What Do Books in the Home Proxy For? A Cautionary Tale

Per Engzell1,2

Abstract
In studies of educational achievement, students’ self-reported number of books in the family home is a frequently used proxy for social, cultural, and economic background. Absent hard evidence about what this variable captures or how well, its use has been motivated by strong associations with student outcomes. I show that these associations rest on two types of endogeneity: Low achievers accrue fewer books and are also prone to underestimate their number. The conclusion is substantiated both by comparing reports by students and their parents and by the fact that girls report on average higher numbers despite being similar to boys on other measures of social background. The endogenous bias is large enough to overturn classical attenuation bias; it distorts cross-country patterns and invalidates many common study designs. These findings serve as a caution against overreliance on standard regression assumptions and contribute to ongoing debates about the empirical robustness of social science.

Keywords
education, endogeneity, equality of opportunity, home literacy environment, socioeconomic status, standardized assessments, differential measurement error

1 Nuffield College, University of Oxford, Oxford, United Kingdom
2 Swedish Institute for Social Research, Stockholm University, Stockholm, Sweden

Corresponding Author:
Per Engzell, Nuffield College, University of Oxford, OX1 1NF Oxford, United Kingdom.
Email: per.engzell@nuffield.ox.ac.uk
In the years leading up to 1915, Charles Elmer Holley, a doctoral candidate at the University of Illinois, surveyed students and their parents in high schools throughout the state. In his thesis submitted that year and issued as a *Yearbook of the National Society for the Study of Education* the following, he wrote:

> If a person wished to forecast, from a single objective measure, the probable educational opportunities which the children of a home have, the best measure would be the number of books in the home. (Holley 1916:100)

His conclusion was based on cross-tabulations and bivariate correlations involving offspring’s years of schooling and various family characteristics. Holley granted that his data were likely not without errors of observation but believed that the consequence would be “nearly that of pure chance, though this may be proved otherwise if carefully investigated” (p. 17). The aim of this study is to take a closer look at the measurement issues involved when the number of books in the home (henceforth, NBH) is used as an explanatory variable in models of student achievement. As of this article’s writing, a search for “number of books [at/in the] home” returned close to 5,000 results in Google’s Scholar database, two thirds of which were penned in the last decade. Despite this popularity, surprisingly little is known about the measure’s validity or reliability.

Instead, use of NBH has largely been motivated by one single consideration: its predictive power for student outcomes, of which already Holley wrote. For example, Hanushek and Woessmann (2011:117) recommend NBH as a proxy for students’ social background “not only because cross-country comparability and data coverage are superior . . . but also because books at home are the single most important predictor of student performance in most countries.” Similarly, a 100-page methodological monograph issued by the International Association for the Evaluation of Educational Achievement (IEA) urged survey organizers to include those measures “that show the highest association with achievement in terms of explained variance,” identifying NBH as “the strongest predictor of achievement. . . across the different studies and subject areas investigated” (Brese and Mirazchiyski 2013:98-99).

In this article, I consider two explanations for the strong associations that have received little attention in previous studies. First, NBH may be an endogenous variable, if students who are good at reading garner more books as a result of their interests and abilities. Second, misreporting may not be random. Whereas in the classical measurement model, any errors of
observation in predictor variables will bias associations toward zero—the well-known “attenuation bias”—with systematic error the bias can go in any direction. In particular, students with little interest or ability in reading may underestimate NBH because they are unaware of any books that are available to them. This would contribute an upward bias, not downward as the classical measurement model posits. Inspecting a range of evidence, I find signs of both these types of endogeneity.

Using data from the Progress in International Reading Literacy Study (PIRLS) assessment of 10-year-olds in 40 countries, I start by establishing that student–parent agreement on this variable is low. I then provide evidence of systematic error: Underreporting compared to parent responses is dominant and clearly related to low achievement. One possible objection to comparing the responses of students and parents is that the latter is likely to contain errors too. Therefore, I corroborate my conclusions by inspecting gender differences as an exogenous source of achievement, unrelated to family background. This also allows me to assess the possibility that the actual number of books, and not just the student’s error-prone estimate, is an endogenous variable. A later part of this article goes on to illustrate the consequences of endogeneity in a cross-country comparative setting, using decomposition and simulation-based techniques adapted for the purpose. As this part of the analysis draws on stronger assumptions, it is worth noting that the evidence of endogeneity offered earlier in this article is independent of it.

In conclusion, the high predictive power of NBH for achievement does not signal greater reliability or substantive importance compared to other proxies, and ultimately, researchers may be better served by proxies that show more modest associations but are better measured. These results should challenge researchers to think more carefully about the assumptions that go into estimates based on proxy variables: While the classical model remains a convenient heuristic, its assumptions are not axiomatic and need to be justified in any given application. This study also adds to ongoing debates about limits to the self-correcting nature of social science (Gelman and Loken 2014; Ioannidis 2012). While much of this debate has focused on sampling variability and selective reporting, the results uncovered here highlight the importance of endogeneity and mismeasurement as additional sources of bias. An implication is that the recent push toward increased transparency and replication (Freese and Peterson 2017), while laudable, may not be enough to rid social science of its biases without corresponding improvements in measurement and study design.
Background and Previous Literature

Measurement of students’ social background is crucial in research on educational inequality and international differences in achievement (Breen and Jonsson 2005; van de Werfhorst and Mijs 2010). Virtually without exception, methodological literature on proxy variables departs from some version of the “classical” model where error is treated as random noise, unrelated to all model variables and the regression residual (Bohrnstedt 2010; Saylor 2013). It is well-known that such error will lead to a bias toward the null as a simple function of the ratio of noise to total variance. This heuristic explains why researchers would take strong predictive power as an assurance for validity or reliability: If anything that can go wrong will lead to downward bias, proxies that predict the outcome well do so because they track the attributes proxied for more closely, are more reliably reported, or both.

However, the classical assumptions are just that: assumptions. As such, they need to be substantiated, and large associations should never themselves be considered enough to validate a measure. As this study and a number of others show (Jerrim and Micklewright 2014; Rutkowski and Rutkowski 2010), reliability of NBH is not better than for other measures but in fact substantially worse. Meanwhile, there is little to suggest that NBH is strongly correlated with other observable aspects of students’ social background. This raises the question: If superior reliability or validity do not explain the predictive power of NBH, then what does? This question is important given that many authors seem ready to accept NBH as a valid measure of family background based solely on its predictive power for student outcomes. Some have also invoked classical assumptions to correct for errors, to dramatic effect (Ammermueller and Pischke 2009), further motivating the question of whether such assumptions are indeed justified.

