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This year marks the Fiftieth Anniversary of the publication of
"Student's" distribution. It is an appropriate time to reconsider the im­
pact of this part of "Student's" work on the development of statistics.

1. INTRODUCTION

WH E N he died in 1937 W. S. Gosset occupied an enviable position among
statisticians. He was universally respected for the originality of his sta­

tisticalwork and for the attractive way in which he presented it. The contribu­
tions which are now best remembered when we allude to 'Student'-using the
pseudonym under which he wrote-are the early papers on theoretical topics.
He was, however, equally admired for the nice sense of proportion which
governed all his statistical reasoning. This sense was evident in the valuable
suggestions which he made concerning the conduct of experiments and surveys,
looking ahead always to an eventual statistical analysis which would be both
simple and informative. The many-sided nature of the man is apparent to any­
one who glances, however casually, through the volume of his collected papers
[14] and was brought out clearly by a number of writers when he died (d.
particularly Pearson [10]). It is difficult to add much to this general picture
but I intend to refer to certain aspects which are made topical by the fact that
just fifty years have elapsed since the publication of the two well-known papers
(i) "The probable error of a mean" and (ii) "The probable error of a correlation
coefficient." I propose to discuss these two 1908 papers but, in doing so, I shall
take for granted some familiarity with their main contents and try to see them
against the background of the contributions made by other authors to related
problems. This will necessitate some brief description of inverse probability
arguments although, as we shall see, Gosset's work was ultimately to strengthen
the reaction against this approach to statistical inference.

2. THE THEORY OF ERRORS

A large number of books on the reduction of observations were written in
the later decades of the nineteenth century, most of them aiming to illustrate
and thus make more accessible the very general computational methods pub­
lished by Gauss in 1821-6 [7]. Their object was to show how to obtain from
scientific observations estimates of physical quantities together with indications
of their reliability. It had become usual to express precision in terms of "proba-
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778 A:lIERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1958

ble errors" and most authors made at least some brief attempt to say how a
"probable error" was to be interpreted in terms of probability theory. A typical
statement, for instance, is the following from an American text by W. W.
Johnson [9, p. 50].

"The probable error of a final result is frequently written after it with the sign ±.
Thus, if the final determination of an angle is given as 36° 42' .3 ± l' .22, the meaning
is that the true value of the angle is exactly as likely to lie between the limits thus
assigned (that is, between 36° 41' .08 and 36° 43' .52) as it is to lie outside of these
limits. "

In thus asserting the equal likelihood that a "true" value will be contained
within or excluded from the assigned range, writers on the theory of errors
almost invariably had in mind a hypothetical long run of repetitions, consisting
not only of the results one might obtain by repeating the measurements on the
same true quantity but also by measuring other true quantities of a similar
nature. Out of this global set of hypothetical repetitions one might then, in
theory, construct the sub-set for which the measurements are identical with
those actually realized in the investigation under review. The assertion then
made was that, in this sub-set, on 50 per cent of occasions the true quantity
being measured would lie in the range calculated with the aid of the probable
error formula.

That the accuracy of such probability statements depends among other
things on prior assumptions about the distribution of the true values being
presented for measurement was of course well known; it was also realized that,
if the number of measurements made is small, as it is very apt to be in practice,
a change in the prior assumption can seriously alter the probability which
should be associated with the calculated limits. Since, however, this does not
seem to have been regarded as a matter of great importance, one must conclude
that contemporary scientific users of the method of least squares were as a
rule content with it simply as a very convenient method of estimation. They
were happy to have standard errors (or probable errors) as indicating, in a
broad comparative way, the merits of the estimates obtained, but the exact
expression of probability, derived from an application of the Bayes-Laplace
method, must to the majority of them have been of secondary importance.

The position of the application of inverse probability theory has not, in the
opinion of the present writer, changed much down to the present day, despite
the illuminating attempts by Jeffreys [8] to put the choice of prior distribution
functions on a rational basis and to remove the whole theory from the context
of a frequency interpretation of probability.

