiment is
sometimes spoken of as an interrogation of nature. Several schemes of
behavioral, as opposed to direct, interrogation have been proposed.
The one introduced below was suggested to me by a passage of de Fi-
netti’s (on pp. 5-6 of [D2]), though the passage itself does not empha-
size behavioral interrogation.

To illustrate the scheme, our idealized person has just taken two
eggs from his icebox and holds them unbroken in his hand. We wonder
whether he thinks it more probable that the brown one is good than
that the white one is. Our curiosity being real, we are prepared to
pay, if necessary, to have it satisfied. We therefore address him thus:
“We see that you are about to open those eggs. If you will be so co-
operative as to guess that one or the other egg is good, we will pay you
a dollar, should your guess prove correct. If incorrect, you and we
are quits, except that we will in any event exchange your two eggs for
two of guaranteed goodness.” If under these circumstances the person
stakes his chance for the dollar on the brown egg, it seems to me to
correspond well with ordinary usage to say that it is more probable to
him that the brown one is good than that the white one is. Though,
of course, I hope for your agreement on this analysis of ordinary usage,
I repeat that it is not really fundamental to the subsequent argument,
as indeed no such lexicographical point could be; for the utility of a
construct or definition depends only secondarily on the aptness of the
expression in terms of which it is couched.

There is a mode of interrogation intermediate between what I have
called the behavioral and the direct. One can, namely, ask the person,
not how he feels, but what he would do in such and such a situation.
In so far as the theory of decision under development is regarded as
an empirical one, the intermediate mode is a compromise between econ-
omy and rigor. But, in the theory’s more important normative inter-
pretation as a set of criteria of consistency for us to apply to our own
decisions, the intermediate mode seems to me to be just the right
one.

Though it entails digression from the main theme, some readers may
be interested in a few words about actual experimentation on strictly
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empirical behavioral interrogation. Some key references bearing on
the subject are [M4], [R3], and [W8].

In the first place, a little reflection shows that an experiment in which
human subjects are required to decide among actual acts may be very
expensive in time, money, and effort, especially if the consequences en-
visaged are expensive to provide, a point discussed in detail in [W8].
Questions of morality, and even of legality, toward the subject may
further complicate the investigation. For example, Mosteller and No-
gee, as described in Section 3B of [M4], made certain that every sub-
ject in one experiment of theirs would be financially benefited, though
they kept this security secret from the subjects.

There is also a difficulty in principle. Suppose that I wish to dis-
cover a person’s preferences among several acts—three acts f, g, and h
are sufficient to bring out the difficulty. If I in good faith offer him the
opportunity to decide among all three, and he decides on f; then there
is no further possibility of discovering what his preference was between
g and h. Suppose, for example, that a hot man actually prefers a swim,
a shower, and a glass of beer, in that order. Once he decides on, and
thereby becomes entitled to, the swim, he can no longer appropriately
be asked to decide between shower and beer. A naive attempt to do so
would result in his deciding between a swim and shower on the one
hand, and a swim and beer on the other—an altogether different situa-
tion from the one intended.

The difficulty can sometimes be met by special devices. For example,
the investigator might wait for a different but “similar’” occasion. But
W. Allen Wallis has mentioned to me an interesting and very general
device, which will now be described, with his permission.{

Suppose that the hot man is instructed to rank the three acts in
order, subject to the consideration that two of them will be drawn at
random (e.g., by card drawing or dice rolling), and that he is then to
have whichever of these two acts he has assigned the lower rank. He
is thus called on to select one of six acts, that is, one of the six possible
rankings. If he does, for example, select the ranking {swim, shower,
beer}, it follows easily from the theory of decision thus far developed
that for him swim > shower > beer, barring the farfetched possibility
that he regards one or more of the three drawings as virtually impossi-
ble and provided that his preference among the three acts swim, shower,
beer given any of the three drawings is the same as his original prefer-
ence. The investigator could in practice design the drawing in such a

t I have since seen this same device used by M. Allais.
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way as to be well satisfied that the required ‘“‘irrelevance” obtained, ex-
cept for very “‘superstitious’” people. This ends the present digression on
actual behavioral interrogation.

The purpose of this chapter is to explore the concept of personal
probability f that was indicated in the example about the two eggs.
The concept will be put on a formal basis in § 2 by introducing two new
postulates, P4 and P5, to be used in conjunction with P1-3. This will
lead to a formal analysis of the notion that one event is no more prob-
able than another. Several deductions about this notion reminiscent
of mathematical properties ordinarily attributed to probability will be
made; but only in § 3, after adjunction of still another postulate, P6,
can the notion be connected quantitatively with what mathematicians
ordinarily call mathematical probability. Section 4 is devoted to some
mathematically technical criticisms of the notion of personal proba-
bility, which can safely be skipped or skimmed by those not interested
in such matters. Section 5 discusses conditional personal probability;
6, the approach to certainty through a long sequence of conditionally
independent relevant observations; and 7, an extension of the concept
of a sequence of independent events, particularly interesting from the
viewpoint, of personal probability.

2 Qualitative personal probability

When I spoke in the introductory section of offering the person a
dollar if his guess about the egg proved correct, it was tacitly assumed
that his guess would not be affected by the amount of the prize offered.
That seems to me correct in principle. It would, for example, seem un-
reasonable for the person with the two eggs to reverse his decision if
the prize were reduced from a dollar to a penny. He might reverse
himself in going from a penny to a dollar, because he might not have
found it worth his trouble to give careful consideration for too small a
prize. I think the anomaly can best be met by deliberately pretending
that consideration costs the person nothing, though that is far from the
truth in actual complicated situations. It might, on the other hand,
be stimulating, and it is certainly more realistic, to think of considera-
tion or calculation as itself an act on which the person must decide.
Though I have not explored the latter possibility carefully, I suspect
that any attempt to do so formally leads to fruitless and endless re-
gression.

t The term “personal probability” was suggested to me orally by Thornton C.

Fry. Some other terms suggested for the same concept are “subjective probability,”
“psychological probability,” and ‘“degree of conviction.”
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To offer a prize in case A obtains means to make available to the per-
son an act f4 such that

fas) =f forse A,

1
M fa@s) =71 forse~A,

where f’ < f. The assumption that on which of two events the person
will choose to stake a given prize does not depend on the prize itself
is expressed by the following postulate, which looks formidable only
because it contains four definitions like (1). The reader may find it
helpful to graph an instance of the postulate in the spirit of Figure
2.7.1.

P4 Iff,f,9,9; 4, B;f4, {5, g4, g5 are such that:

1. <1, g <g;
2a. fa(s) =1, ga(s) =g forse A,
fa@s) =1, ga(s) =g  forse~A4;
2b. fa(s) =1, ge(s) = ¢ for s ¢ B,
f8(8) =f, gs(s) =g  forse~B;
3. fq < f3;
then g4 < gs.

In the light of P4, it will be said that A is not more probable than
B, abbreviated 4 < B; if and only if when f' < f and f4, fg are such
that

fa®) =f forsed, fa(s) =f forse~A,

fB(s) =f forseB, fa(s) =f forse~B,;

then fA S fB.

The assumption that there is at least one worth-while prize is in-
nocuous; for, though a context failing to satisfy it might arise, such a
context would be too trivial to merit study. I therefore propose the
following postulate.

P5 There is at least one pair of consequences f, f’ such that f’ < f.

All the implications to be deduced from P1-5 for some time to come
are themselves implications of the three easily established conclusions,
which are introduced by the following definition and theorem.
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A relation <. between events is a qualitative probability; if and only
if, for all events B, C, D,

1. <. is a simple ordering,

2. BL.C, if and only if BUD<.-C U D, provided BN D =
CND=0,

3.0<-B,0<-8.

It may be helpful to remark that the second part of the above defini-
tion says, in effect, that it will not affect the person’s guess to offer
him a consolation prize in case neither B nor C obtains, but D happens
to.

TuEOREM 1 The relation < as applied to events is a qualitative
probability.

You will have no difficulty in proving that Theorem 1 follows from
P1-5. Theorem 1 has many consequences of the sort one would expect
if < meant “not more probable than’ in any sense having the mathe-
matical properties ordinarily attributed to numerical probability. This
is illustrated by the following list of exercises, which should not only
be proved formally, but also interpreted intuitively. One easy exercise
not included in the list below, because it is not strictly a consequence
of Theorem 1 alone, is to show that B = 0, if and only if B is a null
event.

Exercises

1.  BcC,then0 < B C<LS.

2a. H BN D =CND=0; then B<C, if and only if BU D <
C U D.

2b. f0 < C,and BN C = 0;then B < B U C.

3. If B < (C, then ~C < ~B; and conversely. Hint: Draw a Venn
diagram of the fourfold partition BN C, ~BN C, BN ~C, ~B N
~C.

4a. HB<C,andC N D =0;then BUD L CU D.

4b. If B<0;then BU C = C, and B = 0.

4c. IS < B;then BN C = C,and B = 8.

4d. fBUD<CUD,and BN D =0; then B < C.

5a. If Bl S Cl, Bz S 02, and Cl n Cz = 0, then Bl U Bz S Cl U
Cs. Hint: Exhibit B, and C; in the form B, = By’ U Q, C; = Cy' U @
with By, Cy’, Q disjoint. Justify the following calculation, step by step.

31UBg’SCI UBgl=Cl,UB2SC],UCQ,
whence B; U B, < C, U C..
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5b. If By UB; <C; UC; and B; N By =0; then B, < C; or
B; < C,.

6. If B< ~B and C > ~C, then B < C; equality holding in the
conclusion, if and only if it holds in both parts of the hypothesis.

3 Quantitative personal probability

As T have said, the exercises terminating the preceding section sug-
gest a close mathematical parallelism between personal probability and
the mathematical properties ordinarily attributed to probability, though
the postulates assumed thus far do not (as could easily be demongstrated)
make it possible to deduce from this parallelism the unambiguous as-
signment of a numerical probability to each event. But, if, for example
(following de Finetti [D2]), a new postulate asserting that S can be
partitioned into an arbitrarily large number of equivalent subsets were
assumed, it is pretty clear (and de Finetti explicitly shows in [D2])
that numerical probabilities could be so assigned. It might fairly be
objected that such a postulate would be flagrantly ad hoc. On the
other hand, such a postulate could be made relatively acceptable by
observing that it will obtain if, for example, in all the world there is a
coin that the person is firmly convinced is fair, that is, a coin such that
any finite sequence of heads and tails is for him no more probable than
any other sequence of the same length; though such a coin is, to be sure,
a considerable idealization.

After some general and abstract discussion of the mathematical con-
nection between qualitative and quantitative probability, a postulate,
P6, will be proposed, which, though logically actually stronger than the
assumption that there are partitions of S into equivalent events, seems
to me even easier to accept. Once P6 is accepted, there will scarcely
again be any need to refer directly to qualitative probability.

To begin with, let me say precisely what is meant, in the present
context, by a probability measure, this being the standard term for
what I would here otherwise prefer to call a quantitative probability,
and what it means for a probability measure to be in agreement with
a qualitative probability.

A probability measure on a set S is a function P(B) attaching to
each B C S a real number such that:

1. P(B) > 0 for every B.

2.BNC=0,PBUC) =PB)+ PC).

3. P(S) = 1.
This definition, or something very like it, is at the root of all ordinary
mathematical work in probability.
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If S carries a probability measure P and a qualitative probability
<. such that, for every B, C, P(B) < P(C), if and only if B <-C;
then P (strictly) agrees with <.. If B <.C implies P(B) < P(C),
then P almost agrees with <.. This terminology is obviously con-
sistent in that, if P agrees, that is, strictly agrees, with <., P also al-
most agrees with <., It is also easily seen that, if P agrees with <.,
then knowledge of P implies knowledge of <.. But, if P only almost
agrees with <., it may happen, as examples in § 4 show, that P(B) =
P(C), though B <- C, so that knowledge of P may imply only imperfect
knowledge of <-.

The rest of this section is mainly a study of qualitative probabilities
generally, with a view to discovering interesting conditions under which
there is a probability measure that agrees, either strictly or almost,
with a given qualitative probability. These conditions suggest a new
postulate governing the special qualitative probability <. The work
is necessarily rather tedious and burdened with detail. It will, there-
fore, be wise for most readers to skim over the material, omitting the
proofs but noticing the more obvious logical connections among the
theorems and definitions. Some may then find themselves sufficiently
interested in the details to return and read or supply the proofs, as the
case may require. Others may safely go forward. Here, as elsewhere,
technical terms of interest for the moment only are introduced with
italics rather than boldface.

An n-fold almost uniform partition of B is an n-fold partition of B
such that the union of no r elements of the partition is more probable
than that of any r + 1 elements.

THEOREM 1 If there exist n-fold almost uniform partitions of B for
arbitrarily large values of n, then there exist m-fold almost uniform par-
titions for every positive integer m.

Proor. Let B;, 7 =1, ---, n, be an n-fold almost uniform partition
(of B) with n > m2?. Using the euclidean algorithm, let n be written
n = am + b, where a and b are integers such that m < aand 0 <b <
m. Now let C;, 7 =1, -+, m, be any m-fold partition such that each
C; is the union of a or @ 4 1 of the B;’s. The union of any r of the Cy’s,
r < m, is the union of from ar to (¢ + 1)r of the B;’s and the union of
r + 1 of the C’s is that of from a(r + 1) to (¢ + 1)(r + 1) of the B/s.
Since r<m<a, @+ l)r=ar+r<ar+a=alr+1). &

THEOREM 2 If there exist n-fold almost uniform partitions of S for
arbitrarily large values of n, then there is one and only one probability
measure P that almost agrees with <.. Furthermore, for any p, 0 < p
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<1, any BC S, and the unique P just defined, there exists C C B
such that P(C) = pP(B).1

Proor. The proof is broken into a sequence of easy steps, left, for
the most part, to the reader. These steps are grouped in blocks, only
the last step in each being needed in the proof of later steps.

1. There exist n-fold almost uniform partitions of S for every posi-
tive n.

2a. If py, - - -, Pn are real numbers such that 0 < p; < p; <-+- < Py,
and Ip; = 1; then

(1) Episr/ny r=1,~~-,n.
1
2b. If further
r+1 n
Xp=2 X op forr=1,-,n—1;
1 n—r+1
then
) 22 —1/n, and 3 p; < (r+ 1)/n
1 n—r+1

2c¢. The sum of any r of the p;’s lies between (r — 1)/n and (r + 1)/n.

2d. If P almost agrees with <., and C(r, n) denotes here and later
in this proof any union of r elements of any n-fold almost uniform par-
tition (not necessarily the same from one context to another), then

®3) (r—1)/n < P(C(r,n)) < (r + 1)/n.

3. Let k(B, n) denote the largest integer r (possibly zero) such that
some C(r, n) is not more probable than B. The function k(B, n) is
well-defined, and 0 < k(B, n) < n.

4a. For any P that almost agrees with <.,

)] (k(B,n) — 1)/n < P(B) < (k(B, n) + 2)/n.

4b. At most one P can almost agree with <.

5a. If B; and C; are n-fold partitions (not necessarily almost uniform)
so indexed that By <:By <+ -+ <+ B,, and C; 2:Cy 2>+ --- >+ Chp;
then

(5) Us=>Uc r=0-n-1

n—r n—r

t Technical note: The mathematical essence of the terminal conclusion of this
theorem, and other conclusions related to it, are given by Sobczyk and Hammer
[S15]. It might be conjectured, in analogy with countably additive measures, that
this conclusion means only that P is non-atomic, but that conjecture is false [N5].+

+ A key reference for further information on the structure of finitely addi-

~tive measures is (Dubins 1969). Sustained use of finitely additive probability
is illustrated in (Dubins and Savage 1965).
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5b. If in addition the two partitions are almost uniform, then

r r+2
(6) Uc:<cUB, r=1,--,n-2
1 1
r+2 n n r
(Proof. U B:>-UB:>UCcC:>UEcw
1 n—r n—r 1

5¢. The union of any r elements of one almost uniform n-fold parti-
tion is not more probable than the union of any r + 2 elements of an-
other.

5d. If B N C = 0, then

(7) kB, n) +k(C,n) —2< k(B UC,n) <kB,n)+k(C, n) + 1.

6a. If a C(r, m) is not more probable than a C(s, n), then

r—2 s+ 2 1
®) )< () +
m n mn
(Consider an mn-fold almost uniform partition, and use the easily es-

tablished fact that the union of any ¢ 4+ 2 elements of an almost uni-
form partition is actually more probable than that of any ¢ elements.)

k(B,m) k(B,m)|_3 3 1

m n

<

6b.

m . on mn
6¢. It is meaningful to define P(B) by
. k(B,n)
9) P(B) =p¢ lim ,

n— n

that is, the limit exists.

7. P(B), as just defined, is a probability measure, and the only one
that almost agrees with <..

8a. There exist two infinite sequences of sets C,, and D, contained
in B such that:

1., N D, =0,

2. Cn [ Cn+1, and Dn C Dn+1,
3. P(Cx) 2 pP(B) — n7},

4. P(Dn) 2 (1 — p)P(B) — n™".

8b. P(UnCn) > pP(B), P(Un D) > (1 — p)P(B), and (U Ca) N

(Un D) = 0.
8c. P(UnCn) = oP(B). ®

A few technical terms of localized interest only are now introduced.
If and only if, for every B >- 0, there is a partition of S, no element of
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which is as probable as B; <- is fine.t B and C are almost equiva-
lent, written B =- C; if and only if for all non-null G and H such that
BNG@G=CNH=0,BUG>-C and C UH >-B. It is obvious
that equivalent events are also almost equivalent. Finally, if and only
if every pair of almost equivalent events are equivalent, <. is tight.

THEOREM 3
Hye. <.is fine.

CoNcL. 1. If B>.0, and C >. 0; there exists D C C such that
0<-D <-B.

2.If B=-G@, C=-H, and BNC=GNH=0; then BUC
=.GUH.

3. IfB=-C,@=-HBUC=-GUH,andBNC=GNH =0,
then B =- G.

4. Any partition of S into almost equivalent events is an almost uni-
form partition.

5. Any event can be partitioned into two almost equivalent events.

6. Any event can be partitioned into 2" almost equivalent events,
for any non-negative integer n.

7. There exists one and only one P that almost agrees with <-..
For any B, p (0 < p < 1), and the unique P just defined, there ex-
ists C C B such that P(C) = pP(B). If B >.0, P(B) > 0. Finally,

=. C, if and only if P(B) = P(C).

Proor. The parts of the conclusion are so arranged that each is easy
to prove in the light of its predecessors, but proofs for Parts 3 and 5
are given below. It may be remarked that all parts are trivial conse-
quences of the last one and have therefore relatively little importance in
themselves.

Part 3. Suppose, for example, BUE <-@ BN E =0, and
E >.0; and consider two cases:

(a) If BUC <-8, it may be assumed without loss of generality
that C N E = 0, whence (B U C) U E >-G U H. Therefore, C >- H.

Let E be partitioned into two non-null events E; and Es; then (since
it is absurd to suppose that the part of G outside of C is null, which
would imply C >- @ >- B U E) there is in G an E’ such that C N E’
=0<-E' <-E;, Now CUE'>-HUE >-G>-(BUE);)UE,,
whence C > B U E;, which is absurd.

(b) If B U C =.8, it can (setting aside the easy special case C N G
=.(0) be shown successively that: HU G@=.8; C <-B U E <G,
where E>-0and ECCNG, BNH)UE<- (GNC); (CNH)
<. (@ N B); and HU E <-@G, which establishes a contradiction.

+ In the first edition, this definition was a trifle too weak, as pointed out by
Malcolm Pike.



38 PERSONAL PROBABILITY [3.3

Part 5. There exists a sequence of threefold partitions of B, say
C., D,, and G,, such that:

1., UG, > D,,and D, U G, >-C,,

2. Cn+1 -] Cn, Dn+1 =) Dn, and Gn+1 cC Gn,

3. ~Gpy1 N G, 2+ Gnyy; whence G- contains two disjoint events
each at least as probable as G, ;.

For any H >-0, G, <- H for sufficiently large n, as may be seen by
considering some m-fold partition no element of which is more probable
than H, and letting n be such that 2"~ > m. If G, were more probable
than H and therefore more probable than each element of the partition,
it would follow that the union of all elements of the partition, namely
S, is less probable than @, which would be absurd.

The two events B; = Un Cn, Bs = (Un D,) U (nn @,) partition B
in the required fashion. @

COROLLARY 1 If <. is both fine and tight; the only probability
measure that almost agrees with <. strictly agrees with it, and there
exist partitions of S into arbitrarily many equivalent events.

THEOREM 4 <-.is both fine and tight, if and only if, for every B <-C,
there exists a partition of S the union of each element of which with B
is less probable than C.

The proof of this theorem is easy.

In the light of Theorems 3 and 4, I tentatively propose the following
postulate, P6’, governing the relation < among events, and thereby
the relation < among acts.

Pé’ If B < C, there exists a partition of S the union of each ele-
ment of which with B is less probable than C.

It seems to me rather easier to justify the assumption of P6’, which
says in effect that < is both fine and tight, than to justify the assump-
tion, which was made by de Finetti [D2] and by Koopman [K9], [K10],
[K11] in closely related contexts, that there exist partitions of S into
arbitrarily many equivalent events, though logically P6’ implies that
assumption and somewhat more. Suppose, for example, that you your-
self consider B < C, that is, that you would definitely rather stake a
gain in your fortune on C than on B. Consider the partition of your
own world into 2" events each of which corresponds to a particular
sequence of n heads and tails, thrown by yourself, with a coin of your
own choosing. It seems to me that you could easily choose such a
coin and choose n sufficiently large so that you would continue to pre-
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fer to stake your gain on C, rather than on the union of B and any par-
ticular sequence of n heads and tails. For you to be able to do so, you
need by no means consider every sequence of heads and tails equally
probable.

It would, however, be disingenuous not to mention that some who
have worked on a closely related concept of probability, notably Keynes
[K4] and Koopman [K9], [K10], [K11], would object to P6’ precisely
because it implies that the agreement between numerical probability
and qualitative probability is strict. Koopman, for example, holds
that, if A D B and A # B, then A is necessarily more probable than
B, though the numerical probability of A may well be the same as that
of B. Thus, if a marksman shoots at a wall, it is logically contradictory
that his bullet should fall nowhere at all, but it is logically consistent
that a prescribed mathematically ideal point on the bullet should strike
a prescribed mathematically ideal line on the wall. Since the event of
the prescribed point hitting a prescribed line is logically possible, Koop-
man would insist that the event is more probable than the vacuous
event, namely that the bullet goes nowhere, though the numerical proba-
bility of both events is zero. I do not take direct issue with Koopman,
because he is presumably talking about a somewhat different concept
of probability from the particular relation <; but I do not think it
appropriate to suppose that the person would distinctly rather stake a
gain on the line than on the null set. The issue is not really either an
empirical or a normative one, because the point and line in question
are mathematical idealizations. If the point and line are replaced by a
dot and a band, respectively, then, of course, no matter how small the
dot and band may be, the probability of the one hitting the other is
greater than that of the vacuous event. But it seems to me entirely
a matter of taste, conditioned by mathematical experience, to decide
what idealization to make if the dot and band are replaced by their ideal-
ized limits. So much for hair splitting.

As far as the theory of probability per se is concerned, postulate P6’
is all that need be assumed, but in Chapter 5 a slightly stronger assump-
tion will be needed that bears on acts generally, not only on those very
special acts by which probability is defined. Therefore, I am about to
propose a postulate, P6, that obviously implies P6’ and will therefore
supersede it. This stronger postulate seems to me acceptable for the
same reason that P6’ itself does.

P6 If g < h, and f is any consequence; then there exists a parti-
tion of S such that, if g or h is so modified on any one element of the
partition as to take the value f at every s there, other values being un-
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disturbed; then the modified g remains less than h, or g remains less
than the modified h, as the case may require.

4 Some mathematical details

Are there qualitative probabilities that are both fine and tight, that
are fine but not tight, that are tight but not fine, that are neither fine
nor tight but do have one and only one almost agreeing probability
measure? Examples answering all these questions in the affirmative
will be exhibited in this section.

To indicate a different topic that will also be treated here, those of
you who have had more than elementary experience with mathematical
treatments of probability know that it is not usual to suppose, as has
been done here, that all sets have a numerical probability, but rather
that a sufficiently rich class of sets do so, the remainder being consid-
ered unmeasurable. Again, it is usual to suppose that, if each of an
infinite sequence of disjoint sets is measurable, the probability of their
union is the sum of their probabilities, that is, probability measures
are generally assumed to be countably additive. But the theory being
developed here does assume that probability is defined for all events,
that is, for all sets of states, and it does not imply countable additivity,
but only finite additivity. The present section not only answers the
questions raised in the preceding paragraph, but also discusses the re-
lation of the notions of limited domain of definition and of countable
additivity to the theory of probability developed here. The general
conclusions of this discussion are: First, there is no technical obstacle
to working with a limited domain of definition, and, except for exposi-
tory complications, it might have been mildly preferable to have done
so throughout. Second, it is a little better not to assume countable
additivity as a postulate, but rather as a special hypothesis in certain
contexts. A different and much more extensive treatment of these
questions has been given by de Finetti [D4].

Finally, before entering upon the main technical work of this sec-
tion, one easy question about the relation between qualitative and
quantitative probability will be answered and several as yet unanswered
ones will be raised.

Are there qualitative probabilities without any strictly agreeing meas-
ure? Yes, because any qualitative probability that is fine but not
tight is easily shown to provide an example. It is, however, an open
question, stressed by de Finetti [D5], whether a qualitative probability
on a finite S always has a strictly agreeing measure. It would also be
technically interesting to know about the existence of almost agreeing
measures in the same context.t

+ Even this has since heen answered in the negative by Kraft, Pratt, and
Seidenberg (1959). See also (Fishhurn 1970, pp. 210-211).
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The matters to be treated in the rest of this section are rather tech-
nical mathematically, and, though I would not delete them altogether,
it does not seem justifiable to lay the necessary groundwork for pre-
senting them in an elementary fashion. Some may, therefore, find it
necessary to skip the rest of this section altogether, or to skim it rather
lightly.

It is well known that there does not exist a countably additive proba-
bility measure defined for every subset of the unit interval, agreeing
with Lebesgue measure on those sets where Lebesgue measure is de-
fined, and assigning the same measure to each pair of congruent setst
(Problem (b), p. 276 of [H2]). On the other hand, there do exist finitely
additive probability measures agreeing with Lebesgue measure on those
sets for which Lebesgue measure is defined, and assigning the same
measure to each of any pairs of congruent sets; cf. p. 32 of [B4]. The
existence of such measures shows, among other things, that a finitely
additive measure need not be countably additive. Again, calling such
a finitely additive extension of Lebesgue measure P and defining B <. C
to mean P(B) < P(C), we see an example of a qualitative probability
that is both fine and tight.

An example of a qualitative probability that is tight but not fine may
be constructed by taking for S two unit intervals, S; and S,, in each
of which finitely additive extensions of Lebesgue measure, P; and P,
are defined. The generic set B in this example is therefore partitioned
into By = BN 8; and By = B N 8,, respectively. For this example,
let B <. C; if, and only if P,(B;) < P,(C,), or else P,(B;) = P,(C,),
and Py(B2) < Py(C2). This <- is not fine, because, for example, S
cannot be partitioned into events none of which is more probable than
S2. On the other hand, it is easily seen to be tight.

Next, take S to be the union of S; and S, with the measures of P,
and P, as defined in the preceding example, but modify the definition
of <., saying B <-C; if and only if P,(B;) + P3(Bs) < P,(Cy) +
Py(Cy), or else Py(B;) + Py(By) = Pi(C1) + P3(Cy), and Py(B;) <
P,(C,). This is an example of a qualitative probability that is fine but
not tight.

Combining the ideas of the two preceding examples, it is easy to ex-
hibit a qualitative probability that is neither fine nor tight but is such
that S can be divided into arbitrarily many equally probable events.
Thus all the questions raised in the opening paragraph of this section
are answered in the affirmative.

+ S. Ulam (1930) proves that any nonatomie, countably additive probability
measure defined on all the subsets of the unit interval is inconsistent with the
continuum hypothesis.
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To get a feeling for the question whether literally all sets should be
regarded as measurable, suppose that S is a cube of unit volume and
that the probability measure P that strictly agrees with < is such that
the probability of a parallelepiped is equal to its volume. It follows
that the probability of any set having Jordan content is its Jordan
content, but, if a set has not Jordan content, a continuum of possibili-
ties is still open. Though other possibilities are conceivable, it is not
unnatural to consider an idealized person for whom the numerical prob-
ability attached to each Borel set, or even each Lebesgue measurable
set, is its Lebesgue measure. To go further and take seriously compari-
sons between sets that are not Lebesgue measurable, or even between
those that are not Borel measurable, seems to me to be without any
implication bearing on reality. I suppose it might be argued, on the
contrary, that there is no feature of reality that can properly be inter-
preted by postulating that the person is able to compare only sets from
a sufficiently narrow field, so that it is simpler and more elegant to ad-
mit all sets. The question seems to be one of taste, but the following
remark illustrates what I consider an awkwardness in supposing proba-
bility to be attached to all sets. It would seem, at first glance, that the
person should be able, if he is so constituted, to regard all pairs of geo-
metrically congruent sets for which he makes any comparison at all as
equivalent, but the famous Banach-Tarski paradox [B5] shows that
this cannot be done if all sets are regarded as measurable. I think it a
little more graceful to abstain from comparison between the more bi-
zarre sets than to give up, or even much modify, my everyday notions
about the symmetry of such probability problems associated with
geometry.

If one is unwilling to insist on comparison between every pair of
sets, or events; then, in the same spirit, it is inappropriate to insist on
comparison between every pair of acts. All that has been, or is to be,
formally deduced in this book concerning preferences among sets, could
be modified, mutatis mutandis, so that the class of events would not
be the class of all subsets of S, but rather a Borel field, that is, a s-alge-
bra, on S; the set of all consequences would be a measurable space,
that is, a set with a particular ¢-algebra singled out; and an act would
be a measurable function from the measurable space of events to the
measurable space of consequences. Indeed, the whole thing could be
done for abstract o-algebras without reference to sets at all, and this
might have some actual advantage, since it would make possible the
identification of events with propositions in almost any formal language,
even one unable to formulate at all the complete descriptions I call
states.
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It may seem peculiar to insist on s-algebras as opposed to finitely
additive algebras even in a context where finitely additive measures are
the central object, but countable unions do seem to be essential to some
of the theorems of § 3—for example, the terminal conclusions of Theo-
rem 3.2 and Part 5 of Theorem 3.3.

So much of the modern mathematical theory of probability depends
on the assumption that the probability measures at hand are countably
additive that one is strongly tempted to assume countable additivity,
or its logical equivalent, as a postulate to be adjoined to P1-6.+ But I
am inclined to agree with de Finetti [D2], [D4] and Koopman [K9],
[K10], [K11] that, however convenient countable additivity may be,
it, like any other assumption, ought not be listed among the postulates
for a concept of personal probability unless we actually feel that its
violation deserves to be called inconsistent or unreasonable. I know of
no argument leading to the requirement of countable additivity, and
many of us have a strong intuitive tendency to regard as natural proba-
bility problems about the necessarily only finitely additive uniform
probability densities on the integers, on the line, and on the plane. It
therefore seems better not to assume countable additivity outright as a
postulate, but to recognize it as a special hypothesis yielding, where
applicable, a large class of useful theorems.

6 Conditional probability, qualitative and quantitative

Conditional preferences among acts in the light of a given event were
introduced in § 2.7. Since the relation < among events has been de-
fined in terms of the corresponding relation among acts, we may well
expect to attach meaning to statements of the form B < C given D,
provided that D is not null. The natural way to do so is to take a pair
of acts f and g that test whether B < C (as prescribed by the definition
of < between acts in § 2) and say that B < C given D, if and only if
f < g given D. ‘Since there is more than one pair of acts f, g by which
the proposition B < C can be tested, it is at first sight conceivable that
not all such pairs would be in the same order given D, which would frus-
trate the proposed definition of < given D. However, it is easily seen
that for any f, g testing B < C, f < g given D (D not null) is equiva-
lent to BN D < C N D. Thus it is seen not only that the proposed
definition is unambiguous, but also that it is expressible in terms of
probability comparisons among sets, without direct reference to acts
at all, and, still further, that the postulates P1-6 apply to the condi-
tional preference relation < given D among acts. This preamble suffi-
ciently motivates the following definition and easy theorem about quali-
tative probability relations generally.

1 Carried ont hy Villegas (1964).
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If <. is a qualitative probability, and 0 <. D; then B <.C given
D, if and only if BN D <-C N D.

THEOREM 1 If <. is a qualitative probability, then so is <. given
D. If in addition < is fine or tight, then <- given D is correspondingly
fine or tight.

If <.is fine, then, for any D that is not null, there exists, in view of
Theorem 3.3, one and only one probability measure P(B| D), the
(conditional) probability of B given D, that almost agrees with <-.
But, just as one would expect from the traditional study of numerical
probability, and as may be easily verified, P(B N D)/P(D) considered
as a function of B for fixed D is a probability measure that almost
agrees with <. given D. Therefore,

(1) P(B| D) = P(B N D)/P(D).

As was explained in § 2.7, preference among acts given B can sug-
gestively be expressed in temporal terms. Analogously, the comparison
among events given B and, therefore, conditional probability given B
can be expressed temporally. Thus P(CI B) can be regarded as the
probability the person would assign to C after he had observed that B
obtains. It is conditional probability that gives expression in the theory
of personal probability to the phenomenon of learning by experience.

In accordance with established usage, a pair of events B, C are called
independent if P(B N C) = P(B)P(C). More generally, a set of events
are called independent, if for every finite set of them, say By, - - -, By,

2 P (N:B) = [1: P(By).

Obviously, if D is not null, B and D are independent; if and only if
P(B [ D) = P(B), in which case D may fairly be called irrelevant to B.

The notions of independence and irrelevance have, so far as I can
see, no analogues in qualitative probability; this is surprising and un-
fortunate, for these notions seem to evoke a strong intuitive response.
The absence of these analogues is traceable to the absence of a qualita-
tive analogue for propositions of the form P(B | C) < P(@ | H). Work-
ing under a rather different motivation from that which guides this
book, B. 0. Koopman [K9], [K10], and [K11] has developed a system of
qualitative possibility in which it is meaningful to compare B given C
with G given H. It is true also that for qualitative probability, even as
it is defined here, some interconditional comparisons might be natu-
rally defined. If, for example, B <-~B given C and ~G <@ given
H, it would not be unreasonable to establish the convention that B
given C <@ given H. This sort of extension is not, however, highly
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pertinent to my purpose, for here I have little interest in qualitative
probabilities, except as a foundation for quantitative probability.
The following partition formula is well known and easy to prove:

® P(C) = 2L P(C| B)P(B)
where B, is a partition of S into non-null sets. If, further, C is not null,
it is also trivial to derive the celebrated Bayes’ rule (or theorem),
P(C | B)P(B))

P(0)
_ P(C| B)P(B))
- ZPCIB)PE)

(4) P(B;| C) =

Illustrations of these formulas are found in all elementary texbooks on
probability, as well as in later sections of this book.
Finally, if neither B nor C is null,

P(B|C) _P(C|B) PBNOC
P(B)  P(C) P(BPC)

which may be given the suggestive reading: Knowledge of C modifies
the probability of B by the same factor by which knowledge of B modi-
fies the probability of C.

The concept of random variable enters into almost any discussion of
probability. Experts are fairly well agreed on the following definition.
A random variable is a function x attaching a value z(s) in some set
X to every s in a set S on which a probability measure P is defined.t}
Such an S together with the measure P is called a probability space.

Real-valued random variables are the most familiar, though in gen-
eral the values X can be things of any sort. If, for example, x and y,
with values in X and Y, respectively, are random variables on the
same measure space, 8 new random variable z = {x, y} is defined by
setting z(s) = {x(s), y(s)}. The values of z are thus elements of what
is called X X Y (read the cartesian product of X and Y), the set of
ordered pairs with first element in X and second in Y. The same sort
of thing can be done, of course, for ordered n-tuples and also for infinite
sequences of random variables.

()

t In many applications of the theory of probability, not all subsets of S or of X
are considered measurable. It is then required as part of the definition of random
variable that x be measurable, i.e., that for every measurable ¥ C X, the set of
¢’s such that z(s) ¢ ¥ be measurable.
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Two random variables x and y defined on the same measure space S
are called (statistically) independent; if and only if, for every X, c X
and Y, C Y, the two events (i.e., subsets of S) defined by the condi-
tions z(s) e Xo and y(s) ¢ Yy, respectively, are independent.f The
extension of this definition from pairs to any number of random variables
is obvious.

6 The approach to.certainty through experience

In § 3, the theory of personal probability was, from the purely math-
ematical point of view, reduced to that of probability measures, a sub-
ject that has been elaborately studied, more or less explicitly, for cen-
turies. Any mathematical problem concerning personal probability is
necessarily a problem concerning probability measures—the study of
which is currently called by mathematicians mathematical probability
—and conversely. The particular outlook and interpretation implicit
in a personalistic concept of probability leads, however, to problems
that, though perfectly meaningful for mathematical probability, might
not otherwise have been emphasized. This section and the succeeding
one each briefly discuss one such problem. These two problems are
selected from among many possibilities for the insight they provide
into the concept of personal probability.

Before studying these problems, it is necessary to be conversant with
the material in Appendixes 1 and 2, which is used in the immediate
sequel and often throughout the rest of this book.

As was brought out in § 5, the person learns by experience. The
purpose of the present section is to explore with a moderate degree of
generality how he typically becomes almost certain of the truth, when
the amount of his experience increases indefinitely. To be specific,
suppose that the person is about to observe a large number of random
variables, all of which are independent given B; for each ¢, where the
B; are a partition of S. It is to be expected intuitively, and will soon
be shown, that under general conditions the person is very sure that
after making the observation he will attach a probability of nearly 1 to
whichever element of the partition actually obtains.

To describe the situation formally, let B; be a partition of S with
P(B;) = (7). Letx,r=1,2, ---, beasequence of random variables,
each taking on only a finite number of values (which can without loss
of generality be thought of as integers). The restriction to a finite set
of values could be removed, but to do so would raise problems of mathe-
matical technique that, however interesting, are rather beside the point

t Where not all sets are measurable, Xo and Y, must, of course, be required to
be measurable.
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of this book. Let x denote the first » of the random variables x,. It is
to be borne in mind that x depends on n, so, strictly speaking, it should
be written x(n). The assumption that, given B, the x,’s all have the
same distribution is expressed by

(1) P(z,(s) = z, l B;) = &(x, I %),
where £(x, | 1) is defined by the context. Combining (1) with the as-
sumption that the x,’s are independent given B;,

2  P(z|By) =pt P((s) = {z1, -+, za} | B)) = II &(z, | 0),
r=1

where a conventional symbol has been used for equal by definition.
These hypotheses having been laid down, it follows from Bayes’ rule
and the partition formula (5.3) and (5.2), that

_ P(z| B)P(B)

3) P(B;| z) = PG

8G) IT (v | 9)
and P)
@ P(z) = 2 66) IT G | ).

In connection with (3), it may be observed in passing that, if the a priori
probability, 3(z), of B; is 0, then, no matter what value z is observed,
the a posteriori probability of B;, P(B;| ), is also 0. This is an ex-
ample of the general principle that, if some event is regarded as vir-
tually impossible, then no evidence whatsoever can lend it credibility.
Similarly, (3) implies the equally common-sense principle that, if an
observation z is virtually impossible on the hypothesis (i.e., given)
B;, and z is observed, then B; becomes virtually impossible a posteriori.

It is particularly interesting to compare the probability of two ele-
ments of the partition, say B, and B, for definiteness, in the light of x.

PBi|2) _ AN 8| D
P(B:|2) B2 & |2)
B(1)

=2 T Rz,
s@ L EG)

-2 pw),

B8(2)

(5)



48 PERSONAL PROBABILITY [3.6

where self-explanatory abbreviations have been introduced. Equation
(5) is meaningless, if both the numerator and denominator of its left-
hand side vanish. If the denominator alone vanishes, the fraction may
properly be regarded as infinite. This will happen; if and only if By is
null, and B; is not null given 2. That is, it will happen if and only if
B(1) # 0, B(2) = 0, or if B(1) # 0, and R(z) = .

In modern statistical usage, R'(z,) and R(z) are the likelihood ratios
of By to By given z, and z, respectively, quantities of importance in
many theoretical contexts.

If a person contemplates making the observation x, that is, finding
out the value of z(s) for the s that is the true state of the world, it may
properly be asked how probable he considers it that R will turn out to
have a particular value. It will be shown, barring two banal excep-
tions, that, for n sufficiently large, the probability, given By, that R is
greater than any preassigned number is almost 1. The possibility
P(B;) = 0 is to be excepted, for then the conditional probability in
question is meaningless. The other exception occurs when .E(x,| 1) =
E(x, | 2) for every x,, that is, when the common distribution of x, given
B, is the same as it is given Bj; for then observation of x, is simply
irrelevant in distinguishing B; from Bj, or, a little more technically, x,
is irrelevant to B; given B; U By, and

(6) P(R'(z;) =1|By) =1L

Formally, it is to be demonstrated that, unless P(B;) = 0, or (6)
holds,

(7 lim P(R(z) > p|By) =1 for0<p< .
n—

The problem is quite simple when account is taken of the fact that
R(x) is the product of » random variables, R’(x,), that are independent
given B;. In attacking the problem, two cases are to be distinguished,
according as there are or are not values of z that have positive proba-
bility given B, but zero probability given Bs.

It is in practice rather fortunate to find instances of the first case,
for then (7) applies with a vengeance. Indeed, suppose that

) P(R'(z;) <|B) =¢, ¢<L
Then
9) PR=w|B) =1-—¢"

which obviously approaches 1 with increasing n.
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The second case, namely ¢ = 1, is more interesting. Since much is
known about sums of identically distributed independent random varia-
bles, it is natural to investigate

(10) log R(z) = 3 log R'(x,),

thereby replacing a product by a sum. It is easily seen from the defi-
nition of R’(x,) that P(R'(z,) > 0| B;) = 1, so, in the case now at
hand, the functions log R’(z,) are independent real bounded random
variables.