The question of what NBH is a proxy for receives somewhat different answers from study to study. Some use it to capture socioeconomic status broadly conceived—among them Hanushek and Woessmann (2011:117) who deem NBH “a powerful proxy for [students’] educational, social, and economic background.” Others take it to reflect cultural as opposed to economic advantage (Esping-Andersen 2009; Evans, Kelley, and Sikora 2014; Marks, Cresswell, and Ainley 2006; Park 2008). Thus, Esping-Andersen (2009:128) reports that “‘cultural capital’ overpowers socioeconomic status in accounting for cognitive differences in all countries.” The aim here is not to adjudicate between these interpretations but to assess whether methodological artifacts play a part in explaining the variable’s strong predictive power.
In cross-country comparisons, the particular types of bias may matter less than whether they are similar across countries. Speaking to this issue, Schütz, Ursprung, and Woessmann (2008) regressed a banded measure of annual household income on NBH using parent-reported data from six countries in the PIRLS. They interpret the absence of significant country interactions in this regression as “strong evidence [of] the validity of cross-country comparisons where the books-at-home variable proxies for family background” (pp. 287-88). The power of this test is questionable since income is itself volatile and typically reported with much error (Micklewright and Schnepf 2010). More fundamentally, because data were sourced from parents, the evidence does not speak to the quality of student reports, which is what most studies (including Schütz et al.) ultimately have relied on.

This article builds on a string of recent studies that examined social background measurement in international student assessments (Engzell and Jonsson 2015; Jerrim and Micklewright 2014; Kreuter et al. 2010). Most closely related of these is Jerrim and Micklewright (2014) who studied NBH using the same data set as here. They document not only low agreement between students and parents but also wide variation in the strength of the association with student achievement depending on which source was used, with student reports often yielding the larger estimate. No previous study, however, has attempted to reconcile the low reliability with NBH’s strong predictive power for student outcomes—the main contribution of this article. Methodologically, I also extend on recent discussions of systematic measurement error (Jerrim and Micklewright 2014; Kreuter et al. 2010) by providing an empirical decomposition that separates classical attenuation from endogeneity and systematic misreporting as sources of bias. To this end, I adapt a method first used by Black, Sanders, and Taylor (2003), which is extended here to allow for imperfect validation data.

Data

Data for this study come from the PIRLS (https://timssandpirls.bc.edu), conducted by the IEA. PIRLS has collected information on NBH from students and parents every five years since 2001. The 2011 round was carried out on school-based, random samples of fourth-grade students (age 10) in near 50 countries. A parent questionnaire (the “Learning to Read Survey”) was administered in 45 countries, but with poor response rates (below 60 percent) in 5 of them. I focus on the remaining 40, a list of which is provided in Table 2, all with parental response above 75 percent. In these countries, a total
222,425 students were assessed. Restricting the analyses to complete cases, where both the student and parent reported, yields a sample of 197,387.

The concept of reading literacy in PIRLS is broad and includes comprehension as well as “the ability to reflect on what is read and to use it [to attain] individual and societal goals” (Mullis et al. 2009:11). To assess a range of capabilities, a rotated booklet design is used where each student is tested on 2 of a total 10 text passages. Test scores are imputed as posterior draws from estimated ability distributions using a Rasch model (the so-called plausible values). I standardize these to have mean = 0 and standard deviation (SD) = 1 within each country. All estimates account for uncertainty from plausible value imputation and clustering on school classes.

Table 1 shows the questions asked about NBH. While students are asked to estimate the total number of books, the parent questionnaire splits this item into “books” and “children’s books.” The parent, but not the student, questionnaire also includes questions about parents’ education, employment, and line of work. The same questions are used in IEA’s other assessment, the Trends in International Mathematics and Science Study, where a parent questionnaire was first introduced in 2011. The third major assessment, Organization for Economic Cooperation and Development’s Programme for International Student Assessment (PISA), asks students but not parents about books. I use PISA 2012 data in addition to PIRLS in the gender analyses below, where parent reports are not necessary. The PISA question is similar in its wording but includes an additional category for “more than 500 books.”

Descriptive Results

Previous studies have found that students and parents differ in their reports about NBH (Jerrim and Micklewright 2014; Rutkowski and Rutkowski 2010), but before turning to questions of the form and consequences of error, I revisit this issue briefly for two reasons. The questions asked in PIRLS are not identical, which could explain some of the discrepancy. Another possible explanation is age: It is well-known that younger children are generally less reliable as respondents (Looker 1989). PIRLS participants are five years younger than those in PISA from whom comparable reliability estimates on occupation and education are available (Jerrim and Micklewright 2014).

Low Agreement between Students and Parents

Figure 1, left panel, plots Cohen’s κ (kappa), a common measure of interreporter agreement, for student- and parent-reported NBH in each PIRLS
country. The statistics are trailing well below the 0.40 threshold commonly taken to denote “moderate” agreement (Landis and Koch 1977). As Table 1 shows, the questionnaire items differ: Parents are asked about “books” and “children’s books” separately, while students are asked for a total number. To approximate a comparable number with the parent questionnaire, I also construct an aggregate of both items by addition of midpoints (e.g., “101–200 books” and “51–100 children’s books” will sum to “>200 books” as 150 $+$ 75 = 225). This should improve agreement if questionnaire design were to explain the lack of it. Instead, κ actually deteriorates somewhat, suggesting an explanation has to be sought elsewhere.

Table 1. Books at Home in the Progress in International Reading Literacy Study (2011) Student Questionnaire, Administered in School, and Home Questionnaire, Distributed to Student’s Parents or Guardians.

