Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with...

Article in Diabetes Obesity and Metabolism · November 2014
DOI: 10.1111/dom.12354

CITATIONS 62
READS 1,330

8 authors, including:

Sara Jenkins-Jones
Pharmatelligence, Cardiff
41 PUBLICATIONS 697 CITATIONS

Julian P Halcox
Swansea University
152 PUBLICATIONS 11,748 CITATIONS

Guntram Schernthaner
Rudolfstifung Vienna, Austria
638 PUBLICATIONS 17,005 CITATIONS

Jayanti Mukherjee
Bristol-Myers Squibb
47 PUBLICATIONS 1,281 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Könnte Insulin über die Beeinflussung von Matrixmetalloproteinaseinen proatherogenen Effekt ausüben? View project
- type 2 diabetes prevention, diagnostic and treatment guidelines View project

All content following this page was uploaded by Guntram Schernthaner on 13 August 2014.
The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls

C. A. Bannister1,2, S. E. Holden1,3, S. Jenkins-Jones3, C. L. Morgan3, J. P. Halcox4, G. Schernthaner5, J. Mukherjee6 & C. J. Currie1,3

1The Cochrane Institute of Primary Care and Public Health, School of Medicine, Cardiff University, Cardiff, UK
2Cardiff School of Computer Science and Informatics, Cardiff University, Cardiff, UK
3Global Epidemiology, Pharmateelligence, Cardiff Medicentre, Cardiff, UK
4Department of Cardiology, School of Medicine, Swansea University, Swansea, UK
5Department of Medicine, Rudolfstiftung Hospital Vienna, Vienna, Austria
6Global Health Economics and Outcomes Research, Bristol-Myers Squibb, Wallingford, CT, USA

Aims: Clinical and observational studies have shown an increased risk of cardiovascular events and death associated with sulphonylureas versus metformin. However, it has never been determined whether this was due to the beneficial effects of metformin or detrimental effects of sulphonylureas. The objective of this study was therefore to compare all-cause mortality in diabetic patients treated first-line with either sulphonylurea or metformin monotherapy with that in matched individuals without diabetes.

Methods: We used retrospective observational data from the UK Clinical Practice Research Datalink (CPRD) from 2000. Subjects with type 2 diabetes who progressed to first-line treatment with metformin or sulphonylurea monotherapy were selected and matched to people without diabetes. Progression to all-cause mortality was compared using parametric survival models that included a range of relevant co-variables.

Results: We identified 78,241 subjects treated with metformin, 12,222 treated with sulphonylurea, and 90,463 matched subjects without diabetes. This resulted in a total, censored follow-up period of 503,384 years. There were 7,498 deaths in total, representing unadjusted mortality rates of 14.4 and 15.2, and 50.9 and 28.7 deaths per 1000 person-years for metformin monotherapy and their matched controls, and sulphonylurea monotherapy and their matched controls, respectively. With reference to observed survival in diabetic patients initiated with metformin monotherapy [survival time ratio (STR) = 1.0], adjusted median survival time was 15% lower (STR = 0.85, 95% CI 0.81–0.90) in matched individuals without diabetes and 38% lower (0.62, 0.58–0.66) in diabetic patients treated with sulphonylurea monotherapy.

Conclusions: Patients with type 2 diabetes initiated with metformin monotherapy had longer survival than did matched, non-diabetic controls. Those treated with sulphonylurea had markedly reduced survival compared with both matched controls and those receiving metformin monotherapy. This supports the position of metformin as first-line therapy and implies that metformin may confer benefit in non-diabetes. Sulphonylurea remains a concern.

Keywords: all-cause mortality, metformin, sulphonylurea, type 2 diabetes

Date submitted 2 May 2014; date of first decision 20 May 2014; date of final acceptance 30 June 2014

Introduction

Type 2 diabetes is a condition that affects 8% of the US population [1] and 4% of the UK population [2]. Good glucose control is important to reduce the risk of developing microvascular complications. This is initially achieved through diet and exercise, but glucose-lowering medication is required in most patients with progressing diabetes. Metformin is recommended as first-line therapy for type 2 diabetes in the current American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) guidelines [3].

In the UK, the proportion of people with type 2 diabetes treated with sulphonylureas decreased from 45% in 1996 to 33% in 2005 [4], and the number of people using metformin increased from 30% to 57% over the same period [5]. In the USA, the percentage of patients initially treated with sulphonylureas decreased from 61% in 1997 to 22% in 2012, whereas the proportion of patients initiating therapy with metformin increased from 23% in 1997 to 53% in 2012 [6] (although metformin was not approved by the Food and Drug Administration (FDA) until 1995 [7]). However, sulphonylureas are still commonly prescribed, especially when metformin is contraindicated, and it is relatively common to use sulphonylurea subsequent to metformin monotherapy [8]. By far the most common second-line glucose-lowering therapy is a combination of metformin and sulphonylurea [8].