Letting
(11) I = EQlog B'(z,) | By,
the weak law of large numbers { implies that, for any ¢ > 0,
(12) lim P(log R(z) > n(I — ¢)| By) = 1,
equivalently, T
(13) 11_131 P(R(x) > """ 9| By) = 1.

The objective will therefore be achieved, if it is demonstrated that
I > 0 unless (6) holds. But

(14) I = E(log R'(z,) | By)
> — log E(R'™(z,) | By)

= —logl =0,

as may be argued thus: The inequality in the above calculation is as-
signed as Exercise 8 in Appendix 2, together with the fact that equality
can hold in (14) if and only if R'~!(x,) is constant with probability
one given B;. But the expected value of £’ ~!(x,) given B, is equal to
1, as (14) asserts and as may be easily verified from the definition of
R'7!(x,). So, barring the exceptions provided for, I > 0, and the
demonstration of (7) is complete.

Before the observation, the probability that the probability given x
of whichever element of the partition actually obtains will be greater
than « is

(15) 2 BG)P(P(B; | z) > a| By),
i
where summation is confined to those ¢’s for which 8(z) % 0. Applica-
tion of (14) (extended to arbitrary pairs of 7’s) shows that the coefficients
 For the definition of this law, see, if necessary, p. 191 of Feller’s book [F1].
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of each 8(?) in the quantity (15), and therefore the quantity itself, ap-
proaches 1 as n increases; provided only that no two functions £(x, ] 1)
and £(x, ] 17') are the same, if 8(¢) and 8(¢’) are both different from zero.

To summarize informally, it has now been shown that, with the ob-
servation of an abundance of relevant data, the person is almost cer-
tain to become highly convinced of the truth, and it has also been shown
that he himself knows this to be the case.

It may be remarked, for those familiar with certain theorems, that
many refinements of (7) and its consequences could be worked out by
application of the strong law of large numbers, the central limit theo-
rem, and the law of the iterated logarithm to R’(x,).

The quantity I is coming to be called the information of the distri-
bution of x, given B; with respect to the distribution of x, given B,.
More generally, if P and @ are probability measures, confined (for sim-
plicity) to a finite set X with elements z; the information of P with
respect to @ is defined by
(16) > P(z) log

T

P,
Q(x)

This usage stems from work of Claude Shannon in communication en-
gineering, a good account of which is given in [S11]; and also from inde-
pendent work of Norbert Wiener in a related context [W10]. The ideas
of Shannon and of Wiener, though concerned with probability, seem
rather far from statistics. It is, therefore, something of an accident
that the term “information” coined by them should be not altogether
inappropriate in statistics. The situation is still further confused, be-
cause, as long ago as 1925, R. A. Fisher emphasized an important no-
tion, which he called ““information,” in connection with the theory of
estimation (Paper 11, Theory of statistical estimation in [F6]). At first
glance, Fisher’s notion seems quite different from that of Shannon and
Wiener, but, as a matter of fact, his is a limiting form of theirs. A
useful but rather technical exposition relating the several senses of “in-
formation’ is given by Kullback and Leibler [K15], and I return to the
topic in § 15.6.%

7 Symmetric sequences of events

A problem often posed by statisticians is to estimate from a sequence
of observations the unknown probability p that repeated trials of some
sort are successful. On an objectivistic view, this problem is natural
and important, for on such a view the probability that a coin falls heads,
for example, is a property of the coin that can be determined by ex-
perimentation with the coin and in no other way. But on a personalistic

I See also (Kullhack 1961).
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view of probability, strictly interpreted, no probability is unknown to
the person concerned, or, at any rate, he can determine a probability
only by interrogating himself, not by reference to the external world.

This situation has been interpreted to imply that the personalistic
view is wrong, or at any rate inadequate, because it apparently cannot
even express one of the most natural and typical problems of statistics.
Thus far in this book, I have not argued against the possibility of de-
fining some useful notion of objective probability, but have contented
myself with presenting a particular notion of personal probability.
Therefore, at this point it might be tempting to seek a dualistic theory
admitting both objective and personal probabilities in some kind of ar-
ticulation with one another. De Finetti [D3] has shown, however,
that it is not necessary to do so, that the notion of a coin with unknown
probability p can be reinterpreted in terms of personal probability
alone.

The present section is devoted to outlining this development due to
de Finetti. In the organization of the book as a whole, it plays no logi-
cally essential part; it is, rather, a digression intended to give a clearer
understanding of the notion of personal probability, especially in rela-
tion to objectivistic views. The ideas presented here are but a frag-
ment of those on the same subject in [D2].

Let x, be a sequence of random variables taking only the values 0
and 1. The x,’s are, to all intents and purposes, a sequence of events,
the rth of which is the event that z,(s) = 1. To say that these events
are independent, each occurring with probability p, is to say that the

probability of any finite pattern, z;, ---, z,, initiating the sequence
z,(s) is given by the formula

1 P@ls) =z5r=1--,n|p=p01-p"7,

where y is the number of 1’s among the z,’s forr =1, ---, n.

Mixtures, in a certain sense, of sequences of random variables are
often of interest, as they already have been in the preceding section.
Suppose, to be explicit, that the world is partitioned by B; and that,
given B;, the x,’s are independent with P(z,(s) = 1| B;) having some
fixed value p(¢). Then the unconditional probability of a particular
initial sequence is a mixture of the probabilities given by (1) thus:

(2 P (s) =z5r=1--,n) = E p()*(1 — p())""YP(B,).
It is natural to generalize (2) formally thus:

®) Pl =z =1, m = [0 = P aM (),
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where M is a probability measure on the real numbers in the interval
[0, 1.

It is noteworthy that equation (3), understood to apply for every n,
is equivalent to the condition that the probability that every n of each
prescribed set of n of the x,’s takes the value 1 is

) [ am.
This follows by arithmetic induction from the obvious formula
6 Pl(s)=z5r=1,---,n)
= P(@,(s) = zr;7 =1, -+, n; 2o 41(s) = 0)
+ P(@e(s) = 257 =1, -+, 05 T a(s) = 1),

which applies to any sequence of random variables taking on only the
values 0 and 1.

Equation (3) can very well have an interpretation in such terms that
the measure M is not merely an abstract probability measure, but is
actually a personal probability. Thus, if p is a random variable that
is (for a given person) distributed according to M, and, if for each p
the conditional distribution of the x,’s given p is independent, with
P(z,(s) = 1) = p; then (3) obtains. Strictly speaking, the notion of
conditional probability as it occurs in the preceding sentence is used in
a somewhat wider sense than has been defined in this book, for the
probability of any particular p will typically be zero. At least for
countably additive measures, the necessary extension of conditional
probability and conditional expectation is presented by Kolmogoroff in
[K71; it is a concept of the greatest value in advanced mathematical
statistics and in probability generally.

However, in most contexts where objectivists speak of an unknown
probability p, there is, so far as an exclusively personalistic view of
probability is concerned, no unknown parameter that can play the role
of p in (3).

Examination of situations in which ‘“unknown’ probability is ap-
pealed to, whether justifiably or not, shows that, from the personalistic
standpoint, they always refer to symmetric sequences of events in the
sense of the following definition. The sequence of random variables
x,, taking only the values 0 and 1, is a symmetric t sequence, if and only
if the probability that any b of the z,(s)’s equal 1 and any ¢ other
z,(s)’s equal O depends only on the integers b and c.

t De Finetti uses the French word for “equivalent.”+

+ He and others now prefer “exchangeable.” The concept seems to have heen
first suggested hy Jules Haag (1928).
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It is easy to verify that any mixture of independent sequences in the
sense of (3) is a symmetric sequence. De Finetti has discovered that
the converse is also true. These conclusions can be formally summarized
thus:

THEOREM 1 A sequence of random variables x,, taking only the
values 0 and 1, is symmetric, if and only if there exists a probability
measure M on the interval [0, 1] such that the probability that any pre-
scribed n of the z,(s)’s equal 1 is given by (4). Two such measures, M
and M’, must be essentially the same,{ in the sense that, if B is a sub-
interval of [0, 1], then M(B) = M’(B).

Considering that de Finetti has published a proof of Theorem 1 in
[D2] based on the Fourier integral, that any proof of it must be rather
technical, and that the theorem is not the basis of any formal inference
later in this book, it seems best not to prove it here.1

It is Theorem 1 that makes it possible to express propositions re-
ferring to unknown probabilities in purely personalistic terms. If, for
example, a statistician were to say, “I do not know the p of this coin,
but I am sure it is at most one half,”” that would mean in personalistic
terms, “I regard the sequence of tosses of this coin as a symmetric se-
quence, the measure M of which assigns unit measure to the interval
[0, 3].” This condition on M means in turn that for every n the (per-
sonal) probability of n consecutive heads is at most 27", as is easily
verified. I do not insist that propositions couched in terms of a ficti-
tious unknown probability are bad, if understood as suggestive abbrevi-
ations, but only that the meaningfulness of such propositions does not
constitute an inadequacy of the personalistic view of probability.

The mathematical concept of probability measure or, a trifle more
generally, bounded measure is fundamental to mathematics generally.
Probability measures, often under other names, are, therefore, em-
ployed in many parts of pure and applied mathematics completely un-
related to probability proper. For example, the distribution of mass
in a not necessarily rigid body is expressed by a bounded measure that
tells how much of the body is in each region of space. We must, there-
fore, not be surprised if, even in studying probability itself, we come
across some probability measures used not to measure probability

t Technical note: If “probability measure’’ were here understood to mean a count-
ably additive probability measure on the Borel sets of [0, 1], the theorem would re-
main true, and the essential uniqueness of M would become true uniqueness.

1 Technical note: Theorem 1 can be proved very quickly and naturally by apply-
ing the theory of the Hausdorff moment problem (pp. 8-9 of [S13]) to M, but this
method does not seem to generalize readily.+

+ New and general methods are in Hewitt and Savage (1955) and Ryll-
Nardzewski (1957). For related work see Biihlmann (1960), Freedman (1962,
1963), Milier-Gruzewska (1949, 1950), and Rényi and Révész (1963).
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proper but only for auxiliary purposes. In the event that p is not ac-
tually an unknown parameter, the measure M presented by Theorem 1
seems at first sight to be such a purely auxiliary measure, but, as a matter
of fact, M does measure certain interesting probabilities, at least ap-
proximately. For example, letting

1 n
(6) £y, = — Z Ly
n 1
it can be shown that
(M lim P(Z,(s) < 68) = M(p < 9).

In words, the person considers the average of any large number of fu-
ture observations to be distributed approximately the way p is dis-
tributed by M. This is an extension of the ordinary weak law of large
numbers, proved in [D2] along with a corresponding extension of the
strong law.

If the first n terms of a symmetric sequence are observed, how does
the rest of the sequence appear to the person in the light of this obser-
vation? In the first place, it also is a symmetric sequence but generally
of a structure different from that of the original sequence, as may be
shown thus: Let

(8) 7y, n —y) =pt P(ax(s) = 2,57 =1, -+, ),
as one may for a symmetric sequence. Then
(9) P(xo(s) =z2g;9=n+1, ~~~,n+m|x,(s) =z,r=1 -, n)
=P(33p(3) =zpp=1"-,n+m)
P(z,(s) = 2p,r=1,---,n)

-+ m—2)

W(yr n—y)
where 2z is the number of 1’s among the z,’s, ¢ =n 41, ---, n 4+ m.
Equation (9) shows that the sequence x4, ¢ > n, given that z.(s) = z,,
r=1, -, n, is a new symmetric sequence characterized by
ry+z,(n—y +(m—=z
L e )}

”(yy n— y)

The measure M’ associated with the new sequence is, according to
Theorem 1, essentially determined by the condition that
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(1) [ amr@) =m0
m(m +y,n —y)
(Y, n — y)

[orva - s amp)

T(y) n — y)
= [P ).
=y, n —y)

Equation (11) makes it plausible that, except for the slight ambiguity
permitted by Theorem 1, M’ is defined (for Borel sets B) by

(12) M'(B) = =7 '(y, n — y)j;p”(l = P dM(p),

and this can in fact be demonstrated with some appeal to slightly ad-
vanced methods pertaining to the Hausdorff moment problem (pp. 8-9
of [S13]).

It is noteworthy that, if M(B) = 0, then M’(B) = 0 also. In the
event that p really is an unknown parameter, this means that, if the
person is virtually certain that the true p is not in B, no amount of
evidence can alter that opinion.

Equation (12) shows that M’ is generally different from M. Indeed,
for fixed n > 1, M’ is clearly the same as M for every y for which
x(y, n — y) > 0, if and only if M assigns the measure 1 to some one
value of p. That is, the person regards evidence drawn from a sym-
metric sequence as irrelevant to the future behavior of the sequence, if
and only if at the outset he regards the sequence not merely as sym-
netric but also as independent.

It can be shown that the person regards it as highly probable that,
if he observes a sufficiently long segment of a symmetric sequence, the
continuation of the sequence will then be one for which the conditional
variance of p,

(13) [rrawe - | [rare }

will be small. In the event that p is really an unknown parameter, this
implies that the person is very sure that after a long sequence of obser-
vations he will assign nearly unit probability to the immediate neigh-
borhood of the value of p that actually obtains—a parallel to the ap-
proach to certainty discussed in § 6.



CHAPTER 4

Critical Comments
on Personal Probability

1 Introduction

It is my tentative view that the concept of personal probability in-
troduced and illustrated in the preceding chapter is, except possibly
for slight modifications, the only probability concept essential to sci-
ence and other activities that call upon probability. I propose in this
chapter to discuss the shortcomings I see in that particular personal-
istic view of probability, which, for brevity, shall here be called simply
‘““the personalistic view”’; to point out briefly the relationships between
it and other views; to criticize other views in the light of it; and to dis-
cuss the criticisms holders of other views have raised, or may be ex-
pected to raise, against it.

From the standpoint of strict logical organization such critical re-
marks are somewhat premature, because the personalistic view itself
insists that probability is concerned with consistent action in the face
of uncertainty. Consequently, until the theory of such action has been
completely outlined in later chapters, the view to be criticized cannot
even be considered to have been wholly presented. Practically, how-
ever, it seems wise not to confine critical comments to the one part of
the text that logic may suggest as appropriate, but rather to touch on
criticism from time to time, even at the cost of some repetition. Thus,
some of what is to be said here has already been said in the introductory
chapter and elsewhere, and some of it will be said again.

Views other than the personalistic view are to be discussed here, but
it cannot be too distinctly emphasized that the account given of them
will be very superficial.t One function of discussing other views is to
provide the reader with at least some orientation in the large and di-
versified body of ideas pertaining to the foundation of statistics that

1t Much more extensive comparative material is given by Keynes [K4], by Nagel
[N1], and by Carnap [C1]. Koopman [K12] should also be mentioned in this con-
nection.
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have been accumulated. A less obvious, but I think no less important
and legitimate, function is to cast new light on the personalistic view,
especially for those who already hold, or tend to hold, other views.

2 Some shortcomings of the personalistic view

I can answer, to my own satisfaction, some criticisms of the personal-
istic view that have been brought to my attention. These points are
discussed later in the chapter, but in this section I state and discuss
as clearly as I can those that I find more difficult and confusing to
answer.

According to the personalistic view, the role of the mathematical
theory of probability is to enable the person using it to detect incon-
sistencies in his own real or envisaged behavior. It is also understood
that, having detected an inconsistency, he will remove it. An incon-
sistency is typically removable in many different ways, among which
the theory gives no guidance for choosing. Silence on this point does
not seem altogether appropriate, so there may be room to improve the
theory here. Consider an example: The person finds on interrogating
himself about the possible outcome of tossing a particular coin five
times that he considers each of the thirty-two possibilities equally
probable, so each has for him the numerical probability 1/32. He also
finds that he considers it more probable that there will be four or five
heads in the five tosses than that the first two tosses will both be heads.
Now, reference to the mathematical theory of probability soon shows
the person that, if the probability of each of the thirty-two possibilities
is 1/32, then the probability of four or five heads out of five is 6/32,
and the probability that the first two tosses will be heads is 8/32, so
the person has caught himself in an inconsistency. The theory does not
tell him how to resolve the inconsistency; there are literally an infinite
number of possibilities among which he must choose.

In this particular example, the choice that first comes to my mind,
and I imagine to yours, is to hold fast to the position that all thirty-two
possibilities are equally likely and to accept the implications of that
position, including the implication that four or five heads out of five
is less probable than two heads out of two. I do not think that there is
any justification for that choice implicit in the example as formally
stated, but rather that in the sort of actual situation of which the ex-
ample is a crude schematization there generally are considerations not
incorporated in the example that do justify, or at any rate elicit, the
choice.

To approach the matter in a somewhat different way, there seem to
be some probability relations about which we feel relatively ‘“‘sure” as
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compared with others. When our opinions, as reflected in real or en-
visaged action, are inconsistent, we sacrifice the unsure opinions to the
sure ones. The notion of “sure” and “unsure” introduced here is vague,
and my complaint is precisely that neither the theory of personal proba-
bility, as it is developed in this book, nor any other device known to me
renders the notion less vague+ There is some temptation to introduce
probabilities of a second order so that the person would find himself
saying such things as ‘“the probability that B is more probable than C
is greater than the probability that F is more probable than G.” But
such a program seems to meet insurmountable difficulties.

The first of these—pointed out to me by Max Woodbury—is this.
If the primary probability of an event B were a random variable b
with respect to secondary probability, then B would have a ‘“‘composite”
probability, by which I mean the (secondary) expectation of b. Com-
posite probability would then play the allegedly villainous role that
secondary probability was intended to obviate, and nothing would have
been accomplished.

Again, once second order probabilities are introduced, the introduc-
tion of an endless hierarchy seems inescapable. Such a hierarchy seems
very difficult to interpret, and it seems at best to make the theory less
realistic, not more.

Finally, the objection concerning composite probability would seem
to apply, even if an endless hierarchy of higher order probabilities were
introduced. The composite probability of B would here be the limit
of a sequence of numbers, E,(E,_;(: - E2(P1(B))---)), a limit that
could scarcely be postulated not to exist in any interpretable theory of
this sort. The reader may wish to evaluate for himself the arguments
in favor of such a hierarchy put forward by Reichenbach (Chapter 8,
[R2]), taking proper account of the differences between Reichenbach’s
overall view, and his mathematical theory, of probability on one hand
and, on the other, the personalistic view and measure-theoretic mathe-
matical theory that are the basis of my critique of higher order proba-
bilities.

The interplay between the “sure” and ‘“unsure” is interestingly ex-
pressed by de Finetti (p. 60, [D2]) thus: “The fact that a direct estimate
of a probability is not always possible is just the reason that the logi-
cal rules of probability are useful. The practical object of these rules
is simply to reduce an evaluation, scarcely accessible directly, to others
by means of which the determination is rendered easier and more
precise.”’

It may be clarifying, especially for some readers under the sway of
the objectivistic tradition, to mention that, if a person is “sure” that

+ One tempting representation of the unsure is to replace the person’s single
probability measure P by a set of such measures, especially a convex set. Some
explorations of this are Dempster (1968), Good (1962), and Smith (1961).
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the probability of heads on the first toss of a certain penny is 3, it does
not at all follow that he considers the coin fair. He might, to take an
extreme example, be convinced that the penny is a trick one that al-
ways falls heads or always falls tails.

Logic, to which the theory of personal probability can be closely par-
alleled, is similarly incomplete. Thus, if my beliefs are inconsistent
with each other, logic insists that I amend them, without telling me how
to do so. This is not a derogatory criticism of logic but simply a part
of the truism that logic alone is not a complete guide to life. Since the
theory of personal probability is more complete than logic in some re-
spects, it may be somewhat disappointing to find that it represents no
improvement in the particular direction now in question.

A second difficulty, perhaps closely associated with the first one,
stems from the vagueness associated with judgments of the magnitude
of personal probability. The postulates of personal probability imply
that I can determine, to any degree of accuracy whatsoever, the proba-
bility (for me) that the next president will be a Democrat. Now, it is
manifest that I cannot really determine that number with great accu-
racy, but only roughly. Since, as is widely recognized, all the interest-
ing and useful theories of modern science, for example, geometry, rela-
tivity, quantum mechanics, Mendelism, and the theory of perfect com-
petition, are inexact; it may not at first sight seem disquieting that the
theory of personal probability should also be somewhat inexact. As
will immediately be explained, however, the theory of personal proba-
bility cannot safely be compared with ordinary scientific theories in
this respect.

I am not familiar with any serious analysis of the notion that a theory
is only slightly inexact or is almost true, though philosophers of science
have perhaps presented some. Even if valid analyses of the notion
have been made, or are made in the future, for the ordinary theories of
science, it is not to be expected that those analyses will be immediately
applicable to the theory of personal probability, normatively inter-
preted; because that theory is a code of consistency for the person ap-
plying it, not a system of predictions about the world around him.

The difficulty experienced in § 2.6 with defining indifference seems
closely associated with the difficulty about vagueness raised here.

Another difficulty with the theory of personal probability (or, more
properly, with that larger theory of the behavior of a person in the
face of uncertainty, of which the theory of personal probability is a
part) is that the statement of the theory is not yet necessarily complete.
Thus we shall in the next chapter come upon another proposition that
demands acceptance as a postulate, and, since even this leaves the per-



60 CRITICAL COMMENTS ON PERSONAL PROBABILITY [4.4

son a great deal of freedom, there is no telling when someone will come
upon still another postulate that clamors to be adjoined to the others.
Strictly speaking, this is not so much an objection to the theory as a
warning about what to expect of its future development.

3 Connection with other views

All views of probability are rather intimately connected with one an-
other. For example, any necessary view can be regarded as an extreme
personalistic view in which so many criteria of consistency have been
invoked that there is no role left for the person’s individual judgment.
Again, objectivistic views can be regarded as personalistic views ac-
cording to which comparisons of probability can be made only for very
special pairs of events, and then only according to such criteria that all
(right-minded) people agree in their comparisons.

From a different standpoint, personalistic views lie not between, but
beside, necessary and objectivistic views; for both necessary and objec-
tivistic views may, in contrast to personalistic views, be called objective
in that they do not concern individual judgment.

4 Criticism of other views

It will throw some light on the personalistic view to say briefly how
some other views seem to compare unfavorably with it.

It is one of my fundamental tenets that any satisfactory account of
probability must deal with the problem of action in the face of uncer-
tainty. Indeed, almost everyone who seriously considers probability,
especially if he has practical experience with statistics, does sooner or
later deal with that problem, though often only tacitly. Even some
personalistic views seem to me too remote from the problem of action,
or decision. For example, de Finetti in [D2] gives two approaches to
personal probability. Of these, one is almost exactly like the view
sponsored here, except only that the notion “more probable than” is
supposed to be intuitively evident to the person, without reference to
any problem of decision. The other is more satisfactory in this re-
spect, being couched in terms of betting behavior, but it seems to me
a somewhat less satisfactory approach than the one sponsored here, be-
cause it must assume either that the bets are for infinitesimal sums or—
anticipating the language of the next chapter—that the utility of money
is linear. The theory expressed by Koopman in [K9], [K10], and [K11]
and that expressed by Good in [G2] are both personalistic views that
tend to ignore decision, or at any rate keep it out of the foreground;
but the personalistic view expressed by Ramsey in [R1], like the one
sponsored here, takes decision as fundamental. If any necessary view
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can be formulated at all, it might well be possible to formulate it in
terms of decision, but, so far as I know, the notion of decision has not
appeared fundamental to the holders of any necessary view. It seems
fair to say that objectivistic views, by their very nature, must in prin-
ciple regard decision as secondary to probability, if relevant at all.
Yet, the objectivist A. Wald has done more than anyone else to popu-
larize the notion of decision.

As has already been indicated, from the position of the personalistic
view, there is no fundamental objection to the possibility of construct-
ing a necessary view, but it is my impression that that possibility has
not yet been realized, and, though unable to verbalize reasons, I con-
jecture that the possibility is not real. Two of the most prominent en-
thusiasts of necessary views are Keynes, represented by [K4], and Car-
nap, who has begun in [C1] to state what he hopes will prove a satis-
factory necessary (or nearly necessary) view of probability. Keynes
indicated in the closing pages of [K4] that he was not fully satisfied
that he had solved his problem and even suggested that some element
of objectivistic views might have to be accepted to achieve a satisfac-
tory theory, and Carnap regards [C1] as only a step toward the estab-
lishment of a satisfactory necessary view, in the existence of which he
declares confidence. That these men express any doubt at all about the
possibility of narrowing a personalistic view to the point where it be-
comes a necessary one, after such extensive and careful labor directed
toward proving this possibility, speaks loudly for their integrity; at the
same time it indicates that the task they have set themselves, if possi-
ble at all, is not a light one.

Keynes, writing in 1921 of what are here called objectivistic views,
complained, “The absence of a recent exposition of the logical basis of
the frequency theory by any of its adherents has been a great disadvan-
tage to me in criticizing it.”” (Chap. VIII, Sec. 17, of [K4]). I believe
that his complaint applies as aptly to my position today as to his then,
though I cannot pretend to have combed the intervening literature
with anything like the thoroughness Keynes himself would have em-
ployed. Reichenbach, to be sure, presents in great detail an interest-
ing view that must be classified as objectivistic [R2], but it seems far
removed from those that dominate modern statistical theory and form
the main subject of the following discussion. Whatever objectivistic
views may be, they seem, to holders of necessary and personalistic
views alike, subject to two major lines of criticism. In the first place,
objectivistic views typically attach probability only to very special
events. Thus, on no ordinary objectivistic view would it be meaning-
ful, let alone true, to say that on the basis of the available evidence it
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is very improbable, though not impossible, that France will become a
monarchy within the next decade. Many who hold objectivistic views
admit that such everyday statements may have a meaning, but they
insist, depending on the extremity of their positions, that that meaning
is not relevant to mathematical concepts of probability or even to sci-
ence generally. The personalistic view claims, however, to analyze
such statements in terms of mathematical probability, and it considers
them important in science and other human activities.

Secondly, objectivistic views are, and I think fairly, charged with
circularity. They are generally predicated on the existence in nature
of processes that may, to a sufficient degree of approximation, be rep-
resented by a purely mathematical object, namely an infinite sequence
of independent events. This idealization is said, by the objectivists
who rely on it, to be analogous to the treatment of the vague and ex-
tended mark of a carpenter’s pencil as a geometrical point, which is so
fruitful in certain contexts. When it is pointed out to the objectivist
that he uses the very theory of probability in determining the quality
of the approximation to which he refers, he retorts that the applied
geometer—a fictitious character whose reputation for solidity in science
is unquestioned—likewise uses geometry in determining the quality of
his approximations. Let the geometer then be challenged, and he re-
plies with a threefold reference to experience, saying, “It is a common
experience that with sufficient experience one develops good judgment
in the use of geometry and thenceforth generally experiences success in
the predictions he bases on it.”” ‘“Now,” says the objectivist, ‘“the
geometer’s answer is my answer.” But it seems to critics of objectivistic
views that, though the geometer may be entitled to make as many allu-
sions to experience as he pleases, the probabilist is not free to do so,
precisely because it is the business of the probabilist to analyze the con-
cept of experience. He, therefore, cannot properly support his position
by alluding to experience until he has analyzed that concept, though
he can, of course, allude to as many experiences as he wishes.

Two sorts of mixed views call for special comment here.

First, some (among them Carnap [C1]; Koopman [K9], [K10], and
[K11]; and Nagel [N1]) hold that two probability concepts play a role
in inference, an objectivistic one and a personalistic or a necessary one.
This dualism is typically justified as necessary to the analysis of such
a concept as that of a coin with unknown probability of falling heads.
But, as § 3.7 explains, de Finetti has provided a satisfactory analysis
on the basis of personal probability alone.

Second, others—for example, van Dantzig [V1] and Féraud [F2]—
finding the conventional objectivistic views circular for the reasons I
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have cited, try to break the circle by relatively isolated use of subjec-
tive ideas. Very crudely, it seems to be their position that in any one
context it is allowable for a person to act as though some one event of
sufficiently small (objective) probability, chosen at his discretion, were
impossible. Quite apart from the relatively technical question of
whether any consistent mixed view of this kind can be constructed,
holders of personalistic and necessary views alike criticize them as un-
necessarily timid, for they embrace subjective ideas, but only gingerly.

6 The role of symmetry in probability

An important and highly controversial question in the foundations
of probability is whether and, if so, how symmetry considerations can
determine the probabilities of at least some events.

Symmetry considerations have always been important in the study
of probability. Indeed, early work in probability was dominated by
the notion of symmetry, for it was usually either concerned with, or di-
rectly inspired by, symmetrical gambling apparatus such as dice or
cards. To illustrate those classical problems, suppose that a gambler is
offered several bets concerning the possible outcome of rolling three
dice, where it is to be understood that refraining from any bets at all
may be among the available “bets.”” Which of the available bets
should the gambler choose? Perhaps I distort history somewhat in in-
sisting that early problems were framed in terms of choice among bets,
for many, if not most, of them were framed in terms of equity, that is,
they asked which of two players, if either, would have the advantage
in a hypothetical bet. But, especially from the point of view of the
earlier probabilists, such a question of equity is tantamount to a ques-
tion of choice among bets, for to ask which of two ‘‘equal” betters has
the advantage is to ask which of them has the preferable alternative,
as was pointed out quite explicitly by D. Bernoulli in [B10].

In effect, the classical workers recommended the following solution
to the problem of three dice, with corresponding solutions to other
gambling problems:

1. Attach equal mathematical probabilities to each of the 216 (=63)
possible outcomes of rolling the three dice. (There are 63 possibilities,
because the first, second, and third dice can each show any of six scores,
all combinations being possible.)

2. Under the mathematical probability established in Step 1, com-
pute the expected winnings (possibly negative) of the gambler for each
available bet.

3. Choose a bet that has the largest expected winnings among those
available.
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At present it is appropriate to refrain from criticisms of the use
made of expected winnings until the next chapter and to concentrate
discussion on the notion that the 216 possibilities should be considered
equally probable, which can conveniently be done by drastically reduc-
ing the class of bets considered to be available. Say, for definiteness,
that the only bets to be considered are simply even-money bets of one
dollar, that the triple of scores falls in a preassigned subset of the 216
possibilities. When attention is focused on this restricted class of bets,
the total recommendation is seen to imply that the probability measure
defined in the first step of the recommendation be adopted as the per-
sonal probability of the gambler. To put it differently, a gambler who
adopts the recommendation will hold the 216 possible outcomes equally
probable not only in some abstract sense, but also in the sense of per-
sonal probability as defined in § 3.2.

The notion that the 216 possibilities should be regarded as equally
probable is familiar to everyone; for it is taken for granted wherever
gentlemen gamble as well as in the standard high-school algebra courses,
where it serves to illustrate the theory of combinations and permutations.

Traditionally, the equality of the probabilities was supposed to be
established by what was called the principle of insufficient reason,}
thus: Suppose that there is an argument leading to the conclusion that
one of the possible combinations of ordered scores, say {1, 2, 3}, is
more probable than some other, say {6, 3, 4}. Then the information
on which that hypothetical argument is based has such symmetry as
to permit a completely parallel, and therefore equally valid, argument
leading to the conclusion that {6, 3, 4} is more probable than {1, 2, 3}.
Therefore, it was asserted, the probabilities of all combinations must
be equal.

The principle of insufficient reason has been and, I think, will con-
tinue to be a most fertile idea in the theory of probability; but it is not
so simple as it may appear at first sight, and criticism has frequently
and justly been brought against it. Holders of necessary views typi-
cally attempt to put the principle on a rigorous basis by modifying it
in such a way as to take account of such criticism. Holders of personal-
istic and objectivistic views typically regard the criticism as not alto-
gether refutable, so they do not attempt to establish a formal postulate
corresponding to the principle but content themselves—as I shall here
—with exhibiting an element of truth in it.

One of the first criticisms is that the principle is not strictly applicable
for a person who has had any experience with the apparatus in ques-

1 Perhaps what I here call the principle of insufficient reason should be called the
principle of cogent reason. See Section 3 of [B15] for the distinction involved.
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tion, or even with similar apparatus. Thus, attempts to use the prin-
ciple, as I have stated it, to prove that there is no such thing as a run
of luck at dice, as actually played, are invalid. The person may have
had relevant experience, directly or vicariously, not only with gambling
apparatus itself, but also with people who make and handle it, including
cheaters.

It is not always obvious what the symmetry of the information is in
a situation in which one wishes to invoke the principle of insufficient
reason. For example, d’Alembert, an otherwise great eighteenth-cen-
tury mathematician, is supposed to have argued seriously that the prob-
ability of obtaining at least one head in two tosses of a fair coin is 2/3
rather than 3/4. (Cf. [T3], Art. 464.) Heads, as he said, might appear
on the first toss, or, failing that, it might appear on the second, or,
finally, might not appear on either. D’Alembert considered the three
possibilities equally likely.

It seems reasonable to suppose that, if the principle of insufficient
reason were formulated and applied with sufficient care, the conclusion
of d’Alembert would appear simply as a mistake. There are, however,
more serious examples. Suppose, to take a famous one, that it is known
of an urn only that it contains either two white balls, two black balls,
or a white ball and a black ball. The principle of insufficient reason has
been invoked to conclude that the three possibilities are equally proba-
ble, so that in particular the probability of one white and one black
ball is concluded to be 1/3. But the principle has also been applied to
conclude that there are four equally probable possibilities, namely, that
the first ball is white and the second also, that the first is white and the
second black, etec. On that basis, the probability of one white and one
black ball is, of course, 1/2. Personally, I do not try to arbitrate be-
tween the two conclusions but consider that the existence of the pair
of them reflects doubt on the notion that a person’s knowledge relevant
to any matter admits any full and precise description in terms of
propositions he knows to be true and others about which he knows
nothing.

Most holders of personalistic views do not find the principle of in-
sufficient reason compelling, because they envisage the possibility that
a person may consider one event more probable than another without
having any compelling argument for his attitude. Viewed practically,
this position is closely associated with the first criticism of the principle
of insufficient reason, for the holder of a personalistic view typically
supposes that the person is under the influence of experience, and pos-
sibly even biologically determined inheritance, that expresses itself in
his opinions, though not necessarily through compelling argument.
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Holders of personalistic views do see some truth in the principle of
insufficient reason, because they recognize that there are frequently par-
titions of the world, associated with symmetrical-looking gambling ap-
paratus and the like, that many and diverse people all consider (very
nearly) uniform partitions. As was illustrated in the preceding sec-
tion, we often feel more “sure” about probabilities derived from the
judgment that such partitions are uniform than we do about others.
Such partitions are, moreover, very important in that they provide
some events the probability of which to diverse people is in agreement.
Though the events concerned are often of no importance in themselves,
agreement about them can, through the statistical invention of ran-
domization, contribute to agreement about all sorts of issues open to
empirical investigation. Widespread though the agreement about the
near uniformity of some partitions is, holders of personalistic views
typically do not find the contexts in which such agreement obtains
sufficiently definable to admit of expression in a postulate.

Holders of purely objectivistic views see no sense at all in the original
formulation of the principle of insufficient reason, for it uses “proba-
bility”’ in a manner they consider meaningless. But they too see an
element of truth in the principle, which they consider to be established
as a part of empirical physics. Thus, for example, they regard it as an
experimental fact, admitting some explanation in terms of theoretical
physics, that three dice manufactured with reasonable symmetry will
exhibit each of the 216 possible patterns with nearly equal frequency,
if repeatedly rolled with sufficient violence on a suitable surface.

Holders of personalistic views agree that experiments or, more gen-
erally, experiences determine to a large extent when people employ the
idea of insufficient reason. Thus, though experiments with gambling
apparatus, quite apart from gambling itself, have a fascination that
perhaps exceeds their real interest, such experiments are not altogether
worthless. On the one hand, they provide strong evidence that a per-
son cannot expect to maintain a symmetrical attitude toward any piece
of apparatus with which he has had long experience, unless he is vir-
tually convinced at the outset that the possible states of the apparatus
are equally probable and independent from trial to trial. To say it in
the more familiar and sometimes more congenial language of objective
probability, long experiments with coins, dice, cards, and the like have
always shown some bias, and often some dependence from trial to trial.
On the other hand (and this has the utmost practical importance), it
has been shown that, with skill and experience, gambling apparatus, or
its statistical equivalent, can be manufactured in which the bias and
the dependence from trial to trial are extremely small. This implies
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that groups of very diverse people can be brought to agree that repeated
trials with certain apparatus are nearly uniform and nearly independent.
Thus certain methods of obtaining random numbers and other outcomes
of uniform and independent trials, which are vital to many sorts of
experimentation, have justifiably found acceptance with the scientific
public. A stimulating account of practical methods of obtaining ran-
dom numbers, and random samples generally, is given by Kendall in
Chapter 8 (Vol. I) of [K2].

6 How can science use a personalistic view of probability?

It is often argued by holders of necessary and objectivistic views alike
that that ill-defined activity known as science or scientific method con-
sists largely, if not exclusively, in finding out what is probably true,
by criteria on which all reasonable men agree. The theory of proba-
bility relevant to science, they therefore argue, ought to be a codifica-
tion of universally acceptable criteria. Holders of necessary views say
that, just as there is no room for dispute as to whether one proposition
is logically implied by others, there can be no dispute as to the extent
to which one proposition is partially implied by others that are thought
of as evidence bearing on it, for the exponents of necessary views re-
gard probability as a generalization of implication. Holders of objec-
tivistic views say that, after appropriate observations, two reasonable
people can no more disagree about the probability with which trials
in a sequence of coin tosses are heads than they can disagree about the
length of a stick after measuring it by suitable methods, for they con-
sider probability an objective property of certain physical systems in
the same sense that length is generally considered an objective property
of other physical systems, small errors of measurement being contem-
plated in both contexts. Neither the necessary nor the objectivistic
outlook leaves any room for personal differences; both, therefore, look
on any personalistic view of probability as, at best, an attempt to pre-
dict some of the behavior of abnormal, or at any rate unscientific,
people.

I would reply that the personalistic view incorporates all the univer-
sally acceptable criteria for reasonableness in judgment known to me
and that, when any criteria that may have been overlooked are brought
forward, they will be welcomed into the personalistic view. The cri-
teria incorporated in the personalistic view do not guarantee agreement
on all questions among all honest and freely communicating people,
even in principle. That incompleteness, if one will call it such, does not
distress me, for I think that at least some of the disagreement we see
around us is due neither to dishonesty, to errors in reasoning, nor to
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friction in communication, though the harmful effects of the latter are
almost incapable of exaggeration.

As was mentioned in connection with symmetry, there are partitions
that diverse people all consider nearly uniform, though not compelled
to that agreement by any postulate of the theory of personal proba-
bility. As has also been mentioned and as will be explained later (es-
pecially in § 14.8), through the statistical invention of randomization,
agreement about partitions pertaining to gambling apparatus of no im-
portance in itself can be made to contribute to agreement in every
part of empirical science.

Another mechanism that brings people having some, but not all,
opinions in common into more complete agreement was illustrated in
§§ 3.6-7. Indeed, it was there shown that in certain contexts any two
opinions, provided that neither is extreme in a technical sense, are al-
most sure to be brought very close to one another by a sufficiently
large body of evidence.

It has been countered; I believe, that, if experience systematically
leads people with opinions originally different to hold a common opinion,
then that common opinion, and it only, is the proper subject of scien-
tific probability theory. There are two inaccuracies in this argument.
In the first place, the conclusion of the personalistic view is not that
evidence brings holders of different opinions to the same opinions, but
rather to similar opinions. In the second place, it is typically true of
any observational program, however extensive but prescribed in ad-
vance, that there exist pairs of opinions, neither of which can be called
extreme in any precisely defined sense, but which cannot be expected,
either by their holders or any other person, to be brought into close
agreement after the observational program.

I have, at least once, heard it objected against the personalistic view
of probability that, according to that view, two people might be of
different opinions, according as one is pessimistic and the other opti-
mistic. I am not sure what position I would take in abstract discussion
of whether that alleged property of personalistic views would be ob-
jectionable, but I think it is clear from the formal definition of qualita-
tive probability that the particular personalistic view sponsored here
does not leave room for optimism and pessimism, however these traits
be interpreted, to play any role in the person’s judgment of probabilities.

+ See (Fisher 1934), p. 287.



CHAPTER 5

Utility
1 Introduction

The postulates P4-6, introduced in Chapter 3, have already led to
simplification of the relation < in so far as it applies to acts of a special
but important form. Indeed, through the introduction of numerical
probability, those special comparisons have been reduced to ordinary
arithmetic comparison of numbers in such a way that many relations
among acts are deducible by simple and systematic arithmetic calcula-
tion. In this chapter it will be shown that the arithmetization of com-
parison among acts can, with the introduction of one mild new postu-
late, be extended to virtually all pairs of acts.

This far-reaching arithmetization of comparison among acts is
achieved by attaching a number U(f) to each consequence f in such a
way that f < g if and only if the expected value of U(f) is numerically
less than or equal to that of U(g), provided only that the real-valued
functions U(f) and U(g) are essentially bounded. The provision can
fail to be met only if there exist acts that are, so to speak, distinctly
preferable to any fixed reward or distinctly worse than any fixed punish-
ment.

A function U that thus arithmetizes the relation of preference among
acts will be called a utility. It will be shown that the multiplicity of
utilities is not complicated, every utility being simply related to every
other. I have chosen to use the name “utility’’ in preference to any
other, in spite of some unfortunate connotations this name has in con-
nection with economic theory, because it was adopted by von Neumann
and Morgenstern when in [V4] they revived the concept to which it re-
fers, in a most stimulating way. Their treatment has been of such wide-
spread interest that the introduction of a name other than “utility” at
the present time would cause more confusion than it could alleviate.

The next three sections are concerned with the technical exploration
of the utility concept. I think readers interested in the details will find
it best to read these sections twice as a unit, in the fashion I have been
recommending for other material in which definitions and propositions

69
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are interlarded with proofs; others will be content with a cursory read-
ing, omitting proofs.