<table>
<thead>
<tr>
<th>Student questionnaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>About how many books are there in your home? (Do not count magazines, newspapers, or your school books.) Fill one circle only</td>
</tr>
<tr>
<td>None or very few (0–10 books) — O</td>
</tr>
<tr>
<td>Enough to fill one shelf (11–25 books) — O</td>
</tr>
<tr>
<td>Enough to fill one bookcase (26–100 books) — O</td>
</tr>
<tr>
<td>Enough to fill two bookcases (101–200 books) — O</td>
</tr>
<tr>
<td>Enough to fill three or more bookcases (more than 200) — O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parent questionnaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>About how many books are there in your home? (Do not count magazines, newspapers or children’s books.) Check one circle only</td>
</tr>
<tr>
<td>0–10 — O</td>
</tr>
<tr>
<td>11–25 — O</td>
</tr>
<tr>
<td>26–100 — O</td>
</tr>
<tr>
<td>101–200 — O</td>
</tr>
<tr>
<td>More than 200 — O</td>
</tr>
</tbody>
</table>

| About how many children’s books are there in your home? (Do not count children’s magazines or school books.) Check one circle only. |
| 0–10 — O |
| 11–25 — O |
| 26–50 — O |
| 51–100 — O |
| More than 100 — O |

Source: Adapted from Original Questionnaires available at http://timssandpirls.bc.edu/pirls2011/.
The young age of students in PIRLS could be another issue. To address this, Figure 1 gathers comparable estimates of parent–child agreement from children close to PIRLS age (10 years). Although some are from small or nonrepresentative samples, they demonstrate that higher agreement on other measures is not confined to the older PISA respondents. Finally, Figure 1, right panel, displays rank-order correlations. This is a more appropriate metric for the children’s books item where the categories use different cut-offs and could also be important if students use a different factor to convert books into shelves than intended (see Table 1). These figures are higher but still fall short of comparable estimates in the literature. The upshot is that low agreement on NBH cannot be accounted for by questionnaire differences or student age.

Figure 1. Agreement between students and parents on books in the home in Progress in International Reading Literacy Study (PIRLS, 2011). Cohen’s κ (left) and Spearman’s ρ (right). Each circle represents a country. The items are described in Table 1 and the running text. Median κ estimates from earlier studies are displayed for comparison (dashed lines). Sources: (a) West et al. (2001), Vereecken and Vandegehuchte (2003), (b) Andersen et al. (2008), and (c) Ensminger et al. (2000). N (PIRLS) = 2,808–8,487 (per country), 197,387 (total).
The Structure of Disagreement

The κ statistics around 0.20 in Figure 1 translate into a percentage agreement of about 40 percent, implying that 60 percent report a different category than their parent. In fact, there is no single country where a majority of reports agree. The direction of this disagreement is of some interest because of its implications for the resulting bias. As discussed above, if underreporting is more common among low achievers, the importance of books may be overstated in regression analyses that use student reports.

For now, I ignore the possibility of misreporting or endogeneity in parent reports and calculate the error in student reports as the difference relative to the total from the parent questionnaire. It is reasonable to assume that parent reports are, if not correct, then at least much more accurate. Parents will, as adults, be better at the cognitive tasks involved in responding. They will also be better informed because they, not the student, have brought most of the books into the house and will have some attachment to them. Finally, parents answer the survey at home which should lead to more accurate answers about the home environment.

Using pooled data from all countries, Figure 2 shows the probability that the student reports a higher or lower category than the parent (“over” and “underreport”) by the parent’s category and the student’s decile in the national achievement distribution. Student overreporting is a relatively rare phenomenon, except when parents report in one of the bottom two categories. In contrast, underreporting is much more common. For students of median achievement whose parents report in the middle (“26–100 books”), the probability of an underreport outweighs that of an overreport by a factor of three (0.46 vs. 0.15).

Importantly, underreporting is clearly associated with reading achievement while overreporting is not. Focusing again on students whose parents report in the middle category (“26–100 books”), moving from the top to the bottom of the national achievement distribution increases the probability of an underreport by a factor of 1.6 (0.57 vs. 0.35). This difference is even starker in the category below (“11–25 books”) with a factor of nearly two (0.41 vs. 0.22). Taking into account the extent of disagreement—the number of categories by which reports differ—accentuates these patterns even further (results not shown). This offers preliminary evidence that systematic misreporting makes student-reported data endogenous.

Learning from Gender Differences

The above findings are suggestive but may be sensitive to the assumption that parents report correctly. For this reason, I turn to gender as an exogenous
source of reading achievement. The intuition behind the gender comparison is simple. Boys and girls on average come from similar homes, but girls outperform boys in reading throughout the school age (Buchmann, DiPrete, and McDaniel 2008). If there is endogeneity, therefore, we would expect girls to report higher NBH. Because this strategy does not rely on linking sources, I am also able to examine PISA data, where parents are not asked about NBH.

In addition to providing an independent test for endogeneity, gender differences can shed some light on its sources: It was noted above that NBH may be endogenous because low achieving students (a) amass fewer books, (b) underreport, or (c) both. Endogenous underreporting would bring about a gender difference in student but not parent reports, while endogeneity in actual books would lead to a gender difference in both. If (a) is the case, therefore, we would expect a gender difference in NBH of similar size in both students and parents, if (b), a gender difference in

Figure 2. Estimated probabilities from fully interacted logistic regression of students reporting a higher or lower category than parent (“over” and “underreporting”), by student’s achievement decile and parent’s reported value. Pooled data from Progress in International Reading Literacy Study 2011, achievement scores standardized at the country level; 95 percent confidence intervals allowing for clustering on school classes. Underreporting is the most common form of disagreement, and closer associated with (low) achievement than overreporting. N = 197,387.
students but not parents, and if (c), a gender difference in both, but of a larger magnitude in student reports which are subject to not one but two sources of endogeneity.

The results, reported as odds ratios from a set of ordered logistic regressions in Figure 3, confirm that girls tend to report greater numbers of books in both PISA and PIRLS. In the median country, a girl’s odds of reporting in a higher category is 1.16 (PISA) or 1.15 (PIRLS) times those of a boy. Figure 3 also reveals a similar, if smaller, differential by student gender in parent reports about “children’s books.” (While nominally the odds ratios are similar, this item spans a narrower range than the others, the maximum category being “more than 100”; see Table 1.) These results are further suggestive of endogeneity and on balance most consistent with scenario (c) where both reverse causation and endogenous underreporting contribute an upward bias.7

Figure 3. Odds ratios from ordered logistic regression of reported student background variables on student gender. Each circle represents a country. Filled markers indicate significance at the 5 percent confidence level, Bonferroni corrected by the number of study countries and allowing for clustering on the school (Programme for International Student Assessment [PISA]) or school class (Progress in International Reading Literacy Study [PIRLS]) level. Box plots display the median and interquartile range of estimates. Higher values reported by girls (boys) are indicative of a positive (negative) endogenous bias. N (PISA) = 1,334–28,074 (per country), 394,130 (total); N (PIRLS) = 2,808–8,487 (per country), 197,387 (total).
Consequences for Cross-country Comparisons