3. SMALlJ SAMPLE THEORY OF THE MEAN

In the presence of this overriding uncertainty about prior distribution func­
tions of true values, writers approaching the subject from this viewpoint could
comfortably overlook several other difficulties. In particular it was customary
to derive a standard error of a mean by using the observed minimized sum of
squares, but in calculating probable error therefrom the random fluctuation of
this quantity was ignored. For in fact if the data were sufficiently sparse for this
fluctuation to matter, the assumed prior distribution for the true values would
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'STUDENT' 779

at the same time become of critical importance. This was realized by no one bet­
ter than F. Y. Edgeworth, who nevertheless did in 1883 still consider it worth
while to develop the small sample theory of a mean value to some extent [2l.
In describing what he had to say in this context I shall translate his remarks
from the language of the theory of errors to that of present-day statistics, but
trust that otherwise I shall not alter the sense.

Suppose Xl, X2, ... Xn are independent Gaussian variables with expectation
j.J. and standard deviation o, Denoting them collectively by S, we may write
their distribution, for given j.J. and u, as

f(S I j.J., u)dS = (21f)-n/2u-n exp {-2-l u- 2 L (x - j.J.)2}dxI ... dx.; (1)

Suppose also that we are given a prior distribution g(j.J., u) dj.J. da, for J.l and a,

Then the joint distribution of sample and parameters is

h(S, j.J., u)dSdj.J.du = f(S I j.J., u)g(j.J., u)dSdj.J.du. (2)

The posterior distribution of j.J. and u, given a realized S, is therefore

p(j.J., a IS)dj.J.du ex: h(S, ti, u)dj.J.du (3)

(the constant of proportionality being obtained by integrating out over j.J. and u).
The posterior distribution of j.J. alone is then

(4)

For the prior distribution, g(/ot, u) dj.J. do, Edgeworth assumed the form Cu-2dj.J.du

which follows by taking j.J. and a to be independent and the precision constant
h= (2-1/2U- 1) to have a uniform distribution. Making the necessary substitu­
tions [2, p. 3671 he arrived at the equation

p(j.J.1 S)dfJ, = K{l + n(x - JL)2/ L (x - x)2}-(n+I)/2dJL. (5)

On writing t= yn(n-l) (x-/ot)/ [2)X-X)2Jt/2, this yields

pet IS)dt ex: {I + t2/(n - I)}-(n+1)/2dt. (6)

If n is large we may expand (6) in powers of (n _1)-1 to give

p(t)dt ex: exp {-t2j2 + (t4 - 4t2)/4(n - 1) + etc.}dt. (7)

Edgeworth termed (5) a sub-exponential distribution and noted that the factor
needed to give the "probable error" now differs from the standard Gaussian
multiple, although, as equation (7) shows, with large enough n there is no dif­
ference. Since one has in practice to deal with small groups of observations it
might appear that one should attach great importance to equation (5). Edge­
worth never did so, however, because he realized that a change in the assumed
form of g(fJ" u) would have decisive influence. In equation (7) the corrective
term (t4 - 4t2) / 4(n - l ) to the large sample result would have to be replaced by
something else if g(fJ" u) were altered. Unless, therefore, we possess, as Edge­
worth did not, some unequivocal method of deciding upon g(fl, a), we are not
much further forward and the use of the Gaussian multiple, as generally prac­
tised, could scarcely be subjected to severe criticism.

D
ow

nl
oa

de
d 

by
 [

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
] 

at
 0

7:
12

 0
7 

Fe
br

ua
ry

 2
01

5 



780 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1958

(8)

When we come to consider Gosset's contribution to the problem of the mean
we shall find him arriving by a different route, not at the same expression as (5),
but at an expression of similar form, but, even SO, with a very different interpre­
tation. The present paper of Edgeworth was not, however, known to Gosset­
it has indeed been largely overlooked by statisticians-and we can only specu­
late what his reaction might have been had he seen it.

4. THE CORRELATION COEFFICIENT

At this point it will be convenient also to describe in a very formal way the
general inverse probability approach to the problem of the correlation co­
efficient.

Suppose (Xi, Yi) are now n pairs of random variables, independent as between
pairs, but each pair following the normal bivariate distribution with means
}Lx, }Ly, variances ux2, Uy2 and covariance PUxUy. Again denoting the whole sample
by S, we have therefore as its distribution for given values of the population
parameters:

f(S I }Lx, }.Iy, crx, cry, p)dS

[
1 {(Xi - }.Ix)2

= exp 2(1 _ p2) L: crx2

(Yi - ).Iy)2} ] { --}+ cri X crxO'y.y1 - p2 -n(21r)-ndx1dYl ... dxndYn.