Taking advantage of the simplicity afforded by the introduction of
utility, I try in § 5 to make some progress with the problem, pointed
out in § 2.5, of specifying criteria for the construction of ‘“small worlds.”

Finally, § 6 briefly reports the history of the utility idea. A separate
critical section is not necessary, because the criticisms of the theory of
utility known to me are incorporated conveniently into the historical
section.

2 Gambles

Before discussing utility, it is expedient to establish certain facts,
the first being that at least among a rather rich class of acts, namely
acts confined with probability one to a finite number of consequences,
preference depends only on the probability distribution of the conse-
quences of the acts.

THEOREM 1

Hyp. 1. fi, -+ -, fn are n elements of F, n > 1.
2. p1, -+, pn are numbers such that Zp; = 1.
3. g and h are acts such that

P(g(s)—_‘f;):P(h(s)=f,)=p,” 1:_—.. 1, ...,n.
ConcL. g =h

Proor. The theorem is obvious for » = 1. It will be proved by in-
duction, supposing henceforth that n > 1.

Let B denote the intersection of the two events that g(s) = f, and
h(s) = fa, and let C denote the intersection of the two events that
h(s) = fn and g(s) # fn. It is easy to see that P(B) = P(C). C can
be partitioned into Cy, Cy, -+, Cn—;, where Cy is a null event and C,,
t=1, ---,n — 1, is the intersection of C with the event that g(s) = f.
By repeated application of Conclusion 7 of Theorem 3.3.3, B can be
partitioned into events By, B, -, B,_; such that P(B;) = P(C)),
i=0,---,n—1

Let go = g, and define g;, step by step forz =0, - -+, n — 2 thus:

1) giy1(5) = fa for s e Ciya,
= fin for s e Biyy,
= g:(s) elsewhere.

It is easily seen from the facts of conditional probability that g;y; =
g: given B;4; U C;4,4, and it is even more obvious that g; 41 = g; given
~(Bi41 U Ci41). Therefore gi41 = gi, S0 8.1 = g Furthermore,
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P(gig1(s) = f;) = P(gi(s) = f;) = pj, 80 P(gna(8) = f3) = pjy § =1,
-++, n. Thus g, is not only equivalent to g but also satisfies the hy-
pothesis of the theorem relative to h, so it will suffice to prove the theo-
rem for g,_; and h in place of g and h.

Now g,—; has been constructed to equal f, in C, except on a null set.
Therefore g,—; = h given C U D, where D is the subset of ~C on
which g,y =h = f,.

It remains only to show that g,_; = hgiven ~(C U D). If ~(C U D)
is null, that is true automatically; henceforth concentrate on the less
trivial situation. If ~(C U D) is not null, then < given ~(C U D)
satisfies all the postulates assumed thus far, and therefore the conse-
quences fi, -, fa—1; the numbers p/ = p;/(1 — pn),2 =1, -+-,n — 1;
the acts go,—; and h; and the relation < given ~(C' U D) satisfy the
hypothesis of the theorem for a case in which it is supposed already to
have been proved. @

In this chapter the notation Zp;f; will denote the class of all acts f-
for which there exist partitions B; of S such that P(B;) = p; and f(s) =
fi for 8 ¢ B;. Here the fs are a finite sequence of consequences (not
necessarily distinct), and the p;s a corresponding sequence of non-
negative real numbers such that 2p; = 1. In view of Conclusion 7 of
Theorem 3.3.3, such a class of acts, which will in this chapter be re-
ferred to as a gamble and denoted by f, g, h, or the like, always has at
least one element. Theorem 1 says, in effect, that the person regards
all elements of any gamble as equivalent. To put it differently, if the
events B; of a partition have the probabilities p;, and if the act f is
such that the consequence f; will befall the person in case B; occurs,
then the value of f is independent of how the partition B; is chosen.

Gambles can be mixed, in a sense, to make new gambles, thus: Let
f; be a finite sequence of gambles,

) f; = Z piifiss

and ¢; a corresponding sequence of non-negative real numbers such
that Zo; = 1. The mizture of the fs with weights ¢;, denoted Z;f;, is
defined by
®3) Zoifj = 3. o {Z Pijfij}

1

J
= 2 (o504))fsj»
)
which is meaningful, the f;;’s being consequences and the (o;p;;)’s being
numbers such that Z(ojp;;) = 1. Such mixtures are exemplified by an
insurance policy in which the benefit is an annuity payable during the
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life of the beneficiary, and by a lottery in which the prizes are tickets
in other lotteries.

In view of Theorem 1, it is natural to say that f < g means that, for
every act f in the class of acts corresponding to f, f < g. Corresponding
definitions are to be understood for f < g, f< g, f < g, etc.

THEOREM 2 If £, g, and h are gambles, and 0 < p < 1; then of +
(1 — p)h < pg + (1 — p)h, if and only if f < g.

Proor. Let f, g; f;, g;; and B;, C; be acts, consequences, and parti-
tions such that f and g are among the acts represented by f and g, re-
spectively, with f(s) = f; for s e B; and g(s) = g; for s e C}.

Construct D;; C B; N C; such that P(D;;) = pP(B; N C;), and let
D =D Then P(D) =p, P(B;|D) = P(B;), and P(Cj| D) =
P(C)).

What is to be proved is, in effect, that f < g given D, if and only if
f < g. In view of Theorem 1 it is clear that whether that is so or not
for f and g does not depend on the particular choice of D; so, with an
obvious temporary extension of terminology, it is to be proved thatf < g
given p, if and only if f < g.

If f=g given a for every 0 < o < 1, there is nothing to prove.
Otherwise it can be assumed without loss of generality that, for some
ap, f < g given «p.

In view of Theorem 2.7.2, f « +8< 1, f > g given o, and f > g
given 8; then f > g given (@ + ), and similarly f > g given a/2.

Making use of P6 and Theorem 2.7.2, it can easily be shown that, for
any o sufficiently close to ap, f < g given a.

The preceding three paragraphs imply that, in the case at hand,
f<ggivenaforeveryeq, 0 < a<1 @

THEOREM 3 If f<g and 0 <o <p<1, then pf + (1 — p)g <
of + (1 — 0)g.

Proor. In view of the immediately verifiable identities,

pf+ 1 —pg=(@—af+[1—(p—0)]X
{ 4 1-p }
f+ g
1 - —0 1 - —0
@ (p — 0) (o — o)

o+ 1 —-—ag=(@(—0g+[1—(p—0]X

o (1 —»p) }
f ,
{1—-<p—a> T e-9°
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this theorem is a special case of Theorem 2; unless p = 1, and ¢ = 0,
in which case it is trivial. @

THEOREM 4 If f < f,and £, < g < £, then there is one and only
one p such that of, + (1 — p)f; = g.

Proor. It follows immediately from Theorem 3 and the principle of
the Dedekind cut 1 that there is one and only one py such that

ch+ Q1 — o) <g, if > po
®)
aﬂ + (1 - G')fg > g, if o< Po-

According to (5), no number, except possibly po, can satisfy the equiv-
alence demanded by the theorem.

Finally, using (5) and P6 (much as it was used in the proof of Theo-
rem 2), it follows that py does indeed satisfy the equivalence. @

3 Utility, and preference among gambles

The idea of utility can most conveniently be introduced in connec-
tion with gambles or, equivalently, acts that with probability one are
confined to a finite number of consequences, thus: A utility is a function
U associating real numbers with consequences in such a way that, if
f = Zpif;and g = Zag;; then f < g, if and only if Zp,U(f;) < Za;U(g;).
Writing U[f] for Zp;U(f;), the condition takes the form U[f] < Ulg].
Similarly, it is convenient to understand that, for an act f,

(1) Ulf] = E(U(1)).

In this notation the following obvious theorem gives a slightly different
characterization of utility.

THEOREM 1 A real-valued function of consequences, U, is a utility;
if and only if f < g is equivalent to U[f] < Ulg], provided f and g are
both with probability one confined to a finite set of consequences.

Do the postulates thus far assumed guarantee that any utilities exist
at all? Can Theorem 1 be extended to an even wider class of acts?
Does a great diversity of utilities exist, or does the relation < practi-
cally determine the function U? These questions, here mentioned in
the order in which they most naturally arise, are manifestly of great
importance in understanding utility. For technical reasons, they will

t Cf., if necessary, any introduction to the theory of the real numbers for explana-
tion of this principle, e.g., Chapter II of [G3].
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be answered in a different order—the third followed by the first in this
section, and the second in the next section.

If there is a utility at all, there is surely more than one, because a
utility plus a constant and a utility times a positive constant are also
obviously utilities; thus:

THEOREM 2 If U is a utility, and p, ¢ are real numbers with p > 0;
then U’ = pU 4 ¢ is also a utility.

COROLLARY 1 If there exists a utility, and if f < g¢; then there ex-
ists a utility U for which U(f) and U(g) are any preassigned pair of
numbers, provided U(f) < U(g).

Theorem 2 says that any increasing linear function of a utility is a
utility. The next theorem says that, conversely, any two utilities are
necessarily increasing linear functions of one another.

THEOREM 3 If U and U’ are utilities, there exist numbers p and o
such that U’ = pU + ¢, p > 0.

Proor. The first step of the proof will be to demonstrate the fol-
lowing identity for the two utilities U and U’ and for any three conse-

quences f, g, h.
1 1 1

@) ui) Ul UR |=0.
U Ul UM

If any two of the consequences f, g, b are equivalent, two columns of
the determinant in question are equal, and therefore the determinant
vanishes. It can be assumed, then, that no two of f, g, and & are equiv-
alent; and there is no loss in generality, as may be seen by permuting
columns, in assuming f < g < h. Theorem 2.4 now permits the con-
clusion that there is a p such that of + (1 — p)h = g. Therefore,

= pl + (1 - p)l
@) Ulg) = oU(f) + (1 — p)U(R)
Ug) = pU(f) + A — p)U'(W).

Thus the middle column of the determinant is linearly dependent on
the other two, so the determinant vanishes, as was asserted.

Now let g and h be any fixed pair of consequences such that g < A,
the existence of such a pair being assured by P5. Equation (2) can be
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successively rewritten, where f is an arbitrary consequence, thus:
@ HU@U'(R) — UMU' @] — UNU'®R) — U]

+ UNUR — U@l =0,

U'(h) — U'(g) UgU'(k) — UR)U'(g)

5 Uf) =——U) — )

® 0 Uk) — Ulg) ) Ur) — Ulg)

which proves the theorem; for U’(h) — U’(g) and U(h) — U(g) are
both positive. @

COROLLARY 2 If U and U’ are utilities such that, for some g < &,
U(g) = U'(g) and U(h) = U’(h); then U and U’ are the same, that is,
for every f, U(f) = U'(f).

To summarize, if there is a utility at all, there are an infinite number,
but the array of utilities is not complicated; for all can be generated
from any one by increasing linear transformations.

Turn now to the question of existence.
THEOREM 4 There exists a utility.

Proor. Von Neumann and Morgenstern prove essentially this theo-
rem, as well as the preceding one, in the appendix of [V4]. The following
proof is theirs, expressed, as the teacher used to say, in my own words.

For this proof only, certain special nomenclature is infroduced. A
set of gambles F is convex; if and only if, for every f, gcFand p, 0 < p
<1, pf+ (1 — p)g ¢F. An interval | of gambles is the set of all gam-
bles f such that, for some fixed g and A (which determine the interval),
g < f< h. A hyper-utility V on a convex set F is a real-valued func-
tion of the gambles of F, such that f < g, if and only if V(f) < V(g),
and such that V(of + (1 — p)g) = pV(f) + (1 — p)V(g).

The following remarks about this special nomenclature are obvious
and will be repeatedly used in the proof, without explicit reference.
The set of all gambles is convex. The intersection of two convex sets
is convex. Every interval is convex. There is an interval containing
any finite set of gambles. If there is a hyper-utility on the set of all
gambles, it is a utility when confined to consequences.

By the same method that led to the proofs of Theorems 2 and 3,
if there is a hyper-utility on F containing g and h, with g < h, then there
is one and only one hyper-utility V on F such that V(g) = 0 and V'(h)
= 1.
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If 1is the interval determined by g < h, then, according to Theorem
2.4, there is for every f in I a unique number, call it V(f), such that

®) f=(1— Vg + V(Hh.
By repeated use of Theorem 2.2, it follows for any f, f' ¢ I that
() pf + (1 — p)f = p{(1 — V(£)g + V(HR}
+ A = {1 = V(F)g + V(Fh}
={1—-[V{EH+ 1 - )V({)llg
+ V() + 0@ — )V (F)A,

so V is a hyper-utility on the convex set I.

From here on in this proof, let g, & be a fixed pair of consequences with
g < h. Making use of the preceding two paragraphs, there is a unique
hyper-utility assigning the values 0 and 1 to g and h, respectively, on
any one interval containing ¢ and h. The intersection of two such in-
tervals is a convex set containing ¢ and h, and on the intersection the
hyper-utilities associated with the two intervals are both hyper-utilities
attaching 0 and 1 to g and h, respectively; they must, therefore, be
equal to one another on the intersection.

Any gamble f is an element of some interval containing ¢ and h.
Let V(f) be the common value assigned to f by all the hyper-utilities
that are defined on intervals containing f, g, and h and that assign the
values 0 and 1 to ¢ and h, respectively. Since there is always at least
one such interval for any gamble f, the function V is defined for all
gambles.

The proof will be complete when it is shown that V is a hyper-utility
for the convex set of all gambles. Let f and f be any two gambles and
p a number, 0 < p < 1. There is an interval containing f, ¥, g, h, and
pf + (1 — p)f. In that interval the function V is a hyper-utility.
Therefore V(of + (1 — p)f) = pV(F) + (1 — p)V(F) and V(F) < V(F),
ifandonlyif f < f. @

4 The extension of utility to more general acts

The requirement that an act have only a finite number of conse-
quences may seem, from a practical point of view, almost no require-
ment at all. To illustrate, the number of time intervals that might
possibly be the duration of a huinan life can be regarded as finite, if
you agree that the duration may as well be rounded to the nearest
minute, or second, or microsecond, and that there is almost no possi-
bility of its exceeding a thousand years. More generally, it is plausible
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that, no matter what set of consequences is envisaged, each conse-
quence can be practically identified with some element of a suitably
chosen finite, though possibly enormous, subset. It might therefore
seem of little or no importance to extend the concept of utility to acts
having an infinite number of consequences. If that argument were
valid, it could easily be extended to reach the conclusion that infinite
sets are irrelevant to all practical affairs, and therefore to all parts of
applied mathematics. But it is one of the most profound lessons of
mathematical experience that infinite sets, tactfully handled, can lead
to great simplification of situations that could, in principle, but only
with enormous difficulty, be treated in terms of finite sets. How diffi-
cult it would be to study geometry if one made at the outset the “sim-
plifying assumption” that to all intents and purposes at most 10':°%°
points in space can be discriminated from one another! Again, it is
generally more convenient and fruitful to think of the annual cash in-
come of an individual or firm as a continuous variable with an infinite
number of possible values than as a discrete variable confined to some
large finite number of values, even if it is known that the income must
be some integral number of cents less, say, than 10°.

One way to extend the concept of utility to acts with an infinite
number of consequences would be to postulate: If U[f] and Ulg] both
exist (the values +« and —« being regarded as possible); f < g, if
and only if U[f] < Ulg]. I see no serious objection to making this as-
sumption outright, though it might be complained that the assumption
is motivated more by general mathematical intuition and experience
than by intuitive standards of consistency among decisions, which I
have tried to take as my sole guide thus far. A statement almost as
strong as the one in question can, however, be derived on adjoining a
new postulate, P7, more in the spirit of P1-6. That rather technical
program will be carried out in the next several paragraphs. Those not
interested can safely skip to the paragraph following Corollary 1 on
page 80.

Suppose that every possible consequence of the act g is at least as
attractive to the person as the act f considered as a whole; then it seems
to me within the spirit of the sure-thing principle to conclude that
f < g; the same might as fairly have been said for the relations >, and
also for the two relations < given B and > given B. This idea is for-
malized in the following postulate, which, according to the conven-
tions of mathematical double-talk, is to be interpreted as two proposi-
tions—one having < and the other > throughout.

P7 If f < (=) g(s) given B for every s ¢ B, then f < (>) g given B.
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Attention has been called to the mathematically useful fact that, if
P1-6 apply to a relation <, then they also apply to any relation <
given B, provided B is not null. It is obvious that the same is true for
P1-7, a fact that will be used often. It is also noteworthy that P1-7
obviously imply the propositions that arise if in them every instance
of the sign < is replaced by > and every instance of > is replaced by
<. Therefore in any deduction from P1-7 every instance of the signs
< and > can be reversed to produce a deduction that may be called
the symmetric dual of the original deduction. This remark, a legitimate
child of the principle of insufficient reason, has not been important
heretofore, because almost all deductions thus far made have been their
own symmetric duals. Since that will not be so of some of the lemmas
in the present section, much needless writing and thinking can be saved
by agreeing at the outset that, once a result is proved, it and its sym-
metric dual may be used as if both had been explicitly proved.

Before going to work with P7, some may wish to see an example of
a mathematical structure satisfying P1-6 but not satisfying P7. More-
over, understanding of such an example will do much to clarify the uses
to be made of P7. To construct the example, begin by letting S be a
set carrying a finitely additive probability measure P under which S
can be partitioned into subsets of arbitrarily small probability. Let
the set of consequences be the half-open interval of numbers 0 < f < 1.
Let U(f) = f, Ulf] = E(f), and

o)) Vif] = lim P{f(s) > 1 — ¢].

Since the probability in (1) decreases with ¢, there is no question about
the existence of the limit. Now let WI[f] = U[f] + VIf], and define
f < g to mean that W[f] < W[g]. Checking postulates P1-6, it will
be found that the < thus defined satisfies them all, and that what has
here been called U(f) is indeed a utility for <. But if, for example,
there is an f such that U[f] = V[f] = 1, P7 is violated, as can be seen
by comparing f to the act that, for each s, takes as value the maximum
of 2 and f(s). Whether there can be such an f, may, so far as I know,
depend on the choice of S and P. But, if the positive integers are taken
as S, and P is so chosen that though the probability of any one integer
is 0 the probability of the set of even integers is 1/2, a possibility as-
sured by the note to Section 3 of Chapter II on p. 231 of [B4], the func-
tion equal to 0 at the odd integers and equal to (1 — 1/xn) at each even
n is such an f. Finite, as opposed to countable, additivity seems to be
essential to this example; perhaps, if the theory were worked out in a
countably additive spirit from the start, little or no counterpart of P7
would be necessary.*

+ Fishburn (1970, Exercise 21, p. 213) has suggested an appropriate weak-
ening of P7.
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Several lemmas depending on P7 are now to be proved preparatory
to proving that Ulf] governs preference for a very large class of acts.
It is to be understood throughout the section that U is any fixed utility.
The truth of each lemma is intuitively clear, in the sense that each could
justifiably be accepted as a postulate if need be. Since they are also
easy to prove and of secondary interest, condensed proofs will suffice.

LEmMA 1 If, for every consequence h, f < h, andg < h;then f = g.

Proor. Consider in the light of P7 that f < g(s) and g < f(s) for
every s. @

LEMMA 2 If there exists a consequence fy such that f < fo, and if
U(f(s)) < Uy for every s, then there exists a gamble g such that f < g
and Ulg] < U,.

Proor. If U(fy) < Uy, then g can be taken to consist of fo alone.
Otherwise, let f; be any consequence such that U(f;) < Uy and let g
be the unique mixture of fo and f; such that U(g) = U,. @

LemMA 3

Hrye. 1. The B/s, ¢ = 1, ---, n, are a partition, and the U/s are
corresponding numbers.

2. f is an act such that U(f(s)) < U, for s s B;.

3. fis a gamble such that f < f.

ConcrL. Ulf] < 2U;P(B,).

Proor. If the lemma were false, it would be false even for some f < f.
Then it may be assumed, modifying f if need be by means of P6 and
Lemma 1, that there exists for each ¢ an f; such that f < f; given B;.
Now, in view of Lemma 2, there exists for each ¢ a g; such that f < g;
given B; and Ulgi] < U;. Let g = ZP(B;)g;, and observe that f <
f < g. Therefore, Ulf] < Ulg] = ZP(B,)U(g:) < ZP(B)U;. &

An act will be called bounded if its utility is, according to ordinary
mathematical usage, an essentially bounded random variable; the no-
tion is put in a more formal and self-contained way as follows: A bounded
act is an act f such that, for some two numbers Uy and U,, P{U, <
U(f(s)) < U;} = 1. The definition is clearly not dependent on the
choice of U.

THEOREM 1 If f and g are bounded, then f < g, if and only if
Ulf] < Ulgl.

Proor. If there exist g and h such that ¢ < f < h, then there is,
by Theorem 2.4, a mixture f of g and & such that f = f. The null event
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on which U(f(s)) is not between Uy and U; may as well be disregarded;
the rest can be partitioned into n 4 1 events B; defined by the condition
that seB; if and only if V,_, S U({f() <V, i=1, ---, n+1,
where ‘ )
7 7
(2) V,={<1*’—>U0+—U1}‘ ’L=O,,n+1
n

n

Applying Lemma 3 and its symmetric dual,

3) 2V P(B:) < Ulf] < ZV.:P(B)).

Similarly, according to Exercise 3 of Appendix 1,

@) 2V P(B) < Ulf] < ZV,P(B)).

Therefore

) | Ul = U] < (Vi = Vie)PB:) = (Us — Uo)/n,

whence U(f) = U(f).

To consider the remaining case, suppose that the bounded act f ex-
ceeds (is exceeded by) every consequence; call it for the moment big
(little). According to Lemma 1, all big (and, dually, all little) acts are
equivalent to one another. Furthermore, it is, for example, easily seen
that, if an act is big, then for ¢ > 0,

(6) PLU(f) 2 sup U() = ¢} = 1.

(Some may be more familiar with the notation “LUB” and “GLB,”
read “least upper bound” and ‘“‘greatest lower bound,” than with the
corresponding ‘“‘sup” and “inf,” read “supremum’” and “infimum.” If
even these older terms are not familiar, see Exercise 4 of Appendix 2.)
Therefore, if there are big (little) acts, they all have the same expected
utility, namely sup U(f) (inf U(f)).

Suppose now that f < g. It is possible that f and g are both little;
that f is little, and g is equivalent to some gamble; that f is little and
g big; that f and g are each equivalent to some gamble; that f is equiva-
lent to some gamble, and g is big; or, finally, that they are both big,.
In each of these cases, a simple argument shows that U[f] < Ulg].
The converse arguments are similar. €

COROLLARY 1 If f and g are bounded, and P(B) > 0, then f < g
given B, if and only if E(U(f) — U(g) | B) < 0.

It would be possible to explore unbounded acts for which expected
utility exists to see whether expected utility governs preferences among
even such acts under postulates P1-7 or under some extension of them:*

+ Peter Fishburn (1970, pp. 194, 206-207) and I have since discovered to
my surprise that these postulates imply bounded utility, which puts the next
several paragraphs in a new light.
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I do not think, however, that the question is sufficiently interesting to
warrant attention here, especially since there is some reason, first stated
by Gabriel Cramer in a letter partially reproduced in [B10], to postulate
that there are upper and lower bounds to utility, in which case all acts
would necessarily be bounded.

Even without P7, the postulates imply, in the following sense, that
no gamble has infinite or minus infinite utility.

An act f has infinite (minus infinite) utility; if and only if, for some
g < (>)h and for every e > 0, there is a B with P(B) < ¢ and such
that the act equal to f on B and to ¢ on ~B exceeds (is exceeded by) h.
A gamble or a consequence would be said to have infinite (minus in-
finite) utility, if one of the acts corresponding to it had infinite (minus
infinite) utility.

Indeed, Theorem 2.4, a deduction from P1-6, obviously implies that
there are no infinite or minus infinite gambles or consequences. It
may, however, be mentioned that Pascal held that, in just the sense
at hand, salvation is an infinite consequence ([P2], pp. 189-191). Again,
it is often said, in effect, that the utility to a person of immediate death
is a consequence of minus infinite utility, but casual observation shows
that this is not true of anyone—at least not of anyone who would cross
the street to greet a friend. In the same vein, medicine often gives lip
service to the idea that the death of a patient is of minus infinite utility,
and, of course, doctors do go to great lengths to keep their patients
alive; but a doctor who took the idea too seriously would make a nui-
sance of himself and soon find himself with no patients to treasure.

If the utility of consequences is unbounded, say from above,t then,
even in the presence of P1-7, acts (though not gambles) of infinite
utility can easily be constructed. My personal feeling is that, theo-
logical questions aside, there are no acts of infinite or minus infinite
utility, and that one might reasonably so postulate, which would amount
to assuming utility to be bounded.

Justifiable though it might be, that assumption would entail a cer-
tain mathematical awkwardness in many practical contexts. For ex-
ample, as will be discussed at greater length in Chapter 15, it sometimes
seems reasonable to suppose that the penalty for acting as though a
particular unknown number were @ instead of its true value, u, is propor-
tional to 82 = (u — @)% But, if the possible values of u are unbounded,
then so are the possible values of 8, so utility is here taken to be un-
bounded. On close scrutiny of such an example one always finds that

t That is, if, for every V, there is a consequence f such that V < U(f). This
manner of speaking is permissible; because in view of Theorem 3.3, if one utility is
bounded, all are.
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it is not really reasonable to assume the penalty even roughly propor-
tional to & for large values of 62, but rather that large values are so im-
probable that the error made in misappraising the penalty associated
with them is negligible compared to the saving in simplicity resulting
from the misappraisal. If the assumption of bounded utility were made
part of the theory of personal probability, then any example in which
unbounded utility is used for mathematical simplicity would be in con-
tradiction to the postulates. I propose, therefore, not to assume bounded
utility formally, but to remember that problems involving unbounded
utility are to be handled cautiously.

To take stock of the chapter thus far, utility having been established,
it is now superfluous to consider that consequences may be of all sorts,
since the postulates imply that in virtually every context a consequence
is adequately characterized by its utility, some one utility function
having been chosen from the linear family of possibilities. Therefore,
unless the contrary is clearly indicated, f, g, and A will henceforth mean
not exactly consequences in the sense used to date, but rather real
numbers measuring utility in units to be called utiles. Correspondingly,
an act f will henceforth be understood to be a real-valued random varia-
ble. The entire theory of preference, at least for bounded acts, can
now be summarized by the following résumé:

R f < ggiven B, if and only if P(B) = 0, or E(f — g| B) <0.

From now on, though not formulated as a postulate, it is to be assumed
without further quibbling that R holds, provided only that E(f) and
E(g) exist and are finite; no attempt will be made to compare acts for
which the expected value does not exist or is infinite.

If a person is free to decide among a set F of acts, he will presumably
choose one the expectation of which is v(F), where

™ v(F) = sup E(f),

provided that such a one exists. This provision must be mentioned,
even though a set F for which »(F) = « will, by convention, not be
considered to give rise to a valid decision problem; for, if F is infinite in
number, there may be no act in F with expectation quite as great as
v(F). Nonetheless, v(F) may, in a sense, be regarded as the value or
utility of the set of acts F, as is discussed in the penultimate paragraph
of § 6.5.

6 Small worlds

Allusion was made in the penultimate paragraph of § 2.5 to the prac-
tical necessity of confining attention to, or isolating, relatively simple
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situations in almost all applications of the theory of decision developed
in this book. As was mentioned there, I find it difficult to say with
any completeness how such isolated situations are actually arrived at
and justified. The purpose of the present section is to take some steps
toward the solution of that problem or, at any rate, to set the problem
forth as clearly as I can. This section, though important for a critical
evaluation of the thesis of this book, is not essential to a casual reading.

Making an extreme idealization, which has in principle guided the
whole argument of this book thus far, a person has only one decision
to make in his whole life. He must, namely, decide how to live, and
this he might in principle do once and for all. Though many, like my-
self, have found the concept of overall decision stimulating, it is cer-
tainly highly unrealistic and in many contexts unwieldy. Any claim
to realism made by this book—or indeed by almost any theory of per-
sonal decision of which I know—is predicated on the idea that some of
the individual decision situations into which actual people tend to sub-
divide the single grand decision do recapitulate in microcosm the mech-
anism of the idealized grand decision. One application of the theory
of utility to overall decisions has, however, been attempted by Milton
Friedman in [F11].

The problem of this section is to say as clearly as possible what con-
stitutes a satisfactory isolated decision situation. The general method
of attack I propose to follow, for want of a better one, is to talk in terms
of the grand situation—tongue in cheek—and in those terms to analyze
and discuss isolated decision situations. I hope you will be able to
agree, as the discussion proceeds, that I do not lean too heavily on the
concept of the grand decision situation.

Consider a simple example. Jones is faced with the decision whether
to buy a certain sedan for a thousand dollars, a certain convertible also
for a thousand dollars, or to buy neither and continue carless. The
simplest analysis, and the one generally assumed, is that Jones is de-
ciding between three definite and sure enjoyments, that of the sedan,
the convertible, or the thousand dollars. Chance and uncertainty are
considered to have nothing to do with the situation. This simple anal-
ysis may well be appropriate in some contexts; however, it is not diffi-
cult to recognize that Jones must in fact take account of many uncer-
tain future possibilities in actually making his choice. The relative

t Unrealistic though the concept is, it would be a mistake, arising out of elliptical
presentation, to suppose that the concept predicates the choice of a complete life-
long policy by new-born babies. If a person ever reached such a level of maturity
as to be able to make a lifelong choice for his life from that time on, he would then
become a person to whom the concept could be literally applied.



84 UTILITY [5.5

fragility of the convertible will be compensated only if Jones’s hope to
arrange a long vacation in a warm and scenic part of the country ac-
tually materializes; Jones would not buy a car at all if he thought it
likely that he would immediately be faced by a financial emergency
arising out of the sickness of himself or of some member of his family;
he would be glad to put the money into a car, or almost any durable
goods, if he feared extensive inflation. This brings out the fact that
what are often thought of as consequences (that is, sure experiences of
the deciding person) in isolated decision situations typically are in re-
ality highly uncertain. Indeed, in the final analysis, a consequence is
an idealization that can perhaps never be well approximated. I there-
fore suggest that we must expect acts with actually uncertain conse-
quences to play the role of sure consequences in typical isolated decision
situations.

Suppose now, to elaborate the example, that Jones is presented with
a choice between tickets in several different lotteries such that, which-
ever he chooses and whatever tickets are drawn, he will win either
nothing, the sedan, the convertible, or a thousand dollars. None of
these four consequences—not even ‘‘nothing’’—is actually a sure con-
sequence in the strict sense, as I think you will now understand. I
propose to analyze Jones’s present decision situation in terms of a
“small world.” The more colloquial Greek word, microcosm, will be
reserved for a special kind of small world to be described later. To de-
scribe the state of the small world is to say which prize is associated
with each of the tickets offered to Jones. The small-world acts actually
available to Jones are acceptance of one or another of the tickets.
The generic small-world act is an arbitrary function taking as its value
one of the four small-world consequences according to which small-
world state obtains.

It will be noticed that the small-world states are in fact events in
the grand world, that indeed they constitute a partition of the grand
world. If there are an infinite number of small-world states, as indeed
there must be, if the small world is to satisfy the postulates P1-7, then
the partitic.. in question becomes an infinite partition.t These con-
siderations lead to the following technical definitions.

Let the grand world S be, as always, a set with elements s, &/, «--.
The grand-world consequences F may as well be taken to be a bounded

t Technical note: It is mathematically more general and elegant not to insist that
the small world have states at all, but rather to speak of a special class of events as
small-world events. This class should be closed under complements and finite unions.
In short, the small-world events, and thereby the small world itself, constitute a
Boolean subalgebra of the Boolean algebra of the grand-world events.
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set of real numbers. The grand-world acts are then real-valued func-

tions f, g, h, ---. The preference ordering between acts is determined
by the condition that f < g if and only if
)] Ef —g) <0,

where the expected value indicated in (1) is derived from a probability
measure P characteristic of the grand world or, to be more exact, of
the person’s attitude toward the grand world.

The construction of a small world S from the grand world S begins
with the partition of S into subsets, or small-world states s, §', - - - (not
necessarily finite in number). Throughout this technical discussion, it
will be necessary to bear in mind certain double interpretations such
as that § is both an element of S and a subset of S. Strictly speaking, a
small-world event B in § is a collection of subsets of S and not itself a
subset of S. However, the union of all the elements of B, regarded as
subsets of S, is an event in S; call it [B].

The small world, as I mean to define it, is determined not only by
the definition of a state, but also by the definition of small-world con-
sequences. A small-world consequence is a grand-world act. A set F of
grand-world acts, regarded as small-world consequences, is thus part of
the definition of any given small world. It will be mathematically
simplest, and cost little if anything in insight, to suppose that the ele-
ments of F are finite in number. They will be denoted f, §, A, ---;
and, when the small-world consequence f is recognized as a grand-world
act, f(s) will denote the grand-world consequence of f at the grand-
world state s.

A small-world act £ is, of course, a function from small-world states §
to small-world consequences . In this isolated technical discussion, we
will hobble along with the notations f(5) for the small-world conse-
quence attached to § by f, and f(s; §) for the grand-world consequence
attached to- s by f(3) recognized as a grand-world act. Each small-
world act f gives rise to a unique grand-world act f, defined thus:

@) f(s) =t f(s; 3(s)),

where §(s) means that small-world state § of which the grand-world
state s is an element.

The distinetion between  and £, like some other distinctions I have
thought it worth while to make in the present complicated context, is
perhaps pedantic. At any rate, it is to be understood as part of the
definition of a small world that f < g if and only if t < g, that is, in
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view of (1), if and only if E®) < E(g). In this connection, it is useful
to note that
@3) E}) = X EG|JG(s) = B)P(J((s)) = k)

keF
= >; E(k | J((s)) = BPFG(s)) = k).

It may be advantageous to review (3), and thereby the whole techni-
cal definition of a small world, in terms of an example. A small-world
act, typified by the purchase of a lottery ticket, amounts to accepting
the consequences of one of several ordinary grand-world acts according
to which element of a partition does in fact obtain. For example, the
participant in a lottery may drive away a car, lead away a goat, face
a firing squad, or remain in the status quo, according to the terms of
the lottery and according to which ticket he has in fact drawn. Letting
the example of the lottery stand for the general situation, the expected
utility of a lottery ticket can be computed by the partition formula
(3.5.3) from the conditional expectation associated with each ticket,
which is what (3) does.

It may fairly be said that a lottery prize is not an act, but rather the
opportunity to choose from a number of acts. Thus a cash prize puts
its possessor in a position to choose among many purchases he could
not otherwise afford. I believe that analysis to be more nearly correct,
but it is more complicated; and, if one thinks of each set of acts made
available by a lottery prize as represented by a best act of that set,
the more complicated analysis seems superfluous, at least in a first
attack.

A small world is completely satisfactory for the use to which I mean
to put it, if and only if it itself satisfies the seven postulates and leads
to—more technically, agrees with—a probability P such that

(4) P(B) = P([B))
for all B — S and has a utility U such that
(5) U(j) = E(f)

for all f ¢ F. For the present context, call such a completely satisfac-
tory small world a microcosm; if the small world satisfies the postulates,
but does not necessarily admit P as its probability nor T as a utility,
call it a pseudo-microcosm.

To display the circumstances under which a small world is a pseudo-
microcosm, I shall briefly comment on each of the postulates in the
form given on the end papers of this book, referring to them here as
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P1-7, as opposed to P1-7, to emphasize that they are here being con-
sidered with respect to S and F.

P1  Simple ordering.
Automatically satisfied. Indeed it is directly implied by P1.
P2 Conditional preference well defined.
Automatic.
P3 Conditional preference does not effect consequences.
Requires exactly that, for every f, § ¢ F, and B 3, either:
a. f<ggiven[B], ifandonlyiff<g, or
b. h < kgiven [B], foreveryh, keF.

In these inequalities the elements of F are of course interpreted as
grand-world acts.

P4 Qualitative personal probability well defined.
Requires exactly that, if f < § and hz < hg, where

hs(s) =g  for s ¢[B]
=f forse~[B]"
(6)
he(s) = for s ¢ [C]

g
f forse~[C];

then h's < h’'G, where h'5 and h’; are defined in terms of /, 7, f < @,
in analogy with (6). _
This postulate is automatic in case F has at most two elements.

P5 The person has some definite preference.
Requires f < § for some f, j ¢ F.
P6  Partition of worlds into tiny events.

It is clear that this postulate is not automatic, that is, it is not im-
plied by the validity of P1-7 for the grand world. It is not even im-
plied by P1-7 together with P1-5, though in the presence of all these
P6 could undoubtedly be weakened. There seems to be little to gain
in the present context by reducing P6 to such minimal terms, nor by
expressing it, as P1-5 have been expressed, in grand-world terms alone;
for P6 does not lend itself easily to such treatment, though it would be
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easy to decide in any instance whether P6 obtained without undue
reference to the grand world.

P7 Strong form of sure-thing principle.

Automatic, in view of the explicit assumption that F has only a
finite number of elements.

To summarize, a small world is a pseudo-microcosm, if and only if
it satisfies P3-6. The possibility of enlarging an arbitrary small world
in such a way as to satisfy those conditions has already been implicitly
discussed in connection with P3-6. To recall the arguments that were
adduced, one might review the example about the egg in § 3.1, and
the further discussion of that example in the opening paragraph of
§3.2; the remark in § 3.2, introducing P5; and the example about the
coin following P6’ in § 3.3.

It is encouraging to possess the arguments just cited tending to show
that any small world can without overwhelming difficulty be embedded
in a somewhat larger small world that is a pseudo-microcosm. A pseudo-
microcosm is, however, completely satisfactory, only if it is actually a
microcosm, that is, only if it leads to a probability measure and a
utility well articulated with those of the grand world. The problem of
deciding under what circumstances that occurs is much facilitated by
the fact that the probability measure and a utility of a pseudo-micro-
cosm can be written down explicitly, as the next few paragraphs show.

To study the problem, suppose the small world is a pseudo-micro-
cosm. Then, in view of P5, let §, & be elements of F such that § < &,
and let ]

= E(h—g|B) _ _
7 B) =pf———— = P([B
(@) QB) =t — === P(B)

= B = 0 [_{h6) — 9(6)) aPG).
[B]

By using P3 to check the positivity, it is easily verified that @ is a prob-
ability measure on 5. The probability measure @ agrees with the re-
lation < between small-world events, which is easily verified on re-
writing (3) for the special small-world act f;5 that takes the value /
for 5 < B and § for § « ~B thus:

(8) E®z) = EG| [B)P(B)) + E(g| ~[Bl)P(~[B])
E(h — §| [B)P(B) + E@)
= E(h — §)Q(B) + E@).
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Since § and & are essentially arbitrary, there are many ways to con-
struct a probability measure that agrees with the relation < between
small-world events, but, in the presence of P1-6, all of them must (in
view of Corollary 3.3.1) be the same as Q. That consideration leads to
the formula

©) E(f - J'| IBDP(B) = E(J — J)Q(B)

forall f,f’¢e Fand B .
Using (9) and recalling that U(f) has been defined as E(f), (3) can
be rewritten thus:

(100 E®) =E@ + ; E(k — g f(s)) = B)P(f(3(s)) = k)
= kE UR)Q(f(3) = k).

The question whether a given pseudo-microcosm is really a micro-
cosm is the question whether Q(B) = P([B]) and whether U is a utility
for the pseudo-microcosm. The answer to the second part is immediate
and, I think, somewhat surprising, for (10) shows that for any pseudo-
microcosm U is indeed a utility.

Unfortunately, the condition Q(B) = P([B]) is not also automatic.
The possibility of its failing to be satisfied is illustrated by the following
simple mathematical example. Let S be the unit square 0 < z, y < 1,
and let

1 1
(11) E(f) = f f 1z, ) dv dy.
0 0

It is of no real moment that the integral in (11), if understood in the
Lebesgue or Riemann sense, is not defined for all bounded functions.
Let the elements of S be the vertical line segments, = constant.
Finally, suppose that the elements of F consist of the function zero and
any finite number of non-negative multiples of a fixed positive function
h = h. Itiseasy to verify that S as thus defined is a pseudo-microcosm
and that

(12) Q(B) = L @
where .

IRCxY
(13) ¢(z') =——

1 A1 :
f h(z, y) dx dy
0 Yo
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Unless q is 1 for every z’, which will not at all typically be the case, S
is not really a microcosm.

The general condition that a pseudo-microcosm be a microcosm—i.e.,
that Q(B) = P([B])—is evidently, in view of (9),

(14) E(f—J|Bl) = E(f -7

for every f, ' ¢ F and every B for which P([B]) > 0. Incidentally,
that condition alone practically implies that a small world S, not neces-
sarily assumed to be a pseudo-microcosm, is a real microcosm. More
exactly, it implies all the postulates P1-7, except P6; and it implies
that the probability measure P agrees with the relation < between
small-world events. Also, if a small world is a pseudo-microcosm, it is
enough that (14) should hold for some pair of functions for which the
right-hand side of the equation does not vanish.

Equation (14) is, however, unsatisfactory in that it seems incapable
of verification without taking the grand world much too seriously.
Some consolation may derive from the fact that if f and f” are constants
they automatically satisfy (14). Two such absolute, or grand-world,
consequences would suffice, for, as has just been remarked, it is suffi-
cient that (14) be satisfied for two materially different small-world
consequences, in the presence of P1-7 (which are verifiable without
any detailed knowledge of the grand world). It must, however, be ad-
mitted, as has already been mentioned, that the very idea of a grand-
world consequence takes the grand world pretty seriously—a point
forced into my reluctant mind by a conversation with Francesco Bram-
billa.

I feel, if I may be allowed to say so, that the possibility of being taken
in by a pseudo-microcosm that is not a real microcosm is remote, but
the difficulty I find in defining an operationally applicable criterion is,
to say the least, ground for caution.