Unlike metformin, sulphonylureas can cause weight gain and hypoglycaemia, and are thought to have a detrimental impact on cardiovascular risk [9–12]. It has been hypothesized that sulphonylureas may cause cardiovascular side effects by inhibiting KATP channels in cardiac muscle, thereby blocking ischaemic preconditioning (a cardioprotective mechanism).
However, metformin has been associated with beneficial effects, which include a cardioprotective effect that cannot be solely explained by its antihyperglycaemic effect [15–17]. Furthermore, metformin is believed to have anti-cancer properties, which would also impact on mortality risk [18,19]. A discussion of the relative merits of these two glucose-lowering drugs was published recently in Diabetes, Obesity and Metabolism [4].

Demonstration of the efficacy and safety of glucose-lowering drugs with regard to hard clinical endpoints – especially cardiovascular outcomes – is important and now a regulatory requirement for new glucose-lowering medicines. This is no less important for long-established treatments. In the absence of adequately powered prospective trials, retrospective data are essential to help address continuing uncertainty.

Previous clinical and observational studies comparing metformin and sulphonylureas have shown an increased risk of cardiovascular events and death associated with the use of sulphonylureas compared with metformin [20,21]. However, it is difficult to determine whether this is due to the beneficial effects of metformin or due to detrimental effects associated with sulphonylureas.

The primary aim of this study was to compare the risk of all-cause mortality associated with first-line sulphonylurea monotherapy or first-line metformin monotherapy with that of matched non-diabetic controls.

Materials and Methods

Data Source

The data source was the Clinical Practice Research Datalink (CPRD) [22]. CPRD contains clinically rich, pseudonymized data collected from primary-care general practitioners (GPs) in the UK. The following data were available: demographics, symptoms and diagnoses, prescriptions, immunizations, results of investigations, referrals to specialists and secondary care, feedback from other care settings, and lifestyle information such as body mass index (BMI), smoking, and exercise. CPRD is broadly representative [23] and contains data from over 13 million research-quality patients. Details of hospital admissions are also provided for the majority of patients. Data were available till July 2013. Approval for this study was granted by the CPRD Independent Scientific Advisory Committee (reference 12_151RAR).

Patient Selection

Patients classed by CPRD as being of acceptable research quality were selected if diagnosed with type 2 diabetes and exposed to glucose-lowering therapy. Patients were excluded if they had any record of secondary diabetes.

Patients were defined as incident diabetes cases based on a wash-in period of at least 180 days from registration to diagnosis. Patients subsequently initiated with sulphonylurea or metformin from 2000 were selected, provided they received treatment for a minimum of 180 days. The index date was defined as that of the first sulphonylurea or metformin prescription. Patients were followed to death or censorship.

Cases were matched to people without diabetes using the following criteria: age at baseline (±2 years), gender, same general practice, prior cancer status and smoking status. The index date for the controls was the same as that of their corresponding case. Only individuals with ≥180 days’ survival following index date were included as controls.

Study Endpoint

The study endpoint was all-cause mortality. For diabetic patients who died, the event date was defined as the patient’s date of death provided that this occurred before the censor date, defined as the earliest of (i) the end of the recorded data, (ii) 90 days from regimen change or (iii) 5 years plus 180 days from the index date.

For controls who died, the event date was defined as the patient’s recorded date of death provided that this was prior to the end of the recorded data, the censor date for the corresponding case or the 5½ year follow-up period. Otherwise cases were censored. The censor date here was defined as the earliest of the end of a patient’s recorded data, the censor date of their corresponding case or the end of the 5½ year follow-up period.

Statistical Methods

Continuous baseline characteristics were compared using the independent t-test or Mann–Whitney U test depending on their distribution. Categorical variables were compared using the chi-squared test. Differences in survival in Kaplan–Meier (KM) analysis were compared using the log-rank test.

Candidate covariates for modelling survival comprised age, Charlson co-morbidity index [24], gender, smoking status, prior antiplatelet therapy, prior lipid-lowering therapy, prior antihypertensive therapy, index year, and study arm. Glycated haemoglobin (HbA1c), systolic blood pressure, total cholesterol, creatinine and BMI were not considered because of large proportions of missing data in controls. Prior major adverse cardiac events (MACEs) are components of the Charlson index. All categorical variables were treated as discrete and converted to binary variables with the exception of index year and Charlson index.