Then, if the prior distribution function of the parameters is g(}.I"" }.Iy, Ux, Uy,
p)d}Lx dll-ydux duy dp, the joint distribution of sample and parameters is given by

h(S, }.Ix, }.Iy, Ux, cry, p) = f(S I }.Ix, }.Iy, Ux, Uy, p)g(}.Ix, }.Iy, Ux, Uy, p) (9)

where the differential elements dS dll-x dJ.lu dox dcry dp must be appended to each
side of the equation. The posterior distribution of the parameters given S is
proportional to h(S,}Lx,}Ly,UX,uy,p) and hence the posterior distribution of p
alone is

pep IS)dp oc f f f f h(S, fJ-x, }.Iy, (fx, Uy, p)d}.lxd}.lyduxdcrydp. (10)
/lx J.L'JI (Jz (f'J/

The result of this analysis for the particular case where g(}.Ix,}.Iy,UX,uy,p) is
taken to be uniform and where n is large was given in 1898 by K. Pearson and
L. N. G. Filon [11]. If r is the sample correlation coefficient the posterior dis­
tribution of p is then normal with mean r and standard deviation (1-r2)n- 1 / 2•

(Pearson and Filon indeed gave the joint posterior distribution of all the
parameters but this need not concern us for the moment.) Within limits we
can alter g(f.!-x,lI-lI'crx,cry,p) considerably and still obtain the same large sample
result. If n is not large enough, however, the choice of the form of g(}.Ix,J.!.Y'UX,uy,p)
will be critical and all the familiar objections to the method will begin to carry
weight.

5. GOSSET'S DISCUSSION OF THEJ CORRELATION COEFFICIENT

In his 1908 paper on the correlation coefficient [12], Gosset mentions two
typical questions. (i) He introduces the subject by referring to the problem of
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'STUDENT' 781

judging whether an observed r is consistent with an assumed p (in his case
p = 0), but also (ii) he states that "we require the probability that p for the
population from which the sample is drawn shall lie between any given limits."
(Gosset actually uses R for the population correlation coefficient but I have
taken the liberty of changing his R to p in the present quotations to conform
with modern usage. The important point is that Gosset did use different sym­
bols for population and sample statistics). He continues [12, p. 302],

"It is clear that in order to solve this problem we must know two things: (1) the
distribution of values of r derived from samples of a population which has a given p,

and (2) the a priori probability that p for the population lies between any given
limits. Now (2) can hardly ever be known, so that some arbitrary assumption must
in general be made; when we know (1) it will be time enough to discuss what will be
the best assumption to make, but meanwhile I may suggest two more or less obvious
distributions. The first is that any value is equally likely between +1 and -1, and
the second that the probability that x is the value is proportional to l-x2 : this I
think is more in accordance with ordinary experience: the distribution of a priori
probability would then be expressed by the equation y = !(1-x2) .

But whatever assumption be made, it will be necessary to know (1), so that the
solution really turns on the distribution of r for samples drawn from the same popu­
lation. "

Although he does not produce the sought solution in final mathematical form
Gosset, by a mixture of empirical and theoretical reasoning which has often
been admired, succeeds in telling us almost as much about the distribution of
r as any symbolic expression could convey. However, since he could not write
down in a short convenient way the expression for f(rl p)dr, he was unable to
take the further step envisaged in the above quotation. For to complete his
solution, given a prior probability distribution g(p)dp, he would have had to
write down the joint distribution

her, p)drdp = fer I p)g(p)drdp

and then the posterior distribution of p given r

pep Ir)dp ex. her, p)dp

(11)

(l2)

(the factor of proportionality being obtained by integrating out with respect
to p). From (12), for given observed r, he could then have calculated the chance
that p lies between any limits that might have been prescribed beforehand and
thus have solved his second problem.