There certainly seem to be cases in which one could confidently as-
sume (14), though thus far formal analysis of the source of such se-
curity escapes me. Consider, for example, a lottery in which numbered
tickets are drawn from a drum. It seems clear that for an ordinary
person the outcome of the lottery is utterly irrelevant to his life, except
through the rules of the lottery itself. In other terms equally loose,
the value of a thousand dollars, or of a car, to a person would not ordi-
narily depend at all on what numbers were drawn in a lottery, unless
the person himself (or perhaps some other person or organization with
whom he had some degree of contact) held tickets in the lottery. A
more precise formulation, which does indeed imply (14), is that the
events that represent the outcome of the lottery are all statistically
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independent of the grand-world acts, or functions, that typically enter
as prizes in a lottery. This suggests once more that it would be desir-
able, if possible, to find a simple qualitative personal description of in-
dependence between events. (Compare the first paragraph after
3.5.2).)

6 Historical and critical comments on utility

A casual historical sketch of the concept of utility will perhaps have
some interest as history. At any rate, most of the critical ideas per-
taining to utility that I wish to discuss find their places in such a sketch
as conveniently as in any other organization I can devise. Much more
detailed material on the history of utility, especially in so far as the
economics of risk bearing is concerned, is to be found in Arrow’s review
article [A6). Stigler’s historical study [S18] emphasizes the history of
the now almost obsolete economic notion of utility in riskless situations,
a notion still sometimes confused with the one under discussion.

As was mentioned in § 4.5, the earliest mathematical studies of prob-
ability were largely concerned with gambling, particularly with the
question of which of several available cash gambles is most advanta-
geous. Early probabilists advanced the maxim that the gamble with
the highest expected winnings is best or, in terms of utility, that wealth
measured in cash is a utility function. Some sense can be seen in that
maxim, which will here be called by its traditional though misleading
name, the principle of mathematical expectation. First, it has often been
argued that the principle follows for the long run from the weak law of
large numbers, applied to large numbers of independent bets, in each
of which only sums that the gambler considers small are to be won or
lost. Second, Daniel Bernoulli, who, in [B10], was one of the first to
introduce a general idea of utility corresponding to that developed in
the preceding three sections, made the following analysis of the princi-
ple, which justifies its application in limited but important contexts.
If the consequences f to be considered are all quantities of cash, it is
reasonable to suppose that U(f) will change smoothly with changes in
f. Therefore, if a person’s present wealth is fo, and he contemplates
various gambles, none of which can greatly change his wealth, the
utility function can, for his particular purpose, be approximated by its
tangent at fo, that is,

1) U(f) = U(fo) + (f — fo) U’ (fo),

a linear function of f. Since a constant term is irrelevant to any com-
parison of expected values, the approximation amounts to regarding
utility as proportional to wealth, that is, to following the principle of
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mathematical expectation. So far as I know, the only other argument
for the principle that has ever been advanced is one concerning equity
between two players. As Bernoulli says, that argument is irrelevant at
best; and neither of the relevant arguments justifies categorial accept-
ance of the principle. None the less, the principle was at first so cate-
gorically accepted that it seemed paradoxical to mathematicians of the
early eighteenth century that presumably prudent individuals reject
the principle in certain real and hypothetical decision situations.

Daniel Bernoulli (1700-1782), in the paper [B10], seems to have
been the first to point out that the principle is at best a rule of thumb,
and he there suggested the maximization of expected utility as a more
valid principle. Daniel Bernoulli’s paper reproduces portions of a let-
ter from Gabriel Cramer to Nicholas Bernoulli, which establishes
Cramer’s chronological priority to the idea of utility and most of the
other main ideas of Bernoulli’s paper. But it is Bernoulli’s formulation
together with some of the ideas that were specifically his that became
popular and have had widespread influence to the present day. It is
therefore appropriate to review Bernoulli’s paper in some detail.

Being unable to read Latin, I follow the German edition [B11].

Bernoulli begins by reminding his readers that the principle of mathe-
matical expectation, though but weakly supported, had theretofore
dominated the theory of behavior in the face of uncertainty. He says
that, though many arguments had been given for the principle, they
were all based on the irrelevant idea of equity among players. It seems
hard to believe that he had never heard the argument justifying the
principle for the long run, even though the weak law of large numbers
was then only in its mathematical infancy. Ars Congjectandi [B12], then
a fairly up-to-date and most eminent treatise on probability, does seem
to give only the argument about equity, and that in countless forms.
This treatise by Daniel’s uncle, Jacob (= James) Bernoulli (1654-1705),
incidentally, contains the first mathematical advance toward the weak
law, proving it for the special case of repeated trials.

Many examples show that the principle of mathematical expecta-
tion is not universally applicable. Daniel Bernoulli promptly presents
one: “To justify these remarks, let us suppose a pauper happens to ac-
quire a lottery ticket by which he may with equal probability win
either nothing or 20,000 ducats. Will he have to evaluate the worth
of the ticket as 10,000 ducats; and would he be acting foolishly, if he
sold it for 9,000 ducats? ”’

Other examples occur later in the paper as illustrations of the use
of the utility concept. Thus a prudent merchant may insure his ship
against loss at sea, though he understands perfectly well that he is
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thereby increasing the insurance company’s expected wealth, and to
the same extent decreasing his own. Such behavior is in flagrant vio-
lation of the principle of mathematical expectation, and to one who held
that principle categorically it would be as absurd to insure as to throw
money away outright. But the principle is neither obvious nor de-
duced from other principles regarded as obvious; so it may be challenged,
and must be, because everyone agrees that it is not really insane to
insure.

Bernoulli cites a third, now very famous, example illustrating that
men of prudence do not invariably obey the principle of mathematical
expectation. This example, known as the St. Petersburg paradox (be-
cause of the journal in which Bernoulli’s paper was published) had ear-
lier been publicized by Nicholas Bernoulli,t and Daniel acknowledges
it as the stimulus that led to his investigation of utility. Suppose, to
state the St. Petersburg paradox succinctly, that a person could choose
between an act leaving his wealth fixed at its present magnitude or one
that would change his wealth at random, increasing it by (2" — f) dol-
lars with probability 27" for every positive integer n. No matter how
large the admission fee f may be, the expected income of the random
act is infinite, as may easily be verified. Therefore, according to the
principle of mathematical expectation, the random act is to be pre-
ferred to the status quo. Numerical examples, however, soon convince
any sincere person that he would prefer the status quo if f is at all
large. If f is $128, for example, there is only 1 chance in 64 that a
person choosing the random act will so much as break even, and he
will otherwise lose at least $64, a jeopardy for which he can seek com-
pensation only in the prodigiously improbable winning of a prodigiously
high prize.

Appealing to intuition, Bernoulli says that the cash value of a per-
son’s wealth is not its true, or moral, worth to him. Thus, according to
Bernoulli, the dollar that might be precious to a pauper would be nearly
worthless to a millionaire—or, better, to the pauper himself were he to
become a millionaire. Bernoulli then postulates that people do seek
to maximize the expected value of moral worth, or what has been called
moral expectation.

Operationally, the moral worth of a person’s wealth, so far as it con-
cerns behavior in the face of uncertainty, is just what I would call the
utility of the wealth, and moral expectation is expectation of utility.

t Daniel refers to this Nicholas Bernoulli as his uncle, but, in view of dates men-
tioned in the last section of Daniel’s paper and the genealogy in Chapter 8 of [B9],
I think he must have meant his elder cousin (1687-1759), perhaps using “uncle” as
a term of deference.
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It seems mystical, however, to talk about moral worth apart from
probability and, having done so, doubly mystical to postulate that this
undefined quantity serves as a utility. These obvious criticisms have
naturally led many to discredit the very idea of utility, but §§2-4
show (following von Neumann and Morgenstern) that there is a more
cogent, though not altogether unobjectionable, path to that concept.
Bernoulli argued, elaborating the example of the pauper and the
millionaire, that a fixed increment of cash wealth typically results in
an ever smaller increment of moral wealth as the basic cash wealth to
which the increment applies is increased. He admitted the possibility
of examples in which this law of diminishing marginal utility, as it has
come to be called in the literature of economics, might fail. For ex-
ample, a relatively small sum might be precious to a wealthy prisoner
who required it to complete his ransom. But Bernoulli insisted that
such examples are unusual and that as a general rule the law may be
assumed. In mathematical terms, the law says that utility as a func-
tion of money is a concave (i.e., the negative of a convex) function.}
It follows from the basic inequality concerning convex functions (Theo-
rem 1 of Appendix 2) that a person to whom the law of diminishing
marginal utility applies will always prefer the status quo to any fair
gamble, that is, to any random act for which the change in his expected
wealth is zero, and that he will always be willing to pay something in
addition to its actuarial, or expected, value for insurance against any
loss to himself. The law of diminishing marginal utility has been very
popular, and few who have considered utility since Bernoulli have dis-
carded it, or even realized that it was not necessarily part and parcel
of the utility idea. Of course, the law has been embraced eagerly and
uncritically by those who have a moral aversion to gambling.
Bernoulli went further than the law of diminishing marginal utility
and suggested that the slope of utility as a function of wealth might,
at least as a rule of thumb, be supposed, not only to decrease with, but
to be inversely proportional to, the cash value of wealth. This, he
pointed out, is equivalent to postulating that utility is equal to the
logarithm (to any base) of the cash value of wealth. To this day, no
other function has been suggested as a better prototype for Everyman’s
utility function. None the less, as Cramer pointed out in his aforemen-
tioned letter, the logarithm has a serious disadvantage; for, if the loga-
rithm were the utility of wealth, the St. Petersburg paradox could be

t Often the meanings of “convex’” and “concave’ as applied to functions are in-
terchanged. A function is here called convex if it appears convex, in the ordinary
sense of the word, when viewed from below. Such a function is, of course, also con-
cave from above, whence the confusion. Cf. Appendix 2.
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amended to produce a random act with an infinite expected utility
(i.e., an infinite expected logarithm of income) that, again, no one would
really prefer to the status quo. To take a less elaborate example, sup-
pose that a man’s total wealth, including an appraisal of his future
earning power, were a million dollars. If the logarithm of wealth were
actually his utility, he would as soon as not flip a coin to decide whether
his wealth should be changed to ten thousand dollars—roughly $500
per year—or a hundred million dollars. This seems preposterous to
me. At any rate, I am sure you can construct an example along the
same lines that will seem preposterous to you. Cramer therefore con-
cluded, and I think rightly, that the utility of cash must be bounded,
at least from above. It seems to me that a good argument can also be
adduced for supposing utility to be bounded from below, for, however
wealth may be interpreted, we all subject our total wealth to slight
jeopardy daily for the sake of a large probability of avoiding more
moderate losses. But the logarithm is unbounded both from above
and from below; so, though it might be a reasonable approximation to
a person’s utility in a moderate range of wealth, it cannot be taken
seriously over extreme ranges.

Bernoulli’s ideas were accepted wholeheartedly by Laplace [L1], who
was very enthusiastic about the applications of probability to all sorts
of decision problems. It is my casual impression, however, that from
the time of Laplace until quite recently the idea of utility did not
strongly influence either mathematical or practical probabilists.

For a long period economists accepted Bernoulli’s idea of moral
wealth as the measurement of a person’s well-being apart from any
consideration of probability. Though “utility’’ rather than ‘“moral
worth” has been the popular name for this concept among English-
speaking economists, it is my impression that Bernoulli’s paper is the
principal, if not the sole, source of the notion for all economists, though
the paper itself may often have been lost sight of. Economists were for
a time enthusiastic about the principle of diminishing marginal utility,
and they saw what they believed to be reflections of it in many aspects
of everyday life. Why else, to paraphrase Alfred Marshall ‘(pp. 19,
95 of [M2]), does a poor man walk in a rain that induces a rich man to
take a cab?

During the period when the probability-less idea of utility was popu-
lar with economists, they referred not only to the utility of money,
but also to the utility of other consequences such as commodities (and
services) and combinations (or, better, patterns of consumption) of com-
modities. The theory of choice among consequences was expressed by
the idea that, among the available consequences, a person prefers those
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that have the highest utility for him. Also, the idea of diminishing
marginal utility was extended from money to other commodities.

The probability-less idea of utility in economics has been completely
discredited in the eyes of almost all economists, the following argument
against it—originally advanced by Pareto in pp. 158-159 and the
Mathematical Appendix of [P1]—being widely accepted. If utility is
regarded as controlling only consequences, rather than acts, it is not
true—as it is when acts, or at least gambles, are considered and the
formal definition in § 3, is applied—that utility is determined except
for a linear transformation. Indeed, confining attention to conse-
quences, any strictly monotonically increasing function of one utility
is another utility. Under these circumstances there is little, if any,
value in talking about utility at all, unless, of course, special economic
considerations should render one utility, or say a linear family of utili-
ties, of particular interest. That possibility remains academic to date,
though one attempt to exploit it was made by Irving Fisher, as is briefly
discussed in the paragraph leading to Footnote 155 of [S18]. In par-
ticular, utility as a function of wealth can have any shape whatsoever
in the probability-less context, provided only that the function in ques-
tion is increasing with increasing wealth, the provision following from
the casual observation that almost nobody throws money away. The
history of probability-less utility has been thoroughly reported by Stig-
ler [S18].

What, then, becomes of the intuitive arguments that led to the no-
tion of diminishing marginal utility? To illustrate, consider the poor
man and the rich man in the rain. Those of us who consider diminish-
ing marginal utility nonsensical in this context think it sufficient to
say simply that it is a common observation that rich men spend money
freely to avoid moderate physical suffering whereas poor men suffer
freely rather than make corresponding expenditures of money; in other
terms, that the rate of exchange between circumstances producing phys-
ical discomfort and money depends on the wealth of the person involved.

In recent years there has been revived interest in Bernoulli’s ideas
of utility in the technical sense of §§ 2—4, that is, as a function that, so
to speak, controls decisions among acts, or at least gambles. Ramsey’s
essays in [R1], which in spirit closely resemble the first five chapters of
this book, present a relatively early example of this revival of interest.
Ramsey improves on Bernoulli in that he defines utility operationally
in terms of the behavior of a person constrained by certain postulates.
Ramsey’s essays, though now much appreciated, seem to have had
relatively little influence.

Between the time of Ramsey and that of von Neumann and Morgen-
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stern there was interest in breaking away from the idea of maximizing
expected utility, at least so far as economic theory was concerned (cf.
[T1a)). This trend was supported by those who said that Bernoulli gives
no reason for supposing that preferences correspond to the expected
value of some function, and that therefore much more general possi-
bilities must be considered. Why should not the range, the variance,
and the skewness, not to mention countless other features, of the dis-
tribution of some function join with the expected value in determining
preference? The question was answered by the construction of Ramsey
and again by that of von Neumann and Morgenstern, which has been
slightly extended in §§ 2—4; it is simply a mathematical fact that, al-
most any theory of probability having been adopted and the sure-thing
principle having been suitably extended, the existence of a function
whose expected value controls choices can be deduced. That does not
mean that as a theory of actual economic behavior the theory of utility
is absolutely established and cannot be overthrown. Quite the con-
trary, it is a theory that makes factual predictions many of which can
easily be observed to be false, but the theory may have some value in
making economic predictions in certain contexts where the departures
from it happen not to be devastating. Moreover, as I have been argu-
ing, it may have value as a normative theory.

Von Neumann and Morgenstern initiated among economists and, to
a lesser extent, also among statisticians an intense revival of interest
in the technical utility concept by their treatment of utility, which ap-
pears as a digression in [V4].

The von Neumann-Morgenstern theory of utility has produced this
reaction, because it gives strong intuitive grounds for accepting the
Bernoullian utility hypothesis as a consequence of well-accepted maxims
of behavior. To give readers of this book some idea of the von Neu-
mann-Morgenstern theory, I may repeat that the treatment of utility
as applied to gambles presented in § 3 is virtually copied from their
book [V4]. Indeed, their ideas on this subject are responsible for almost
all of my own. One idea now held by me that I think von Neumann
and Morgenstern do not explicitly support, and that so far as I know
they might not wish to have attributed to them, is the normative in-
terpretation of the theory.

Of course, much of the new interest in utility takes the form of criti-
cism and controversy. The greater part of this discussion that has come
to my attention has not yet been published. A list of references lead-
ing to most of that which has is [B7], [W14], [S1], [C4], [F13], [A2].

I shall successively discuss each of the recent major criticisms of the
modern theory_of utility known to me. My method in each case will
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be first to state the criticism in a form resembling those in which it is
typically put forward, regardless of whether I consider that form well
chosen. I will then discuss the ecriticism, elaborating its meaning and
indicating its rebuttal, when there seems to me to be one.

(a) Modern economic theorists have rigorously shown that there is
no meaningful measure of utility. More specifically, if any function U
fulfills the role of a utility, then so does any strictly monotonically in-
creasing function of U. It must, therefore, be an error to conclude that
every utility is a linear function of every other.

This argument has been advanced with a seriousness that is surpris-
ing, considering that it concedes little intelligence or learning to the
proponents of the utility theory under discussion and considering that
it results, as will immediately be explained, from the baldest sort of a
terminological confusion. To be fair, I must go on to say that I have
never known the argument to be defended long in the presence of the
explanation I am about to give.

In ordinary economic usage, especially prior to the work of von Neu-
mann and Morgenstern, a utility associated with gambles would pre-
sumably be simply a function U associating numbers with gambles in
such a way that f < g, if and only if U(f) < U(g); though economic
discussion of utility was, prior to von Neumann and Morgenstern, al-
most exclusively confined to consequences rather than to gambles or
to acts. It is unequivocally true, as I have already brought out, that
any monotonic function of a utility in this wide classical sense is itself
a utility. What von Neumann and Morgenstern have shown, and
what has been recapitulated in § 3, is that, granting certain hypotheses,
there exists at least one classical utility V satisfying the very special
condition

@) V(af + Bg) = aV(f) + BV (g),

where f and g are any gambles and «, 8 are non-negative numbers such
that @ + 8 = 1. Furthermore, if I may for the moment call a classical
utility satisfying (2) a von Neumann-Morgenstern utility, every von
Neumann-Morgenstern utility is an increasing linear function of every
other. To put the point differently, the essential conclusion of the von
Neumann-Morgenstern utility theory is that (2) can be satisfied by a
classical utility, but not by very many. The confusion arises only be-
cause von Neumann and Morgenstern use the already pre-empted word
“utility”” for what I here call “von Neumann-Morgenstern utility.”
In retrospect, that seems to have been a mistake in tactics, but one of
no long-range importance.
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(b) The postulates leading to the von Neumann-Morgenstern con-
cept of utility are arbitrary and gratuitous.

Such a view can, of course, always be held without the slightest fear
of rigorous refutation, but a critic holding it might perhaps be persuaded
away from it by a reformulation of the postulates that he might find
more appealing than the original set, or by illuminating examples. In
particular, P1-7 are quite different from, but imply, the postulates of
von Neumann and Morgenstern. Incidentally, the main function of
the von Neumann-Morgenstern postulates themselves is to put the es-
sential content of Daniel Bernoulli’s “postulate’” into a form that is
less gratuitous in appearance. At least one serious critic, who had at
first found the system of von Neumann and Morgenstern gratuitous,
changed his mind when the possibility of deriving certain aspects of
that system from the sure-thing principle was pointed out to him.

(c¢) The sure-thing principle goes too far. For example, if two lot-
teries with cash prizes (not necessarily positive) are based on the same
set of lottery tickets and so arranged that the prize that will be assigned
to any ticket by the second lottery is at least as great as the prize as-
signed to that ticket by the first lottery, then there is no doubt that
virtually any person would find a ticket in the first lottery not prefer-
able to the same ticket in the second lottery. If, however, the prizes
in each lottery are themselves lottery tickets, such that the prize asso-
ciated with any ticket in the first lottery is not preferred by the person
under study to the prize associated with the same ticket by the second
lottery, the conclusion that the person will not prefer a ticket in the
first lottery to the same ticket in the second is no longer compelling.

This point resembles the preceding one in that the intuitive appeal
of an assumption can at most be indicated, not proved. I do think it
cogent, however, to stress in connection with this particular point that
a cash prize is to a large extent a lottery ticket in that the uncertainty
as to what will become of a person if he has a gift of a thousand dollars
is not in principle different from the uncertainty about what will be-
come of him if he holds a lottery ticket of considerable actuarial value.

Perhaps an adherent to the criticism in question would think it rele-
vant to reply thus: Though cash sums are indeed essentially lottery
tickets, a sum of money is worth at least as much to a person as a smaller
sum, in a peculiarly definite and objective sense, because money can,
if one desires, always be quickly and quietly thrown away, thereby
making any sum available to a person who already has a larger sum.
But I have never heard that reply made, nor do I here plead its cogency.
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(d) An actual systematic deviation from the sure-thing principle and,
with it, from the von Neumann-Morgenstern theory of utility, can be
exhibited. For example, a person might perfectly reasonably prefer to
subsist on a packet of Army K rations per meal than on two ounces of
the best caviar per meal. It is then to be expected, according to the
sure-thing principle, that the person would prefer the K rations to a
lottery ticket yielding the K rations with probability 9/10 and the
caviar diet with probability 1/10. That expectation is no doubt ful-
filled, if the lottery is understood to determine the person’s year-long
diet once and for all. But, if the person is able to have at each meal a
lottery ticket offering him the K rations or the caviar with the indicated
probabilities, it is not at all unlikely, granting that he likes caviar and
has some storage facilities, that he will prefer this “lottery diet.” This
conclusion is in defiance of the principle that *“the theory of consumer
demand is a static theory.” (Cf. [W14].)

I admit that the theory of utility is not static in the indicated sense,
as the foregoing example conclusively shows. But there is not the
slightest reason to think of a lottery producing either a steady diet of
caviar or a steady diet of K rations as being the same lottery as one
having a multitude of different prizes almost all of which are mixed
chronological programs of caviar and K rations. The fact that a theory
of consumer behavior in riskless situations happens to be static in the
required sense (under certain special assumptions about storability and
the linearity of prices) is no argument at all that the theory of consumer
behavior in risky circumstances should be static in the same sense (as
I mention in a note appended to [W14]).

(e) If the von Neumann-Morgenstern theory of utility is not static,
it is not subject to repeated empirical observation and is therefore
vacuous. (Cf. [W14].)

I think the discussion in § 3.1 of how to determine the preferences of
a hot man for a swim, a shower, and a glass of beer, and the discussion
in § 5 of the practicality of identifying pseudo-microcosms are steps
toward showing how the theory can be put to empirical test without
making repeated trials on any one person.

(f) Casual observation shows that real people frequently and fla-
grantly behave in disaccord with the utility theory, and that in fact be-
havior of that sort is not at all typically considered abnormal or ir-
rational.

Two different topics call for discussion under this heading. In the
first place, it is undoubtedly true that the behavior of people does often
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flagrantly depart from the theory. None the less, all the world knows
from the lessons of modern physics that a theory is not to be altogether
rejected because it is not absolutely true. It seems not unreasonable to
suppose, and examples could easily be cited to confirm, that in the ex-
tremely complicated subject of the behavior of people very crude theory
can play a useful role in certain contexts.

Second, many apparent exceptions to the theory can be so reinter-
preted as not to be exceptions at all. For example, a flier may be ob-
served doing a stunt that risks his life, apparently for nothing. That
seems to be in complete violation of the theory; but, if in addition it is
known that the flier has a real and practical need to convince certain
colleagues of his courage, then he is simply paying for advertising with
the risk of his life, which is not in itself in contradiction to the theory.
Or, suppose that it were known more or less objectively that the flier
has a need to demonstrate his own courage to himself. The theory
would again be rescued, but this time perhaps not so convincingly as
before. In general, the reinterpretation needed to reconcile various
sorts of behavior with the utility theory is sometimes quite acceptable
and sometimes so strained as to lay whoever proposes it open to the
charge of trying to save the theory by rendering it tautological. The
same sort of thing arises in connection with many theories, and I think
there is general agreement that no hard-and-fast rule can be laid down
as to when it becomes inappropriate to make the necessary reinterpre-
tation. For example, the law of the conservation of energy (or its
atomic age variant, the law of the conservation of mass and energy)
owes its success largely to its being an expression of remarkable and
reliable facts of nature, but to some extent also to certain conventions
by which new sorts of energy are so defined as to keep the law true.
A stimulating discussion of this delicate point in connection with the
theory of utility is given by Samuelson in [S1].

(g) Introspection about certain hypothetical decision situations sug-
gests that the sure-thing principle and, with it, the theory of utility
are normatively unsatisfactory. Consider an example based on two de-
cision situations each involving two gambles.f

Situation 1. Choose between

Gamble 1. $500,000 with probability 1; and

Gamble 2. $2,500,000 with probability 0.1,
$500,000 with probability 0.89,
status quo with probability 0.01.

t This particular example is due to Allais [A2]. Another interesting example was
presented somewhat earlier by Georges Morlat [C4].
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Situation 2. Choose between

Gamble 3. $500,000 with probability 0.11,
status quo with probability 0.89; and

Gamble 4. $2,500,000 with probability 0.1,
status quo with probability 0.9.

Many people prefer Gamble 1 to Gamble 2, because, speaking quali-
tatively, they do not find the chance of winning a very large fortune in
place of receiving a large fortune outright adequate compensation for
even a small risk of being left in the status quo. Many of the same
people prefer Gamble 4 to Gamble 3; because, speaking qualitatively,
the chance of winning is nearly the same in both gambles, so the one
with the much larger prize seems preferable. But the intuitively ac-
ceptable pair of preferences, Gamble 1 preferred to Gamble 2 and Gam-
ble 4 to Gamble 3, is not compatible with the utility concept or, equiva-~
lently, the sure-thing principle. Indeed that pair of preferences implies
the following inequalities for any hypothetical utility function.

U ($500,000) > 0.1U ($2,500,000) + 0.89U ($500,000) + 0.1U ($0),

®3)
0.1U ($2,500,000) + 0.9U ($0) > 0.11U ($500,000) + 0.89U ($0);

and these are obviously incompatible.

Examples t like the one cited do have a strong intuitive appeal; even
if you do not personally feel a tendency to prefer Gamble 1 to Gamble 2
and simultaneously Gamble 4 to Gamble 3, I think that a few trials
with other prizes and probabilities will provide you with an example
appropriate to yourself.

If, after thorough deliberation, anyone maintains a pair of distinct
preferences that are in conflict with the sure-thing principle, he must
abandon, or modify, the principle; for that kind of discrepancy seems
intolerable in a normative theory. Analogous circumstances forced
D. Bernoulli to abandon the theory of mathematical expectation for
that of utility [B10]. In general, a person who has tentatively accepted
a normative theory must conscientiously study situations in which the
theory seems to lead him astray; he must decide for each by reflection
—deduction will typically be of little relevance—whether to retain his
initial impression of the situation or to accept the implications of the
theory for it.

To illustrate, let me record my own reactions to the example with

t Allais has announced (but not yet published) an empirical investigation of the
responses of prudent, educated people to such examples [A2].
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which this heading was introduced. When the two situations were
first presented, I immediately expressed preference for Gamble 1 as
opposed to Gamble 2 and for Gamble 4 as opposed to Gamble 3, and I
still feel an intuitive attraction to those preferences. But I have since
accepted the following way of looking at the two situations, which
amounts to repeated use of the sure-thing principle.

One way in which Gambles 14 could be realized is by a lottery with
a hundred numbered tickets and with prizes according to the schedule
shown in Table 1.

TasLe 1. Prizes 1N units oF $100,000 IN A LOTTERY REALIZING
GAMBLES 14

Ticket Number
1 211 12-100
. .. . (Gamblel [3 5 5
Situation 1 {Gamble 2 |o 25 5
. .. . (Gamble3 |5 5 0
Situation 2 { Gamble 4 | 0 25 0

Now, if one of the tickets numbered from 12 through 100 is drawn, it
will not matter, in either situation, which gamble I choose. I therefore
focus on the possibility that one of the tickets numbered from 1 through
11 will be drawn, in which case Situations 1 and 2 are exactly parallel.
The subsidiary decision depends in both situations on whether I would
sell an outright gift of $500,000 for a 10-to-1 chance to win $2,500,000—
a conclusion that I think has a claim to universality, or objectivity.
Finally, consulting my purely personal taste, I find that I would prefer
the gift of $500,000 and, accordingly, that I prefer Gamble 1 to Gamble
2 and (contrary to my initial reaction) Gamble 3 to Gamble 4.

It seems to me that in reversing my preference between Gambles 3
and 4 I have corrected an error. There is, of course, an important sense
in which preferences, being entirely subjective, cannot be in error; but
in a different, more subtle sense they can be. Let me illustrate by a
simple example containing no reference to uncertainty. A man buying
a car for $2,134.56 is tempted to order it with a radio installed, which
will bring the total price to $2,228.41, feeling that the difference is
trifling. But, when he reflects that, if he already had the car, he cer-
tainly would not spend $93.85 for a radio for it, he realizes that he has
made an error.

One thing that should be mentioned before this chapter is closed is
that the law of diminishing marginal utility plays no fundamental role
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in the von Neumann-Morgenstern theory of utility, viewed either em-
pirically or normatively. Therefore the possibility is left open that
utility as a function of wealth may not be concave, at least in some in-
tervals of wealth. Some economic-theoretical consequences of recog-
nition of the possibility of non-concave segments of the utility function
have been worked out by Friedman and myself [F12], and by Friedman
alone [F11]. The work of Friedman and myself on this point is criti-
cized by Markowitz [M1].+

+ See also Archibald (1959) and Hakansson (1970).



CHAPTER 6

Observation

1 Introduction

With the construction of utility, the theory of decision in the face
of uncertainty is, in a sense, complete. I have no further postulates
to propose, and those I have proposed have been shown to be equiva-
lent to the assumption that the person always decides in favor of an
act the expected utility of which is as large as possible, supposing for
simplicity that only a finite number of acts are open to him. At the
level of generality that has led to this conclusion there seems to be
little or nothing left to say. To go further now means to go into more
detall, to investigate special types of decision problems. One type of
decision problem of central importance is that in which the person is
called upon to make an observation and then to choose some act in the
light of the outcome of the observation.

The consideration of such observational decision problems is a step
toward those problems of great interest for statistics in which the per-
son must decide what observation to make, that is, of course, what to
look at, not what to see. They are the problems of designing experi-
ments and other observational programs.

Some remarks on observation were made in Chapter 3, but only now
that the theory of utility is established is it possible to give a relatively
complete analysis of the concept.

Observation is a concept essential to the study of statistics proper,
most of what has been said thus far being preliminary to, but not really
part of, statistics; even after this chapter and the next one, on obser-
vation, there will still remain a major transition. One important fea-
ture of much of what is ordinarily called statistics is, according to
my analysis, concerned with the behavior not of an isolated person, but
of a group of persons acting, for example, in concert. In later chapters
I will deal, so far as I am able, with the problem of group action, but
preliminary considerations bearing on it will be made and pointed out
from time to time in this chapter and the next.

Though the details of these two chapters may seem mathematically
forbidding, drastic simplifying assumptions are made in them to keep
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extraneous difficulties to a minimum. These typically take the form -
of assuming that certain sets of acts, events, and values of random varia-

bles are finite. Even in elementary applications of the theory, these

simplifying assumptions seldom actually hold. In some contexts, it is

quite elementary to relax them sufficiently; in others, serious mathe-

matical effort has been required; and some are still at the frontier of

research. Relaxations of the assumptions will be touched on from time

to time, sometimes explicitly but sometimes only implicitly in the choice

of suggestive notation and nomenclature.

Beyond this introduction, the present chapter is divided into four
sections: § 2 analyzes informally and then formally the notion of a cost-
free observation; §§ 3 and 4 discuss certain obvious but important con-
ditions under which one observation, and similarly one set of acts, is
more valuable than another; § 5 abstractly discusses problems of de-
signing experiments or, perhaps more generally, observational programs.

2 What an observation is

To begin with an informal survey of observation, consider a decision
problem, that is, a person faced with a decision among several acts.
Calling it the basic decision problem and the acts associated with it
the basic acts, a new decision problem would arise, if the person were
informed before he made his decision that a particular event, say B,
obtained. The new decision problem is related to the basic decision
problem in a simple way; for the acts associated with it are also the
basic acts, and the decision is to be made by computing the expected
utility given B of the basic acts and deciding on one that maximizes
the conditional expected utility. The basic problem may be modified
in still another, though closely related, way. Let the person say in ad-
vance, for each possible B;, which of the basic acts he will decide on
when he is informed, as he is to be, which element B; of a given parti-
tion obtains. This will be called the derived decision problem arising
from the basic decision problem and the observation of 7, and its acts
will be called derived acts. Technically speaking, the derived acts are
determined by arbitrarily assigning one basic act to each element of
the partition. For any state s, the consequence of a derived act is the
consequence for s of the basic act associated with the particular B; in
which s lies. The terms informally introduced in this paragraph are
defined formally later in the section.

A derived decision problem is not necessarily different in kind from
the basic problem; indeed it is quite possible that the basic problem can
itself be viewed as derived from some other basic problem and obser-
vation.
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Formidable though the description of a derived problem may seem
at first reading, its solution is, in a sense, easy and has already almost
been given; for it is clear that, if P(B;) > 0, the person will decide to
associate with B; a basic act the expected utility of which given B; is
as high as possible, and, if P(B;) = 0, it is immaterial to the person
which basic act is associated with B,.

It is almost obvious that the value of a derived problem cannot be
less, and typically is greater, than the value of the basic problem from
which it is derived. After all, any basic act is among the derived acts,
so that any expected utility that can be attained by deciding on a basic
act can be attained by deciding on the same basic act considered as a
derived act. In short, the person is free to ignore the observation.
That obvious fact is the theory’s expression of the commonplace that
knowledge is not disadvantageous.

It sometimes happens that a real person avoids finding something
out or that his friends feel duty bound to keep something from him,
saying that what he doesn’t know can’t hurt him; the jealous spouse
and the hypochondriac are familiar tragic examples. Such apparent
exceptions to the principle that forewarned is forearmed call for anal-
ysis. At first sight, one might be inclined to say that the person who
refuses freely proffered information is behaving irrationally and in vio-
lation of the postulates. But perhaps it is better to admit that informa-
tion that seems free may prove expensive by doing psychological harm
to its recipient. Consider, for example, a sick person who is certain
that he has the best of medical care and is in a position to find out
whether his sickness is mortal. He may decide that his own personality
is such that, though he can continue with some cheer to live in the
fear that he may possibly die soon, what is left of his life would be
agony, if he knew that death were imminent. Under such circumstances,
far from calling him irrational, we might extol the person’s rationality,
if he abstained from the information. On the other hand, such an in-
terpretation may seem forced. (Cf. Criticism (f) of § 5.6.)

Examples of decisions based on observation are on every hand, but
it will be worth while to examine one in some detail before undertaking
an abstract mathematical analysis of such decisions. Any example
would have to be highly idealized for simplicity, because the complexity
of any real decision problem defies complete explicit description, but
particular simplicity is in order here.

The person in the example is considering whether to buy some of the
grapes he sees in a grocery store and, if so, in what quantity. To his
taste, the grapes may be of any of three qualities, poor, fair, and excel-
lent. Call the qualities @ generically and 1, 2, and 3 individually. From
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what the person knows at the moment, including of course the appear-
ance of the grapes, he cannot be certain of their quality, but he attaches
personal probability to each of the three possibilities according to
Table 1.

TaBLE 1. P(Q)

Q(uality) | 1 2 3

P(robability) | 1/4 1/2 1/

The person can decide to buy 0, 1, 2, or 3 pounds of grapes; these
are the basic acts of the example. Taking one consideration with an-
other, he finds the consequences of each act, measured in utiles, in
each of the three possible events to be those given in the body of Table
2. The expected utilities in the right margin of Table 2 follow, of
course, from Table 1 and the body of Table 2.

Tasre 2. UriLity f(Q) FOR EACH f AND EACH @

Q
f 1 2 3 | E®
0 0 0 0 0
1 -1 13 1
2 -3 0 5 1/2
3 -6 -2 6 -1

The entries in Table 2 have not been chosen haphazardly, but with
an attempt at verisimilitude. Thus it is supposed that if the person
buys grapes of poor quality his dissatisfaction with the bargain will
accelerate rapidly with the amount bought, which seems reasonable,
especially if the keeping quality of poor grapes is low. He is, of course,
unaffected by the quality if he buys none. Again, buying a few fair
grapes may be mildly desirable, but overbuying is not. Finally, excel-
lent grapes are worth buying, even in large quantities, but the utility
of the purchase increases less than proportionally to the amount bought.

The correct solution of the basic decision problem is to buy 1 pound
of grapes; for that act has, according to the right margin of Table 2,
an expected utility of 1, which is the largest that can be attained.

Now, suppose the person is free to make an observation, that is, a
new observation in addition to those that may have contributed to the
determination of the probabilities in the basic problem. It may be, for
example, that the grocer invites him to eat a few of the grapes or that
the person is going to ask the woman beside him how they look to her.
Let there be five possible outcomes of his observation; call them z
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generically and 1, 2, 3, 4, and 5 individually. I assume, though this
feature is rather incidental to the example, that low values of z tend
to be suggestive of low quality. The joint distribution of z and @, that
is, the probability that z and € simultaneously have any given pair of
values, is of central technical importance. Those probabilities, each
multiplied by 128 for simplicity of presentation, are given in the body
of Table 3. The right-hand and bottom margins of the table give,

Tasie 3. 128P(x N Q)

Q

z 1 2 3 128P(z)
1 15 5 1 21
2 10 15 2 27
3 4 24 4 32
4 2 15 10 27
5 1 5 15 21

32 64 32 128

128P(Q)

also multiplied by 128, the probability of each value of z and of each
value of Q. The marginal entries are, of course, obtained by adding
rows and columns. As indicated in the lower right-hand corner of the
table, the probabilities assumed do indeed add up to 1, and the bottom
margin recapitulates Table 1.

Conditional probabilities can easily be read from Table 3. Thus, for
example, the conditional probability that z is 2, given that @ is 3, is
2/32, and the conditional probability that @ is 2, given that z is 4, is
15/27. 1t will be seen in later sections that the distribution of z given
Q is, in a sense, even more fundamental than the joint distribution of
z and Q.

There are 45 = 1,024 derived acts, since one of the four basic acts
can be assigned arbitrarily to each of the five possible outcomes of the
observation. It is an easy exercise, using Tables 2 and 3, to verify
Table 4, which shows the conditional expectation of the utility of each

TaBLE 4. E(f|z)

x
f 1 2 3 4 5
0 0/21 0/27 0/32 0/27 0/21
1 | —=7/21 11/27  82/32 43/27 49/21
2 | —40/21 —20/27 8/32  44/2r 72/21
3 | —94/21 —78/21 —48/32 18/27 74/21
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basic act given each possible outcome of the observation. For each z,
the highest expected utility, given that value of z, has been italicized.
Thus, for example, only if z is 1 will the person refrain from buying
grapes altogether, and only if z is 5 will he risk buying 3 pounds. In
full, the best derived act, call it g, is to buy 0, 1, 1, 2, or 3 pounds, if =
is 1, 2, 8, 4, or 5, respectively. The value of the derived problem is the
expected value of g, which is computed thus:

(1) E(@®) = X E(g| 2)P(x)

= (0+ 11+ 32+ 44 + 74)/128
= 161/128 ~ 1.26 utiles.

Since the value of the basic problem is 1 utile, the envisaged observa-
tion is worth 0.26 utile; that is, the person would if necessary pay up
to 0.26 utile for the observation.

Exercise

1. Suppose that the person could directly observe the quality of the
grapes. Show that his best derived act would then yield 2 utiles, and
show that it could not possibly lead him to buy 2 pounds of the grapes.

The notion of a decision problem based on an observation will now be
formally described, with special reference to mathematical notation and
other technical details.

1. There is a set of basic acts, F with elements f, f/, etc.

In the example of the grapes F consisted of the four envisaged acts
of buying 0, 1, 2, or 3 pounds of grapes.

The convention laid down at the end of § 5.4, requiring that the con-
sequences of acts be measured in utiles, will be adhered to, and it will
be supposed that v(F) is finite.

2. The observation is a (not necessarily real) random variable x
associating with each state s an observed value x(s) in some set X of
possible observed values z, «’, ete.

In the example of the grapes, the states s (of which the postulates
require that there be an infinite number) were never fully described,
and consequently the random variable x was not fully described either.
In the same sense it may be said that the basic acts, which are also
really random variables, were not fully described either. All that is
really important, however, is to know the simultaneous distribution of
the consequences of the acts in F and of the values of x. In the example
of the grapes that information was implicit in Tables 2 and 3.
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For mathematical simplicity in the formal work to follow, it will
generally be assumed that X has only a finite number of elements,
though the assumption can and must be relaxed in many practical
situations. When X is assumed finite, the random variable x is, for
all purposes of the present context, simply a partition of S, namely,
the partition into the sets on which x is constant. Indeed, earlier in
this section, the notion of observation was described in terms of a par-
tition, but the description in terms of a random variable is more familiar
in statistics and may have technical advantages, especially when the
restriction that X be finite is relaxed.

3. The set of strategy functions is the set of all functions associating
an element of F with each element x of X. Let the values of the generic
strategy function be denoted by f(z) and the function itself by f(x).

The notion of strategy function was not introduced in the informal
description of observation, nor in the example of the grapes, because
it is but a mathematical intermediary to the definition of derived acts
and did not seem to call for explicit expression in the less formal con-
texts.

4. To each strategy function f(x) corresponds a derived act g, in the
set of all derived acts F(x), defined by

(2) g(s) = f(s; z(s)) for all s ¢ S.

It was explained that in the example of the grapes there are 4° de-
rived acts. In the same way, it can be seen in general that if X has £
and F has ¢ elements there are ¢* derived acts.

5. The value of F given z,

3) o(F | 2) = s sup Ef| ).

This is the function of z indicated, for the example of the grapes,
by italics in Table 4.