The results so far are strongly suggestive of endogeneity and should lead to significant caution about NBH in any setting that attempts to estimate influences on student achievement. However, there are two questions that the above analysis does not answer. The first is whether endogeneity is quantitatively important; the second whether it distorts cross-country patterns in the association, on which much of this literature focuses (Chiu 2010; Park 2008; Schütz et al. 2008). If endogeneity contributes a trivial bias compared to the standard problem of attenuation bias, concerns may be overwrought. Likewise if these issues manifest themselves similarly across countries, in which case the comparative picture would remain unchanged. To address these questions, I depart from a least-squares decomposition first used by Black et al. (2003) in a study of wage regressions. While Black et al. (2003) were primarily concerned with nonclassical measurement error, I show here that their framework is useful for thinking about the wider problem of endogeneity.

To avoid thorny questions of what NBH is a proxy for, I will simply assume that there is a true amount of books, which is what we ideally would like to observe. To make the assumption of exogeneity tenable, however, we should think of this as the number of books before the student came of reading age, or (more pedantically) the expected number of books at the time of survey, given parents’ permanent characteristics. This obviously ignores a wide range of unobserved confounders, so exogeneity here should not be understood in the sense of identifying a causal effect of books but only in the weaker sense that observed values are not themselves caused by student achievement. The books question is usually categorical (“0–10 books,” “11–25 books,” etc.) but often modeled as linear in categories, assigning integer values such as 1 through 5 (e.g., Ammermueller and Pischke 2009; Esping-Andersen 2009; Park 2008; Schütz et al. 2008). I follow this practice and to abstract from errors due to truncation or discretization, I further assume that the categories and not the underlying continuous variable are the target.

The inspection of gender differences above demonstrates that parent reports about nonchildren’s books are the only information on NBH that is rid of endogeneity, so it is natural to take this variable as a benchmark for how well we can reasonably hope to measure the variable. Assuming that this variable reflects “the truth” might be going too far, however. Therefore, I simulate the consequences of error in the validation data, to be interpreted as a sensitivity analysis in the spirit of Rosenbaum and Rubin (1983). I achieve
this using a version of the simulation–extrapolation or simex algorithm (Cook and Stefanski 1994) described in greater detail below. I will also use the fact that parents report on “books” and “children’s books” separately to assess the relative weight of reverse causation and systematic underreporting as sources of endogeneity.

Decomposition Method

The classical model on which nearly all work on proxy variables draws assumes that observed values x are an additive function of true values x^* and noise u, such that $x = x^* + u$. Given the classical assumptions that the error is mean zero, unrelated to true values, and to the regression residual, the least squares estimator regressing some outcome y on x is biased downward by a factor of noise to total variance (e.g., Bohrnstedt 2010):

$$\text{plim} \hat{\beta}_{\text{OLS}} = \beta - \beta \frac{\text{Var}(u)}{\text{Var}(x)}.$$

In our case, we are dealing with two types of deviations from the “true” underlying quantity: any books that have been brought into the house as a function of the student’s reading achievement and a response error reflecting the fact that the student may be misinformed, misread the question, or otherwise state the wrong answer. As argued above, neither of these deviations is likely to conform to classical assumptions. Imposing no assumptions on the form of u other than additivity, the bias instead becomes:

$$\text{plim} \hat{\beta}_{\text{OLS}} = \beta - \beta \frac{\text{Cov}(u, x)}{\text{Var}(x)} + \frac{\text{Cov}(u, \epsilon)}{\text{Var}(x)}.$$

For proof and extended discussion of this and subsequent results, refer to the Online Appendix (which can be found at http://smr.sagepub.com/supplemental/). In fact, each of these components can be written as the slope coefficient from a separate regression, leading to the decomposition:

$$\text{plim} \hat{\beta}_{\text{OLS}} = \beta - \beta \frac{\text{Cov}(u, x)}{\text{Var}(x)} + \frac{\text{Cov}(u, \epsilon)}{\text{Var}(x)}.$$

where β_{ux} is the slope from a regression of the error u on endogenous values x, and β_{cx} from regressing the residual ϵ on x (Black et al. 2003).

Of these components, the attenuation component β_{ux} is always positive, and when multiplied with $-\beta$ leads to a downward bias, just like in the classical model. It differs subtly from the classical expression, however, in
that it also incorporates any correlation between the error and true values, \(x^* \). Whenever a variable is bounded, floor and ceiling effects will entail that this correlation is negative and attenuation is weakened compared to the classical case (Kreuter et al. 2010). The endogeneity component \(\beta_{\text{ex}} \) does not have a sign a priori but depends on whatever process is generating the error. In our case, we know enough to say that this bias is upward in sign: It includes both endogeneity in the conventional sense (avid readers get more books) and the correlation between reporting error and achievement—which, if poor readers underestimate NBH, also biases the association upward.

Given validation data on correct as well as endogenous values, it is straightforward to estimate each of these components as:

- \(\hat{\beta}_{\text{OLS}} \): The slope from a regression of \(y \) on the endogenous measure \(x \);
- \(\beta \): The slope from a regression of \(y \) on validation data \(x^* \);
- \(\beta_{\text{ax}} \): The slope from a regression of the deviation \(u = x - x^* \) on the endogenous measure \(x \); and
- \(\beta_{\text{ex}} \): The slope from a regression of the residual \(\epsilon = y - \beta x^* \) on the endogenous measure \(x \).