The solution of equation (12) is not, however, necessarily the same as that
of equation (10) of our previous section. In (12) we are assuming, in calculating
the posterior distribution of p, that r is the only feature of the sample that need
be considered whereas formally (10) implies that we consider all the sample
values, although in virtue of (8) the quantities needed reduce immediately to
(x, s. 8"" 8y and r). To investigate this further let us write

f(B I It"" Ity, U"" UlI, p) = fer Ip)f(S Ir, It"" ItY, U"', Uy, p) (13)

and

(14)

D
ow

nl
oa

de
d 

by
 [

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
] 

at
 0

7:
12

 0
7 

Fe
br

ua
ry

 2
01

5 
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We shall then have from (10) and (11)

pep IS) IX her, p)

.f f f f f(S Ir, }.tx, }.ty, ax, O"y, p)g(}.tx, }.ty, ax, ayIp)d}.txd}.tydaxday (15)
p.']; 1JJI aX, (fy

If the result of the integrations in (15) does not depend on p then pcpIS) is
the same for all S leading to a given r and therefore (10) and (12) will give the
same posterior distribution of p. This clearly will not always be the case irre­
spective of the form of g(}.tx, }.ty, ax, ayl p), but it is not difficult to make a choice
of g(/-lx}.ty(Txay! p) for which it will be the case (e.g, Jeffreys, [8], p. 152).

I am not concerned to pursue the matter beyond this point at the moment
for all these assignations of prior probability have an uncomfortable air of con­
trivance about them and in the present situation there are other obvious
grounds why r, alone, should enter into the picture. For, starting with the set
of quantities (x, :V, 8x , 8y and r), there is no other function of them which has a
direct distribution depending upon p but not depending upon the nuisance
parameters /-lx, }.ty, ax and ay in addition to p. Being, as we are in the situation
which Gosset has in mind, completely ignorant about the values the nuisance
parameters are likely to possess, any rule for making inferences about p which
can be expressed in exact probability terms must therefore be based on the dis­
tribution of r alone among the sample quantities available. If there did not
exist a quantity like r depending in its distribution only on the parameter p

at issue or, if we were concerned rather with probability statements which were
to be expressed in terms of inequalities the position might conceivably be
changed, but, as it is, we are fortunate that we can here, as Gosset does, sim­
plify at the outset and consider a single statistic r alone.

Even in Gosset's treatment there still remains the question of the prior
distribution of p. He would have been forced to give more consideration to this
if he had actually solved his main problem and found fer) p). However, as the
above quotation shows, his assumed forms for g(p) are put forward only very
tentatively and he might easily have decided to dispense with them on further
consideration and have tried what he could do without any assumed prior
knowledge at all.

6. GOSSET'S DISCUSSION OF THE MEAN

Although there are parts of Gosset's paper on the mean [13] which, as with
his treatment of the correlation coefficient, suggest an outlook based ultimately
on inverse probability, there is nowhere explicit reference to the prior functions
which are an indispensable item in the practical working out of such an ap­
proach and in places we see indeed a very different outlook taking shape. The
major part of the paper is concerned with an investigation of the direct proba­
bility distributions of the quantities

82 = L: (x - X)2/n and z = (x - }.t)/8 (16)

(We shall maintain Gosset's definition of 8 although most of us would use a
divisor (n -1) and prefer to discuss, instead of z, the quantity
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'STUDENT' 783

t = vn(n - l)(x - ,u)/L2: (x - X)2]1/ 2 = v(n - l)z (17)

which tends to have unit standard deviation as n becomes large).
On this occasion Gosset succeeded in writing down the direct distributions

sought and, in particular, he found

p(z)dz a,: (1 + Z2)-nI2dz (18)

As R. A. Fisher ([4], p. 81) has noted, Gosset's discussion of the particular
case n = 2 is specially interesting. In this case we have the simple expressions

s = IXl - X2\ /2 and Z = (Xl + X2 - 2,u)/ IXl - X2! (19)

and
p(z)dz o: (1 + Z2)-ldz. (20)

The chance that z lies between any two values Zl and Z2 is

I tarr! Z2 - tan? Zl I /7r

and in particular the chance is ! that z lies between -1 and +1. Symbolically

Pr{ -1 < (Xl + X2 - 2.u)/! Xl - x21 < I} =!. (21)

Thence we may deduce that

Pr{(Xl + X2) - IXl - X2! < 2.u < (Xl + X2) + IXl - X2!} ! (22)

i.e, Pr {,u lies between Xl and X2} = !. (23)

In Gosset's own words ([13], p. 13), where he is first broaching the question
of tabulating (18), this deduction is expressed thus:

"The table for n = 2 can be readily constructed by looking out (j = tan-l z in Cham­
bers's tables and then 0.5+0/". gives the corresponding value.