3 Multiple observations, and extensions of observations and of sets
of acts

If several random variables x;, ---, X,, associating elements of S
with elements of sets X, - - -, X, are simultaneously under discussion,
it is natural to form the new random variable, denoted x = {x;, - -,
X,}, that associates with each element of S an ordered n-tuple of ele-
ments of X, ---, X, respectively. If the context is such that x;, - - -,
X, are thought of as observations, then x can also be thought of as an
observation and will sometimes be called a multiple observation—to
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emphasize the manner of its formation. To illustrate, any item such
as profession or body temperature that might be entered on a patient’s
history can be thought of as an observation; but the whole history, or
a filing cabinet of histories, can also be thought of as an observation,
the history being a multiple observation of items, and the cabinet a
multiple observation of histories.

Consider two observations x and y. It is an interesting possibility
that x and y are so related to each other that knowledge of the value
of x would (almost certainly) imply (almost certain) knowledge of y.
In that case, observation of x implies essentially the observation of y
and generally something besides, which suggests the following three
definitions.

If and only if x and y are observations such that, for all s and s’ in
some B of probability one, 2(s) = z(s’) implies y(s) = y(s’); then x is an
extension of y, and y is a contraction of x. If x is an extension of y,
and y is an extension of x, then x and y are equivalent.

Strictly speaking, one should say not that x and y are equivalent,
but rather that they are equivalent regarded as observations, for this
would not be a good concept of equivalence to apply to random varia-
bles regarded as such. For example, a pair of equivalent observations
can obviously be a pair of real random variables with different expected
values. Some properties of the relations of extension, contraction, and
equivalence between observations are given by the following easy but
important exercises. Throughout this set of exercises it is unnecessary
to suppose the observations confined to a finite set of values; in the case
of Exercise 3b, it is impossible to do so.

Exercises

1. x and y are equivalent, if and only if x is both an extension and a
contraction of y.

2a. If P{z(s) = y(s)} = 1, x and y are equivalent.

2b. Any observation x is equivalent to itself.

3a. If there is a value yo such that P{y(s) = yo} = 1, then every
x is an extension of y, and any two such observations are equivalent.
Such an observation, of course, amounts to observing nothing at all
and will therefore be called a null observation.

3b. If z(s) = s for almost all s ¢S, then x extends every y.

4. If x is an extension of y, and y is an extension of z, then x is an
extension of z. State and verify the analogous fact about equivalence.

5a. If y’ is a function associating an element of Y with each element
of X, and x is an observation, then the observation y such that y =
y'(x) is a contraction of x.
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5b. If y is a contraction of x, then there is a function y’ such that
Ply(s) = y'(z(s))} = 1. What freedom is there in the choice of the
function y'?

5c. What are the implications of Exercises 5a and 5b for equivalence
between observations?

6. If x and y are observations and z = {x, y} is the corresponding
double observation, then z is an extension of x and of y. (This exercise
seems to call for a converse saying that every extension can be regarded
as a double observation, but no really neat one suggests itself to me.
None the less, in thinking about extensions and contractions, the sort
brought out by the exercise is a typical and stimulating example.)

7. {x, y} is equivalent to x, if and only if x extends y.

The relations of extension, contraction, and equivalence have paral-
lels for sets of acts, defined thus:

If F and G are (non-vacuous) sets of acts such that, for some B of
probability one, there is for each g ¢ G an f ¢ F with f(s) = g(s) for all
s ¢ B; then F is an extension of G, and G is a contraction of F. If F is
an extension of G, and G is an extension of F, then F and G are equiv-
alent.

More exercises

8. If F is an extension of (equivalent to) G, then »(F) > (=) »(G).

9. Discuss the analogues of Exercises 1, 2b, and 4 for sets of
acts.

10. If F O G, then F extends G.

11. If F(x) is derived from F on observation of x, then F(x) extends
F.

12. Hyp.

F(x) is derived from F on observation of x;

F(y) is derived from F on observation of y;

F(x, y) is derived from F on observation of {x, y};
F(x; y) is derived from F(x) on observation of y.

ConcL.

1. F(x, y) is equivalent to F(x; y).

2. F(x, y) extends F(x) and F(y).

3. If x is equivalent to y, then F(x) is equivalent to F(y).

4. If y extends x; then F(x, y) is equivalent to F(y), F(y) is equiva-
lent to F(x; y), and F(y) extends F(x).
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13a. Under the hypothesis of 12, the equivalences and relations of
extension among the sets of acts arising out of two observations can,
with evident conventions, be diagrammed thus:

5y %Ly ¥;X
! l

x—> 00—y

13b. If y extends x, the diagram becomes

5y Xy y;x y|—ox-—0

13c. If x and y are equivalent, the diagram becomes

Xy Xy y;x
X y

— 0.

14. If F(x) and G(x) are derived from F and G, respectively, and if
F extends G, then F(x) extends G(x).

mvm@»=Ethn=thu@NW@zuwy

4 Dominance and admissibility

According to Exercise 3.14, if one set of acts, regarded as basic, ex-
tends another, the first is at least as valuable as the second in the light
of any observation whatever. This section explores a relation, domi-
nance, which has the same property but is not so strict as extension.
Dominance is of some importance for the theory of personal probability
as it has been developed thus far. But its ‘importance will be even
greater in the study of statistics proper, where interpersonal agreement
is of particular interest; for, as the definition shortly to be given will
make clear, two people having different personal probabilities will agree
as to whether one of two sets of acts dominates another, if only they
agree which events have probability zero—a condition generally met
in practice, and one that could if desired be dispensed with by a slight
change in the definition of dominance.

It will be seen that dominance and notions related to it are intimately
associated with the sure-thing principle. Indeed, probability being
taken for granted, the basic facts about dominance seem to give a com-
plete expression of the sure-thing principle. Dominance and related
concepts were much stressed by Wald, in [W3] for example.
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Two or three notions, the logical connections among them, and those
between them and extension, are to be treated. The logical connec-
tions being many but simple, I think that the material lends itself bet-
ter to formal than to expository treatment, for in such a context the
reader who looks for the motivating ideas sees them himself more easily
than he comprehends someone else’s verbalization of them. This sec-
tion will therefore consist primarily of a group of formal definitions and
several exercises.

If and only if P(f(s) > g(s)) = 1, f dominates g. If and only if some
(every) element of F dominates (is dominated by) g, F dominates (is
dominated by) g. If and only if F dominates every element of G,
F dominates G. If and only if f dominates g, but g does not dominate
f, f strictly dominates g. If and only if f ¢ F, and f is not strictly domi-
nated by any element of F, f is admissible (with respect to F).

Involving as they do acts as well as sets of acts, the definitions,
strictly speaking, introduce four different kinds of dominance. How-
ever, this complexity can be alleviated, with a slight lapse of logie, by
identifying each act f with the set of acts of which f is the only element,
for it is easily seen that this identification is in such harmony with the
definition that, once it is made, the four kinds of dominance collapse
into one.

Exercises

la. Consider analogues of Exercises 3.2b and 3.4.

1b. When can two acts dominate each other?

2a. If F extends G, then F dominates G. Discuss the converse.

2b. F(x) dominates F.

2¢. If F D G, then F dominates G.

3a. If F C G, and F dominates G, then each admissible element of G
dominates and is dominated by an element of F.

3b. After any finite number of non-admissible elements is deleted
from F, what remains of any subset of F that dominated F continues to
dominate F.

3c. Though the set of admissible elements of F may in some instances
dominate F, no proper subset of the set of admissible elements can ever
do so; but, if any other subset dominates F, some proper subset of it
also does so.

3d. If F is finite, the set of admissible elements of F dominates F.

3e. Discuss the role of “finite’’ in 3b and 3d.
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4a. If the set of admissible elements of F dominates G, and G domi-
nates F, then the set of admissible elements of F is equivalent to the
set of admissible elements of G.

4b. If F and G dominate each other, and either is finite, then the
sets of admissible elements of F and G, respectively, are equivalent to
each other, and each dominates both F and G.

5. If F dominates G, then v(F) > v(G).

6. If F dominates G, then, for any observation x, F(x) dominates
G(x).

65 Outline of the design of experiments

Often, especially in statistics, a decision problem can be seen as the
problem of deciding which of several experiments—or which of several
observational programs, if that is really a more general term—to under-
take.

In this section the notion of the decision problem derived from a
basic decision problem and an observation must be elaborated a little,
because, as derived acts have been treated thus far, they correspond to
the possibility of making an observation free of charge. Though obser-
vations are sometimes free, there is typically a cost associated with
making them; information must typically be bought either from other
people or, more often from nature, so to speak. The cost of informa-
tion may be money, trouble, one’s own life, that of another, or any of
innumerable possibilities, but all can in principle be measured in terms
of utility. The cost of an observation in utility may be negative as
well as zero or positive; witness the cook that tastes the broth.

In principle, if a number of experiments are available to a person, he
has but to choose one whose set of derived acts has the greatest value
to him, due account being taken of the cost of observation. That simple
formulation, like some others in this book, is, in a sense, oversimple; it
abstracts from the enormous variety of considerations that enter into
the careful design of any experiment. The possibility of so abstracting
from variety does not remove the ultimate necessity of studying some
aspects of that variety in detail. R. A. Fisher’s The Design of Experi-
ments [F4], for example, is concerned almost exclusively with experiments
based on a special technique called the analysis of variance, and it is
but an introduction to even that important facet of statistics. Again,
there is a growing literature (in which the work of A. Wald is outstand-
ing) on sequential analysis, which is concerned in principle with all ex-
periments in which later parts of the experiment are conducted in the
light of what happens in earlier parts; but this literature has, by neces-
sity, been confined to a relatively tiny part of that domain.
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Before turning to a more formal recapitulation of the outline of the
design of experiments, this may be a good place for a few speculative
words about the difference, if any, between experiment and observation.

Some sciences are commonly called experimental as opposed to others
that are called observational. Aerodynamics, the psychology of rote
learning, and the genetics of fruit flies would typically be called experi-
mental sciences; and, to take parallel examples, meteorology, the psy-
chology of dreams, and human genetics would be called observational.
But it is widely agreed, and the most casual consideration makes it
clear, that any basic difference that may really be present resides not
in the sciences themselves but in the methods typical of each. To illus-
trate the role of observation in sciences ordinarily considered experi-
mental and vice versa, observations of wild populations of fruit flies
have been useful in the study of the genetics of fruit flies; the effects of
fatigue, for example, on dream content may well be the subject of an
experiment; and, except for the atom, no topic in science is more popu-
lar today than experimental rain making. The illustrations could be
extended indefinitely, and there is also a less direct sort exemplified by
the discipline called experimental medicine, which typically studies ex-
periments on animals with the hope, often justified, that the findings
thus obtained can be extrapolated to humans.

The problem, then, is to distinguish an experiment from an observa-
tion. Except for brevity, it might be better to say mere observation,
for, in general usage, an experiment would be considered a special sort
of observation.

The first apparent contrast that comes to mind is that experimenta-
tion is generally thought of as active and observation as passive. But,
upon examination, it is seen that observation is also active, for obser-
vations are typically made by going somewhere to observe, or waiting
attentively till something happens. Often it is not only the observer
himself who must be transported and put in readiness to make an ob-
servation, but also a considerable body of apparatus. What demands
more activity than the modern observation of a solar eclipse?

Another apparent contrast is that the experimenter acts on the thing
he observes, whereas the observer acts only on himself and on instru-
ments of observation that may be regarded as extensions of his own
sense organs. If this criterion were accepted altogether naively, there
would be no such thing as a physiological experiment on one’s self;
even sophisticated interpretations might find it difficult to embrace
psychological experiments on one’s self.

Finally, experiments as opposed to observations are commonly sup-
posed to be characterized by reproducibility and repeatability. But
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the observation of the angle between two stars is easily repeatable and
with highly reproducible results in double contrast to an experiment to
determine the effect of exploding an atomic bomb near a battleship.
All in all, however useful the distinction between observation and ex-
periment may be in ordinary practice, I do not yet see that it admits
of any solid analysis. At any rate, no formal use of the distinction will
be attempted in this book.

Return now to the notion of observation subject to cost. It may be
that the value of the random variable x is observable but only at a
cost ¢, a real-valued random variable measured in utiles. If, as hereto-
fore, F(x) denotes the set of acts derived from F on cost-free observa-
tion of x, let F(x) — ¢ denote the set of derived acts subject to the ran-
dom cost ¢. This notation is interpreted to mean that, if f is the generic
element of F(x), then f — ¢ (which, being a utility-valued function of
s, is an act) is the generic act of the set F(x) — ¢. Very often the cost
of an observation is independent of s, but not, for example, for him that
tests the sharpness of a thorn with his finger. Since observations are
typically paid for before, or simultaneously with, making the observa-
tion, the cost is typically observed along with the observation proper.
Put differently, the cost ¢ is typically a contraction of the observation
x. Thus, if in some special context any advantage were to be gained
by so doing, it would not be drastic to assume the cost of observing x
to be a function of the form ¢’(x); but, as a matter of fact, no such ad-
vantage has come to my attention. It is not difficult to think of ex-
periments to which the assumption does not apply. For example, in
the present state of uncertainty about the long-term effects of x-rays,
anyone conducting a short-term experiment in which young human be-
ings were subjected to large doses of x-radiation would risk costs that
might not overtly manifest themselves for half a century, or even for
generations.

Much that would ordinarily be called observation cannot be described
by saying that the random cost is simply to be subtracted from each de-
rived act of the corresponding observation thought of as free of cost.
Allowing that it may be legendary, the form of trial by ordeal in which
the guilty floated safely to be hanged and the innocent drowned to be
exonerated epitomizes such a situation; except in point of absurdity,
ordinary industrial destructive testing of electric fuses and other prod-
ucts is much the same. Strictly speaking, discrepancy occurs even in
the ordinary context in which the cost of observation is a fixed sum of
money; for the utility of money is not strictly linear, so the cost of ob-
servation typically affects different derived acts somewhat differently.
This sort of situation is indeed so common as to introduce at least a
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slight error into almost every application of the notion of cost as a sub-
tractive term. It would therefore be desirable to extend considerably
the notion of cost of observation, but, thus far, I see no way to do so
that does not destroy the mathematical advantage of singling problems
of observation out of the class of decision problems generally.

It is convenient now to analyze the appropriateness of regarding the
number »(F) as a measure of the value of F. As must already be clear
to the reader, if a person is to make a preliminary decision limiting his
next decision to one or another of several sets of acts, say, F, G, and H,
then his preliminary decision will select a set that has the highest value
of v, and the preliminary and secondary decisions, regarded as a single
grand decision, amount to the problem of deciding on an act from
F U G U H. So far as this use of v is concerned, any increasing mono-
tonic function of » such as #3 or 3” would be equally satisfactory, but v
has an advantage in arithmetic simplicity when costs of observation
are involved. Consider, for example, the problem of whether to make
a particular observation at the random cost ¢ or to make no observation
at all. The two sets of acts involved may then be symbolized by
(F(x) — c) and F, respectively. The peculiar simplicity of v as a meas-
ure of the value of a set of acts, in this context, is exhibited by the almost
obvious fact that v(F(x) — ¢) = v(F(x)) — E(c). It may be remarked
in passing that v is a particularly good measure in any problem where
F, G, or H is, so to speak, made available by lot, a possibility realized
in (7.3.2), for example.

Finally, if one among several observations is to be chosen, each with
its own random cost (possibly including the null observation), the per-
son will choose an observation for which »(F(x)) — E(c) is as large as
possible. If the number of observations among which decision is to
be made is infinite, that function may not attain a maximum value,
but the value of the situation to the person can reasonably be regarded
as the supremum of the function; there are, of course, observations
among those available for which the supremum is arbitrarily nearly
attained.



CHAPTER 7

Partition Problems

1 Introduction

In the introduction of the preceding chapter it was explained that
the treatment of decision problems in general had been carried to a
logical conclusion, and that to study decision problems further it had
become necessary to specialize. The notion of observation was accord-
ingly chosen as the subject of specialization. The situation now re-
peats itself at a new level, for I have now covered the main points that
occur to me about observation in general, though I see considerably
more to say about a certain type of observation.

The type of observation problem to which the present chapter is de-
voted, though relatively special, is still very general. Indeed, its gen-
erality is suggested by the fact that no other type of problem is syste-
matically treated in modern statistics. In objectivistic terms, it would
be described as the type of decision problem in which the consequence
of each basic act depends only on which of several (possibly infinitely
many) probability distributions does in fact apply to the random vari-
able to be observed.

Modern statistics has no name for this type of problem, because it
recognizes no other type; and no particularly suggestive name occurs
to me. I am therefore tentatively adopting the noncommital name
“partition problem.” Such motivation as there is for that name will
be apparent when the concept is defined.

In non-objectivistic terms, a partition problem has the following
structure. There are, of course, basic acts F and an observation z.
The peculiar feature is a random variable b, which is typically not sub-
ject to observation, with the property that every f in F is constant
given that b has any particular value b.

In many practical problems b takes on an infinity, even a non-de-
numerable infinity, of values, but systematic consideration of such
problems would involve those advanced mathematical techniques that
are explicitly being avoided in this book. Glossing over such questions
of technique for the moment, the state of the world, which is itself a
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random variable, might play the role of b; with respect to this b, any
observational decision problem would presumably be a partition prob-
lem. It may, therefore, be inaccurate to call partition problems special,
but they are special whenever b is not equivalent to the state of the
world.

As has just been mentioned, the general policy of this book with re-
spect to mathematical technique restricts formal treatment of partition
problems here to those in which b assumes only a finite number of dif-
ferent values, that is to say, those in which b is to all intents and pur-
poses a partition B;, whence the name “partition problem.” For the
reader who is not familiar with the elements of the geometry of n-dimen-
sional convex bodies, there will be a distinet expository advantage in
confining the formal treatment still further to twofold partitions. At
the same time, by explicit statements and by the use of suggestive no-
tation, all readers will be given at least some idea of the extension of
the theory to n-fold partitions; indeed, a reader familiar, for example,
with Sections 16.1-2 of [V4], or with [B20] will find the extension as
plain as if it had been made explicitly. Thus the restriction to twofold
as opposed to n-fold partitions will be to the advantage of some and to
the disadvantage of none.

Partition problems are even closer than are observational problems
generally to the subject matter of statistics proper. In particular, in
the course of this chapter, multipersonal considerations will from time
to time be pointed out in connection with partition problems.

2 Structure of (twofold) partition problems

A central feature of a twofold partition problem is, of course, a two-
fold partition, or dichotomy, B;, ¢ = 1, 2. By way of abbreviation let
B(7) = P(B;), and 8 = {B(1), 8(2)}. The 8(z)’s can be any two numbers
such that 8(z) > 0 and Zg() = 8(1) + 8(2) = 1. Since 2) =1 —
B(1), it might seem superfluous to have a special notation for 8(2); but
this redundancy more than pays for itself in symmetry, especially in
the extension of the theory to n-fold partitions. The possibility that
one of the B8(¢)’s vanishes has been ruled out, for it is neither typical nor
interesting, and its retention would mar the exposition of the theory.

Each basic act f ¢ F is characterized by a pair of numbers f; such that

@) P(f(s) = f:| B) = 1

for each 7. The technical assumption will be made that as f ranges
over F the numbers f; are bounded from above for each 7, which is a
little more stringent than the now familiar assumption that »(F) < .
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The assumption expressed by (1) is made for definiteness and sim-
plicity, though its full force will seldom be used. The possibility of re-
laxing (1) in certain contexts will be mentioned from time to time, es-
pecially since this possibility is of some interest even in the exploitation
of (1) itself. In particular, for several pages now it will scarcely ever
be necessary to assume anything about the structure of F relative to
B;, except that E(f l B;) is bounded from above for each 7; for making
the abbreviation f; = E(fl B;), almost everything from here through
Exercise 1 applies verbatim.

The expected utility of any f ¢ F can be computed in several forms
thus:

) E(f) = E(f| B\)P(B) + E(f| B;)P(B,)
= 1181) + /28(2)
= 21,66
= fo + (i — f2)BQD).

The first of these forms expresses the expected value in general terms;
the second utilizes abbreviations; the third is an obvious mathematical
transcription of the second, particularly suggestive of extension to the
n-fold situation; the fourth sacrifices the symmetry exhibited by the
preceding three in order to take advantage of the relation between
B(1) and 8(2). From the fourth form of (2), it is clear that, for fixed f,
E(f) is a linear function of B(1). Henceforth that fact, for example,
would be expressed in symmetric form by saying that E(f) is linear in
B, and the dependence of E(f) on 8 might be exphcltly indicated by
writing E(f | 8).

Since in any one decision problem 8 is constant, it mlght seem point-
less to emphasize that E(f | §) is linear in 8. But there are, in fact, two
different reasons for being interested in variation of 8. In the first place,
once the observation x has been observed to have the value z, the basic,
or a priori, decision problem is replaced by an a posteriori problem in
which P(B; l z) plays the role originally played by P(B;) = B(z). Sec-
ond, interest in comparing different people is becoming increasingly
more explicit as the book proceeds. In particular, it is of interest to
compare people who have available the same set of basic acts and who,
at least so far as the distribution of x and the acts in F are concerned,
have the same conditional personal probability given B;, but who at-
tach different probabilities 8(7) to the elements of the partition.
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To emphasize its dependence on 8, »(F) will sometimes be written
o(F l B); its computation in the following fashion is fundamental to
the theory of partition problems.

3) o(F | 8) sup E(t | 8)

flslg [£18(1) + f28(2)]

= k(ﬁ)’

where k(8) is defined by the equation in which it occurs. According to
Exercise 4 of Appendix 2, the function k is convex in B8, that is, k is
convex when recognized as a function of 8(1) alone. Interpreted as a
pair of a priori probabilities, 8 is confined to the open interval defined
by Z8(j) = 1, 8(¢) > 0, but it is valuable to recognize that k is defined,
convex, and continuous on the closed interval Z8(j) = 1, 8(¢) > 0.
Many typical features of the relationship between F and B; are illus-
trated graphically by Figure 1. The abscissa of that graph represents

o

(1) Jr 82

Figure 1

both (1) and 8(2), as indicated, and the ordinate is measured in utiles.
The straight lines, the left ends of which are marked q, b, ¢, d, and e,
graph as functions of 8 the expected values of the five basic acts of the
particular problem represented. The ordinates at their right and left
ends, respectively, are the corresponding values of the fi’s and fy’s.
The graph of k is marked by heavy line segments. It is seen that the
lines a, ¢, and ¢, and they alone, touch the graph of k, for they repre-
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sent the only acts that are optimal for some value of 8. The act repre-
sented by d is inadmissible (if (1) is taken literally), being in fact strictly
dominated by every other act except e, and it is therefore superfluous
to the person, no matter what the value of 8; b is obviously equally
superfluous, but for a different reason.

In many typical problems in which F has an infinity of elements, k
is, unlike the k in Figure 1, strictly convex; that is, its only intervals
of linearity are point intervals.

Exercise

1. Compute and graph k for the set F of dichotomous acts of the
form

file) =1 — 1+ ¢)%
fo(@) =1 — (1 — ¢)%;
Answer. k(8) = [B(1) — B(2)]? = [28(1) — 1]

Turn now to the relations between an observation x and the dichotomy
B;. As before, it will be assumed for mathematical simplicity that the
values of x are confined to a finite set X. The probability that x at-
tains the value z given B;, written P(z l B,), is fundamental in connec-
tion with partition problems. For one thing, as has already been indi-
cated, there is interest in considering people who, though differing with
respect to S8, agree with respect to P(x l B;). The probability P(z, B;)
that x attains the value z and that B; simultaneously obtains, the proba-
bility P(z) that x attains the value x, and the probability 8( I z) of B;
given that z(s) = z are derived from P(z ] B;) and 8 by means of Bayes’
rule (3.5.4) and the partition rule (3.5.3) thus:

—2<¢<+2

) P(z, B)) = P(z| B,)BG).
(5) P(x) = 3 P(s, B).
(6) B |z) = P(z, B;)/P(x),

if P(x) # 0; and 8(z l z) is meaningless otherwise. It must be remem-
bered that P(z, B;), P(z), and 8(: | z) depend on the value of 8 and that
a really complete notation would show that dependence. On the other
hand, the condition that P(z) # 0 is independent of the value of 8.
When a second observation y is to be discussed, 8(: | ) is, in defiance
of strict logic, to be understood as the analogue of B(il z); that is, as
the conditional probability of B; given that y(s) = y, not as the same
function as B( | ) with y substituted for z. Corresponding conven-
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tions apply to P(y), P(y| B)), and P(y, B;). Finally, free use will be
made of such contractions as 8(z) for {8(1 I z), B(2 l z)}.

Equation (1) implies that
©) E(f| B;, z) = E(f| B)

for all f ¢ F and for all z such that P(z l B;) > 0. Equation (7) is the
mathematical essence of the concept of a partition problem, and vir-
tually all that is to be said about partition problems applies verbatim,
if (7), even without (1), applies to such observations as may be under
discussion.

In view of (7),

® Ef|8,2) = 2 E(| B;, ©)P(B;| z)

= thﬂ(tl .’ZI),
if P(z) > 0. ’

3 The value of observation

If the observation x is made, and it is found that 2(s) = z, then the
a posteriori value of the set of basic acts, written »(F | z), or more fully
v(F | B, z), will typically be different from the a priori value »(F| 8).
Indeed, in view of (2.8),

1) o(F |8, 2) = sup E¢f|8, 2)

= o(F | 8(z))
k(8(2)).

This is the first illustration of the technical convenience of the function k.

It is known on general principles that v(F(x)) > »(F), but there is
some interest in reverifying the inequality in the present context; in
particular, it is possible here to say in interesting terms just when equal-
ity can obtain.

) »(F(x) | B) = E@(F | 8x)) | B)
= E(k(BX) | 8)
> K(E@B®X) | 8),

where the terminal inequality is an application of Theorem 1 of Appen-
dix 2. To appreciate the inequality (2), it is necessary to calculate
E@( [ x)) explicitly. This calculation, typical of many the reader must
henceforth be expected to make for himself, runs as follows, where it is
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to be understood that the summation with respect to z applies only
to those terms for which P(z) is different from 0.

3) E@G|x) | B = X2 8(| 2)P(z)

_ P(Z, Bt)
B ; P(x)

= Z Pz B)

= P(B:) = 8(:).
Substituting (3) into (2) leads to the anticipated conclusion that
@) o(F(x) | 8) > k(8) = o(F | B).

According to Theorem 1 of Appendix 2, v(F(x) | B) is definitely greater
than »(F | B) unless B(x) is confined with probability one to some inter-
val of linearity of k, in which case the observation x may fairly be
called irrelevant to the basic decision problem at hand. If x is irrelev-
ant, the interval of linearity to which 8(x) is confined must, in view of
(3), contain 8. In the particularly interesting case—and the only pos-
sible one, if k(8) is strictly convex—in which 8(x) is with probability
one equal to a constant value, that value must therefore be 8. An ob-
servation for which g(x) is with probability one equal to 8 may fairly
be called utterly irrelevant, because it is irrelevant no matter what set
F of basic acts is associated with the dichotomy.

To say that x is utterly irrelevant is to say that, with probability
one,

P(z)

P(z | B)B(0)

5) Bl2) = =50

= 8(0).
Since 8(2) > 0, (5) is equivalent to the condition that
() P(z| B) = P(),

at least when P(z) > 0. Furthermore, it is obvious from (2.5), again
noting that 8(:) > 0, that, if P(z) = 0, then P(z | B;) = 0. Therefore
x is utterly irrelevant, if and only if (6) holds for all z and ¢; that is, if
and only if the distribution of x given B; is independent of ¢. This form
of the condition is intuitively evoked by the words “utterly irrelevant”
and has the advantage of not involving 8.

It is noteworthy that whether an observation is utterly irrelevant
depends neither on the particular set of basic acts, nor on the value of
B8, so pecple will agree on what is utterly irrelevant independent of their
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personal a priori probabilities and the acts among which they are free
to choose.

The greatest lower bound in x of »(F(x) I B), namely v(F I 8), and the
circumstances under which this bound is attained having been estab-
lished, it is natural to turn to a parallel investigation of the least upper
bound. A foothold for that investigation is found in the remark that
the chord joining the ends of the graph of k never lies below the graph.
Analytically,

@) k@B) < B(1)k(1, 0) + B(2)k(0, 1) = I(B),
where [(8) is defined by the context. Unless one of the 8(¢)’s vanishes,

equality holds in (7), if and only if k(8) is a linear function. In view of
(7) and (3),

®) o(F(x) | B) = E®B@) | 8) < EWBX) | B) = UB).

The inequality (8) gives an upper bound for »(F(x)). In graphical
terms it says that, for any @8, no observation can add more to the value
k(B) of F than the vertical distance at 8 between the graph of k and
the graph of the chord joining the ends of k.

Equality obtains in (8), if k is linear, in which case the upper and
lower bounds are equal to each other irrespective of the value of 8 and
the nature of the observation. If-F is dominated by a single £, that is,
if there is a single f optimal given B; for both values of 7, then k is linear.
It can easily be verified that, provided F is finite and (1) actually ob-
tains, this is indeed the only circumstance under which k is linear, and,
even if these provisions are not satisfied, the possibilities are not much
more interesting.

Suppose, then, that k is not linear; equality can hold in (8), if and
only if B(x) is with probability confined to the ends of the interval, a
condition that does not depend at all on F. By simple considerations,
which have by now been rendered familiar, this condition on x is equiv-
alent to the condition that

9) P(z| B))P(z| B) = 0,

for all z. An observation satisfying (9) may fairly be called definitive,
because, if (1) obtains, such an observation removes all uncertainty
about the outcome of each f ¢ F, no matter what 8 may be.

Perhaps many of the observations made in everyday life are defini-
tive, or practically so. Once Old Mother Hubbard looked in the cup-
board, her doubts were reduced to the vanishing point. None the less,
definitive observations do not play an important part in statistical
theory, precisely because statistics is mainly concerned with uncer-
tainty, and there is no uncertainty once an observation definitive for
the context at hand has been made.
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4 Extension of observations, and sufficient statistics

It was shown in § 6.4 that a statistic, or contraction, y of an obser-
vation x is never worth more than x and is typically worth less. The
purpose of the present section is to explore the relation between an ob-
servation and a contraction of itself in the case of a partition problem,
especially to explore the special conditions in that case under which the
statistic is as valuable as the observation itself.

Let x and y be two observations such that y is a statistic of x, that
is, such that, for some funection y’, y(s) = y'(z(s)) with probability one.
The values of F(x) and F(y) can be compared by the following calcula-
tion, which in the light of the preceding section will need but little ex-
planation.

(1) v(F(x)) = E(k(8(x)) | B)
= 2 E(k(8(x)) | B, y)P().

@) E(k(B(x) | 8, ¥) > k(EB®X)) | 8, 1)),
if P(y) > 0.
3) E@G|x)|8,y) = 2 8G| 2)P(=|v)

_ 5 8l 9PG 0,

) z P(y)
if P(y) > 0.

Because of the special relationship between x and y, P(z, y) = 0 un-
less y'(z) = y, in which case P(z, y) = P(z). Understanding that the
summation indicated by Z’ in (4) below extends only over those values
of z for which y'(z) = y, the calculation is continued thus:

, P(z, B;) P(z)

) E@|0] 60 =¥
R V) P(JE, Bz)
- P(y)
_ PG By
P@)
Therefore, = 8| ).

(5) o(F(x) | B) = 20 k(BW)PW) = v(F) | B).
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After the preceding section, it seems almost superfluous to explain
that the point of the calculation above is not to obtain the inequality
(5), which has already been derived with less labor and greater gener-
ality in Exercises 6.3.8 and 6.3.13b, but to be able to discuss when equal-
ity holds in (5). The calculation makes it clear that equality holds in
(5), if and only if equality holds in (2) for every y of positive probability.
This in turn is equivalent to the condition that, given y, 8(x) is confined
with probability one to an interval of linearity of k. A sufficient con-
dition for that is that, given y, 8(x) be confined with probability one to
a single value, which cannot be other than B(y); if k is strictly convex,
the almost certain confinement of 8(x) to 8(y) is also necessary. Now,
if, for every y of positive probability, P(8(z(s)) = B(y) l y) = 1, then
it is true that B(z) = B(y) with unconditional probability one, that is,

(6) PB(z(s)) = B(y(s))) = 1.

The condition (6) clearly does not depend on F, and the following
calculation so expresses it as to make clear that it does not depend on 8
either. Equation (6) is satisfied, if and only if

P(z| B;)B() _ P(y'(z)| B)B()
P@  PW@)

when P(z) > 0; or, if and only if

P(z|B;) P(x)

Py|B) PW)

when P(z | B;) > 0; or, again, if and only if

©) P@z|B; y) = P(|y),

when P(y ‘ B;) > 0; or finally if and only if P(z I B;, y) is independent
of 7 for those values of 7 for which it is defined. In this form, and yet
another to be derived in connection with (10), the condition is widely
studied in modern statistical theory and a statistic satisfying the con-
dition is there called a sufficient statistic. The name is well justified;
for, as has just been shown, it is sufficient, for any purpose to which x
might be put, to know y, if and only if y is a sufficient statistic for x.

A different, and perhaps more congenial, approach to sufficient sta-
tistics is the following. If the person observes the particular value y
of y, his original basic decision problem is replaced by a new one with
the same basic acts, but with 8 replaced by B(y). Strictly speaking,
this will fail to be a partition problem, in case B(y) is (0, 1) or (1, 0), or,
for brevity, if B(y) is extreme. To see whether v(F(x) | B) is really greater

)

(8)
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than v(F(y) I B), it is enough to investigate whether, for some y of posi-
tive probability for which B(y) is not extreme, x is relevant to the par-
tition problem based on B(y), for if B(y) is extreme there can be no value
in following the observation that y has occurred by the observation of
x. Therefore, x will be a worthless addition to y, if, for every y for
which 8(y) is not extreme, x is utterly irrelevant, that is, if y is sufficient
for x. If k is strictly convex, the condition is also necessary.

The recognition of sufficient statistics in explicit problems is often
facilitated by the following factorability criterion. A statistic y is suffi-
cient for x if and only if there exists at least one pair of functions R and
S such that

(10) P(z| By) = R(y'(x); )S(x).

The necessity of the condition follows from the exhibition of a particu-
lar R and S for a sufficient statistic thus:

(11) P(|B:) = 2 P(z| B;, y)P(y| B)
= > P(z|y)P(w| By
v

= P(y'(2) | B)P(z| y'(2)).

On the other hand, if P(z l B;) can be expressed in the form (10), y
can be seen to be sufficient for x thus: If P(z | B,, y) is meaningful, it
is given by
P B;
(12) P | By ) = T Y1 B
P(y| B

=0, if y'(z) # v,
_ P(z| By)
P(y| B))
8@
2 8@)
y(z')=y
which is independent of 7. The reader may be interested in asking
himself, as an exercise, what freedom there is in choosing R and S when
at least one such pair of factors exists.
Interest in sufficient statistics is not confined, of course, to twofold,
or even finite, partitions. With that in mind, the various criteria for

sufficient statistics have been given in such terms as to be valid for any
finite partition and the usual infinite ones. They require some modifica-

if y'(z) =y,
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tion if the observations are not confined to a finite, or at any rate de-
numerable, set of values, but formal details of that important extension
will not be given here. Elementary treatments are given in most text-
books of mathematical statistics; more advanced and general treat-
ments are given in [B2], [L6], and [H3].

There are several examples of sufficient statistics in the exercises
below, others are given in almost any fairly advanced textbook on sta-
tistics (in particular, in [C9]), and one other general example of extraor-
dinary importance is treated in the next section.

Exercises

In these exercises, let x denote a multiple observation x = {x;, -- -,
x,}, where, given B;, the x,’s are independent and identically distributed.
There will be no real advantage here in thinking of the partition as
twofold, or even finite, and for some of the exercises it will be imprac-
tical to do so.

1. Let P(z, | B)) = p;, ifz, =1,
=gq;, ifz =0,
= 0, otherwise,

where p; + ¢; = 1; and let /(z) = 2 =,.

Show that:
(a) P(z| B) = p¥e¥;
(b) y is sufficient for x, using the factorability criterion;

() P(y| B) = (") #g", where, as always, (") = nl/yln — )Y
Y 1}

n \~!
@ PG|y (@) = ( , ) :
' (2)
2. For each positive integer 7, let
P(z,|B) =47,  ifz <4,
=0, otherwise,

where the values of x, are confined to the positive integers; and let
y'(z) = max z,. Show that:
r

(@) P(x|B) =™, ify <4,
=0, otherwise;

(b) y is sufficient for x.
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3. In the two exercises above it has been possible to choose the fac-
tor S identically equal to 1. To exhibit a more typical example, let 7,
z,, and y be confined to the positive integers with y’(z) = max z,, as
in the preceding exercise, and let

2z,
it + 1)

=0, otherwise.

P(.’l:,l B;) =

’ iferi,

Show that:
(a') P(Zl Bz) = (Z(’L T 1)) I;Ixn ify < i,

=0, otherwise.

(b) y is sufficient for x.

4. Put no restriction on the conditional distributions P(z, | B;), ex-
cept that x, be confined with probability one to some fixed finite set.
Say, for the moment, that two values z and z’ of x are team mates, if
one arises from the other by permutation of the component observa-
tions. This divides the possible values of x into teams, and, academic
though it may seem, the team to which z belongs can be taken as y'(z).
Show that the probability of x given 3’(x) and B; is independent of 7
(if it is defined at all), so that the statistic y’(x) is sufficient for x.

If the values of the x,’s happen to be real numbers, then for any z
it is possible to permute the component observations to obtain a non-
decreasing sequence of n (not necessarily distinct) numbers, and only
one such non-decreasing sequence can be so obtained from each .
The sequence thus attached through x to each s is called in statistical
usage the sequence of order statistics corresponding to x. Since team
mates, and only team mates, have the same order statistics, the set of
order statistics regarded as a single statistic is equivalent to the team
statistic y’(x) defined more generally in the paragraph above and is
therefore sufficient.

5. Let x, given B; be subject to the normal probability density with
mean p;, and variance ¢;2, that is,

(13) o (zy l B;) = (27&'0,‘2)-% exp {—(Zr - pi)2/20;2}.

This situation, though elementary, does not fall within the technical
scope of this book, because x, is not confined to a finite set of values.
The reader familiar with probability densities will see, however, that
the density of x is

22372 wiZTy ﬂiz

— —n/2 - —_
(14) ¢(zy, - +- 2a I B,)= (2"‘71'2) eXp{ 20’_2 + Uiz n 2‘71'2
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which suggests that y, defined by
(15) Y'(2) = {2z, 2o},

may fairly be called a sufficient statistic for x.

Show in the same heuristic way that, if ¢; is independent of ¢, then
y'(x) = Zz, defines a sufficient statistic; and that, if u; is independent
of %, then y'(z) = nZz,2 — (Zz,)? does so.

6. If w and z are observations independent of each other given B;,
under what conditions can w be sufficient for {w, z}?

7. To break away from independent observations, suppose that, in
the event B;, n cards are dealt from a thoroughly shuffled deck of n 4 ¢
cards each bearing a different serial number from 1 through =n + 7.
Let w, be the number on the rth card dealt and w = {wy, -+, W,}.
Show that max w, defines a sufficient statistic for w and that the w,’s

r

are not independent.
8. If z extends w, and w is sufficient for y, then z is also sufficient for

9. If z is sufficient for w, and y is independent of both z and w, then
{z, y} is sufficient for {w, y}.
10. Every definitive statistic is sufficient.

In virtually all statistics texts it would be said that the y defined by
(15) constitutes not one statistic, but two; similarly, the set of order
statistics would ordinarily be referred to as n statistics rather than as
one. There are contexts in which it is appropriate to try to count sta-
tistics in that fashion, but, so far as the theory of sufficient statistics
is concerned, it often seems fruitless, if not positively detrimental, to
do so.

The concept of sufficient statistics has proved of great value in sta-
tistical theory and practice. The reason for this does not seem to me
altogether easy to analyze, but, as the exercises above illustrate, the
families of distributions most frequently studied in statistics are gen-
erally rich in sufficient statistics. It is hard to separate cause from
effect here; for the distributions that are most studied tend to be those
having the greatest mathematical simplicity, and the presence of strik-
ing sufficient statistics, such as those exhibited by Exercises 1, 2, 3, 5,
and 7, are among the sources of mathematical simplicity most often
met in the study of particular families of distributions.

It must be emphasized that sufficient statistics often provide a signifi-
cant saving in the mechanical labor of storing and presenting data.
Thus, in any experiment faithfully represented by Exercise 1, it is
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sufficient, in both the technical and ordinary senses of the word, to
record a single integer y in place of the list of z,’s, which might well be
very long. Several of the other exercises would in principle also lead
to great savings of this sort, but Exercise 5 is the only other that arises
frequently in practice.

The concept of sufficient statistics was introduced, together with
much of the theory associated with it, by R. A. Fisher (cf. index, [F6]).
The subject has been one of continuing interest and has been explored
in several directians; key references are [B2], [E1], [L6], [H3], [K15],
and [M5], and (LeCam 1964).

b6 Likelihood ratios

The random variable 8(x) has played so important a role in preced-
ing sections that the reader will probably not be surprised to find that
B(x) is a sufficient statistic for x, a conclusion that, in the light of the
factorability criterion (4.10), can be seen thus:

P(B;| z) P

1) P(z|B;) = = (z)
B(i| z)

= —— P(z).

s

If a statistic is sufficient, it is sufficient irrespective of the value of 8;
moreover, any multiple of it by a non-zero constant is also sufficient.
Therefore, (1) implies that for any numbers «(z), such that «() > 0,
the multiple observation r(e) defined by

- P(z| By)
ri(z; @) =pt ——————
> ()P | B;)

)

r(x; a) = Df {rl(x; a)’ 'I‘g(x, a)}
is a sufficient statistic for x. Since

@ 2. a(friz; @) =1

2

there is some redundancy in retaining both components, but this re-
dundancy is more than compensated by the advantage of retaining
symmetry, especially when n-fold partitions are contemplated.
Formally, the r(e)’s are an infinite family of sufficient statistics, one
for each a; but to all intents and purposes they represent but one suffi-
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cient statistic, for any r(a) is equivalent to any other, say r(a’), as can
be demonstrated thus:

P(z| B))/Za'(k)P(z | Bx)
Za(j){P(z| B,)/Zo/ (k)P (x| By))

(4) Ti(x) a) =

_ n(z, )
Za(j)rs(a, o)

Having such a multiplicity of forms for what is essentially one im-
portant statistic is rather embarrassing, so there is some incentive to
pick a standard form. Setting each a(j) = 1 recommends itself as con-
venient and leads to the particular statistic r = {r;, ra}, where

P(z| B)
? O SrelE)

This form is indeed convenient for twofold and, more generally, for n-
fold partitions, but, where infinite partitions are to be dealt with, its
apparent naturalness is misleading, for the sum in the denominator of
(5) is then typically divergent. In the case of twofold partitions, a
convenient form for the statistic is that of a likelihood ratio, in the
sense introduced in § 3.6, for it is easy to see that, infinite numbers
being admitted, P(x | B,)/P(z [ B5) is equivalent to r. Henceforth, any
statistic equivalent to r will be called a likelihood ratio of x with re-
spect to the partition B;—a definition that does not seriously conflict
with ordinary statistical usage of the term.