As mentioned above, the validation data here come from parent reports about nonchildren’s books, as the only exogenous measure available (in the weak sense of exogeneity above). While endogeneity renders parent-reported children’s books unsuitable for this purpose, we can nevertheless use them to assess the relative sources of endogeneity: reciprocal causation versus systematic misreporting. The key assumption will be that by conditioning on parent reports about children’s books, the remaining endogeneity is due to student misreporting. (This is a strong assumption but recalls that I also simulate the robustness of conclusions to the presence of error in parent reports.) Here, I simply reestimate the last component \(\beta_{\text{ex}} \) while flexibly controlling for parent-reported children’s books, included as a set of indicator variables. Letting \(\tilde{\beta}_{\text{ex}} \) denote the coefficient with children’s books partialled out, we have:

\[
\beta_{\text{ex}} = \beta_{\text{ex}} - \tilde{\beta}_{\text{ex}} + \tilde{\beta}_{\text{ex}}^*.
\]

Lastly, I simulate the consequence of error in parent reports using the simex algorithm introduced by Cook and Stefanski (1994) and adapted for categorical data by Küchenhoff, Mwalili, and Lesaffre (2006). Three scenarios are assessed, letting 10 percent, 20 percent, and 30 percent of parents misreport. While the details of this estimator are somewhat technically
involved, the intuition is simple. It begins from the insight that while we cannot directly estimate the coefficient we would with perfect data, we can successively add more error and trace how the parameter of interest decays. Having done so, it is possible to fit a curve to the parameter decay and extrapolate back to the ideal case of no error. I apply the same amount of error to parent reports about “books” and “children’s books” in these analyses. Further details of the simulation are described in the Online Appendix.

Decomposition Results

I first focus on the limiting case of no error in the validation data; Table 2 shows point estimates from this decomposition, ordering countries by aggregate book possession (“median” refers to the median category reported by parents). The regression estimates (“student est.,” “parent est.”) are generally in the range of .10–.35 of an SD’s gain in reading scores per step up the “ladder” of categories. Given that the focus is on how cross-country patterns are biased, I will have little to say about the substantive size of estimates—but the SD of NBH averages about 1.3 (parents) or 1.2 (children) categories, so standardized coefficients are on the same order of magnitude.

The main interest lies with the subsequent columns, where “bias” refers to the difference between regression estimates based on the two sources. This bias ranges from a negative −155 in Quatar, all but eradicating the parent-based estimate of 0.180, to a positive bias in countries such as Canada (0.075) or Singapore (0.097), as well as most European Union countries. Comparing countries with high and low aggregate numbers of books reveals a clear pattern. For countries where fewer books are the norm, toward the bottom of the table, parent reports yield larger estimates in line with classical measurement error. In countries where aggregate numbers are higher, and therefore, the scope for endogenous underreporting larger, there is less of a consistent pattern: Student reports yield estimates that are variously smaller, larger, or of comparable size.