Similarly! sin 0+0.5 gives the values when n = 3.
There are two points of interest in the n = 2 curve. Here 8 is equal to half the dis­

tance between the two observations. tan-l s/s =7r/4, so that between +s and -8

lies 2 X"./4 Xl/7r or half the probability, i.e. if two observations have been made and
we have no other information, it is an even chance that the mean of the (normal)
population will lie between them. On the other hand the second moment coefficient is

1 f "/2 1 [ ] "/2- tan> IJdIJ = - tan IJ - IJ = 00,

7r -1(/2 1r' -1f/2

or the standard deviation is infinite while the probable error is finite."

Later on, following the short table of the probability integral of z which he
provides for n = 4(1) 10, Gosset again gives expression to a similar interpretation
([13], p. 20):

"The tables give the probability that the value of the mean, measured from the
mean of the population, in terms of the standard deviation of the sample, will lie
between - 00 and z. Thus, to take the tables for samples of 6, the probability of the
mean of the population lying between - 00 and once the standard deviation of the
sample is 0.9622, or the odds are about 24 to 1 that the mean of the population lies
between these limits.

The probability is therefore 0.0378 that it is greater than once the standard
deviation and 0.0756 that it lies outside ± 1.0 times the standard deviation. "
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In other words the table provides first the information that, for n = 6,

Pr {z = (x - P.)/8 < I} = 0.9622 (24)

and then again we may make the transition to an equivalent statement of
which p. is the subject, viz.

Prep. > x - 8) = 0.9622

and by symmetry this implies

Prep. < x + 8) = O.9622~24/25.

(25)

(26)

Furthermore, although p. has become the subject of statements (23) and (26)
the probability is still a direct one related to hypothetical repeated sampling
from a population with fixed mean p. and standard deviation a. (The two above
quotations are indeed separated in the text by the description of a sampling
experiment where, among other things, the theoretical expression (18) is tested
out on empirical material consisting of 750 samples of 4 from a given popula­
tion). The status of the concept of probability is not changed by the mere
alterations of emphasis which Gosset makes as he proceeds in these passages
from one sentence to the next, for what he is saying at this point is deduced all
the time from the direct distribution of z without the intervention of any
further principles.

7. APPLICATION TO SPECIFIC EXAMPLES

Although Gosset was concerned with direct probabilities in the part of his
paper to which allusion has just been made, as soon as he began to apply his
results to specific examples he used language that to readers at that time might
easily have suggested that a posterior probability interpretation in the Bayes­
Laplace sense was intended. For instance, one of his sets of data relates to the
additional hours of sleep obtained by 10 patients when given a certain hypnotic
drug (Treatment 1) compared with the sleep obtained without hypnotic. The
individual gains were 0.7, -1.6, -0.2, -1.2, -0.1,3.4,3.7, 0.8, 0.0, and 2.0.
These have mean x=0.75 and standard deviation 8 (using his definition) = 1.70.
Of these figures Gosset writes (p. 20),

"First let us see what is the probability that 1 will on the average give increase of
sleep; i.e, what is the chance that the mean of the population of which these experi­
ments are a sample is positive. +0.75/1.70=0.44, and looking out z=0.44 in the
table for ten experiments we find by interpolating between 0.8697 and 0.9161 that
0.44 corresponds to 0.8873, or the odds are 0.887 to 0.113 that the mean is positive."

This is elliptic. All that Gosset's developed theory, supported by his tabula­
tion, had shown was that

Pr{z = (x - P.)/8 < 0.44} = 0.887. (27)

On making the kind of transition described in the previous section this becomes

Prep. > x - 0.448) = 0.887. (28)

Now Gosset's statement that the chance is 0.887 that p. is positive can be ob­
tained from (28) by substituting for x the realized value 0.75 and for 8 the
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'STUDENT' 785