Figure 1 illustrates a geometric interpretation of likelihood ratios
that is sometimes valuable. The figure can best be described by telling
how to draw it. First draw a pair of cartesian coordinate axes for varia-
bles u; and u;. Next draw the two line segments represented by u; +
ug = 1 and (u;/a(1)) + (us/a(2)) = 1 with the u;s non-negative. The
left ends of these segments are indicated in Figure 1 by a and b, re-
spectively, the particular value @ = {1/3, 2/3} being used for illustra-
tion. Now plot the point {P(z | By), P(z| B)}. If z has positive
probability (for any, and therefore for all, 8); this point will be different
from the origin O, so it will be possible to draw the (dashed) line con-
necting the origin with the point {P(zx | By), P(z| By)}. This line (or
ray through the origin, as it is often called) must necessarily pierce
the line segments a and b. The important geometrical fact, which the
reader will have no difficulty in verifying, is that these intersections
occur at the points {r;(z), r2(x)} and {r,(z, @), r2(z, a)}, respectively.
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-
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.~ P(x|B,), P(x|By))

-
-
e

/{rl (%), ry(x)}

u1—>

Figure 1

It is also obvious that the ratio P(z ] B,)/P(x I B,) is the reciprocal of
the slope of the ray.

Since, to each z that occurs with positive probability, there corre-
sponds a ray through the origin, the ray can be taken as a statistic;
according to the geometrical construction of the preceding paragraph,
this statistic is equivalent to r and is therefore a likelihood ratio of x
with respect to the partition B;.

The ray connecting the origin with a point {u;, u} can conveniently
be represented by the suggestive notation u;:ug, though, of course, dif-
ferent pairs of numbers can represent the same ray. More explicitly,
if X is any number different from 0, Au;:\u; represents the same ray
as uy:ug. In analytical projective geometry any pair of numbers rep-
resenting a ray in this fashion is called a set of homogeneous coordinates
of the ray. The redundancy of the notation u; :u; may be removed by,
for example, characterizing the ray by the reciprocal of its slope u;/us.
Such non-homogeneous coordinatization entails a sacrifice in symmetry
and the necessity of admitting infinity as a meaningful value of the
quotient; both losses are quite troublesome in extension of these geo-
metric concepts to cartesian space of » dimensions, which is necessary
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in connection with n-fold partitions. In homogeneous coordinates the
likelihood ratio can conveniently be represented by any of the equally
good sets of homogeneous coordinates, P(x | B,):P(z | By), r1(2):re(x),
and r,(z, a):ry(x, o). Finally, it may be remarked that P(z| B;)/
Pz | B,) is a non-homogeneous coordinate. Thus the many equivalent
forms in which the likelihood ratio statistics can be naturally expressed
corresponds to the many different notations by which a ray through the
origin can be naturally designated.

The most remarkable fact about the likelihood ratio considered as a
statistic is that it is necessary, so to speak, as well as sufficient. By that
I mean that to have the advantages of knowing x it is necessary as
well as sufficient to know the likelihood ratio. The point can be put
formally thus:

THEOREM 1 If y is sufficient for x, then y is an extension of r.

Proor. The theorem is virtually obvious in terms of the factora-
bility criterion for sufficient statistics, for in the notation of (4.10)

R(y(z), 1)
(6) ri(®) = o=
ZR(y(x), 9)
with probability one, exhibiting r; as a function of y. @

COROLLARY 1 If z is sufficient for x, and if every y sufficient for x
is an extension of z, then z is equivalent to r.

By ordinary analytic standards, the likelihood ratio seems to be a
rather complicated statistic, at least in the case of n-fold partitions,
where n is at all large; for, to one who takes seriously the idea that a
multiple statistic should not also be regarded as a single statistic, the
likelihood ratio seems at first sight to be n, or perhaps (n — 1), statis-
tics. Yet Theorem 1 and its corollary show that the likelihood ratio is,
in a fundamental sense, the most compact sufficient statistic that a
partition problem admits.

As an explicit example of a likelihood ratio, consider the twofold par-
tition problem arising from Exercise 4.1 on confining attention to two
different values of p, say p; and ps. The likelihood ratio r is easily
computed thus:

(7) P(.El Bz) = p’i”’(x)(]. —_— pi)ﬂ“y’(z)
v'(2) v
Pi Pi
=01- pi)"( ) = ¢ (-—) ,
80 1—p q;
®) ri(z) 4" (pi/9:)”®

 2¢pi/g)
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Theorem 1 is thereby verified in the present instance; for (8) exhibits
r explicitly as a contraction of y, and y is easily exhibited as a contrac-

tion of r thus:
{7'1(‘”) ((h)"}
log N
ro(x) q1 )

D192
log —
P2q1
In this example, y is, in view of (8) and (9), equivalent to the likelihood

ratio.

9) y(z) =

Exercises
1. Express k(8(x)) and »(F(x)) in terms of the likelihood ratio thus:
(10) B(%; ) =pi1iB(1)/ Z riB(3),
(1) k(B(z)) = k(B(r())).
12) W@ 8) = T ke [ T P Bys |
r J

2. This extended exercise develops the personalistic and behavioral-
istic theory of what, following the objectivistic and verbalistic tradi-
tions of statistics, is called the testing of a simple dichotomy, a type of
decision problem that, though seldom very realistic, is a popular and
instructive example with important implications for more realistic prob-
lems. Verbalistically such a problem is deseribed as that of making the
best guess on the basis of an observation as to whether it is By or B,
that obtains. Behavioralistically, this is generally interpreted as the
problem of deciding, on the basis of observation, between two primary
acts one of which is preferable to the other if B; obtains and vice versa
if By does. Here is one topic in which the assumption that ¢ is confined
to two values is rather more than simply a pedagogical simplification;
a reader interested in relaxing the assumption will find pages 127-130
of [W3] stimulating.

Suppose that F contains only two acts f; and f, and is dominated by
neither. Let ¢:j = Df E(f; I Bj).

(a) There is no loss of generality in supposing

¢ -— [
(13) 8 =Df_23__22>0, 8 _____ngu_¢m_>

2 2
which will henceforth be done. That is, it will be supposed that f; is
appropriate only to B; and vice versa.

0,
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(b) Show that

(19) k() = 2 ¢uB()  for B(1) = 81/(81 + &) = Bo(1)
7
= Z $2;8(j)  for B(2) > 82/(81 + 82) = Bo(2)
= 311 + $21)B(1) + 5(d12 + $22)8(2) + | 818(2) — 86(1) |
= 2 () + | 6:8(2) — 88(1) |,
J

where By and the ¢/s are defined by the context.

(¢) E(;|B) = k(B), if and only if B(:) > Bo(). This condition ob-
tains for both ¢’s simultaneously, if and only if 8 = B,.

(d) Show that

15) BBED = {5 o) + | a8 @ — br2800) |}/ i)
J J

= 2 #iB(Gir)  forri 2 ri*(8, Bo),
J

where

Bo(2)/B()
16 *(B, o) = =
(16) 16,8 > 5o /6
and that

(17) o(FE@) | B) = 2 68() + X | 81P(r| B2)B(2) — 82P(r | By)B(1) |

J
= {& + &[1 — 2P(r; < 1*(8, Bo) | B1)
— P(r = r*(8, Bo) | B)1}B(1)
+ {ez + 811 — 2P(ry < r2*(B, Bo) | Ba)
— P(r = r*(8, Bo) | B2)1}B(2).

(e) Any derived act f(x) determines a function i assigning an % to
each z, i being implicitly defined thus: f(z) = f;(;). Conversely any i
determines a derived act. Show that E(f(x) | B8) = v(F(x) | B), if and
only if 7y (x) 2 7i(2)*(8, Bo) for every z. Such a function ¢(z) is called
a likelihood-ratio test associated with r*. Show that at least one likeli-
hood-ratio test is associated with every value of r*, and that if P(r = r*)
= 0 (which is typically the case) there is only one.

(f) If f(x) is determined by a function of i, the probability of deciding
on the inappropriate value of i in case B; obtains is generally called
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the probability of an error of the j-th kind. Analytically the probabili-
ties of error of the first and second kind are, respectively,

(18) &1 =ptP(i(x) = 2| B;), e =psP(i(z) = 1| By).

If i* is a likelihood-ratio test associated with r*, show that its errors
of the first and second kind are subject to the bounds

(19) P(ry <m*|By) < e1* < P(ry < mi*| By)
(20) P(ry > r*| By) < e2* < P(ry > 11*| By).

What about the typical case that P(r = r*) = 0?

(g) Show that, if i is at least as good as i* in the sense that ¢; < e;*
for both 7’s, then i is a likelihood-ratio test and i is virtually i* in that
e; = e;* for both 7’s. Hint: Consider an F and a 8 for which r*(8, 8)
= r*, showing that these exist, and note that, for this decision problem,

E(n|B) = (e — 82(1 — 2,)}B(1) + {e2 — 81(1 — 2¢2)}8(2)
= o(F(x) | B)

Ef]8) = {e1 — 82(1 — 2e1)}B(1) + fe2 — 8:(1 — 2€2)}B(2)
> o(F(x) | B),

with equality if and only if 1 is a likelihood-ratio test.
This important conclusion about likelihood-ratio tests has been much
emphasized, especially by the Neyman-Pearson school.

(1)

The concept of likelihood ratio, sometimes simply called likelihood,
is now one of the most pervasive concepts of statistical theory. It
seems to have been introduced in 1922 by R. A. Fisher (cf. index of
[F3]), who emphasized it in connection with the important method of
estimation named by him ‘“the method of maximum likelihood.” Its
use in testing hypotheses was apparently first emphasized by J. Ney-
man and E. S. Pearson (see Vol. II, p. 303 of [K2]). In connection with
likelihood ratios as necessary and sufficient statistics, mathematically
advanced readers will be interested in Section 6 of [L6], [B2], and
[M5]. One of the earliest contributions in this direction was made by
C. A. B. Smith [S14].

6 Repeated observations

If x(n) = {x;, ---, X,}, where, given B;, the x,’s are independent
identically distributed random variables, then v(F(x(n))) is a non-de-
creasing function of 7, for the (n + 1)-tuple is an extension of the n-
tuple. If k(B) is strictly convex—a condition that you now recognize
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as interesting—v(F(x(n))) is easily seen to be strictly increasing in =,
unless the individual x,’s are either utterly irrelevant or definitive.

It is to be expected, especially in the light of the approach to certainty
discussed in § 3.6, that, as n becomes very large, x(n) will become prac-
tically definitive. Indeed, § 3.6 makes it possible to state and prove a
formal theorem to that effect.

THEOREM 1

Hye. 1. x(n) = {x, ---, X,}, where, given B;, the x,’s are inde-
pendent and identically distributed random variables.
2. The x,’s are not utterly irrelevant to B;.

3. o(F | B) = k(8).
Coxcr.  lim o(F(x(n))|B) = UB) =pt Bk, 0) + B(2)k(0, 1)
uniformly n: E i

Proor. Writing x as short for x(n),
1) v(F(x) | 8) = E[k(Bx))).

For an arbitrary e > 0, let the closed interval I on which k is defined
be partitioned into two subsets J and K, where J is the set of those
B’s such that

) k(@) = 1(8) — ¢

and K is the complement of J relative to I.

It follows from the continuity of the functions on each side of (2)
that B eJ, if either component of 8 is sufficiently large.

The computation initiated in (1) can now be carried forward thus:

(3)  Ek@EX)] = Ek@BE)) | Bz(s)) e JIPB@(s)) ¢J)
+ E[k(Bx)) | B(s)) € KIP(B(x(s)) ¢ K)
> E[l(B(x)) | B(z(s)) e JIP(B(x(s)) € J)
+ min k(8)-P@(s)) e K) — ¢

= E[l(8(x))] — {E[LB®X)) | B(z(s)) ¢ K]
— min k(B)} P(B((s)) ¢ K) — ¢

> Us) — max| k(8) |- PB(()) £ K) — e

Now, in view of the paragraph in which (3.6.15) occurs and the fact
that, if either component of 8 is close to 1, 8 ¢ J; P(8(z(s)) ¢ K) becomes
arbitrarily small for sufficiently large n. @
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7 Sequential probability ratio procedures

The present section digresses to discuss an interesting application of
the ideas presented in this chapter to what is called sequential analysis.
Sequential analysis refers in principle to the theory of observational pro-
grams in which the selection of what observations to make in later
phases of the program depends on what has been observed in earlier
phases. Such behavior is commonplace in everyday life; for example,
you look for something until you find it, but not longer. Statistics it-
self has always used sequential procedures. For example, it is not rare
to conduct a preliminary experiment to determine how a main experi-
ment should be carried out. Thus, if one were required to estimate
with a roughly preassigned precision the mean of a normal distribution
of unknown mean and unknown variance, one might reasonably begin
by taking ten or twenty observations, which would give some idea of
the variance and would therefore determine about how many observa-
tions are necessary for achieving the requisite precision.

Commonplace though problems with sequential features are, A. Wald
was the first to develop (1943) a systematic theory of a considerable
body of problems of this sort. For early history see the Introduction
of [W2] and the Foreword of Section I of [S17].

Some later ideas on sequential analysis, due mainly to Wald and
Wolfowitz, are the subject of this section. It will not be practical to
proceed with full rigor, primarily because random variables capable of
assuming an infinite number of values are necessarily involved. Full
details are given in [W3] and more compactly in [A7], but not in Wald’s
book on sequential analysis [W2].

Let x = {x(1), ---, x(v), - - -}, where the x(v)’s are conditionally an
infinite sequence of independent, relevant, identically distributed ran-
dom variables. Rather informally, a sequential observational program
with respect to x is a rule telling whether to observe x(1) or whether to
make no observation at all; if the particular value z(1) is observed,
whether to observe x(2) or to discontinue observation; if the values
z(1) and z(2) are observed whether to observe x(3) or to discontinue
observation, ete.

More formally, let N be a function of the infinite sequence of values
z = {z(1), ---, z(v), ---} such that, if the sequence z’ agrees with z in
every component from the first through the N (z)th, then N(z') = N(z).
Such a function N determines a sequential observational program,
which is a contraction of x, call it y(x; N), defined thus:

¢y y(x; N) =p¢ {x(1), -+, x(N ()}
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It is te be understood that, if N(z) is zero for some =z, it is identically
zero, and that y(x; 0) is a null observation.

It will be assumed that the random cost associated with a sequential
observational program is proportional to the number of random varia-
bles observed, that is, ¢ = N(x)v, ¥ > 0. No categorical defense of
this assumption is suggested, but clearly there are interesting problems
in which it is met at least approximately. The domain of applicability
of the theory can actually be considerably extended by modifying the
assumption to include a fixed overhead cost that applies except in case
N is identically zero; this does not greatly complicate the analysis, as
the interested reader will be able to see for himself. The theory would
even remain virtually unchanged, if ¢ were only assumed to be of the
form

N (z)

(2) c=h+ > c@), ifN>O0,
v=1

=0, if N =0,

where h, ¢(1), ¢(2), --- are independent with finite expected values
E(h) > 0, E(c(r)) > 0, and the ¢(v)’s are identically distributed.

For any F there are some values of 8 for which it would be unwise to
adopt any sequential observational program other than the null obser-
vation. Suppose, for example, that 8 is so close to an extreme value
that 1(8) — k(8) < v; under this circumstance the most that could be
gained by observing even x itself would be less than v, but the cost of
making so much as one observation is at least y. Let the set of values
of 8 for which it is not justified to make any but the null observation be
denoted for a while by J(F; v), or simply J, for short.

Now, if 8 ¢J, the person’s utility can, by the definition of J, be maxi-
mized by refraining from any observation but the null observation and
accepting the utility %(8); otherwise there will be some advantage to
him in observing x(1). If the person does observe the particular value
z(1) of x(1), he finds himself with a posteriori probabilities 8(x(1)) in
place of the a priori 8, he has paid (or at any rate entailed) a cost v,
and he must now decide whether to make any further observations.
His new problem is simply the problem he would have faced at the out-
set had his a priori probabilities been B(z(1)) instead of B8, except that
all utilities are now reduced by y. He justifiably accepts the utility
kE(B(x(1))) — =, if B(xz(1)) eJ; otherwise he will observe x(2). Continu-
ing this line of argument step after step, it follows that optimal action
consists in observing successive x(v)’s until an a posteriori probability
in J occurs, and then adopting a basic act consistent with the a posteriori
probability.
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In actual practice, it is far from easy to determine whether a particu-
lar value of 3 belongs to J(F; v), because in principle the whole enormous
variety of sequential observational programs has to be explored to de-
termine whether any one of them has a derived value greater than k(B).
The practical advantage achieved in the preceding paragraph is that
of greatly restricting the class of programs that merit consideration.
Thus the problem of determining whether 8 ¢ J(F; v) does not require
a survey of all observational programs, but only of those defined in
terms of some set J’ according to the rule that N(z) is the first integer
for which B(z(1), ---, z(n)) eJ'.

If programs corresponding to all sets J’ had to be examined, the
process would still be mathematically impractical; indeed, in all but
special cases, practical solutions have yet to be found. But, if any
special conditions that J must necessarily satisfy are discovered, only
sets J' satisfying those conditions need be examined. Some very gen-
eral conditions are these: J contains the extreme points of I;J is topo-
logically closed, that is, if a value B¢ is not in J, then the near neighbors
of Bo are also not in J. The first of these conditions requires no com-
ment, and the second follows easily from the continuity as a function of
B of

3) EkBy(x; N))) — ¥N | 8] — k(@)

These conditions alone do not go far toward narrowing to practical
limits the variety of sets to be explored. Thus far in the development
of the subject, really powerful conditions have been obtained only at
the expense of considerable restrictions on the strueture of F or, equiv-
alently, of k.

Suppose, then, that F is dominated by a finite number of acts or,
what amounts to a little less, that the graph of k is polygonal, as it is
for the k graphed in Figure 2.1. Technically, this restriction on k may
be expressed by saying that the interval I is the union of a finite num-
ber of intervals of linearity of k. Under the restriction, relatively much
can be concluded about the structure of J(F; v), for it is true in general,
as will be shown in the next paragraph, that the intersection of J with
any interval of linearity of k is a closed interval.

Suppose, indeed, that 8; and B2 belong toJ and to a common interval
of linearity of k, but that 8y on the interval between 8; and B2 does not
belong to J. A contradiction follows according to the following com-
putation, in which h is any act derived from a sequential observational
program, cost included, that is advantageous at By.

4) 2 E(h | BBo(j) > k(Bo),
J
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for h is supposed to be advantageous at By; and
©) 2 EM|B)Ba(i) < k(Ba)y m=1,2,

for no derived act is supposed to be advantageous at B, since B, ¢ J.
Since B, is a weighted average, say Zv,,8m, of the 8,,’s, and since k() is
linear in the interval between 8, and s, it follows from (4) and (5) that

®) 2 Bt | B)Bo(s) < k(Bo),

contradicting (4). The supposition that B8y e ~J has thus been re-
duced to absurdity.

The demonstration just given extends directly to n-fold problems.
The general conclusion is that the intersection of J with any domain
of linearity of k is convex, so that, if k is polyhedral, J is the union of a
finite number of closed convex sets, each lying wholly in a domain of
linearity of k. The practical implications of the conclusion are enor-
mously greater for twofold than for higher-fold problems, because
twofold problems lead to one-dimensional bounded, closed, convex
sets, which present no great variety, all of them being closed bounded
intervals. But threefold problems, for example, lead to closed bounded
two-dimensional convex sets, a restriction that leaves great room for
variety.

If k is polygonal, the variety of sets J’ to be surveyed is enormously
reduced, for J’ must be the union of a known number of intervals, each
of which is confined to a known interval. Suppose that this number is
m; the class of sequential observational programs to be surveyed can
be characterized by the two end points of each of the m intervals, ex-
cept that the possibility that some of the intervals are vacuous must be
borne in mind. Since the extremes of I are neeessarily in J, and there-
fore necessarily appear as end points of intervals in J, the exploration
has been reduced to a 2(m — 1) parameter family of possibilities.

The possibility that m = 1, which almost means that F is dominated
by a single element of itself, is trivial; for then all 8’s are in J, and ob-
servation is never called for. This can be seen in many ways. In par-
ticular, it follows as an illustration of the machinery that has just been
developed, thus: The end points, or extremes, of I are both in J, as al-
ways, and, since m = 1, they are both in the same interval of linearity
of J; therefore the interval between them, namely every value of g,
lies in J.

The possibility that m = 2—in ordinary statistical usage, the se-
quential testing of a simple dichotomy—is of particular importance.
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It occurs typically when F is dominated by two acts, neither of which
dominates the other, as in Exercise 5.2. One of the two acts is approp-
riate to one “hypothesis” B;, and the other is appropriate to B;. In
case m = 2, it is easily seen, by methods that have now been indicated
more than once, that each of the two closed intervals that constitute J
has as one end point one of the extremes of I. Neither of the two inter-
vals can be vacuous, nor can either consist only of a single point. It is
relatively easy to find, at least approximately, the two values of 8 that
determine J(F; v), and the theory of this situation has correspondingly
been brought to a relatively high degree of perfection; for details, see
[S17], [W2], [W3], and [AT7].

Following (or at least paraphrasing) Wald [W2], a sequential obser-
vational program characterized by making successive observations un-
til the a posteriori probabilities fall into some set J, followed by adopt-
ing a basic act appropriate to the a posteriori probability, is called a
sequential probability ratio procedure. The reason for this nomencla-
ture is that to observe until the a posteriori probabilities fall into J is
to observe until the numbers

BEP((1), - -+, z(v) | By)
22 B({)P((D), -+, 2(v) | B))

@) BG | 2(1), -+, 2(v)) =

lie in a certain set, or, what amounts to the same thing, satisfy certain
conditions. But, the particular value of 8 having been assigned, this
is tantamount to requiring the ratios of probabilities

P(x(l)y Tty x(N) I Bz)
P(z(1), -+, z(N) | B;)

@®

to satisfy certain conditions.

Since (7) and (8) are ways of expressing the likelihood ratio, the ob-
servational program together with the act derived from it might also
be referred to as a sequential likelihood-ratio procedure. Indeed, but
for the precedent established by Wald, that would seem the better
name.

As an actual example of a sequential probability ratio procedure,
suppose that the distribution of x(v) given B; attaches the probabilities
p; and ¢; = 1 — p; to the values 1 and 0, respectively. The expression
(8) can in any case be written in the factored form

il {P(w(v) | Bi)},

9
® P(z(v) | B;)

v=1
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and in the present example this takes the special form

q 1 ’

N
(11) y(N) = 2 z(v).

It is noteworthy, in connection with sufficient statistics, that the con-
dition that the a posteriori probability be in J is in this case expressible,
according to (10), as a condition on y(N) and N. Specializing the ex-
ample further, suppose that J is of the sort appropriate to testing a
simple dichotomy. The condition that the a posteriori probability be
in ~J is then expressed by each of the following equivalent pairs of
inequalities, where «(1) and «(2) are positive numbers such that «(1)
+a(2) <1.
B(1 I z(1), - -+, z(N)) <1 — a(1),

(12)
82| 2(1), -+, (V) <1 — a(2).
B(1)Q
sna + 6@ W
19 82)
T

where Q for the moment denotes the likelihood ratio (10).

B — a(®) _
B(Da(D)

B
B — a@)

where Q*, @« are defined by the context. Since, according to (13), the
structure of ~J is superficially determined by three parameters, say by
B(1), a(1), and a(2), it is worthy of some note that the corresponding con-
dition is ultimately expressed in terms of only two special parameters,
Q* and Qx; this is only natural, considering that ~J is an open interval
determined by its two end points. The act that would be appropriate
to B is called for by values of @ > Q*, and the one appropriate to B,
is called for by values of @ < Qx.

Q< Q%
(14)

Q > Q*;
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Thus far, the particular form (10) of the likelihood ratio has not
really been exploited in the calculation, so (14) applies to the testing of
simple dichotomies generally. Taking account of (10), (14) can by ele-
mentary manipulation be put in the following form.

y(N) < {log @* + N log (92/q1)}/10g (p1g2/P2q1),
y(N) > {log @« + N log (92/q1)}/1log (p1g2/P21),

(15)

where, for definiteness, it is supposed that p; > ps. Thus, the region
in the (&, y) plane determined by ~J, the region in which further ob-
servations are called for, is a band bounded by two parallel lines of
positive slope.

8 Standard form, and absolute comparison between observations

If x and y are such that, for every F and 8, v(F(x) [ B8) > v(F(y) l B);
then x imitates, so to speak, an extension of y, and it may appropriately
be said that x is a virtual extension of y. Correspondingly, if x is a vir-
tual extension of y, and y is a virtual extension of x, it may be said that
x and y are virtually equivalent.

No matter what a priori probabilities a person may have, or what
basic acts are available to him, he will have no preference between a
pair of virtually equivalent observations, so virtually equivalent obser-
vations are indeed equivalent for many practical purposes. Where com-
binations of observations are under consideration, however, the rela-
tion of virtual equivalence does not resemble true equivalence. For
example, if x and y are equivalent, then each is equivalent to the mul-
tiple observation {x, y}, but if x and y are only virtually equivalent,
they may well be independent, in which case neither will typically be
equivalent to {x, y}.

This section explores the notions of virtual extension and virtual
equivalence. In particular, an interesting standard representative of
the class of observations virtually equivalent to a given observation x
is defined and discussed. This material is scarcely referred to later in
the book, and it may without much loss be skipped or glossed over. It
will be couched frankly in the language of n-fold as opposed to twofold
partitions, but readers with the rest of the chapter behind them will
easily be able to concentrate on the twofold situation, if they find it
more understandable.

Most of the ideas to be presented in this section were originated by
H. F. Bohnenblust, L. S. Shapley, and S. Sherman in a private memo-
randum dated August 1949, which I was privileged to see at that time.



7.8] STANDARD FORM 149

This work was extended and brought to the attention of the public by
David Blackwell in [B16].

It is obvious that, if y is a sufficient statistic for x, then x and y are
virtually equivalent. In particular the likelihood ratio r derived from
x is virtually equivalent to x. Moreover, the reader may anticipate, and
it will be formally shown in the course of this section, that if and only
if observations are virtually equivalent do their likelihood ratios have
the same distribution for every value of 8, or, what comes to the same
thing, given each B;, ¢ = 1, ---, n. Thus the n conditional distribu-
tions of the likelihood ratio given each B; could be taken to characterize
the observations virtually equivalent to a given one, say x. Actually,
as will be shown, the class of observations virtually equivalent to x can
be represented by the distribution of the likelihood ratio for any single
non-extreme value of 8. For definiteness, the particular value 8* =
{1/n, ---, 1/n} will be used, but the interested reader will find it a
simple exercise to extend all the considerations based on 8* to any
other non-extreme 8, as would be necessary in any extension of the theory
to infinite partitions.

Let m(r) be the probability that the likelihood ratio in the standard
form (5.5) attains the particular value r when 8 = g*. With self-evi-
dent abbreviations,

o)) m(r) = P(r| 8%
= X P(r| B)(1/n)

1
=-2 > P|B).

n i r@=r
The second line of (1) exhibits m(r) expressed in terms of the n distri-
butions P(r l B;). It is rather more interesting to see that those n dis-
tributions can themselves all be expressed in terms of the single dis-
tribution m, as follows from the definition (5.5) of r and the third line
of (1) thus:

2 P(r|B) = (; P(z| B)
= X r(®) X P(=|B))
7(Z) =r F)
= nrym(r).
Similarly,

® Pe|6) = n{ T 8] me

i
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Regarded as a probability measure on the set of all n-tuples of num-
bers r, m has the following three important properties.

P@r; >0|m) =1;
) P(Z_)r,-=1|m)=1;

E@;|m) =n~L

Of these, the first two are obvious from the definition of r, and the third
follows by calculation from (2) thus:

®) 1=2P(r|B) =n2rm)

nE(r; | m).

Conversely, suppose that m is any mathematical probability defined
on the set of n-tuples r of numbers, subject to the conditions (4), then,
as can easily be verified, n mathematical probabilities are formally
defined by the equation P(r| B;) = nram(r). Mathematically, r dis-
tributed thus can be regarded as an observation. The following calcu-
lation demonstrates the expected conclusion that the likelihood ratio
of this observation is the observation itself and that its distribution
given 8* is m.

P(r|B)  mwrm()
> P(r|B) nYXrme) "
J i

P(r| 8% = X2 nrym(r)(1/n) = m(r).

(6)

It is interesting and fruitful to compute v(F(x) | B) in terms of m.
0 oF@]|8) = EEX) | )
= Blk({r8G)/Z 18] | 6]
= nB [k({r8()/ 2 1,8()}) X 1;8(3) | m].

Temporarily adopt the convention that, if « is any n-tuple of positive
numbers and h any function of r (not necessarily convex), T(a)h is a
function of r defined thus:

®) T(a)h(r) =ps h({rie())/ 20 ried)}) Zrje(f).
Then (7) takes the abbreviated form ’
9) E®B(X)) | 8) = nE(T(B)k(r) | m).
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To see the implications of (9), it is necessary to know something about
what the operation T'(8) does to the function k, in particular to know
that T(8)k is convex in . The derivation of these necessary facts is
straightforward and is left to the reader as a sequence of exercises.

Exercises
la. T()T(®h = T({a(1)B8(1), - -+, a(n)8(n)})h = T(B)T(x)h.
1b. h = T({a(1)7}, -+, a(n)"1}) T()h.
2. T(d%)h = lh.
n

3. If h(r) > g(r) for r between ' and r"’; then T(a)h(r) > T(a)g(r)
for r between r; a(z)/z ri'a(j) and r,"a(z)/z i’ a(g).

4. If h is linear, then 80 is T(a)h.

5. If h is convex (strictly convex), then so is T'(a)h.

Exercise 5 is obvious in the light of Exercises 3 and 4, but some may
prefer the demonstration suggested by the following calculation, where
A+ u =1; A, u > 0; and obvious abbreviations are used.

(10)  T(a)h(r + wr')

Aa-r r ua-r r’

- h(———————a fo T T
a-(A\r + ur’) a-r a-(\r + ur’) a-r’

<M (ﬁ 0‘) a-r+ ph (a_r% > a-r
= NT(a)h(r) + wT(2)h(r).

It is amusing to establish once more that observation generally pays,
this time by means of (10), (4), and Exercises 5 and 2.

(1) nE(T(B)k(x) | m) > nT(B)k(E(x | m))
= nT(B)k(8*)
= k(8).

If x and x’ are observations and m and m' are the corresponding dis-
tributions, it is now easy to say in terms of m and m’ when x is utterly
irrelevant, when it is definitive, and when x is virtually an extension of x’.

a) a(Ar + ur’)

More exercises

6. The observation x is utterly irrelevant if and only if P(r = g* | m)
=1.

7. The observation x is definitive; if and only if P(r; = 1| m) = 1/n,
or, equivalently, if and only if P(r, =0|m) = (n — 1)/n.
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8a. The observation x is a virtual extension of x’, if and only if, for
every convex function h defined for r,

(12) E(h(r) | m) > E(h(r) | m).

8b. The two observations are virtually equivalent, if and only if, for
every convex function'h,

(13) E(h(x) | m) = E(h(x) | m).

The conclusion reached in Exercise 8b can be much improved. In-
deed, it will be shown that the two observations are virtually equiva-
lent, if and only if m and m’ are the same probability measures. This
will be achieved if, for example, it is shown that m and m’ have the
same moments, for it is well known that two different countably addi-
tive probability measures confined to a bounded set of n-tuples of num-
bers cannot have the same moments.f The moments in question are
expected values of monomials of the form

(14) g(r) = ri%r® -+ 1",

where the ¢’s are non-negative integers. In general, g will not be
convex, so it cannot be concluded immediately that g has the same
expected value with respect to m and m’. If, however, a highly convex
function is added to g, then the sum will be convex and its expected
value will be the same with respect to m and m’. Since, by hypothesis,
this is also true of the convex term of the sum, it must also be true of
the not necessarily convex term. Specifically, let

(15) h(r) = g(r) + 2 2 r?,

where A is a positive number to be determined later. To test h for con-
vexity, let s be for the moment an arbitrary n-tuple of numbers and «
a real variable, and compute the second derivate of h(r 4 os) with re-
spect to g at 0 = 0.

d?h(r + os) > a%g(r)

2
do =0 44 OT; 07}

(16) sis; + N 2 s

j
Considering that each r; is between 0 and 1, the absolute values of the
derivatives of g that appear in (16) have a common upper bound, say

t See, for example, Corollary 1.1, p. 11, of [S13].

Under our usual simplifying assumption that x is confined to a finite number of
values, m is certainly countably additive. Actually, the whole theory can be de-
veloped mutatis mutandis assuming only that the distribution of x is countably
additive on some suitable Borel field.

+ Morse and Sacksteder (1966) show, in effect, that the test can be confined
to the very special convex functions max p;r;, where the p; are arbitrary posi-
tive numbers.
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u; 80, if X > un?, h is convex in the region where each r; lies between 0
and 1 and is a fortiori convex in the intersection of that region with
the hyperplane Zr; = 1

Now that it has been established that m and m’ represent virtually
equivalent observations, if and only if m and m' are identical, it is ap-
parent that m—or, more exactly, the set of conditional distributions
P(r| B;) = nrym(r)—is a unique standard form for all observations
virtually equivalent to x.

If x virtually extends y, it is to be expected that, no matter what rea-
sonable definition of “informative’’ may be suggested, x will be at least
as informative as y. In particular, it is to be expected that the infor-
mation of B; with respect to B; (as defined in § 3.6) will be at least as
large for x as for y, which the following calculation verifies, supposing
for simplicity that, for both observations, infinite information is im-
possible. The point in question depends on the convexity of the func-
tion h defined by

a7 h(r) = ry(log r; — logr;),
because
(18) L, ; = E(log r; — log ;| By)

= nE[r;(log r; — logr;) | m].

The required convexity can be demonstrated much as it was in (15)*
for a different function also momentarily called h:

2 . \ ,
(19) ;—2h(r + 05) _ 9%k o242 0%h(r) 92h(r)

2
I 8i8;5
=0 37‘,‘2 dr; or; 37‘,’2

Sj

8,;2 28{8,' T,'sz

s ] ]

= ;,»7? (rjs,' - T{Sj)z 2 0.

It would be interesting to know whether every virtual extension is
realized by an actual extension, that is, whether whenever x is a vir-
tual extension of y there exist random variables x’ and y’ such that x
and x’ are virtually equivalent, y and y’ are virtually equivalent, and
x’ extends y’. To the best of my knowledge that conclusion has thus
far been established only in the case of twofold problems, the demon-
stration for that case being given by Blackwell in [B16].

+ Actually, this calculation depends only on the convexity of (log r; —
log ;) in r;/r;



CHAPTER 8

Statistics Proper

1 Introduction

I think any professional statistician, whether or not he found himself
in sympathy with the preceding chapters, would feel that, even allow-
ing for the abstractness expected in a book on foundations, those chap-
ters do not really discuss his profession. He would not, I hope, find the
same shortcoming in this and the succeeding chapters, for they are con-
cerned with what seems to me to be statistics proper. The purpose of
the present short chapter is to explain this transition and to serve as a
general introduction to its successors.

2 What is statistics proper?

So far as I can see, the feature peculiar to modern statistical activity
is its effort to combat two inadequacies of the theory of decision, as I
have thus far discussed it. In the first place, there are the vagueness
difficulties associated with what in § 4.2 were called ‘““‘unsure probabili-
ties.” Second, there are the special problems that arise from more than
one person’s participating in a decision.

From the personalistic point of view, statistics proper can perhaps be
defined as the art of dealing with vagueness and with interpersonal
difference in decision situations. Whether this very tentative defini-
tion is justified, later sections and chapters will permit the statistical
reader to judge. At any rate, vagueness and interpersonal difference
are the concepts that, directly or indirectly, dominate the rest of this
book.

I will not try to discuss vagueness in this chapter, but something
may profitably be said here about interpersonal differences.

3 Multipersonal problems

As I have already frequently said, it seems to me that multipersonal
considerations constitute much of the essence of what is ordinarily
called statistics, and that it is largely through such considerations that
the achievements of the British-American School can be interpreted in
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terms of personal probability. This is a view that can best be defended
by illustration, and the requisite illustrations will be scattered through-
out later chapters; but some support is lent to it by those critics of
personal probability who say that personal probability is inadequate
because it applies only to individual people, whereas the methods of
science are, more or less by definition, those methods that are accepta-
ble to all rational people.

The sort of multipersonal problems I mean to call attention to are
those arising out of differences of taste and judgment, as opposed to
those, so familiar in economics, arising out of conflicting interests. Asa
matter of fact, the latter type of multipersonal situation can, if one
chooses, be regarded as among the former; it may, for example, be
said that you and I have different tastes for the process of taking a dol-
lar from me and giving it to you.

Though modern statisticians do not at all deny the existence of dif-
ferent tastes in different people, only occasionally do they take that
difference explicitly into account. In particular, the theory of utility
has scarcely ever entered explicitly into the works of statisticians. Our
intellectual ancestors who believed in the principles of mathematical
expectation were less tolerant than modern statisticians in so far as
they denied rationality in those whose tastes departed from that prin-
ciple, and some of their bigotry is occasionally met with today.

In dealing with multipersonal situations, it is clearly valuable to
recognize those in which the people involved may all reasonably be
expected to have the same fastes, that is, utilities, with respect to the
alternatives involved in the situation. Explicit attempts to discover
general circumstances under which people’s tastes will be identical are
rare. The most important and fruitful attempt of this sort is repre-
sented by D. Bernoulli’s idea that utility functions will typically be
approximately linear within sufficiently confined ranges of income.
Consciously or unconsciously, that principle is repeatedly appealed to
throughout statistics; it was, for example, brought out in § 6.5 that the
very idea of an observation depends for its practical value on Bernoulli’s
principle of approximate linearity.

Relatively inexplicit exploitations of similarity of taste are sometimes
made in statistics. The idea is often expressed, for example, that the
penalty for making an estimate discrepant from the number to be esti-
mated will, for everyone concerned, be proportional (within a reason-
able range) to the square of the discrepancy; an argument for this prin-
ciple as a rule of thumb appropriate to many contexts will be given in
§ 15.5. Again, there are situations in which it is agreed that the pen-
alty will depend only on the discrepancy and not on the true value of
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the number to be estimated. Of course, there are problems in which
both rules are invoked simultaneously, the penalty being supposed to
be proportional to the square of the discrepancy and independent of
the value to be estimated.

Turn now to differences in judgment, that is, to differences in the
personal probability, for different people, of the same event. Though
modern objectivistic statisticians may recognize the existence of dif-
ferences of judgment, they argue in theoretical discussions that statis-
tics must be pursued without reference to the existence of those differ-
ences, indeed without reference to judgment at all, in order that con-
clusions shall have scientific, or general, validity. To put the same
idea in personalistic terms, I would say that statistics is largely devoted
to exploiting similarities in the judgments of certain classes of people
and in seeking devices, notably relevant observation, that tend to min-
imize their differences.

The tendency of observation to bring about agreement has been il-
lustrated in § 3.6. Some of the other general circumstances in which
different people may be expected to agree, or at least nearly agree, in
some of their judgments have also been mentioned. For example, it
may well happen that different people are faced with partition prob-
lems that are the same in that the same variable is to be observed by
each person, but differ in that each person has his own a priori proba-
bilities 8 and his own set of available acts F. If, however, the condi-
tional distribution of x given B; is the same for each person, then the
people will, for example, agree as to whether a contraction y of x is
sufficient, which is often of great practical value. Again, there are cir-
cumstances under which each of these same people will agree that cer-
tain derived acts are nearly optimal.

4 The minimax theory

In recent years there has been developed a theory of decision, here
with due precedent to be called the minimax theory, that embraces so
much of current statistical theory that the remaining chapters can
largely be built around it. The minimax theory was originated and
much developed by A. Wald, whose work on it is almost completely
summarized in his book [W3]. Wald’s minimax theory, of course, de-
rives from, and reflects the body of statistical theory that had been
developed by others, particularly the ideas associated with the names of
J. Neyman and E. S. Pearson. It seems likely that, in the development
of the minimax theory, Wald owed much to von Neumann’s treatment
of what von Neumann calls zero-sum two-person games, which though
conceptually remote from statistics, is mathematically all but identical
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vith study of the minimax rule, the characteristic feature of the mini-
nax theory.

Wald in his publications, and even in conversation, held himself
iloof from extramathematical questions of the foundations of statistics;
ind therefore many of the opinions expressed in later chapters on such
»oints in connection with the minimax theory were neither supported
a0r opposed by him. It may fairly be said, however, that he was an
sbjectivist and that his work was strongly motivated by objectivistic
ideas.

My policy here of holding difficulties of mathematical technique to a
minimum by making stringent simplifying assumptions will be adhered
to in connection with the minimax theory. A large part of Wald’s book
[W3] is concerned with overcoming the difficulties in technique that are
here avoided by simplifying assumptions, but that must be faced in
many practical problems. Despite Wald’s able effort, important prob-
lems of analytic technique still remain in connection with the minimax
theory. It should also be appreciated that the individual mathematical
problems raised by applications of the minimax theory are often very
awkward, even when stringent simplifying assumptions are complied
with; consequently much work on specific applications of the theory is
still in progress.