The next two columns (“atten.,” “endog.”) decompose the bias into attenuation and endogeneity. The attenuation component states just how much smaller the student-based estimate would be compared to that from parents, under the hypothetical scenario that the difference between the two reports was just random noise. In many cases, attenuation and endogeneity balance each other out, so that the net bias comes close to zero. Nevertheless, that about half of the student estimate is then attributable to endogeneity—for example, 48 percent in Norway or Germany (0.118/0.246; 0.150/0.315),
Table 2. Estimates from Bivariate Linear Regression of Progress in International Reading Literacy Study (2011) Reading Scores on Student and Parent Reports of Number of Books at Home (Range 1–5), and Decomposition of the Difference between the Two Assuming Parent Reports to be Correct. “Bias,” “Atten.,” “Endog.” Refer to Terms of Equation (4), “R. caus.” and “Misrep.” to Terms of Equation (5).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway (nor)</td>
<td>2,801</td>
<td>101–200</td>
<td>.246 (.018)</td>
<td>.265 (.019)</td>
<td>-.019</td>
<td>-.137</td>
<td>.118</td>
<td>.022</td>
<td>.096</td>
</tr>
<tr>
<td>Sweden (swe)</td>
<td>3,837</td>
<td>101–200</td>
<td>.312 (.014)</td>
<td>.295 (.014)</td>
<td>.016</td>
<td>-.111</td>
<td>.128</td>
<td>.025</td>
<td>.103</td>
</tr>
<tr>
<td>Hungary (hun)</td>
<td>4,832</td>
<td>26–100</td>
<td>.338 (.017)</td>
<td>.354 (.017)</td>
<td>-.015</td>
<td>-.117</td>
<td>.101</td>
<td>.031</td>
<td>.071</td>
</tr>
<tr>
<td>Denmark (dnk)</td>
<td>4,299</td>
<td>26–100</td>
<td>.284 (.015)</td>
<td>.262 (.014)</td>
<td>.022</td>
<td>-.089</td>
<td>.111</td>
<td>.016</td>
<td>.094</td>
</tr>
<tr>
<td>Germany (deu)</td>
<td>2,960</td>
<td>26–100</td>
<td>.315 (.017)</td>
<td>.302 (.016)</td>
<td>.013</td>
<td>-.137</td>
<td>.150</td>
<td>.028</td>
<td>.122</td>
</tr>
<tr>
<td>Georgia (geo)</td>
<td>4,416</td>
<td>26–100</td>
<td>.186 (.014)</td>
<td>.243 (.019)</td>
<td>-.056</td>
<td>-.118</td>
<td>.061</td>
<td>.011</td>
<td>.050</td>
</tr>
<tr>
<td>Finland (fin)</td>
<td>4,368</td>
<td>26–100</td>
<td>.271 (.016)</td>
<td>.241 (.014)</td>
<td>.030</td>
<td>-.108</td>
<td>.138</td>
<td>.032</td>
<td>.105</td>
</tr>
<tr>
<td>Austria (aut)</td>
<td>4,356</td>
<td>26–100</td>
<td>.326 (.015)</td>
<td>.342 (.013)</td>
<td>-.016</td>
<td>-.135</td>
<td>.119</td>
<td>.037</td>
<td>.081</td>
</tr>
<tr>
<td>Czech Rep (cze)</td>
<td>4,335</td>
<td>26–100</td>
<td>.339 (.016)</td>
<td>.276 (.015)</td>
<td>.063</td>
<td>-.120</td>
<td>.183</td>
<td>.019</td>
<td>.163</td>
</tr>
<tr>
<td>Canada (can)</td>
<td>18,471</td>
<td>26–100</td>
<td>.246 (.008)</td>
<td>.171 (.007)</td>
<td>.075</td>
<td>-.094</td>
<td>.170</td>
<td>.010</td>
<td>.160</td>
</tr>
<tr>
<td>Ireland (irl)</td>
<td>4,149</td>
<td>26–100</td>
<td>.339 (.014)</td>
<td>.280 (.013)</td>
<td>.059</td>
<td>-.124</td>
<td>.183</td>
<td>.036</td>
<td>.147</td>
</tr>
<tr>
<td>Malta (mlt)</td>
<td>3,154</td>
<td>26–100</td>
<td>.219 (.020)</td>
<td>.215 (.016)</td>
<td>.004</td>
<td>-.137</td>
<td>.141</td>
<td>.040</td>
<td>.101</td>
</tr>
<tr>
<td>Spain (esp)</td>
<td>7,827</td>
<td>26–100</td>
<td>.224 (.013)</td>
<td>.251 (.012)</td>
<td>-.026</td>
<td>-.118</td>
<td>.091</td>
<td>.025</td>
<td>.067</td>
</tr>
<tr>
<td>Russia (rus)</td>
<td>4,399</td>
<td>26–100</td>
<td>.251 (.020)</td>
<td>.226 (.019)</td>
<td>.024</td>
<td>-.109</td>
<td>.134</td>
<td>.027</td>
<td>.107</td>
</tr>
<tr>
<td>Belgium Fr (bfr)</td>
<td>3,300</td>
<td>26–100</td>
<td>.300 (.020)</td>
<td>.285 (.017)</td>
<td>.016</td>
<td>-.122</td>
<td>.138</td>
<td>.033</td>
<td>.105</td>
</tr>
<tr>
<td>France (fra)</td>
<td>4,019</td>
<td>26–100</td>
<td>.311 (.016)</td>
<td>.273 (.015)</td>
<td>.038</td>
<td>-.116</td>
<td>.154</td>
<td>.034</td>
<td>.120</td>
</tr>
<tr>
<td>Slovakia (svk)</td>
<td>5,414</td>
<td>26–100</td>
<td>.330 (.018)</td>
<td>.327 (.018)</td>
<td>.003</td>
<td>-.105</td>
<td>.108</td>
<td>.052</td>
<td>.056</td>
</tr>
<tr>
<td>Israel (isr)</td>
<td>3,213</td>
<td>26–100</td>
<td>.198 (.020)</td>
<td>.291 (.019)</td>
<td>-.093</td>
<td>-.141</td>
<td>.048</td>
<td>.067</td>
<td>-.020</td>
</tr>
<tr>
<td>Bulgaria (bgr)</td>
<td>5,041</td>
<td>26–100</td>
<td>.326 (.020)</td>
<td>.321 (.020)</td>
<td>.005</td>
<td>-.096</td>
<td>.101</td>
<td>.021</td>
<td>.081</td>
</tr>
<tr>
<td>Poland (pol)</td>
<td>4,843</td>
<td>26–100</td>
<td>.295 (.015)</td>
<td>.282 (.013)</td>
<td>.013</td>
<td>-.137</td>
<td>.150</td>
<td>.027</td>
<td>.122</td>
</tr>
<tr>
<td>Italy (ita)</td>
<td>3,806</td>
<td>26–100</td>
<td>.204 (.015)</td>
<td>.231 (.017)</td>
<td>-.027</td>
<td>-.107</td>
<td>.080</td>
<td>.028</td>
<td>.052</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovenia (svn)</td>
<td>4,274</td>
<td>26–100</td>
<td>.293 (.016)</td>
<td>.271 (.013)</td>
<td>.022</td>
<td>−.129</td>
<td>.151</td>
<td>.048</td>
<td>.103</td>
</tr>
<tr>
<td>Portugal (prt)</td>
<td>3,845</td>
<td>26–100</td>
<td>.286 (.017)</td>
<td>.231 (.015)</td>
<td>.055</td>
<td>−.081</td>
<td>.136</td>
<td>.033</td>
<td>.102</td>
</tr>
<tr>
<td>Lithuania (ltu)</td>
<td>4,367</td>
<td>26–100</td>
<td>.294 (.019)</td>
<td>.257 (.015)</td>
<td>.038</td>
<td>−.087</td>
<td>.125</td>
<td>.040</td>
<td>.084</td>
</tr>
<tr>
<td>Trinidad (tto)</td>
<td>3,422</td>
<td>26–100</td>
<td>.176 (.020)</td>
<td>.222 (.019)</td>
<td>−.046</td>
<td>−.140</td>
<td>.094</td>
<td>.024</td>
<td>.070</td>
</tr>
<tr>
<td>Taiwan (twn)</td>
<td>4,192</td>
<td>26–100</td>
<td>.233 (.013)</td>
<td>.206 (.013)</td>
<td>.027</td>
<td>−.089</td>
<td>.116</td>
<td>.010</td>
<td>.106</td>
</tr>
<tr>
<td>Singapore (sgp)</td>
<td>6,077</td>
<td>26–100</td>
<td>.305 (.015)</td>
<td>.208 (.013)</td>
<td>.097</td>
<td>−.108</td>
<td>.205</td>
<td>.064</td>
<td>.142</td>
</tr>
<tr>
<td>Croatia (hrv)</td>
<td>4,457</td>
<td>26–100</td>
<td>.230 (.016)</td>
<td>.250 (.014)</td>
<td>−.020</td>
<td>−.095</td>
<td>.075</td>
<td>.028</td>
<td>.047</td>
</tr>
<tr>
<td>Romania (rom)</td>
<td>4,401</td>
<td>26–100</td>
<td>.347 (.021)</td>
<td>.340 (.018)</td>
<td>.006</td>
<td>−.097</td>
<td>.103</td>
<td>−.001</td>
<td>.104</td>
</tr>
<tr>
<td>Hong Kong (hkg)</td>
<td>3,487</td>
<td>26–100</td>
<td>.123 (.020)</td>
<td>.112 (.017)</td>
<td>.011</td>
<td>−.055</td>
<td>.066</td>
<td>.025</td>
<td>.041</td>
</tr>
<tr>
<td>Qatar (qat)</td>
<td>3,413</td>
<td>26–100</td>
<td>.024 (.016)</td>
<td>.180 (.020)</td>
<td>−1.55</td>
<td>−.130</td>
<td>−.025</td>
<td>.030</td>
<td>−.055</td>
</tr>
<tr>
<td>UA Emirates (are)</td>
<td>12,709</td>
<td>11–25</td>
<td>.134 (.013)</td>
<td>.237 (.013)</td>
<td>−.103</td>
<td>−.135</td>
<td>.032</td>
<td>.076</td>
<td>−.044</td>
</tr>
<tr>
<td>Saudi Arabia (sau)</td>
<td>4,216</td>
<td>11–25</td>
<td>.082 (.022)</td>
<td>.150 (.021)</td>
<td>−.068</td>
<td>−.079</td>
<td>.011</td>
<td>.012</td>
<td>−.000</td>
</tr>
<tr>
<td>Oman (omn)</td>
<td>8,752</td>
<td>11–25</td>
<td>.098 (.012)</td>
<td>.174 (.011)</td>
<td>−.076</td>
<td>−.114</td>
<td>.038</td>
<td>.024</td>
<td>.014</td>
</tr>
<tr>
<td>Azerbaijan (aze)</td>
<td>4,272</td>
<td>11–25</td>
<td>.081 (.020)</td>
<td>.091 (.020)</td>
<td>−.010</td>
<td>−.062</td>
<td>.052</td>
<td>.005</td>
<td>.047</td>
</tr>
<tr>
<td>South Africa (zaf)</td>
<td>2,605</td>
<td>11–25</td>
<td>.213 (.036)</td>
<td>.313 (.031)</td>
<td>−.100</td>
<td>−.145</td>
<td>.045</td>
<td>.027</td>
<td>.018</td>
</tr>
<tr>
<td>Iran (irn)</td>
<td>5,515</td>
<td>11–25</td>
<td>.248 (.019)</td>
<td>.255 (.018)</td>
<td>−.007</td>
<td>−.140</td>
<td>.133</td>
<td>.047</td>
<td>.086</td>
</tr>
<tr>
<td>Colombia (col)</td>
<td>3,669</td>
<td>11–25</td>
<td>.174 (.032)</td>
<td>.270 (.030)</td>
<td>−.097</td>
<td>−.147</td>
<td>.050</td>
<td>.017</td>
<td>.033</td>
</tr>
<tr>
<td>Morocco (mar)</td>
<td>5,474</td>
<td>0–10</td>
<td>.119 (.024)</td>
<td>.158 (.023)</td>
<td>−.039</td>
<td>−.114</td>
<td>.076</td>
<td>−.001</td>
<td>.076</td>
</tr>
<tr>
<td>Indonesia (idn)</td>
<td>4,400</td>
<td>0–10</td>
<td>.141 (.042)</td>
<td>.217 (.032)</td>
<td>−.075</td>
<td>−.147</td>
<td>.072</td>
<td>.006</td>
<td>.066</td>
</tr>
</tbody>
</table>