People with type 2 diabetes have a minimum Charlson index of 1 or 2 units, depending on whether they do or do not have complications, respectively. Here, group status indicated diabetes status. The Charlson index was therefore modified to subtract 1 unit from all patients with diabetes so that uncomplicated diabetes contributed nothing to the index, and diabetes with complications contributed 1 unit. Other co-morbidities contributed to the index conventionally.

Continuous variables (age and modified Charlson index) were modelled using restricted cubic splines to allow for non-linear effects. The start date for the survival analysis was defined as the index date + 180 days’ treatment exposure. The survival analysis was truncated at 5½ years as the average duration of first-line monotherapy was 3 years.

Modelling of survival was not performed with a Cox proportional hazards model because the proportional hazards assumption was violated. We therefore fitted a parametric accelerated failure time (AFT) survival model. Weibull, log-normal and log-logistic models were assessed.
for goodness-of-fit using the Akaike information criterion (AIC) [25]. The log-logistic model resulted in the best fit in terms of AIC, and the adequacy of this distribution was further assessed by plotting appropriately transformed non-parametric estimates against time. The log-logistic survival model provides beta coefficients that equal the difference in log survival time between groups or for continuous predictors. Exponentiation of the beta coefficient gives the ratio between median survival times, known as the survival time ratio (STR), or acceleration factor. STRs less than 1 represent a decrease in survival time; values greater than 1 represent prolonged survival.

All candidate covariates were included in the final model with no variable selection performed, as it has been shown that excluding statistically insignificant variables does not improve predictive accuracy and makes accurate confidence intervals (CIs) hard to obtain [26].

Extensive subgroup analyses are reported using the final model. To enable the impact of concomitant cardioprotective medications to be evaluated over time, three variants of the final model were developed: model variants 1–3 replaced baseline values for antihypertensive, lipid-lowering and antiplatelet therapy with values for the first 1, 2 or 3 years of study, respectively. Patients were excluded if they were censored within the relevant years and had received a different combination of antihypertensive, antiplatelet and lipid-lowering therapy in those years. All statistical analyses were performed using r software (version 3.0.1) [27].

Results

A total of 78,241 subjects treated with metformin and 12,222 treated with sulphonylurea were identified; 78,241 and 12,222 non-diabetic patients were matched to their respective cases.

Table 1. Baseline characteristics.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Metformin</th>
<th>Sulphonylurea</th>
<th>Control (matched with metformin)</th>
<th>Control (matched with sulphonylurea)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of people, n (%)</td>
<td>78,241 (43)</td>
<td>12,222 (7)</td>
<td>78,241 (43)</td>
<td>12,222 (7)</td>
</tr>
<tr>
<td>Age at index, mean (s.d.)</td>
<td>61.2 (12.7)</td>
<td>67.8 (12.8)</td>
<td>61.2 (12.7)</td>
<td>67.8 (12.8)</td>
</tr>
<tr>
<td>Males, n (%)</td>
<td>44,286 (57)</td>
<td>7100 (58)</td>
<td>44,286 (57)</td>
<td>7100 (58)</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smoker, n (%)</td>
<td>36,781 (47)</td>
<td>6002 (49)</td>
<td>36,781 (47)</td>
<td>6002 (49)</td>
</tr>
<tr>
<td>Ex-smoker, n (%)</td>
<td>27,662 (35)</td>
<td>3879 (32)</td>
<td>27,662 (35)</td>
<td>3879 (32)</td>
</tr>
<tr>
<td>Current smoker, n (%)</td>
<td>13,798 (18)</td>
<td>2341 (19)</td>
<td>13,798 (18)</td>
<td>2341 (19)</td>
</tr>
<tr>
<td>HbA1c, mean (s.d.), %</td>
<td>8.6 (1.8)</td>
<td>9.2 (2.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic BP, mean (s.d.), mmHg</td>
<td>138.5 (16.8)</td>
<td>139.7 (19.5)</td>
<td>136.2 (16.6)</td>
<td>140.7 (18.2)</td>
</tr>
<tr>
<td>Total cholesterol, mean (s.d.), μmol/l</td>
<td>5.0 (1.2)</td>
<td>5.1 (1.3)</td>
<td>5.1 (1.1)</td>
<td>5.1 (1.1)</td>
</tr>
<tr>
<td>Serum creatinine, mean (s.d.), μmol/l</td>
<td>84.2 (18.9)</td>
<td>97.9 (33.8)</td>
<td>89.1 (25.8)</td>
<td>95.5 (29.6)</td>
</tr>
<tr>
<td>BMI, mean (s.d.), kg/m²</td>
<td>32.4 (5.9)</td>
<td>27.1 (4.9)</td>
<td>27.4 (5.0)</td>
<td>26.7 (4.6)</td>
</tr>
<tr>
<td>Charlson index*, mean (s.d.)</td>
<td>1.9 (1.3)</td>
<td>2.3 (1.7)</td>
<td>0.7 (1.2)</td>
<td>0.8 (1.3)</td>
</tr>
<tr>
<td>GP contacts in the year prior, mean (s.d.)</td>
<td>11.3 (9.9)</td>
<td>11.7 (10.6)</td>
<td>6.0 (7.8)</td>
<td>6.5 (8.1)</td>
</tr>
<tr>
<td>Prior cancer, n (%)</td>
<td>7553 (10)</td>
<td>1698 (14)</td>
<td>7550 (10)</td>
<td>1695 (14)</td>
</tr>
<tr>
<td>Prior MACE, n (%)</td>
<td>8162 (10)</td>
<td>1995 (16)</td>
<td>5058 (6)</td>
<td>1119 (9)</td>
</tr>
<tr>
<td>Prior lipid-lowering therapy, n (%)</td>
<td>39,407 (50)</td>
<td>4303 (35)</td>
<td>15,913 (20)</td>
<td>2112 (17)</td>
</tr>
<tr>
<td>Prior antihypertensive therapy, n (%)</td>
<td>52,016 (66)</td>
<td>7779 (64)</td>
<td>30,585 (39)</td>
<td>5474 (45)</td>
</tr>
<tr>
<td>Prior antiplatelet therapy, n (%)</td>
<td>28,285 (36)</td>
<td>4666 (38)</td>
<td>14,619 (19)</td>
<td>3017 (25)</td>
</tr>
</tbody>
</table>