CHAPTER 9

Introduction to

the Minimax Theory

1 Introduction

This chapter explains what the minimax theory is, almost without
reference to the theory of personal probability. This course seems best,
because the theory was originated from an objectivistic point of view
and as the solution of an objectivistic problem. Moreover, a philo-
sophically more neutral presentation seems to result, if the ideas of per-
sonal probability are here kept out of the foreground.

The minimax theory begins with some of the ideas with which the
theory of personal probability, as developed in this book, also begins.
In particular, the notions of person, world, states of the world, events,
consequences, acts, and decisions presented in §§ 2.2-5 apply as well
to the minimax theory—from which they were in fact derived—as to
the theory of personal probability.

The point at which the two theories depart from each other is § 2.6,
which postulates that the person’s preferences establish a simple order
among all acts. That assumption is necessarily rejected by objectivists,
for it, together with the sure-thing principle (which they presumably
accept), implies the existence of personal probability. For objectivists,
of course, conditional probability does not apply to all ordered pairs of
events. More specifically, it seems to be a tacit assumption of objecti-
vistic statistics that the world envisaged in any one problem is parti-
tioned into events with respect to each of which the conditional proba-
bilities of all events (ignoring the mathematical technicality of measura-
bility considerations) are defined, but that conditional probability with
respect to sets other than unions of elements of the partition are not
defined. That, incidentally, is why partition problems dominate objec-
tivistic statistics. The partition in question is in general infinite, but,
for mathematical simplicity, it will here be assumed to be a finite par-
tition B;.

The objectivistic position is not in principle opposed to the concept
of utility. In particular, the minimax theory is predicated on the idea
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that the consequences of those acts with which it deals are measured
numerically by a quantity the expected value of which the person
wishes to have as large as possible, whenever (from the objectivistic
point of view) the concept of expected value applies. It will therefore
be doing the minimax theory little or no injustice to postulate here, as
elsewhere, that the consequences of acts are measured in utility.

These preliminaries disposed of, the general objectivistic decision
problem is to decide on an act f in some given F, by criteria depending
only on the conditional expectations E(fl B,), and therefore without
reference to the “meaningless” P(B;).

Taking any personalistic or necessary point of view literally, it is
nonsensical to pose an objectivistic decision problem, that is, to ask
which f of F is best for the person, without reference to the P(B;). On
the other hand, many, if not all, holders of objectivistic views, like Wald,
find themselves logically compelled by two widely held tenets to con-
sider such problems meaningful. First, for reasons I have alluded to in
Chapter 2 and will soon expand upon, many theoretical statisticians
today agree, at least tacitly, that the object, or at any rate one object,
of statistics is to recommend wise action in the face of uncertainty—a
point of view that Wald was particularly active in bringing to the fore.
Second, statisticians of the British-American School, of which Wald is
to be considered a member, are objectivists and are therefore committed
to the view that the probabilities P(B;) are meaningless, or, at any
rate, that they cannot be legitimately used in solutions of statistical
problems.

So far as I know, Wald is the only one who has proposed any solution
to the general objectivistic decision problem, barring minor variations.
His proposal, which is here called the minimax theory, is rather compli-
cated to state. In view of its complexity and the importance of this
theory for the rest of this book, and for statistical theory generally, I
hope the reader will have particular patience with the present chapter.

2 The behavioralistic outlook

Prior to Wald’s formulation of what is here called the objectivistic
decision problem, the problems of statistics were almost always thought
of as problems of deciding what to say rather than what to do, though
there had already been some interest in replacing the verbalistic by the
behavioralistic outlook. The first emphasis of the behavioralistic out-
look in statistics was apparently made by J. Neyman in 1938 in [N3],
where he coined the term ‘““inductive behavior” in opposition to “in-
ductive inference.”” In the verbalistic outlook, which still dominates
most everyday statistical thought, the basic acts are supposed to be
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assertions; and schemes based on observation are sought that seldom
lead to false, or at any rate grossly inaccurate, assertions.

The verbalistic outlook in statistics seems to have its origin in the
verbalistic outlook in probability criticized in § 2.1, which in turn is
traceable to the ancient tradition in epistomology that deductive and in-
ductive inference are closely analogous processes.

I, and I believe others sympathetic with Wald’s work, would analyze
the verbalistic outlook in statistics thus: Whatever an assertion may
be, it is an act; and deciding what to assert is an instance of deciding
how to act. Therefore decision problems formulated in terms of acts
are no less general than those formulated in terms of assertions.

If, on the other hand, a sufficiently broad interpretation is put on the
notion of assertion, perhaps every decision to adopt an act can be re-
garded as an assertion to the effect that that act is the best available,
in which case the difference between the verbalistic and the behavioral-
istic outlooks is only terminological; but I do think that, even under
such an interpretation, the behavioralistic outlook with its tendency
to emphasize consequences offers the better terminology.

Fallacious attempts to analyze away the difference between the ver-
balistic and behavioralistic viewpoints are also sometimes put forward,
especially in informal discussion. For example, it is sometimes said
that one should act as though his best estimate of a quantity were in
fact the quantity itself. But on that basis few of us would buy life
insurance for next year, for we do not typically estimate the year of
our death to be so close. Other examples are discussed by Carnap in
Section 50 of [CIl].

If assertions are, indeed, to be interpreted as a special class of acts
of particular importance to statistics, I have no clear idea what that
class may be; but it would presumably exclude certain acts, such as the
design of an experiment, that surely are of importance to statistics.
Actually the verbalistic outlook has led to much confusion in the foun-
dations of statistics, because the notion of assertion has been used in
several different, but always ill-defined, senses, and because emphasis
on assertion distracts from the indispensable concept of consequences.
I conclude that the behavioralistic outlook is clearer, fuller, and better
unified than the verbalistic; and that such value as any verbalistic con-
cept may have it owes to the possibility of one or more behavioralistic
interpretations.

This analysis is really too brief and must be supplemented by certain
remarks. To begin with, the reader may wonder whether the verbalistic
outlook has adherents who defend it against the behavioralistic, and if
so what their arguments may be. Actually, the statistical public seems
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to greet the behavioralistic outlook as a relatively new idea—how old
it may actually be is beside the point here—which as such must be re-
garded with some skepticism. To the best of my knowledge, however,
only one objection against the behavioralistic outlook has been pre-
sented. It must be discussed next.

It has been seen as an objection to the behavioralistic outlook that
the consequences of some assertions, particularly those of pure science,
are extremely subtle and difficult to appraise. As a function of the true
but unknown velocity of light, what, for example, will be the conse-
quences of asserting that the velocity of light is between 2.99 X 101°
and 3.01 X 10! centimeters per second? But, if some acts do have
subtle consequences, that difficulty cannot properly be met by denying
that they are acts or by ignoring their consequences. Certain practical
solutions of the difficulty are known. For example, considerations of
symmetry or continuity may, as is illustrated in Chapters 14 and 15,
make a wise decision possible even in some cases where the explicit
consequences of the available acts are beyond human reckoning. Again,
analysis sketched in the next two paragraphs tends to show that asser-
tions with extremely subtle consequences play a smaller role in science
and other affairs than might at first be thought.

No worker would actually publish—indeed no journal would accept
—as research the hypothetical assertion about the.velocity of light men-
tioned in the paragraph above. The consequences might be subtle, if
he did; but they would not be very important, for no one would take
him seriously. An actual worker would do as much as was practical
to say what observations relevant to the velocity of light he, and per-
haps others, had performed and what had been observed. To be sure,
his statement of the observations would typically be much condensed;
he would resort to sufficient statistics or other devices to put his reader
rapidly in position to act as though the reader himself had made the
observations. Assertions about the velocity of light, and countless
others of that sort, are of course published in textbooks and handbooks.
These assertions do indeed have complicated consequences, so judgment
is called for in the compilation of such books; but the seriousness of the
consequences of their assertions is limited because of the possibility of
referring to original research publications, a possibility serious text-
books and handbooks facilitate by the inclusion of bibliographies.

On the other hand, it is obvious that many problems described ac-
cording to the verbalistic outlook as calling for decisions between asser-
tions really call only for decisions between much more down-to-earth
acts, such as whether to issue single- or double-edged razors to an army,
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how much postage to put on a parcel, or whether to have a watch re-
adjusted.
It is time now to turn back to objectivistic decision problems.

3 Mixed acts

Speaking with pedantic strictness, it might be said that Wald does
not propose a solution for the general objectivistic decision problem,
because, before undertaking a solution, he insists that F be subject to
a certain condition. On the other hand, he argues that the condition
is typically met in practice; he might fairly have insisted that it is the
very heart of much actual statistical practice. Before discussing the
issue in detail, let me give a small but typical illustration of it.

Suppose that in a rental library I am confronted with the choice be-
tween two detective stories, each of which looks more horrifying than
the other. At first sight it would seem that only two acts are open to
me, namely, to rent one book or the other, but Wald points out that
there are other possibilities, not ordinarily thought of as such. In par-
ticular, I can eliminate one of the books by flipping a coin. More accu-
rately and more generally, I can let my choice depend on the outcome
of a random variable that is utterly irrelevant to the fundamental par-
tition—in this example, a random variable the outcome of which is in-
dependent of the relative merits of the two books. The random varia-
ble may as well be confined at the outset to two values corresponding to
the rental of one or the other of the books, and random variables as-
signing the same probabilities to the books are equivalent for the pur-
pose at hand. In practice, especially serious statistical practice, such
random variables are, taking reasonable precautions, readily provided
by coins, cards, dice, tables of random numbers, and other devices.

In terms of the general objectivistic decision problem, Wald’s point
can (except for mathematical technicalities) be formulated thus: If f,
represents a finite number of elements of F, and ¢(r) is a corresponding
set of non-negative numbers such that Z¢(r) = 1, then the person can
make the mixed act

) f= 3 (1,

available to himself by observing at no appreciable cost a random varia-
ble taking the values r with corresponding probabilities ¢(r) irrespec-
tive of which B; obtains, so F may be assumed to include f. Techni-
cally, the sum in (1) should, for full generality, be replaced by an inte-
gral with respect to a probability measure. But such integrals become
superfluous under the simplifying asssumption, which is herewith made,
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that there are in F a finite set of acts f,, to be called primary acts, with
respect to which every act in F can be represented in the form (1). In
the rental-library example, the two acts corresponding to the two books
can be regarded as primary.

Since mixed acts are also available from the personalistic point of
view, it may well be asked whether it is advantageous to consider them
in connection with that point of view, and, if not, how they can be of
advantage from one point of view but not the other. The answer to
the first part of the question is easy. Indeed, if f is defined by (1) then
it is personalistically impossible that f should be definitely preferred to
every f,, that is, that

for a weighted mean cannot be greater than all its terms. Technical
explanation of the efficacy of mixed acts from the objectivistic point of
view can best be presented after the whole statement of the minimax
rule, but those at all familiar with modern statistical practice will de-
rive some insight from the remark that the usual preference of statis-
ticians for random samples represents a preference for certain mixed
acts.

4 Income and loss

It is sometimes suggestive, and in conformity with some statistical
(though not quite with economic) usage, to refer to E(f] B;) as the
income of f when B; obtains, and, correspondingly, to use the notation
I(f;7). An important concept associated with the income is that which
I shall refer to as the loss (symbolized by L(f; )) incurred by the act f
when B; obtains. By that I mean the difference between the income
the person could attain if he were able to act with the certain knowledge
that B; obtained and that which he will attain if he decides on f when
B; does in fact obtain. Formally,

1) L(f; 1) = s mayx I(f;0) — IE; 9).

If the person decides on f when B; obtains, L(f; ) measures in terms of
income the error he has made. If he were himself informed of B; after
f had been chosen, which is not typically the case, L(f; ) would, so to
speak, measure his cause for regret. On that account, some have pro-
posed to call loss “regret,” but that term seems to me charged with
emotion and liable to lead to such misinterpretation as that the loss
necessarily becomes known to the person. On the other hand, the
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term “loss” has been used by Wald in the sense of negative income,
but in contexts where loss as defined here is, of the two senses, the only
defensible one, as will be explained in § 8. I hope the sense proposed
here will not cause serious confusion.

Exercises

1. For each 7, there is at least one primary act f, such that

2) If,;7) = mf,x I(£; 7).

Such a primary act may fairly be called correct for i.

2. L(f; ©) = 2¢(r)L(f,; 7) > 0, equality holding if and only if f is a
mixture of acts correct for <.

3. L(f; 2) = max I(fr; ) — I(f; 7).

4. L(f; 7) = —I(f; 1), if and only if
3) max I(f,;7) = 0.
r

6 The minimax rule, and the principle of admissibility

The most characteristic feature of the minimax theory is a certain
rule of behavior, or recommendation to the person. This rule, to be
called the minimax rule, can now be formulated thus: Decide on an
act f/, such that

0)) max L(f'; ©) = min max L(f; 7),
i t

where f and f’ are, of course, confined to F.

In words, the minimax rule recommends the choice of such an act
that the greatest loss that can possibly accrue to it shall be as small as
possible. An f satisfying the recommendation of the minimax rule will
be called a minimax act, and the greatest loss that can accrue to a mini-
max act will be called the minimax value of the (objectivistic) decision
problem and written L*. Under the simplifying assumptions that have
been made, it is not technically difficult to show that at least one mini-
max act exists. The statement of the rule can be reasonably extended
to mathematically more general situations, but a digression about this
possibility is not appropriate here. The name of the rule is presumably
derived from the abbreviation “min max” in (1) or from the Latin
phrase “minimum maximorum” thus abbreviated.
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It may well happen that F contains more than one act that is mini-
max for the problem, in which case the minimax rule recommends, not
a particular act, but only that the choice be narrowed to the set of
minimax acts. Some other criterion must then be invoked to narrow
the choice further. In particular, it can be shown that at least one of
the minimax acts is admissible, in the sense of § 6.4. As Wald indicates,
it would, therefore, be an inexcusable violation of the sure-thing prin-
ciple not to narrow the choice to admissible acts. This application of
the sure-thing principle will be called the principle of admissibility.
The minimax rule and the principle of admissibility constitute the sub-
ject matter of, and thereby define, the minimax theory.

6 Illustrations of the minimax rule

It would be hard to imagine an objectivistic decision problem simpler
than that of whether to make an even-money (or more accurately, even-
utility) bet in favor of a certain event or to refrain from betting. That
problem, therefore, provides a convenient first example of the minimax
rule and the concepts associated with it. Supposing, as one may with-
out loss of generality, that the bet is for one utile, the objectivistic de-
cision problem is completely described by Table 1, which gives the in-

TaBLE 1. THE INCOME OF AN EVEN-MONEY BET, I(f;;?)

Event
Act
B, B
Bet, f1 1 -1
Don’t bet, f; 0 0

come of each of the two primary acts for each of the two elements of
the partition corresponding to the event in question and its com-

plement.
In view of Exercises 4.2 and 4.3 the corresponding loss function is

described by Table 2. Therefore,
(1) max L(f; 7) = max Z¢(r)L(f;; 7)

= max ¢() > 3,
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equality obtaining if and only if ¢(1) = ¢(2) = 3. Therefore, L* = 1,
and the only minimax act is f = 1f; + 3f,.

TaBLE 2. THE LOSS OF AN EVEN-MONEY BET, L(f,; ¢)

Event
Act
B B,
f; 0 1
f, 1 0

In this problem, therefore, the minimax rule recommends that the
person decide, in effect, by flipping a fair coin. If the odds in the bet
had not been even, the minimax rule would have recommended the
use of a coin with a certain bias; this more general example will be
worked out in detail in § 12.4. It is noteworthy in connection with the
present problem—for it happens in many others—that, for the minimax
act f, L(f; 7) = L* for every value of 7.

The following more elaborate example, illustrating the mechanism of
observation, is paraphrased from a slightly incorrect example in [S2].
Of three numbered coins, two are pennies and one is a dime, or else one
is a penny and two are dimes. This gives rise to a sixfold partition B;,
because any of the three coins may be the singular one, and in two ways.
The available primary acts are described in two stages thus: First, the
person may select one of the coins by number for observation, or he
may refrain from so doing; second, he must guess at the denomination
of the singular coin. His income in utiles is defined by the following
conditions:

1. If the singular coin is a penny, he must pay a tax of 10; if it is a
dime, he receives a bonus of 20.

2. If he chooses to observe a coin, he must pay an inspection fee of
1, regardless of the particular coin selected for observation.

3. If his guess is incorrect he pays a penalty of 8.

It is easy to see that the first of the three terms in the person’s in-
come is irrelevant to his loss, since his decision does not affect the mag-
nitude of that term. His loss is therefore the sum of two terms. The
first of these is 1 or 0 depending on whether he decides to make an ob-
servation; the second is 0 or 8, depending on whether his guess is correct.
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If the person chooses not to pay the inspection fee, it is clear from the
preceding example that, no matter what he does, his loss may be as
high as 4, and that it is certain to be that small if and only if he governs
his guess (essentially) by the flip of a fair coin.

Suppose next that the person decides to make an observation. If
he selects any particular coin for observation, he is as badly off as he
was before the observation, and he has in addition incurred the inspec-
tion fee. Thus, even if the person knows that the first coin is a penny,
there is nothing he can do to be sure that his total loss will not be more
than 5, and, as before, he can guarantee that small a loss only by govern-
ing his guess with the flip of a fair coin.

I think every practicing statistician would say that, if an observation
is to be made at all, one of the three coins should be selected at random
(i.e., the probability 1/3 should be attached to observing each of them)
and after the observation the person should guess that the singular
coin is opposite in denomination to the one observed. It will be shown
in the next paragraph that this common-sense act is minimax.

In the first place, the loss L(fy; 7) for the act f, in question is, for each
i, equal to 1 + 3 X 8 = 3%, which is less than 4; for the inspection fee
is 1 and the probability of making a wrong guess, which would result
in the loss of 8, is 1/3. To show that f, is minimax, it will be enough to
show that every act can result in a loss of at least 32. One possibility
for doing this (which in § 12.3 will be shown to be a natural one to try)
is to show that, for a certain set of weights, the weighted average of
L(f; ©) with respect to 7 is at least 32 for all f. In fact, it is sufficient,
in view of Exercise 4.2, to establish such an inequality for the primary
acts. In the present example, it happens that the weights can be cho-
sen to be equal. What is to be shown, then, is that the following in-
equality obtains for every primary f.

¢y L(f) =ps§ 22 L(f; 9) > 3%.

Now, if the primary act f does not involve observation, L(f) = 4; be-
cause three of the six terms to be averaged are then 8, and the other
three are 0. Suppose next, for definiteness, that f involves the obser-
vation of the first coin; there are then three possibilities to consider.
First, the guess is made without regard for the denomination observed,
in which case the observation is, so to speak, thrown away, making
L(f) = 5. Second, the denomination guessed may be the same as the
denomination observed, in which case the guess will be wrong for four
of the six values of 7, making L(f) = 61. Finally, the denomination
guessed may be the opposite of the one observed, in which case the guess
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will be wrong for two of the six values of ¢, making L(f) = 3%2. This
argument shows that L* > 3%; and, since L(fy; ©) = 3% for every i, f,
is a minimax act and L* = 32%. It would not be difficult to show that
f, is the only minimax act for this problem.

7 Objectivistic motivation of the minimax rule

The minimax rule recommends an act for the person to choose; more
strictly, it recommends a sharp narrowing of his choice. But how can
this particular recommendation be motivated? To the best of my
knowledge no objectivistic motivation of the minimax rule has ever
been published. In particular, Wald in his works always frankly put
the rule forward without any motivation, saying simply that it might
appeal to some. Though my heart is no longer in the objectivistic point
of view, I will in the next few paragraphs suggest a relatively objecti-
vistic motivation of the rule.

I evolved this far from satisfactory argument at a time when I took
the objectivistic view for granted. Now, as a personalist, it still seems
interesting to me in that it shows, or at least suggests, how statistical
devices combat vagueness, a topic I find very difficult to discuss di-
rectly. On a different level, the argument may shed light on the per-
sonalistic view by suggesting how personalistic ideas entered the mind
of at least one objectivist.

A categorical defense of the minimax rule seems definitely out of the
question. Suppose, for example, that the person is offered an even-
money bet for five dollars—or, to be ultra-rigorous, for five utiles—
that internal combustion engines in American automobiles will be obso-
lete by 1970. If there is any event to which an objectivist would refuse
to attach probability, that corresponding to the obsolescence in ques-
tion is one. As the example centering around Tables 6.1-2 makes clear,
the minimax rule recommends that the bet be taken or rejected accord-
ing as a fair coin falls heads or tails. Yet, I think I may say without
presumption that you would regard the bet against obsolescence as a
very sound investment, agreeing that provision for adequate interest
and compensation for changes in the value of money is implicit in meas-
urement of income in utiles.

On the other hand, there are practical circumstances in which one
might well be willing to accept the rule—even one who, like myself,
holds a personalistic view of probability. It is hard to state the cir-
cumstances precisely, indeed they seem vague almost of necessity.
But, roughly, the rule tends to seem acceptable when L* is quite small
compared with the values of L(f; 7) for some acts f that merit serious
consideration and some values of ¢ that do not in common sense seem
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nearly incredible. Suppose, for example, that I were faced with such
a decision problem, in which it may be assumed for simplicity that there
is only one minimax act f, and consider how I might defend the choice
of that act to someone who proposed another to me. He might, for
example, tell me that he knows from long experience, or by a tip from
his broker, that some act g is preferable to f. ‘“Well,”” I might say, “I
have all the respect in the world for you and your sources of informa-
tion, but you can see for yourself—for it is objectively so—that the
most I can lose if I adopt f is L*.” He will not be able to say the same
for g, and in many actual situations the greatest possible loss under g
may be many times as great as L* and of such a magnitude as to make
a serious difference to me should it occur, which may well end the argu-
ment so far as I am concerned.

It is of interest, however, to imagine that my challenger presses me
more closely, reminding me that I am a believer in personal probability,
and that in fact I myself attach an expected loss L to g that is several
times smaller than L*. Even then, depending on the circumstances, I
might answer frankly that in practice the theory of personal probability
is supposed to be an idealization of one’s own standards of behavior;
that the idealization is often imperfect in such a way that an aura of
vagueness is attached to many judgments of personal probability; that
indeed in the present situation I do not feel I know my own mind well
enough to act definitely on the idea that the expected loss for g really
is L; but that I do, of course, feel perfectly confident that f cannot re-
sult in a loss greater than L*, a prospect that in the case at hand does
not distress me much.

It seems to me that any motivation of the minimax principle, ob-
jectivistic or personalistic, depends on the idea that decision problems
with relatively small values of L* often occur in practice. The mecha-
nism responsible for this is the possibility of observation. The cost of
a particular observation typically does not depend at all on the uses to
which it is to be put, so when large issues are at stake an act incorporat-
ing a relatively cheap observation may sometimes have a relatively
small maximum loss. In particular, the income, so to speak, from an
important scientific observation may accrue copiously to all mankind
generation after generation.

8 Loss as opposed to negative income in the minimax rule

As a variant to the minimax rule as I have stated (or perhaps I should
say interpreted) it, one might consider the possibility of letting the
negative of income play the role of the loss in (5.1). Indeed, strictly
speaking, Wald himself always proposed the minimax rule in that
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form. I believe he never made written allusion to the rule formulated
in terms of loss (as “loss” is defined here); orally he took the position
that loss and the form of the minimax rule based on it were inventions
of mine, toward which he was tentatively sympathetic. There is vir-
tually no mathematical difference between the two rules, and it was
characteristic of Wald’s approach to the foundations of statistics to be
reluctant to commit himself with respect to any other differences.

Though the minimax rule founded on the negative of income seems
altogether untenable, as will soon be explained, and though no one but
myself seems to question that I originated the variant of the theory
based on loss, little or no originality is attributable to me in this re-
spect. Wald more than foreshadowed the idea, for, though he based
his minimax rule on the negative of income, he made it clear in publica-
tions, including [W3], that he regarded as typical problems in which
the income has, for every ¢, the property specified in Exercise 4.4.
Therefore, in the situations Wald regarded as typical, the distinction
between the two forms of the rule vanishes, so, until hearing his ex-
plicit disavowal, I considered the idea of loss as opposed to negative
income his.

To see that the minimax rule founded on the negative of income is
utterly untenable for statistics, consider, for example, a twofold parti-
tion problem with two primary acts in which the income is as in Table 1.

Tasre 1. I(f,;7)

Event
Act
B, B,
f; -1 -1
f2 -10 1

Now, if the person were interested in minimizing the maximum of the
negative income, he would have no recourse but to decide on f;, in which
case (but in no other) he could be sure that the negative income would
be at most 1, whichever B; obtained. This may not in itself seem ob-
jectionable, but suppose now that the person has available free of cost
an observation, however relevant to B;. Then, no matter what derived
act he chooses, if B; obtains, his negative income will be at least 1
utile; and, to be sure that it is not more, he again has no recourse but
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to decide on f;. In short, for the problem at hand, the person’s behavior
would not be influenced by any observation, however relevant. This
seems to me absurd on the face of it, but perhaps the absurdity can be
brought out by a less abstract situation paralleling the example just
given. A person has a ladder, and, just as he is about to use it, it oc-
curs to him that the ladder may possibly be dangerously defective.
He envisages two basic primary acts: f;, to throw the ladder away and
buy a new one, which will cost 1 utile in either event; and f3, to use the
ladder, which will, if the ladder is defective, result in his injury to the
extent of 10 utiles, and will, if the ladder is sound, accomplish his ob-
ject, which is worth 1 utile. Now, if the person acts on the principle of
minimizing the maximum of negative income, he will throw the ladder
away, no matter what tests tend to show that it is sound.



CHAPTER 10

A Personalistic Reinterpretation

of the Minimax Theory

1 Introduction

In this chapter a reinterpretation of the minimax theory, based on
the theory of personal probability and the idea that statistical problems
are typically multipersonal, is tentatively put forward. The reinter-
pretation is based on a model or scheme that captures, I believe, much
of the essence of actual statistical situations, but it may be possible to
effect that end with other equally simple and even more realistic models;
for the one to be presented here leaves much to be desired. In struc-
ture, this chapter is kept roughly parallel with Chapter 9, to enable the
reader to examine as closely as he may wish the parallelism between the
objectivistic interpretation given there and the personalistic one given
here. In particular, the liberty is taken of giving old symbols new mean-
ings in order to bring out the parallelism between the two interpreta-
tions.

2 A model of group decision

Consider a group of people, indexed by numbers 7. These people are
supposed to have the same utility function, at least for the consequences
to be considered in the present context, but their personal probabilities
are not necessarily the same. The group of people is placed in a situa-
tion in which it must, acting in concert, choose an act f from a finite
set of available acts F, the consequences of the acts being measured in
terms of the common utility of the members of the group.

The situation just described will be called a group decision problem.
It is epitomized by a jury. The members of the jury, in legal theory,
are supposed to have common value judgments in connection with the
legal matters at hand; for these are incorporated in the law as stated
in the instructions of the court. But it is part of the very concept of a
jury that its members may be of different opinions; that their judgments

172
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as to questions of fact may differ; that, to put it technically, they may
have different systems of personal probability. Still other situations
resembling the group decision problem are widespread in science and
industry, though the group decision problem does by no means repre-
sent the only sort of social interaction tending to make the theory of
personal probability, confined to a single person, inadequate. When-
ever a hospital or a factory modifies its procedures, whenever a doctrine
is adopted with little reservation by virtually all the workers in a
science, or whenever a panel of experts drafts a report, something like
group decision is taking place.

Since the members of the group in a group decision problem, though
required to act in concert, typically differ from one another in their
probability judgments, it is too much to expect that any rule can be
formulated that will be acceptable to, or in any sound sense proper for,
all groups under all circumstances. On the other hand, there may be
one or more rules of thumb that will lead the group to an acceptable
compromise in many practical circumstances. Two such suggestions,
the group minimax rule and the group principle of admissibility, will
be made and explored in the next section.

3 The group minimax rule, and the group principle of admissibility

In the first place, the possibility of using mixed acts is to be pointed
out. If, for example, you and I, walking together, disagree about which
branch of a fork in the road leads home, we can, and in fact may, de-
cide which to try by flipping a coin.

In general, mixed acts are available in a group decision problem for
reasons analogous tc their availability in objectivistic decision prob-
lems, for, though the members of a group may generally differ in the
probabilities they personally assign to some events, there is in practice
an abundance of events associated with coins, cards, random numbers,
and the like that make it possible for the group to mix the primary acts
in any proportion, all members of the group being in agreement about
what the proportions are. The example of the fork in the road illus-
trates how the use of mixed acts can effect such a compromise as to
make decision possible in what might otherwise be an impasse. As in
the account of the objectivistic decision problems, it will therefore be
taken for granted from now on that F contains all mixtures of its ele-
ments, and once more, for mathematical simplicity, it will be assumed
that there are a finite number of primary acts f, in F, of which all
others are mixtures.

The 7th person in the group attaches a certain expected utility, or
(personal) income, to the act f; call it I(f; 7). In the judgment of the
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7th person, adoption of the act f would represent a (personal) loss,

%) L(E; 9) = max I(f; 4) — I(§; 9.

(possibly zero) as compared with the income or expected utility that
in his opinion would result from an act he considers most promising.

The group minimax rule is the suggestion that an act be adopted
such that the largest loss faced by any member of the group will be as
small as possible. To put it formally, the suggestion is that an f' be
adopted such that

2) max L(f’; 1) = L* = ps min max L(f; 7).
i [

The parallelism between the group minimax rule and the minimax rule
stated in § 9.5 is great. In particular, (2) is identical in appearance
with (9.5.1). This is really only a pun, though a fruitful one, because
L, 7, and even f have altogether different meanings in the two contexts.

As indicated at the outset, it cannot be expected that the group mini-
max rule will, or reasonably should, be accepted by every group faced
with every problem. But, much as in the corresponding objectivistic
decision problems, it may happen that, if L* is small, in a rather vague
sense, the group will accept the group minimax rule. Indeed, if L* is
small, the group minimax rule requires no member of the group to face
a large loss, so no member will feel that the suggestion is a serious mis-
take. In any event, no member of the group can suggest an alternative
that will not make some member’s loss as great as L*, for there is none.
Moreover, in many problems the group minimax rule will lead to the
same loss L* for every member of the group (as is explained in § 12.3),
a circumstance which, when it occurs, may add to the acceptability of
the suggestion by making it seem fair.

Of course it is possible that, as in the objectivistic interpretation,
more than one act fulfilling the minimax principle exists. Here, a para-
phrase of the principle of admissibility will further narrow the choice,
for if

3) L(g;7) < L(f; )

for every 7, with inequality obtaining for some %, the group cannot seri-
ously consider f.

4 Critique of the group minimax rule

Some of the criticisms that have been, or may be, raised against the
minimax rule can as well be discussed in connection with one interpre-
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tation as with the other, and Chapter 13 will be devoted to such criti-
cisms. But some that bear specifically on the multipersonal interpre-
tation in this chapter should be discussed here.

In the first place, the group minimax rule is flagrantly undemocratic.
In particular, the influence of an opinion, under the group minimax rule,
is altogether independent of how many people in the group hold that
opinion. In general, it is difficult to give a formal analysis of the concept
of democratic decision, a point discussed at length by Arrow [A5], Hil-
dreth [H4a)], and others. Perhaps, considering that the people in the
group are postulated to have a common utility function, a satisfactory
analysis of democratic decisions could be given in the case of a group
decision problem by some such procedure as minimizing the average
with respect to 7 of L(f; 7). But, in many situations in which I envisage
application of the group minimax principle, the group will in fact be a
rather nebulous body of people, for example the group of all specialists
in some field. The principle would in such a case be administered by a
single member of the group somewhat in the following fashion. In
planning an investigation, the results of which he intends to publish,
he will endeavor to take account of all opinions, so far as he can know
or guess them, that are considered at all reasonable in his field of
investigation. And when he publishes his results he will say, in
effect, “Whatever reasonable opinions have heretofore been held by
members of this specialty, in the light of my investigation and the min-
imax rule, it is now proper for the members of the specialty, in so far
as they are called upon to act in concert, to agree to such and such an
action.”” To put it a little differently, in such an application the group
is rather fictitious, and the individual investigator is admitting as rea-
sonable a rather large class of opinions, but excluding many that he
is sure his confreres will agree are utterly absurd. He will, for example,
feel quite free to exclude those opinions that almost all educated people
regard as superstitious.

The group minimax rule is also objectionable in some contexts, be-
cause, if one were to try to apply it in a real situation, the members of
the group might well lie about their true probability judgments, in
order to influence the decision generated by the minimax rule in the
direction each considers correct. This objection is, however, scarcely
serious in the fictitious sort of application suggested above.

It is appropriate, in terminating this section, to discuss a certain dis-
tinction, neglect of which can, as was pointed out to me orally by Bruno
de Finetti, lead to serious misunderstanding of the group minimax rule.
Voluminous observation typically tends to make any one person almost
certain of the truth, and also, when a group of people is involved, it
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typically tends to make L* small. These two tendencies, though re-
lated, are separate phenomena, as an illustration will bring out.

Suppose that Peter and Paul are required to bet 1 utile in concert
either that the majority of a large electorate has voted for, or that it
has voted against, a certain issue; but that before betting they are to
be allowed to examine a random sample of 1,001 ballots.

If specific opinions about the division of the electorate are assigned
to Peter and Paul, the situation can be regarded as a group decision
problem. To start with an interesting extreme possibility, suppose
that it is Peter’s unequivocal opinion that 559, of the electorate is for
and 459, is against the issue and Paul’s that the division is 459, for
and 559, against; that is, Peter, for example, is supposed to act as
though he knows that the division is 559,—459,.

If, finally, it is understood that the group decision problem consists
in the two people, Peter and Paul, deciding, before the sample is ac-
tually observed, how their bet is to be determined by the composition
of the sample; then the unique minimax act is to bet that the electorate
majority is whatever the sample majority happens to be. Granting
this easily established solution of the minimax problem, it is obvious
that the two people both face the minimax loss L*. Peter, to be specific,
regards L* as the probability that through random fluctuation the sam-
ple will accidentally fail to corroborate his “knowledge” that the ma-
jority is for the issue. Numerically, L* is about 0.0008.

Peter and Paul, recognizing that the possibility of observing the
sample reduces the minimax loss to about 0.0008 as compared with the
0.5 that it would be if no sample were available, may well find the min-
imax act a satisfactory compromise; at any rate, it is hard to see in
this situation how they could arrive at any other.

Though the incorporation of the sample into the problem has greatly
reduced L*, observation of the sample does not affect the opinion of
either person in the slightest, for unequivocal opinions such as they
hold are not subject to modification in the light of evidence. At least
one of the two people is immovably wrong, and the observation of no
sample, however large, can bring them both close to the truth. This
brings out a contrast between the reduction of L* and the approach to
certainty of the truth, both of which typically occur with the accumu-
lation of evidence.

The same contrast is expressed by remarking that, though the two
people may readily adopt the minimax act, each feeling that at the ex-
pense of a small risk he is diverting the obstinacy of his colleague to
their common good; after the observation of the sample, one or the
other of them is bound to feel that the prize has been lost by a sad
and improbable accident.
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The wary will ask, “Who will feel how, when the actual majority is
lisclosed and settlement made? What if Peter’s unequivocal opinion
turns out to be false?”” Such questions suggest that paradox lurks in
an example in which different people unequivocally hold mutually in-
>onsistent opinions, so there is some interest in considering a modifica-
tion of the example, free of that objectionable feature.

Suppose then that Peter and Paul, though strongly opinionated about
the division of the electorate, are not absolutely unequivocal in their
pinions. To be quite definite, suppose that Peter attaches probability
[-1071° to the division 559,~45% and probability 107!° to the divi-
sion 45%,-55%,, and that Paul attaches the same probabilities but in
the opposite order to the two divisions. Here, as in the example of the
unequivocal opinions, the unique minimax act is to let the bet be chosen
in accordance with the sample majority; L* is a trifle lower than before.
Observation of the sample does now generally affect the opinions of the
two people, but, though it radically reduces the minimax loss, it does
not typically bring the two people into close agreement. If, for ex-
ample, the division is in fact 459,559, Paul’s strong a priori belief
that that is the actual division is almost sure to be strengthened by the
sample, and Peter’s equally strong but false belief is almost sure to be
weakened. Still, the probability is only about 1/2 that Peter will be
led by the sample to attach an a posteriori probability even as great
a8 0.05 to the actual division. Thus, speaking loosely but practically, the
approach to certainty of the truthis here not typically nearly so far
advanced by observation as is the reduction of the minimax loss.*

It may not be superfluous to point out that the preceding paragraph
alludes not only to the two different personal probability systems of
Peter and of Paul, but also to certain conditional probabilities that
you and I have accepted hypothetically in setting up the example.

Whichever division does actually obtain, it is rather probable that,
once the sample is observed, either Peter or Paul will wish he could
break his contract. This seems to me to reflect a serious objection to
the group minimax principle, especially in those applications in which
the members of the group are not literally consulted, for people cannot
be expected to abide by disappointing contracts they might have made
but didn’t.

For other approaches to the group decision problem see de Finetti
[D6], [D7a], de Finetti (1954), Staél von Holstein (1970, p. 65 and ff.).
and Winkler (1968).

+ As de Finetti has remarked, the separation between the two phenomena is
more clearly brought out if Peter and Paul decide which bet to make on the
basis of a tennis match between themselves. For, if each thinks himself much
the superior player, L* will be depressed, though the opinions of Peter and
Paul about the election remain completely unaffected by the outcome of the



CHAPTER 11

The Parallelism between
the Minimax Theory and
the Theory of Two-Person Games

1 Introduction

John von Neumann, in 1928 [V3], developed a theory of games in
which two people play each other for money.t This theory is mathe-
matically so closely akin to that of the minimax rule and has had such
influence on its development that it would be artificial to give an expo-
sition of the minimax rule without saying something of the theory of
what von Neumann calls zero-sum two-person games, though the ac-
count given here must necessarily be highly compressed. The most
convenient references in English to the theory of zero-sum two-person
games, should the reader be interested in a fuller account, are [B18],
[M3], and Chapters II and III of [V4]; though those who read German
may find it best to start with the expository sections of the paper [V3]
in which von Neumann first discussed the subject.

The sort of systematic punning by which the formal parallelism be-
tween the objectivistic and personalistic minimax theories was empha-
sized in Chapter 10 will be used once more, to bring out the formal
parallelism between those theories and that of zero-sum two-person
games. Logic will be still further sacrificed to clarity and convenience
by calling the two people who play the game ‘“you’’ and “I.”

2 Standard games

A certain sort of game, here called a standard game, is defined thus:
You secretly choose a number r from a finite set of possibilities, and I
secretly choose a number 7, also from a finite set of possibilities. The
numbers r and 7 having been chosen, you pay me the sum of money
(possibly negative) L(r; ©), where L is an arbitrary function of r and <,
known to both of us. It is assumed that, for the sums involved, each
of us finds money proportional to utility.

t In this completely independent development he was to some extent anticipated

by Emil Borel. Consult [F9], [F10], and [B21] for details and further references.
178
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At first sight, standard games look very dull, though it is immediately
recognized that some such games are played. A tiny but typical ex-
ample is the game of “Button, button, who’s got the button?”’; “Stone,
paper, scissors” is almost as familiar an example; and others could be
mentioned. But, and this seems remarkable at first, any game, except
possibly those dependent on physical skill, can be viewed as a standard
game. The great generality of standard games is demonstrated in de-
tail in Chapter II of [V4], but informal discussion of a single example
will render the idea intuitively clear. Suppose then that you and I are
to play a game of poker (of a specified variety). At first sight poker
does not seem to be a standard game, because it involves several ran-
dom events, and several decisions on the part of each of us, some to be
made in the light of others. But, it can be argued, there are only a
finite number of different situations that can arise in the course of a
game of poker. You could, therefore, in principle write into a notebook
exactly which choice you would make in each of the possible situations
with which you might be faced in playing poker with me. The number
of possible ways of compiling such notebooks, or policies of play, is
finite; so, except for limitations of time and patience, you will be at
no disadvantage in playing one game with me, if you simply chose
once and for all that one of the many possible policies of play that seems
best to you. Similarly, from my point of view, the game consists, in
principle, in choosing one policy of play. Once you have chosen one
of the policies possible for you, say the rth, and I have chosen one of
the policies possible for me, say the 7th, the amount you will have to
pay me at the termination of the game is a random variable. Since it
is agreed that the payments are effectively in utiles for both of us, your
payment to me is effectively the expected value of this random variable,
which may be called L(r; 7) and which is in principle known to both
of us as a function of r and 7. The elaborate game of two-person poker
is thus exhibited, at some expense to realism, as a standard game.

Regarding the choice of an r by you or an 7 by me as a primary act,
both of us are at liberty to use mixed acts. Indeed, explicit attention
apparently was first called to the possibility of using mixed acts by
Borel (see [B21]), in just this context.

Let f and g represent mixed acts assigning probabilities ¢(r) and v(z)
to the values r and 7, respectively. The standard game is now replaced
by a somewhat different game in which you choose an f; I choose a g;
and you pay me the amount L(f; g), where

) L(t; 8) =ps 2. L(r; )o(r)v(3).
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3 Minimax play

Von Neumann adduces an argument, the statement of which will be
briefly postponed, that, if you have respect for my intelligence, you will
see to it that the most I can possibly take from you shall be as small
as possible, that is, you will choose an f' for which

1 max L(f'; g) = L* =p; min max L(f; g).
g t [

Symmetrically, according to his argument, I should choose a g’ such
that

2 min L(f; g’) = Lx = p¢ max min L(f; g).
f g f

Since, making the recommended choice, you are sure that you will
not pay me more than L* and I am correspondingly sure that you will
not pay me less than Lx; it follows that Lx« < L*. This inequality
would, of course, have obtained even if mixed acts were not permitted.
It is a remarkable mathematical fact (not to be proved in this book)
that, permitting mixed acts, equality always obtains; so the special
symbol Lx is superfluous here.