Note: 95 percent confidence intervals adjusted for clustering at the school class level. Countries are ordered by average parent-reported books, and “median” refers to the median category reported by parents.
or 50 percent in France (0.154/0.311)—means that when used in multivariate analyses, these different sources might yield quite different conclusions.

Endogeneity also tends to be more variable across countries than attenuation: The SD of these two statistics across countries is .023 and .050, respectively. In other words, if attenuation was the only source of bias, the impact of family background would be understated but about equally much so in all countries. As it stands, the bias varies substantially across countries, largely as a function of variability in endogeneity. This point is depicted graphically in Figure 4, where the two components are shown alongside the student-based regression estimate and countries ordered by the latter. Reading the plot from left to right, the endogenous component grows in size with the substantive estimate—so that cross-country patterns estimated on student reports are attributable in no small part to differing endogeneity.

The next question is what happens once we relax the assumption of perfect validation data; results are found in Figure 5. The solid curve plots the distribution of estimates found in Table 2, assuming no error among
parents. Dashed lines show how each set of estimates changes once we allow for the possibility of increased parental error: 10 percent, 20 percent, and 30 percent misclassified. The most obvious consequence is that β increases, which shifts the total bias downwards (top, left). At the same time, the extent of attenuation (top, right) is not much affected due to a simultaneous decrease in the variance of the error, u. Instead, what explains the shift in total bias is a decline in the estimated endogeneity component (bottom, left). While this shows that the net sign of the bias may differ depending on the trust we are willing to put in parent-reported data, endogenous bias remains important.

A notable result appears in the last panel of Figure 5, which shows that the importance of reciprocal causation across specifications grows as that of endogenous misreporting fades. In Table 2 (last two columns), reciprocal causation accounted only for a negligible part of the endogenous bias and that remains true with a modest parental misclassification rate of 10 percent. When we allow that rate to reach 20 percent, on the other hand, it contributes

Figure 5. Simulation extrapolation estimates of bias components from Table 2 allowing for error in parent reports: 10 percent, 20 percent, and 30 percent misclassified. For further details on the assumed error structure, see the Online Appendix. $N = 2,808–8,487$ (per country), 197,387 (total).
on average about half of the endogenous component, while at 30 percent, the balance tips the other way.

Which, if any, of these scenarios is most plausible? Unfortunately, there are no data that allow us to assess the reliability of parents, but the answer depends in large part on what we take the proxy to reflect. If we want to learn about the actual number of books, parents are likely to report with considerable error and 30 percent may be closer to the truth. However, a more common interpretation is in terms of underlying characteristics such as “whether the parents value literary skills” (Ammermueller and Pischke 2009:322). In this case, parent reports would seem true as a matter of definition, save for chance fluctuation in what would be answered from one occasion to the next. If so, an error estimate of 10 percent might be more appropriate.

As a final check on the plausibility of decomposition results, it is worth comparing the cross-country pattern in endogeneity to the gender differentials in reporting mentioned earlier. This comparison is complicated by the fact that gender differences in NBH depends not only on the extent of endogeneity but also on the size of the boy–girl gap in reading. For comparability, I divide the gender difference in NBH with that in reading scores, for the 34 countries where the latter is statistically significant ($p < .05$). This yields a cross-country correlation of $r = .59$ across the two sets of estimates. That figure rises to $r = .70$ excluding countries where a majority of students attend single-sex schools, which could bias recruitment into the sample (Iran, Qatar, Saudi Arabia, and United Arab Emirates). All in all, the pattern of endogenous bias across countries remains similar whether we take decomposition results or gender differences in reporting as a guide.

Conclusion

As a proxy for student background, self-reported books in the home are subject to endogeneity and systematic errors of observation. Not only do students from bookish homes perform better, but better students also accrue more books and are more informed about their home libraries. The resulting bias is large enough to outweigh the familiar attenuation bias and lead to regression estimates of a similar size to those using parents as respondents. Guided by classical measurement theory, it is easy to misread the size of these estimates as signalling reliability or validity—with potentially damaging consequences for conclusions in the field.