BMI, body mass index; BP, blood pressure; GP, general practitioner; HbA1c, glycated haemoglobin; MACE, major adverse cardiac event; s.d., standard deviation. *Unmodified Charlson co-morbidity index.

Subjects were followed from their index date for an average of 2.8 (median 2.4) years, representing a censored total follow-up period of 503,384 years.

Baseline Characteristics

Metformin Monotherapy Compared With Sulphonylurea Monotherapy. Patients in the sulphonylurea group were older than those treated with metformin (mean age of 67.8 vs. 61.2 years, respectively; p < 0.001). Patients in the sulphonylurea group had higher baseline HbA1c values (9.2% vs. 8.6%; p < 0.001) and serum creatinine (97.9 vs. 84.2 μmol/l; p < 0.001). Baseline, unmodified Charlson index was higher in the sulphonylurea group than in the metformin group (2.3 vs. 1.9; p < 0.001). There was also a higher percentage of people who had previously had cancer (14% vs. 10%; p < 0.001) and/or MACE (16% vs. 10%; p < 0.001) in the sulphonylurea group. Conversely, a higher percentage of people in the metformin group had previously been prescribed lipid-lowering therapy (50% vs. 35%; p < 0.001). Baseline characteristics are detailed in Table 1.

Relative morbidity between these two groups at baseline was difficult to gauge because of differing mean age.

Metformin Monotherapy Compared With Matched Control Group. BMI was higher for those treated with metformin (32.4 vs. 27.4 kg/m²; p < 0.001; Table 1), and people in the metformin group also had more GP consultations in the year prior to treatment initiation (11.3 vs. 6; p < 0.001). In addition, people in the metformin group were more likely to have had a previous MACE (10% vs. 6%; p < 0.001) and to have previously received prescriptions for lipid-lowering (50% vs. 20%; p < 0.001), antihypertensive (66% vs. 39%; p < 0.001) and/or...
antiplatelet medications (36% vs. 19%; p < 0.001) (Figure 1). Non-diabetic controls had less morbidity than cases.

Sulphonylurea Monotherapy Compared With Matched Control Group. The Charlson index was higher for patients in the sulphonylurea group than for those in the control group (2.3 vs. 0.8; p < 0.001) as was the number of GP contacts in the year prior to index date (11.7 vs. 6.5; p < 0.001) (Table 1). In addition, people in the sulphonylurea group were more probable to have had a MACE (16% vs. 9%; p < 0.001) and to have previously received prescriptions for lipid-lowering (35% vs. 17%; p < 0.001), antihypertensive (64% vs. 45%; p < 0.001) and/or antiplatelet therapies (38% vs. 25%; p < 0.001) (Figure 1). Controls had far less morbidity than the diabetic subjects.