The argument for the recommended choices rests on the equality of
L* and L«. You realize that I can take at least L* from you and that,
if you are not careful, I may take more. On the other hand, I realize
that you can prevent my taking more than L* from you and that, if
I am not careful, I may get less. This suggests to many that a pair of
intelligent players, each respecting the intelligence of the other, will
each adopt one of the recommended acts.

4 Parallelism and contrast with the minimax theories

Some formal parallelism between the minimax theories of decision
and the theory of zero-sum two-person games is evident, but the paral-
lelism is much more complete than may appear at first sight. The mix-
tures g are without counterpart in the two minimax theories of deci-
sion, and the appearance of g in (3.1) at the place where ¢ appears in
(9.5.1) may seem to mar the parallelism between these two equations.
But, letting

¢Y) L(t; ) =g 2 L(r; e(r),

in the game theory (in close parallelism with the decision theories),

@ L; g) = 3 L(t; )v() < max L(t; i),



11.4] GAMES AND THE MINIMAX THEORIES 181

and
3) max L(f; g) = max L(f; 7).
g i
Therefore (3.1) is equivalent to
4) max L(f’; ) = min max L(f; ©) = L*.
i £

Thus from the point of view of the minimax theories of decision the
g’s represent no material innovation and are at worst useless baggage.
Actually, though of little if any relevance in the interpretation of the
minimax theories, the g’s constitute a useful mathematical device.
Their usefulness has in fact been illustrated in working out the second
example in § 9.6 and will be systematically demonstrated in the next
chapter, along with the usefulness of the apparently irrelevant ‘“maxi-
min” problem posed by (3.2) and of the fact that L« = L*.

Some remarks on the possibility of interpreting the g’s in the minimax
theories are postponed to the end of this section.

In the game theory, L may be any function whatsoever of its argu-
ments r and 7, but, in the decision theories, L is subject to the condition
that, for every 1,

(5) min L(r; ©) = 0,

where L(r; 7) is of course to be interpreted as L(f,; 7). Here is the only
mathematical difference between the game theory and the decision
theories, the former being mathematically slightly more general than
the latter.

Though the mathematical differences are negligible, the intellectual
difference between the situations leading to the game theory on the
one hand and to the decision theories on the other is great. Serious
misunderstandings of the (objectivistic) minimax theory have often re-
sulted from identifying it with the game theory. Among other things,
loss is then confounded with negative income, and the misconception
that the (objectivistic) minimax rule is ultrapessimistic is created. I
have even heard it stated on this account that the minimax rule amounts
to the assumption that nature is malevolently opposed to the interests
of the deciding person.

Though mathematical convenience seems to be the basic reason for
introducing the g’s in the minimax theories, it is tempting to ask whether
the g’s have also some natural interpretation in those theories. At the
moment, I do not see a convincing interpretation in either theory, but
completeness demands an account of an interpretation suggested by
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Wald for his version of the objectivistic theory, especially since this
interpretation influenced some of Wald’s most widely used terminology.

The objectivistic problem of deciding on an act in ignorance of which
partition element B, obtains, the P(B;) being regarded as meaningless,
suggests a new problem that may perhaps also be called objectivistic.
The new problem arises on postulating that P(B;) is meaningful but
utterly unknown, that is, P(B;) = ¥(¢), where the v(¢)’s are the com-
ponents of a g here interpreted as the a priori distribution unknown to
the deciding person.

Since for Wald ‘““loss” was synonymous with “negative expected in-
come,” he naturally calculated the loss of the new problem thus:

(6) L;g) = —E(f| g
2. —E(| B,)P(By)

= X L ),

arriving thus at the very function suggested by the game theory. In
Wald’s version of the theory, the new problem therefore amounts to
the formal introduction of the g’s in connection with the old one, which
neatly fulfills the reasonable expectation that there should be no ma-
terial difference between regarding P(B;) as meaningless and regarding
it as meaningful but utterly unknown.

The suggested interpretation of a g as an unknown—or, to mirror
Wald more faithfully, fictitious—a priori distribution does not work,
however, if the loss function of the new problem is defined by (9.4.1),
for the new function L(f; g) is not then generally the same as the func-
tion L(f; g) suggested by the game theory; thus

) L(f;g) = max B — £|g)

mf:la,x Z E@ — f| By)v(3)

= max 2 {L(f;9) — L{E'; )} ()

L(f; g) — min L(f'; g)
< L(f; ),

equality holding for a typical g (i.e., a g such that y(¢) > 0 for every 7)
only in the altogether trivial situation that F is dominated by one of
its elements.
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Does this mean that, contrary to expectation, there is a material dif-
ference between the new problem with loss L and the old one? The fol-
lowing exercises show that it does not.

Exercises
1. max L(f; g) = max L(f; 7).
g [

2. min max L(f; g) = L*
f g

3. max L(f; g) = L* if and only if max L(f; 1) = L*.
g i



CHAPTER 12

The Mathematics

of Minimax Problems

1 Introduction

Since the two different minimax decision theories and the theory of
zero-sum two-person games have a common mathematical core, it will
be worth while to digress for a chapter even at the expense of some
repetition, to discuss this common core mathematically, that is, vir-
tually without reference to its various possible interpretations. The
discussion will have to be drastically confined relative to the large body
of relevant literature, but the reader who wishes to pursue the subject
much further will find [B18], [V4], [W3], and [M3] to be key references.

2 Abstract games

To begin with a very general situation, which will later be specialized
to the one of main interest, let f and g denote generic elements of any
two abstract sets, and let L(f; g) be the value of an essentially arbitrary
real-valued function. It will, however, be assumed for simplicity that
for every f and g’ the quantities

max L(f'; g), min L(f; g’)
g £
1)

* = p¢ min max L(f; g), L« = ps max min L(f; g)
£ g g £

exist. To say that a maximum, for example, exists is not only to say
that the function in question is bounded from above, but also that the
maximum value is actually attained for at least one value of the argu-
ment. For want of a more neutral term, call the function L(f; g) an
abstract game.

An f’ is called minimax, if and only if

2 max L(f'; g) = L*;
g

and a g’ is called maximin, if and only if
3) min L(f; g') = Lx.
f
184
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The existence of minimax and maximin values of the variables is im-
plicit in (1). It is an easy exercise to show that f' is minimax, if and
only if

) L(f'; g < L*

for every g.
The corresponding characterization of maximin g”’s as those such
that

®) L(f; g) = Lx

for every f could similarly be shown. But the symmetry of the situa-
tion is such that it would be superfluous to derive this characterization
of a maximin explicitly. Indeed, every theorem, or general conclusion,
about L(f; g) obviously has a dual, which arisés on applying the theo-
rem to the new abstract game L(g; f) with L(g; f) = —L(f; g). This
is typical of what is known in mathematics as a duality principle. Hence-
forth the duals of demonstrated conclusions, even when not explicitly
stated, will be as freely used as the demonstrated conclusions them-
selves. Some conclusions are of course self dual. Incidentally, another
example of a duality principle was used in § 5.4, and a very important
one was pointed out in connection with Boolean algebra in § 2.4.

An argument showing that Ly < L* was given in connection with
the theory of games. More formally, if ' and g’ are, respectively, mini-
max and maximin, then from (4) and (5)

) L*>L{;g) > Lx.

It is possible, indeed typical, that L+ < L*. Suppose, for example,
that f and g are variables that take only two values and that L(f; g)
is described by Table 1. Here, as the reader should verify, both f’s

TasLE 1. L(f; g)

g

1 2
1101
f
2(10

and both g’s are minimax and maximin, respectively, and L* = 1,
Ly = 0.

The following theorem is frequently applicable to the identification
of minimax and maximin values of f and g, and of L* and Lx.
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TaEOREM 1 If f, g/, and the number C are such that L(f'; g) < C
< L(f; g) for every f and g; then L* = Ly« = C = L(f’; g'), f is mini-
max, and g’ is maximin.

Proor. First, C > L* because

) C > max L(f’; g) > min max L(f; g) = L*;
g f [4

and, dually, C < Ls«. But L« < L*; so C < Lx < L* < (C, that is,
L* =Ly« = C. Now (4) and (5) apply. @

COROLLARY 1 If ' and g’ are such that L(f’; g) < L(f; g") for every
f and g; then f' and g’ are, respectively, minimax and maximin, and L*
=L+ = L{E; g).

3 Bilinear games

If one stumbles somehow onto a pair f/, g’ satisfying the hypothesis
of Corollary 2.1, then he has discovered a minimax, a maximin, and
the values (in this case equal to each other) of L* and Ls«. But that
possibility of discovery does not exist unless L* = Lx, which at the
level of generality of the last section is unusual. Almost all real inter-
est, however, centers on a very special class of abstract games, here to
be called bilinear games, for which it is demonstrable that L* is in-
variably equal to Lsx.

The definition of bilinear games involves several steps. First, con-
sider an abstract game, L(r; Z), based on a pair of variables, r and .
The two variables are here assumed for simplicity to have only a finite
number of possible values, an assumption that can, and for statistics
must, be considerably relaxed. Next, let f and g be non-negative func-
tions of r and 7, respectively, arbitrary except for the constraint that

&) Tim =0 =1,

in short, probability measures on the r’s and ¢’s, respectively. Finally,
the bilinear game L(f; g) is defined thus.

) L(f; &) =pr 2 L(r; )f(r)g(0).

It is important to recognize that the duality principle continues to
hold, that is, if L(f; g) is a bilinear game, then L(g; f) = —L(f; g) is
also one.
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In terms of the auxiliary functions

L(f;5) =pt 2 L(r; Df(r),

3 .
L(r; g) =ps 2 L(r; ))g(s),

the following equalities and inequalities can easily be verified by the
reader.
max L(f; g) = max L(f; ©),
g i

@ ) .
min L(f; g) = min L(r; g).
t r

5) min max L(r; ©) > min max L(f; 7) = L* > Lx
r [ f 3

= max min L(r; g) > max min L(r; 7).
g r 3 r

But more can be said in connection with (5), for it has been shown by
von Neumann [V3] that for the special class of functions now under
discussion L* is actually equal to L«. This important equality cannot
conveniently be proved here, but the interested reader can refer to the
relatively simple proof given by von Neumann and Morgenstern in
Section 17.6 of [V4] (reading first, if necessary, the introduction to the
mathematics of convex sets that constitutes Chapter 16 of that book)
or to the version of it presented in [B18].
In the light of the equality of L* and L«, (5) becomes

(6) min max L(r; ) > min max L(f; ©) = L*
i £ i

r 1

= max min L(r; g) > max min L(r; 7).
g r $ r

In view of (4) and (6), Theorem 2.1 can be much improved upon for
bilinear games:

THEOREM 1 For bilinear games, the following three conditions on
f', g/, and C are equivalent:

1. f minimax, g’ maximin, and L* = C.

2. Lf';g) <CL L g) for every f and g.

3. Lf';7) < C <L L(r; ¢ for every 7 and r.

Proor. Condition 2 implies 1, by Theorem 2.1; 1 implies 3 by (6);
and 3 implies 2 by (4). @
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CoOROLLARY 1 A necessary and sufficient condition that f be mini-
max is that, for some g, L(f; 7) < L(r; g) for every r and 7. Under
that condition L* = L(f; g), and g is maximin.

Corollary 1 seems an especially appropriate expression of Theorem 1
in connection with the minimax decision theories, where the g’s are, after
all, not really of interest in themselves. Theorem 1, and equivalently
Corollary 1, are of great practical value. To be sure, there are algo-
rithms, or rules (given by Shapley and Snow in [S12]), by which L*
and all minimax values of f can in principle be computed, but these al-
gorithms are so awkward to apply that in practice one generally guesses
one or more minimax f’s, and also a maximin g, on the basis of some
clues, verifying the guess and evaluating L* by Corollary 1. To finish
the job, one then finds, if one can, an argument to show that the mini-
max f’s thus discovered are all there are. This rather imperfect pro-
cedure is especially important, since it can relatively easily be extended
to many situations in which r and 7 are not confined to finite ranges, as
does not seem to be true of the algorithms.

As was mentioned in § 10.3 and as the examples that have been given
illustrate, if f is minimax, then L(f; ¢) is in practice often actually equal
to L* for all, or at least many, values of 7. Insight into that phenome-
non is given by the following theorem.

THEOREM 2 If 7 is such that there exists a maximin g for which
g(z) > 0, then L(f; 1) = L* for every minimax f.

Proor. L(f; ©) < L* because f is minimax. Therefore L(f; g), be-
ing a weighted average of the L(f; 7)’s, is at most L*; and it is actually
less, if any term with positive weight is not equal to L*. But L(f; g)
> L*, because g is maximin. ¢

It can happen, and in statistical practice it often does happen, that
every 1 satisfies the hypothesis of Theorem 2, in which case L(f; 7) =
L* for every ¢ and every minimax f.

Theorem 2 often provides a basis for guessing a minimax f, a maximin
g, and the value of L* which can then be checked by application of
Corollary 1. To take a simple example, suppose that there are n values
of r, and n of <. There may be some reason to conjecture that each ¢
is used by some maximin g, that is, that each ¢ satisfies the hypothesis
of Theorem 2. If the conjecture is in fact true, then f(r) and L* satisfy

the system of equations
D 1f(r) +0L* =1

@ > L(r; 9)f(r) — 1L* = 0.



12.4] AN EXAMPLE OF A BILINEAR GAME 189

Typically, (7) as a system of n + 1 linear equations in n + 1 variables
will have exactly one solution (f(r), L*). This solution, if the conjec-
ture is valid, will actually consist of the components of a minimax £
(in this case the only one) and the value of L*. But the conjecture is
not yet confirmed. In particular, if any f(r) in the solution of (7) is
negative, it is contradicted; if not, the investigation can proceed. The
candidates for maximin values of g are now, by the dual of Theorem 2,
among the solutions of the system.

2 1g@) +0L*=1

@® o
Z L(r; 9)g(z) — 1L* = 0,

where r is confined to the values for which f(r) > 0. To consider only
the simplest and most typical case, suppose f(r) > 0 for every r. Re-
garding L* as known, (8) consists of n 4+ 1 equations for n variables,
which at first sight might be expected generaliy to have no solution.
To put the matter differently, if one forgets for the moment that L*
has been determined by (7), it might seem possiblé that (8) could lead
to a different value, say L*. But, using the latter part of (8) and then
the first part of (7), it is seen that

9) 2 L(r; 9f(ng@) = 2 f(rL* = L¥,

and dually the double sum equals L*; so discrepancy between L* and
L* is not among the real snags in the tentative program—irrespective
of the number of 7’s participating in (8). Finally, if (8) leads to even
one set of positive g(7)’s, it follows from Corollary 1 that the f and L*
derived from (7) are the unique minimax and the true value of L*, re-
spectively.

The converse of Theorem 2 has been proved by Bohnenblust, Karlin,
and Shapley in [B19], though their proof cannot be reproduced here.
As is pointed out by these authors, the converse does not extend at all
readily to situations involving infinite ranges of r and 7. Theorem 2
and its converse can be summarized thus:

THEOREM 3 There exists a maximin g for which ¢g(¢) > 0, if and
only if L(f; 7) = L* for every minimax f.

4 An example of a bilinear game

It is now convenient to discuss a certain example, or rather a class of
examples, of bilinear games, namely those in which 7 takes only two
values, say 1 and 2. Two preliminary remarks will help to orient the
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discussion. First, bilinear games in which 7 takes only one value are
devoid of interest, for the minimax problem in that case is simply a
problem of finding an ordinary minimum. Second, the discussion of bi-
linear games in which ¢ takes only two values includes, in effect, be-
cause of the duality principle, the discussion of those in which r takes
only two values.

If ¢ takes only the two values 1 and 2, the values g = {g(1), g(2)}
can be represented graphically by points on an interval, as illustrated
at the foot of Figure 1. For every r, L(r; g) is linear as a function of

L

g g(2)
Figure 1

g, as is L(f; g) for every f. It is, of course, just because the L(f; g) of a
bilinear game is linear in this sense and its dual that I use the term “bi-
linear.” In Figure 1 the five slanting solid lines represent the five linear
functions L(r; g) of a bilinear game in which r (for illustration) takes
five values and 7 takes two. The dashed lines represent two values of f,
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each of which has for simplicity been so chosen as to use, or mix, only
two values of r.

As may be verified by inspection, the particular bilinear game rep-
resented by Figure 1 has the special property that min L(r; 7) = 0 for
each 7, which is the distinguishing property of those bilinear games that
arise in connection with the minimax decision theories described in
Chapters 9 and 10.

Figure 1 bears a more than accidental resemblance to Figure 7.2.1.
In particular, the concave function

(1) min L(r; g)

marked by heavy line segments in Figure 1 is closely analogous to the
convex function so marked in Figure 7.2.1. The particular g empha-
sized by Figure 1 is that for which the function (1) attains its maximum
value, which according to (3.6) is L*. This g is therefore the unique
maximin. It has been shown quite generally in [B19] that bilinear games
with more than one minimax or maximin are, in a sense, unusual;
Figure 1 makes it graphically clear that the special bilinear games now
under consideration do usually have a unique maximin, because there
is more than one maximin only in case (1) happens to have a horizontal
segment.

What are the minimax f’s for the bilinear game represented by Figure
1? According to the dual of Theorem 3.2, an r cannot be used in the
formation of a minimax f unless L(r; g) = L* for the (in this case
unique) maximin g. That consideration eliminates all but two of the
r’s from consideration, and it is graphically clear that this will usually
be the case for bilinear games in which ¢ takes only two values. Theo-
rem 3.2 itself, applied to the particular game under discussion, shows
that the graph of L(f; g) as a function of g must be horizontal for any
minimax f. The two preceding conditions together eliminate all values
of f except the one corresponding to the horizontal dashed line in Fig-
ure 1; and that f is indeed minimax, because L(f; 7) = L* for both
values of 7.

To specialize still further, suppose that r as well as ¢ takes only two
values. Such a game can, of course, be represented graphically in the
spirit of Figure 1. Several qualitatively different situations can occur,
which might, for example, be classified by the relation of the two linear
functions L(r, g) to each other. The reader should graph and consider
many or all of these possibilities for himself. The only one treated
here will be that in which the two functions cross each other at an in-
terior g, with one function sloping up and the other down. It is graphi-
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cally clear that there will then be a unique minimax and a unique maxi-
min, as will now be shown analytically.

The condition postulated can be expressed without loss of generality
thus:

@ L(1;2) > L(1;1),  L(2;1) > L(2;2),

L(2;1) > L(1;1), L(1;2) > L(2; 2).
Or, more mnemonically,
@) L(1;2), L(2;1) > L(1; 1), L(2; 2).

It is conjectured, in this case on graphical grounds, that the program
outlined in connection with (3.7-8) applies, and the reader can indeed
verify that that program leads to the conclusion

4) L* = {L(1;2)L(2; 1) — L(1; 1)L(2; 2)}/A,
where
(5) A = L(1;2) + L(2;1) — L(1; 1) — L(2; 2);

and that the unique minimax f and maximin g are

®) {f(l) = [L(2; 1) — L(2; 2)]/A
f@2) = [L(1; 2) — L(1; 1))/4,
@ [y(l) = [L(1; 2) — L(2; 2)/A
9(2) = [L(2; 1) — L(1; 1)]/A.

If the game arises from an application of the minimax decision theory,
(3) almost always applies. More precisely, in this case, except possibly
for the order of numbering,

(8) L(1;1) =L(2;2) =0 and  L(1;2), L(2;1) 2 0;

so, if only the inequalities in (8) are both strict, (3) applies. Then
(4-7) specialize to

) L* = L(1; 2)L(2; 1)/A,

where

(10) A =LQ1;2) + L2; 1);

(11) f) = L2; 1)/, f(2) = L(1; 2)/4,

(12) g(l) = L(1;2)/4,  g¢(2) = L(2; 1)/A.
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6 Bilinear games exhibiting symmetry

Mathematically the solution of a bilinear game is often simplified by
considerations of symmetry. For statistical applications, the implica-
tions of symmetry for bilinear games are of fundamental importance
in so far as they represent a counterpart in the minimax theory of the
disreputable but irrepressible principle of insufficient reason. This sec-
tion discusses these implications in an elementary, but formal, way.
It can be skimmed over or skipped outright without much detriment
to the understanding of later sections.

Any discussion of symmetry involves, at least implicitly, the branch
of mathematics known as the theory of groups. Though what is to
be said here about games exhibiting symmetry is intended to be clear
without prior knowledge of the theory of groups, it may be mentioned
that introductions to that subject are to be found in many places, for
example in [B14].

It can, and in practice often does, happen that a bilinear game has
some symmetry.t This means that there are permutations, here sym-
bolized by T, T”, etc., of the values of r among themselves and the values
of 7 among themselves such that

(1) L(Tr; T?) = L(r; 1)

for every r and 7, where, of course, Tr and T% are the values into which
T carries r and 7 respectively. Permutations satisfying (1) are said to
leave the game tnvariant, or to belong to the group (of symmetries) of the
game. The permutation U that leaves every r and every 7 fixed must
be counted among the permutations in the group of the game, but the
game has no symmetry (worthy of the name) unless there are other
permutations besides U in its group.

An example of a game with high symmetry is the game implicit in
the second example of § 9.6, for, to any permutation whatsoever of the
six 7’s in that game among themselves, there is a corresponding permu-
tation of the r’s such that the two permutations taken together leave
the game invariant. It was, of course, the exploitation of symmetry
that made the treatment of that example relatively simple.

Returning to bilinear games in general, if T and 7" are in the group
of the game, then the product T'T” defined by the condition that

2 (TT)r =pt T(T'r),  (TT')e =pt T(T")
is obviously also a permutation in the group of the game. This multi-

t This concept must not be confused with that of ‘“‘symmetrical games,” which are
symmetrical in the sense that the equation L(r; i) = — L(z; r) is meaningful and true
for every r and.7.
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plication of permutations somewhat resembles the ordinary multipli-
cation of numbers. In particular, (T7")T" is evidently the same as
T(T'T"), though it is not necessarily true that 7T’ = T'T.

Relative to this multiplication the permutation U plays the role of
the unit, or number 1, in arithmetic, for it is obvious that TU = UT
= T for any permutation 7.

For every permutation T, there is evidently a permutation 7!, and
one only, that undoes T, that is, one such that 77T = U. It is easy
to see also that TT~! = U and that, if T is in the group of the game,
T~ !is too. The notation T~ is of course motivated by the considera-
tion that, relative to the multiplication of permutations, 7! plays the
role of the reciprocal of 7.

It will be adopted as a definition that 7f and Tg are the functions
such that Tf(r) = f(T~r) and Tg¢(?) = g(T~%) for every permutation
of T and for every r and ¢. The intervention of 77! in this definition
may at first seem arbitrary, but it is motivated by the following con-
siderations. First, if f is, for example, the function such that f(ro) = 1
and f(r) = 0 for r # ry, then T'f should be such that Tf(Tr;) = 1 and
Tf(r) = 0 for r # Try. Second, S(Tf) should be (ST)f rather than
(TS)f. The definition having been adopted, L(Tf; Tg) can be calcu-
lated thus:

@) L(Tt; Tg) = 25 L(r; Of(T'ng(T™)

= > L(Tr; TOf(T Tr)g(T'T%)

i

= 20 L(Tr; TOf(r)g(3),

where the basic fact is exploited that, if », ¢ runs once through all pairs
of values, then T'r, T also does so. It follows from (1) and (3) that, if
T is in the group of the game, then

) L(Tt; Tg) = L(f; &)

An f (g) is called tnvariant under the group of the game, if and only if
Tf = f (Tg = g) for every T in the group. There is a natural way to
construct from any f an f invariant under the group, and dually for g.
Namely, let

1
f=pi— D T1,
nr

1
E=Di_ETg’
n.r

&)
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where (here and throughout this section) n is the number of elements
in the group and the summation is over all elements of the group. The
definition (5) accomplishes its objective, because

1

(6) 2 fn = " ; 2 (T )
1
-, Ti-0-

and

@ ') = F(T'~r)

-~ ST
nr

1
= -2 T'Tf(r) = j(r)
n'r

for every r and for every 7" in the group. In (7) use is made of the
easily established facts that T7!7"~! = (T'T)~! and that as T runs
once through the group so does 7'T. The justification of g is, of course,
dual to that of £. It is noteworthy that f = £, if and only if f is invariant
under the group of the game.

Suppose B (I) is a set of the s (¢’s). Then, by definition, r ¢ TR
(¢ e TI), if and only if T~ 'r ¢ R (T~ ¢ I); and the set R (I) is invariant
under the group of the game, if and only if TR = R (TI = I) for every
T in the group.

Exercises

la. If R is invariant, so is ~R.

1b. If R and R’ are invariant, so are R N R’ and R U R’.

lc. The vacuous set and the set of all ’s are invariant.

2. For every R, let R =ps Ur TR, where T is of course confined to
the group; and, for every r, define the trajectory of r as [r], where [r] is,
as is customary, the set whose only element is 7.

(a) R is the smallest invariant set containing R.

(b) R is the intersection of all invariant sets containing R.

© E= Ul

reR
(d) [r] is the smallest invariant set of which r is an element.
3a. If R is invariant, and B N [r] # 0, then B D [r].
3b. If R is invariant, and r ¢ R, then B D [r].
3c. If [r] N ['] % 0, then [r] = [].
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4a. The following conditions are equivalent:
a. R is invariant.
. R=R.
~. For every r ¢ R, [r] C R.
8. R is partitioned into sets each of which is a trajectory.
4b. The following conditions are equivalent:
a. f is invariant.
B. The set of ’s for which f takes any given value is invariant.
v. f is constant on every trajectory.
5a. If T'r = r, then (TT'T~)Tr = Tr.
5b. If {r} denotes the number of elements of the group that leave r
fixed, then {r} = {Tr}.
5¢. If || 7 || denotes the number of elements in [r], then n = {r}|| ||.
5d. Both {r} and || » || are divisors of n.
5e. The value of f everywhere on the trajectory of r is

1
(8) M1 2 fr).

refr]
6. Note the dual of each of the preceding exercises.

In the establishment of all these preliminaries, the theory of bilinear
games has been almost lost sight of, but it is now possible to say much
about the significance of invariant functions and sets for bilinear games.
I begin with a theorem valued for some of its corollaries rather than
for any charm of its own.

Tarorem 1  If L(f’; Tg) < L(f"; Tg) for every T, then L(¥; g) <
L("; g). If in addition L(f'; g) < L(f"; g), then L(¥'; g) < L(f"; &).

Proor.
9) L(T™'f';g) = L(t'; Tg) < L(t"; Tg).
Therefore
(10) LEi0) - = S LI

1
< -2 L{"; Tg) = L(t"; g).
nr

If L(f'; g) < L(f"; g), then (9) is strict for T = U, and therefore (10)
is also strict. @

CoroLLarY 1 If L(f’; Tg) = L(f"'; Tg) for every T, then L(¥; g) =
L{"; g).
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COROLLARY 2 If L('; g) = L("; g) for every g, then L({f'; g) =
L(f”; g) for every g.

CoroLLARY 3  L(f; g) = L(f; g§) = L(f; g) for every f and g.
COROLLARY 4 If f is invariant under the group of the game, L(f; g)
= L(f; g) for every g.

Paraphrasing some of the nomenclature of § 6.4, if L(f'; g) < L(f"; g)
for every g, say that f' dominates f”’; if f dominates £/, but £’ does not
dominate f', say that ' strictly dominates f’; if f dominates f”/, and £’
dominates ', say that £’ and £’ are equivalent; if £’ is not strictly domi-
nated by any f, say that £’ is admaissible.

COROLLARY 5 If f dominates, strictly dominates, or is equivalent
to f’, then ¥ dominates, strictly dominates, or is equivalent to £, re-
spectively.

CoROLLARY 6 If L(f; Tg) < L{; Tg) for every T, then L(f; g) =
L{; g).

COROLLARY 7 If L(f; @) < L(&; 7) for every 4 ¢ I, where I is invari-
ant under the group of the game, then L(f; 1) = L(f; ©) for i ¢ I.

COROLLARY 8 It is impossible that f strictly dominates f.
THEOREM 2 max L(f; g) < max L(f; g), equality holding, if and only

g g
if the right-hand maximum is attained for a g invariant under the group
of the game.

Proor.
(11) max L(f; g) = max L(f; g)
g g

< max L(f; g).
€

The inequality in (11) follows from the fact that every g is a g; equality
holds, if and only if the final maximum is attained for some g, that is,
for some invariant g. @

CoroLLARY 9 If f is minimax, so is f.

CoROLLARY 10 There exists a minimax f invariant under the group
of the game.

If a game has more than one minimax f, it is tempting to suppose
that in statistical, if not in all, applications of the theory an invariant,
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or symmetrical, minimax f would recommend itself at least as highly
as any other minimax f. This supposition, being vague, cannot be
really proved, but certain facts tend to support it. In particular, the
following theorem is a reassuring improvement of Corollary 10.

THEOREM 3 There is at least one admissible, invariant, minimax f.

Proor. It is a direct consequence of a theorem (Theorem 2.22, p. 54,
of [W3]) of Wald’s, too technical for statement or proof here, that at
least one invariant minimax f is strictly dominated by no invariant f’.
If that f were strictly dominated by any £ (invariant or not), it would
also, according to Corollary 5, be dominated by £, which is impossible.
Therefore f is admissible. ¢

If the bilinear game has high symmetry or, more explicitly, if the
number of trajectories into which the r’s or the ¢’s, or both, are parti-
tioned is small; the search for invariant minimax f’s and invariant
maximin g’s is relatively simple. An invariant minimax is character-
ized as an invariant f’ such that

12) max L(f'; g) = min max L(f; g) =
4 t g

But, since at least one invariant minimax exists, the criterion (12) is
not changed if the minimization on its right side is confined to invari-
ant f’s; with f so confined, the criterion remains unchanged, if both
maximizations are confined to invariant g’s (as Corollary 3 shows).
Thus the search for invariant minimax f’s and invariant maximin g’s
amounts to the solution of an abstract game that arises from the origi-
nal bilinear game by ruling out certain values of f and g, namely the
un-invariant ones.

This new and smaller abstract game can be exhibited as a bilinear
game thus: Let it be understood for the moment that 7 ranges over
such a set of the r’s that there is exactly one +’ in every trajectory [r];
dually for ¢/. For invariant f and g,

(13) L g) = X X L D))
=T X T X L6 fee0)

v i relr] 12[1’]

Z Zf(r’)y(t’) 2 2 L)

refr] ieli]

= Z Z L'(r; ) (g’ (),
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where

Vi o 2! i 1 .
(14) L(T,'I«) Df”r,” ”7«’”,52[,—/] ieZﬁ_qL(T, 'l)’
and
(15) F1eny =oe|| 7 11£67); @) = o] 7 [|9(@)-

Finally, it is easily verified that, except for the conditions f'(*') > 0,
g'(e) > 0, and Zf'(r') = Z¢'(?") = 1, the coefficients f'(r") and ¢'(i’) are
arbitrary. The new game is therefore to all intents and purposes a bi-
linear game with only as many r”’s and ¢”’s as there are r-trajectories.
and ¢-trajectories, respectively, in the original game. The new game,
incidentally, may well have symmetry of its own.

If there is only one r- or one i-trajectory, the new game is so simple it
scarcely deserves to be called a game. This occurs, for example, in the
second example of § 9.6, where there is only one ¢-trajectory. In that
situation there is only one invariant g, and it is equal at every ¢ to the
reciprocal of the total number of #’s (which is here the value of || 7 ||
for every 7). That g must therefore be an admissible maximin. The
value of L* is therefore given by

1
(16) L* = mlnﬂ Z L(T; Z)
T 1 i

The invariant minimax f’s are those and only those invariant f’s such
that f(r) = 0 for every r that fails to minimize the sum in (16). More-
over, here the minimax f’s (invariant or not) are all equivalent, as can
be argued thus: Any invariant minimax f is such that

17) Lt;g) = L(f; &) = L*

for every g. If any minimax f whatsoever failed to satisfy (17), it
would strictly dominate f; but according to Corollary 8 that is impos-
sible. Therefore in the very special situation at hand all minimax f’s
satisfy (17) and are accordingly equivalent.

It is, of course, important to extend consideration of symmetry to
bilinear games with infinite sets of ’s and ¢’s, and infinite groups of
symmetries, but the task has not yet proved straightforward. Two key
references bearing on it are [L4] and [B17].



CHAPTER 13

Objections to
the Minimax Rules

1 Introduction

I have already expressed and supported my opinion that neither the
objectivistic nor the personalistic minimax rule can be categorically de-
fended (§ 9.7 and § 10.3). On the other hand, certain objections have
been leveled against the objectivistic rule (that being the well-known
one) that seem to me to call for reinterpretation, if not outright refu-
tation.

2 A confusion between loss and negative income

Some objections valid against the minimax rule based on negative
income are irrelevant to that based on loss. The notions that the mini-
max rule is ultrapessimistic and that it can lead to the ignoring of even
extensive evidence have already been discussed as examples of such ob-
jections.

Another example I would put in the same category has been suggested
by Hodges and Lehmann [H5]. In this example a person who bhas ob-
served n independent tosses of a coin for which the probability of heads
has an unknown value p is required to predict the outcome of the
(n + 1)th toss. Hodges and Lehmann here interpret prediction in the
following somewhat sophisticated, but reasonable, sense. The person
is, in the light of his observation, required to choose a number p be-
tween 0 and 1 and to pay a fine of (1 — p)? or p? according as the
(n + 1)th toss is in fact heads or tails. Thus the (expected) income
attached to the primary act p and event p is

(1 I(p; p) = —p(1 — p)? — (1 — p)p®
= —(p—p)?—p(1 - p).

As Hodges and Lehmann show, the only derived act (mixed or pure)

that yields the minimax of the negative income is to set p = 3 irrespec-

tive of the observation. But it is, in common sense, absurd thus to ig-
200
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nore the observation of the first n tosses. In view of this absurdity,
almost everyone would agree that applying the minimax rule directly
to the negative of (1) is a foolish act for the person to employ.

The absurdity of minimizing the maximum of negative income in
this example is of course no valid argument against minimizing the
maximum loss. It is easy to see that the loss corresponding to (1) is

¢) L(p; p) = (p — D)%

As Hodges and Lehmann happen to show in the same paper [H5]
(though in a diffcrent context), and as will be discussed in some detail
in §4, the unique minimax derived act does use the observations to
advantage, resulting in a loss of

@)

1
4(1 + n*%)?

irrespective of p. The absurd act of setting p = % irrespective of the
observation results in the loss (p — 3)?, which in any ordinary context
would be inferior to (3), especially for large n.

Incidentally; the minimax derived from (2), though not nearly so
bad as setting p identically equal to 3, is itself open to a serious objec-
tion, which will be explained in § 4.

3 Utility and the minimax rule

Some objections to the objectivistic, and mutatis mutandis to the
group, minimax rule are in effect objections to the concept of utility,
which underlies the minimax rules. Criticisms of the concept of utility
have already been discussed in Chapter 5, particularly in § 5.6, but
certain aspects of the discussion need to be continued here.

It is often said, and I think with justice, that, even granting the
validity of the utility concept in principle, a person can seldom write
down his income function I(r; ¢) with much accuracy. This idea is
put forward sometimes with one interpretation and sometimes with
another. Of these, only the first is strictly an objection to the utility
concept.

That one is a dilemma raised by the phenomenon of vagueness.
Vagueness may so blur a person’s utility judgments that he cannot ac-
curately write down his income function. I suppose that no one will
seriously deny this; I would be particularly embarrassed to do so, for
it is almost a recapitulation of the very argument that leads me, though
in principle a personalist, to see some sense in the objectivistic decision
problem. On the other horn, if all meaning is denied to utility (or some
extension of that notion) no unification of statistics seems possible.
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Three special circumstances are known to me under which escape from
the dilemma is possible. First, there are problems in which some
straightforward commodity, such as money, lives, man hours, hospital
bed days, or submarines sighted, is obviously so nearly proportional to
utility as to be substitutable for it. Second, there are problems in
which exact or approximate minimax decisions can be calculated on
the basis of only relatively little, and easily available, information about
the income function, such as symmetry, monotoneity, or smoothness.
The possibility of cheap extensive observation, which (when it occurs)
makes the minimax principle attractive, also tends to make many de-
cision problems fall into both of the two types in which the difficulty
of vagueness is alleviated. For example, in a monetary decision prob-
lem with cheap observation available, it often happens that the weak
law of large numbers, and the like, can be invoked to justify regarding
cash income as proportional to utility income.

Third, there are many important problems, not necessarily lacking
in richness of structure, in which there are exactly two consequences,
typified by overall success or failure in a venture. In such a problem,
as I have heard J. von Neumann stress, the utility can, without loss
of generality, be set equal to 0 on the less desired and equal to 1 on the
more desired of the two consequences.

The second sense in which it may, though not quite properly, be
said to be impossible to write down the income function is typified by
this example. A manufacturer of small short-lived objects, say paper
napkins, is faced with the problem of deciding on a program of sam-
pling to control the quality of his product. He complains that, though
for this problem his utility is adequately measured by money, he can-
not write down his income function because he does not know how the
public will react to various levels of quality—that, in particular, the
minimax rule does not tell him at all how much he ought to spend on
the sampling program, though it may say how any given amount can
best be employed. The manufacturer has a real difficulty, though he
expresses it inaccurately. He forgets that the lack of knowledge that
gives rise to the decision problem involves not only the state of his
product, but also the state of the public; taking the state of the public
into account, there is no real difficulty in writing down the income func-
tion. But, if it is not practical for the manufacturer to make observa-
tions bearing on the state of the public as well as those bearing on the
state of the product, the minimax rule is not a practical solution to his
problem; for, rigorously applied, it would remove him from the paper-
napkin business. I believe that in practice the personalistic method
often is, and must be, used to deal with the unknown state of the pub-



13.4] ALMOST SUB-MINIMAX ACTS 203

lic, while objectivistic methods, particularly the minimax principle, are
now increasingly often used to deal with the state of the product—a
sort of dualism having some parallel in almost all serious applications
of statistics. This is not to deny that relatively objectivistic methods
of market research can sometimes be used, nor that there are personal-
istic elements aside from those concerning the state of the public in
much of even the most advanced quality control practice.

4 Almost sub-minimax acts

Another sort of objection to the objectivistic minimax rule is illus-
trated by the following example attributed to Herman Rubin and pub-
lished by Hodges and Lehmann [H5]. An integer-valued random
variable z subject to the binomial distribution

(1 P(z|p) = (Z) p*(1 — p)*~*

is observed by a person who knows n but not p. His decision problem
is to decide on a function p of z subject to the loss function:

@) L(p; ») = E((D — p)*| p)
=; (P(z) — p)? (:) (1 — p)* =

In other terms, he must estimate p on the basis of an observation of z
and subject to a loss equal to the square of his error. The traditional
estimate of p is defined by po(z) = x/n. This estimate has many vir-
tues; it is the maximum-likelihood estimate, the only unbiased esti-
mate, and (as is shown in [G1]) the only minimax estimate for a some-
what different problem from that posed by (2). But for (2) the unique
minimax is (as is shown in [H5]) defined by

(& — Do)

3) Bi(@) = Bo@) + =

As it is straightforward to verify for every p,

4) L(po; p) = w;

and

®) L(pr; p) = ———
4(1 + n¥%)?

which constant is, therefore, L*. The ratio of the first of these functions
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to the second is )
1

(6) 4p(1 — p) (1 + —%> ,
n

the maximum of which occurs at p = 1/2 and is

(-2

Thus, for large n, the maximum loss of p, is larger than L* by only a
slight fraction. Moreover, the loss of P is less than L* except when p
lies in the interval where

) 4p(1 — p) > (1 + %2,
that is, where
9) lp— 3| <31 — @+ a2 (4n) %

To take a numerical example, consider n = 10° (which the practical
will note is rather big for a sample). The advantage of p; over Py at
p = 1/2 is then only 0.649,, and, once p departs by as much as 0.04
from 1/2 in either direction, the advantage is with po. It amounts,
for example, to 3.5%, 15.5%,, «%, in favor of Py, when p is 0.6, 0.8,
1.0, respectively.

Many agree that in such an example good judgment will, under ordi-
nary circumstances, prefer P, to the recommendation of the minimax
rule, p;. To my mind, this example constitutes a valid objection against
the minimax rule, in the sense that it demonstrates once more that,
whatever value that rule may have, it is at best a rule of thumb.

The example is a good illustration of the role of personal probability
in ordinary statistical thinking, for the source of the dissatisfaction a
person would ordinarily feel for p; as opposed to P, stems from the fact
that he would not ordinarily attach enough personal probability to the
immediate neighborhood of p = 1/2 to justify preference for p,. It
follows from the numbers given above, for example, that, if the person
attaches a probability of less than 0.84 to the interval [0.4, 0.6], he will
prefer Py to P;; the same conclusion can be derived from the supposition
that the standard deviation of the personal distribution of p is at least
0.04. Of course, situations can be imagined in which the personal prob-
abilities would be so concentrated about 1/2 as to justify preference for
p1; the point of the example is only that there are situations in which
that would clearly not be the case.

Interesting material and important references bearing on the phe-
nomenon illustrated by the decision problem under discussion are given
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by Wolfowitz in [W17]. It seems to be suggested there that the diffi-
culty can be met by postulating some small amount ¢ by which the
person does not mind having his income deereased. Taken literally,
this postulate implies on repeated application that all incomes are
equivalent for the person, but Wolfowitz makes it clear that he does
not mean to propose the postulate in a sense that allows repeated ap-
plications. The idea is reminiscent of those theories of probability
that permit the neglect of an occasional improbable event (mentioned
in the last paragraph of § 4.4) and seems to me open to an objection
similar to the one raised in connection with them. In particular, the
choice of the ¢ would be not only personal, but ill defined as well.

5 The minimax rule does not generate a simple ordering

Finally, an objection made by Chernoff [C7] to the objectivistic mini-
max theory must be discussed. This will entail statement and illus-
tration of the phenomenon on which the objection is based, and state-
ment and analysis of the objection itself.

The phenomenon pertains to the relation between two