Most obvious of these is perhaps that speculating about the influence of books or “culture” relative to other aspects of social background—measured
by, for example, parents’ education, social class, or economic status—will tell us little about actual transmission mechanisms; the dice will inevitably be loaded in favor of the endogenous measure, NBH. In cross-country comparisons, the endogenous bias appears to have about twice the variability as attenuation bias—ranging from being negligible, to accounting for as much as half or two thirds of estimated associations. While the specific figures change once we allow for imperfect validation data, the general conclusion remains and is corroborated by gender differences in reported books.

Endogeneity also entails that any increase in the variance of achievement will inevitably lead to the impression of an increased family background association. This is perhaps most consequential in designs that attempt to control for unobserved heterogeneity at the country level (e.g., fixed effects or differences-in-differences), which become vulnerable to spurious results because true variation in the underlying association is smaller. Other questions addressed in this literature include whether socioeconomic gradients vary by student age, student gender, or achievement domain such as reading or mathematics. NBH is ill suited as a proxy in each of these cases, as it is likely that endogeneity differs along several or all of these dimensions.

The problems uncovered here are likely to be exacerbated when attempts are made to correct for bias relying on classical assumptions. For example, Ammermueller and Pischke (2009) instrument parent-reported NBH with student reports to compensate for attenuation, as they note is standard with separate reports by two different individuals. As a consequence, they see their estimates triple in size. Knowledge of endogeneity here suggests that “corrected” estimates are probably greatly exaggerated and “uncorrected” estimates closer to the truth. Using parent rather than student reports as the instrument is no remedy in this case: The error in student reports is both endogenous and negatively related to true values, meaning that an upward bias will result regardless (Kane, Rouse, and Staiger 1999).

It is notable that NBH has gained such widespread use, despite caution being voiced over a century ago (Holley 1916) and given that its flaws were hidden in plain sight. Arguably, this illustrates some of the forces that allow exaggerated results to proliferate in published literature—foremost, an academic culture that rewards storytelling and analyses that “work” over accuracy and robustness. In recent years, such practices have come under increased scrutiny (Gelman and Loken 2014; Ioannidis 2012). Yet issues of measurement and misspecification have been conspicuously absent from these conversations, which have mostly revolved around a different set of concerns: underpowered research designs, flexibility in data collection and analysis, misuse of statistical tests,
hypothesizing after results are known, and so on (Bernardi, Chakhaia, and Leopold 2017; Franco, Malhotra, and Simonovits 2014; Silberzahn et al. 2017; Simmons, Nelson, and Simonsoh 2011).

One upshot of all this is that recent initiatives for improved standards of transparency and replication (Freese and Peterson 2017; Muñoz and Young 2018), while important, may not be enough to rid social science of its biases. Such measures are designed to address selective reporting of “fluke” findings that result from sampling variability or arbitrary specification choices; they do not deal with systematic biases due to endogeneity or mismeasurement. It is too early to tell whether sociology will suffer a replication crisis like that which has swamped some other disciplines in recent years (Open Science Collaboration 2015). But to the extent that it does not, sociologists should not be too ready to congratulate themselves. As this article illustrates, there is good reason to expect that a sanguine attitude to measurement and modeling may well be equally or more important as a source of spurious results in our discipline.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by Forskningsrådet om Hälsa, Arbetsliv och Välfärd (2009-1320 and 2012-1741) and Vetenskapsrådet (421-2012-5598).

Notes
drawing on self-report NBH is cited in handbook chapters by Betts (2011), Epple and Romano (2011), and Hanushek and Woessmann (2011). Findings have also been reported in popular media, influencing public discourse (e.g., *The New York Times* 2011, 2015a, 2015b).

2. Some of these authors also veer toward a causal interpretation of the effect of books, Esping-Andersen (2009) stating that “children from a family with less than 10 books would enjoy a 9\% percent improvement in their reading comprehension if parents were to arrive at the national average” of NBH, and Evans et al. (2014: 13) claiming that “books matter enough to be policy relevant, with the gain from a 500-book home library equivalent to an additional three-quarters of a year of schooling.”

3. To economize on precision, survey weights are not applied (cf. Bollen et al. 2016), but results in Stapleton and Kang (2018) suggest that this choice does not make a large difference.

4. Reported are the median estimates from West, Sweeting, and Speed (2001) and Vereecken and Vandegehuchte (2003) for occupation, Andersen et al. (2008) for family affluence, and Ensminger et al. (2000) for education. Family affluence is a summed index comprising the number of cars, computers and family vacations, and whether the respondent has their own bedroom. Estimates for family affluence refer to weighted \(\kappa \) and so are artificially somewhat higher. The full range of estimates is 0.57–0.72 in West et al. \((N = 1,267–1,476)\), 0.58–0.76 in Vereecken and Vandegehuchte \((N = 200)\), 0.43–0.63 in Ensminger et al. \((N = 119)\), and 0.34–0.63 in Andersen et al. \((N = 915)\).

5. Engzell and Jonsson (2015:325) report Spearman’s \(\rho \) from 14-year-olds in the range of 0.41–0.59 for parental education and 0.62–0.74 for occupation (0.32–0.66 and 0.48–70 if the parent was foreign born). Cohen and Orum (1972) report \(\gamma \) correlations from 9- to 13-year-olds of 0.62–72 for education and 0.75–0.85 for occupation. Andersen et al. (2008) report \(\gamma \) of 0.53–0.80 on their family affluence scale.

6. Mullis et al. (2012:52) study these differences in Progress in International Reading Literacy Study (2011) and report a female advantage of on average 16 score points, or roughly 1/6 of a standard deviation, but with marked variation across countries. Among the older children in Programme for International Student Assessment, the gender differential appears to be even larger (Salvi del Pero and Bytchkova 2013:22-23).

7. Another notable pattern in Figure 3 is that girls report lower levels of parental education. As previous studies have found that exaggeration is the most common error for this variable (Kerckhoff, Mason, and Poss 1973), this is consistent with the idea that girls are more cognitively mature and more reliable as respondents in general (cf. Kreuter et al. 2010:131).
Supplemental Material

Supplemental material for this article is available online.

References

Chiu, Ming Ming. 2010. “Effects of Inequality, Family and School on Mathematics Achievement: Country and Student Differences.” *Social Forces* 88:1645-76.

Making Transparent How Variations in Analytical Choices Affect Results.”

Author Biography

Per Engzell is currently a postdoctoral Prize Research Fellow at Nuffield College, University of Oxford. He gained his doctorate in sociology at the Swedish Institute for Social Research, Stockholm University. His research interests include quantitative methodology, education, and social stratification.