realized value 1.70. Thus JL> 0 can be regarded as a realized value of the
random inequality JL> (x-0.44s), which, in repeated samples, has a chance
0.887 of being satisfied. One may object that the random quantity (x-0.44s)
has been defined with the assistance of the figure 0.44 which is itself derived
from the realized sample values, but this is a point which I shall not enter into,
for it is in any case not certain that an interpretation on the present lines was
what Gosset actually intended, despite some pointers in this direction from
earlier sections. However, whatever he had in mind, there is no doubt that,
by many readers, a stated chance that J.I>O would automatically be regarded
as a posterior probability such as might be deduced if some prior distribution
of J.I and a were available. It is perfectly true that Gosset mentions no such
prior function in the present context and therefore strictly should not be sus­
pected here of using the classical inverse probability argument. It is also true,
however, that particularly at the time he was writing, users of the Bayes­
Laplace method often introduced prior distributions almost by sleight of hand
and he would not have been out of fashion if he had been doing something
similar. This practice Was relatively innocuous when large samples were avail­
able, but in Gosset's work, which was avowedly designed to deal with very
small samples, a tacit and unreasoned adoption of a particular prior distribu­
tion function could have been fatal to his purpose. Possibly to prevent any
chance of misunderstanding, in later papers he abandoned the present kind of
statement, as far as I am aware altogether, and gave his conclusions in the form
of a direct summary of the type:-if J.I =0 then a value z=X/s less than that ob­
served will occur with probability 0.887 and a greater value with probability
0.113, i.e. not sufficiently rarely to throw doubt upon the hypothesis that J.I = O.
Whether such statements, impeccable as they are as deductions from the initial
assumptions, are in fact ever in themselves sufficient for action is arguable.
But at least they have the merit of being easily understood.

8. THE NATURE OF GOSSET'S ACHIEVEMENT

I have thus far chosen to emphasize the position of these papers of Gosset in
the context of the views of statistical inference current at his time. I am, how­
ever, far from wishing to imply that he himself was much concerned with any
theory of inference, suggestive as some of his remarks may have been on this
score. He was primarily interested to find the distribution of rand z in direct
sampling from normal populations and the occasional references he makes to
the problem of inference are, perhaps, no more than an acknowledgment of its
existence. It is then as an extension of our knowledge of direct sampling distri­
butions that he would have wished the 1908 papers to be assessed. If, as it
happens, I have said very little above about the actual derivations, it is only
because the facts are so well known. There may be readers who are not greatly
impressed by the papers on account of the incompleteness of the mathematical
proofs which are given, but the final verdict of mathematical statisticians will,
I believe, be that they have lasting value. They have the rare quality of showing
us how an exceptional man was able to make mathematical progress without
paying too much regard to the rules. He fortified what he knew with some
tentative guessing, but this was backed by subsequent careful testing of his
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results. In this he exemplifies an attitude more common, perhaps, to mathe­
matical innovators than they care sometimes to admit. We have become ac­
customed to-day to a standard of published mathematical proof which can
hide rather than reveal the actual process by which discoveries are made. With
Gosset on the other hand, we can almost observe his initial thinking, whilst the
nature of the final proof is secondary provided only it is sufficient to convince
us that the results are right.

9. SUBSEQUENT DEVELOPMENTS

The successful generalization of the 'Student' distribution which forms the
basis of so much statistical work in the modern period, was, as is well known,
provided by R. A. Fisher. If I may venture to express a particular preference
among his papers, it is for one which was published in 1925 [3] in which the
whole theory is very succinctly developed. Fisher showed that it applied to the
most general situation in "least squares" where observations are interpreted as
being equal to linear functions of parameters plus random normal errors whose
sampling variances are proportional to known numbers (but where the actual
scale of residual variance has to be estimated from the minimized sum of
squares). Also about this time Fisher published the book [5] which was to
become a classic and which exploits the "general linear hypothesis" in a variety
of experimental situations very different from the typical ones encountered in
physics and astronomy. In this field of application Gosset also had made a
great deal of the running but the conduct of the general advance now lay in
Fisher's hands, and the impetus which he then gave to the subject is far from
being exhausted.

Also should be mentioned further work on the correlation coefficient. As we
noted above, Gosset did not succeed in discovering an explicit form for the
distribution of r in normal samples. Fisher in 1915 [6] was, however, successful,
although the complexity of the result was such that it was not surprising that
Gosset's unorthodox approach had failed to reveal it. Later Fisher was to
provide also simplifying approximations to the distribution and to make the
generalization to partial correlations and, in effect, to write yet another
chapter in the history of the development of statistical methods.

10. EFFECTS OF NON-NORMALITY

Anyone who works in this field of normal small sample theory must reflect
at some stage on the importance or otherwise of the "assumption" of normality
in the populations sampled. The reasons which have been put forward from
time to time for making this assumption are not wholly convincing but are
worthy of some notice:

(i) It is said that many empirical populations are in fact Gaussian. We can,
I think, accept that to a good approximation this is so, or becomes so, by some
simple transformation of the variables. Nevertheless the onus would always
seem to be on the experimenter to produce positive evidence that the Gaussian
assumption is in a general way applicable in the particular field in which he is
operating.

(ii) Gosset expressed the opinion that there might be fields of inquiry where
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skewed populations are expected but where the direction of skewness would
not be known beforehand. He seemed to envisage the possibility of a distribu­
tion of skewness (equally likely positive and negative)-whether in an actual
superpopulation or just in some logical sense is not clear-and by this means
the normal theory distribution of z might be maintained (d. Letter quoted by
E. S. Pearson, [10], p. 245). This, as it stands, is too vague to be of much
assistance.

(iii) We often wish to draw deductions of a symmetrical kind (e.g. confidence
limits equally spaced about the mean) and moderate skewness in the popula­
tion does not affect such statements seriously. This is true but almost as often
we wish to make "one-tailed" statements which are affected by skewness.

(iv) There is as a rule no other simpler mathematical assumption than the
Gaussian in better accordance with the empirical facts for which at the same
time the sampling theory has been worked out in such complete form. Here,
perhaps, we are coming close to the real reason why normal theory holds the
position it does, but it is not a reason which is convincing to a person who
questions the necessity of using any small sample theory at all.

In trying to give weight to these pros and cons it may be helpful to recall just
exactly how the presence of skewness in a population does influence the dis­
tribution of the quantity t= vn(x-jJ.)/s, using now our standard definition.
We may note firstly that, if n is very large, t tends to be normally distributed
irrespective of the form of the population sampled (excepting some extreme
cases). If n is only moderately large, however, M. S. Bartlett [1] has shown
that the distribution of t differs from the standard normal theory t distribution
by an amount of order n-1!2. But the normal theory t itself differs from the unit
Gaussian distribution only by an amount of order n:". If, therefore, we decide
to ignore the influence of skewness on the t distribution we might well go further
and act as if t were unit Gaussian. If this position were accepted we would, of
course, be returning to the use of the ubiquitous figure 0.67449 for determining
probable error from an estimated standard error, despite the fact that the
latter may be based on only a moderate number of degrees of freedom. The
normal theory t-multiple will undoubtedly constitute a refinement if we are
actually sampling from a Gaussian population, but otherwise, it is difficult to
see how we can press its use upon recalcitrant statisticians who say that they
have no confidence that their data are Gaussian and that therefore, for sim­
plicity, they are content to use with small samples the multiples which they
know are at least valid with large ones. We may reply that there is little chance
of making things much worse by using a normal theory t-multiple rather than
the unit Gaussian multiple, but we can give no positive assurance that there
will be gain.

II. CONCLUSION

The expression of inferences from sample to population means in terms of
probability has never been free from an admixture of arbitrary elements, e.g.
(i) the nature of the law of "facility of error" (or the form to be assumed for
the population distribution), and (ii) the nature of prior functions in the Bayes­
Laplace method. It was early shown that the effects of this arbitrariness dis-
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appeared if samples were large enough, but the development of a specific small
sample theory was still inhibited. In the modern period, often dated from 1908,
we have seen a gradual abandonment of inverse probability arguments and
attempts to confine conclusions to those which may be deduced from direct dis­
tributional facts. Whether we believe, with some, that inverse probability has
finally been scotched or, with others, that a stroke of inverse probability will
always be required at some point, we must note that a large part of the de­
velopment of the normal small sample theory, at least in the twenty years
following 1908 when the immediate influence of Gosset was being felt, was
rendered possible by the removal from the argument of the arbitrariness
associated with the postulation of particular prior distribution functions of
parameters. Without prejudging the success or otherwise of these developments
as providing a sufficient basis for probability inference, and without attempting
to evaluate what has been written on inference since 1928, we can still un­
reservedly commemorate in Gosset a man who played an outstanding part in
contributing to our understanding of these questions.

The source of arbitrariness associated with the assumption of normality in
the population remains, however, whatever our general views on inference
may be. The standard 'Student' theory is an unqualified improvement on large
sample theory only if the populations sampled are close to the Gaussian form.
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