Numbers of Deaths and Crude Event Rates

In total, there were 7498 deaths, corresponding to an unadjusted event rate of 18.1 deaths per 1000 person-years. Unadjusted event rates were highest in the sulphonylurea group and lowest in the metformin group (50.9 vs. 14.4 per 1000 person-years, respectively; p < 0.001; Table 2). Unadjusted event rates were higher in sulphonylurea-treated patients than in their matched, non-diabetic controls (50.9 vs. 28.7 per 1000 person-years, respectively; p < 0.001) but, surprisingly, were lower in those treated with metformin than in their matched controls (14.4 vs. 15.2 per 1000 person-years, respectively; p = 0.054). Unadjusted event rates were lowest in people aged <60 years at index date and highest for people aged >70 years for both diabetic and control subjects.

Unadjusted Survival Patterns

KM survival curves, stratified by treatment arm and diabetes status, are illustrated in Figure 2. Favouring metformin, these survival curves show that overall there was a small yet statistically significant difference between metformin cases and their non-diabetic controls (p = 0.037; Figure 2a). However those treated with sulphonylureas had markedly reduced survival (p < 0.001; Figure 2b) compared with their controls. KM curves are also presented for patients aged 71–75 years: the most frequent age group for incident sulphonylurea initiation.
Table 2. Crude event rate per 1000 person-years for all-cause mortality for patients with type 2 diabetes treated with first-line sulphonylurea monotherapy, metformin monotherapy or their respective matched, non-diabetic controls.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Metformin</th>
<th>Sulphonylurea</th>
<th>Controls (matched with metformin)</th>
<th>Controls (matched with sulphonylurea)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>2663</td>
<td>1418</td>
<td>2669</td>
<td>748</td>
</tr>
<tr>
<td>Follow-up period (years)*</td>
<td>184708</td>
<td>27879</td>
<td>175614</td>
<td>26020</td>
</tr>
<tr>
<td>Crude event rate</td>
<td>14.4</td>
<td>50.9</td>
<td>15.2</td>
<td>28.7</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>249</td>
<td>75</td>
<td>223</td>
<td>27</td>
</tr>
<tr>
<td>Follow-up period (years)*</td>
<td>74986</td>
<td>6236</td>
<td>72560</td>
<td>6050</td>
</tr>
<tr>
<td>Crude event rate</td>
<td>3.3</td>
<td>12.0</td>
<td>3.1</td>
<td>4.5</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>654</td>
<td>235</td>
<td>713</td>
<td>125</td>
</tr>
<tr>
<td>Follow-up period (years)*</td>
<td>62034</td>
<td>8252</td>
<td>59365</td>
<td>7853</td>
</tr>
<tr>
<td>Crude event rate</td>
<td>10.5</td>
<td>28.5</td>
<td>12.0</td>
<td>15.9</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>1760</td>
<td>1108</td>
<td>1733</td>
<td>596</td>
</tr>
<tr>
<td>Follow-up period (years)*</td>
<td>47689</td>
<td>13391</td>
<td>43689</td>
<td>12117</td>
</tr>
<tr>
<td>Crude event rate</td>
<td>36.9</td>
<td>82.7</td>
<td>39.7</td>
<td>49.2</td>
</tr>
</tbody>
</table>

*Excluding the first 180 days following the index date.

Discussion

We have shown that in a contemporary UK population use of metformin as first-line, glucose-lowering treatment was associated with survival that was at least as good as that of matched, non-diabetic controls. Treatment with first-line sulphonylurea monotherapy was associated with increased mortality.

There remains considerable conjecture about the relative merits of metformin versus sulphonylureas [4]. Reported differences in safety generally favour metformin. If one accepts that there exists a difference in outcome favouring metformin, it has not yet been established whether this is due to the beneficial impact of metformin or a detrimental impact of sulphonylureas. Here we uniquely introduced non-diabetic controls into an evaluation of these treatments, and the findings were illuminating. Patients treated with metformin had a small but statistically significant improvement in survival compared with matched, non-diabetic controls, whereas those treated with sulphonylureas had consistently reduced survival versus non-diabetic controls. There also remained a difference in outcome between those taking metformin and sulphonylurea, although this needs to be interpreted with caution because we did not adjust for important covariates because they were unavailable in the non-diabetic subjects. This was carried out in separate but related studies in this journal, and showed worse outcome with metformin [8,12,28]. Importantly, these data not only show once again a better outcome with metformin relatively to sulphonylurea but also suggest that this is due to a beneficial effect of metformin on all-cause mortality.

Surprisingly, patients treated with metformin had a slightly longer adjusted survival than matched, non-diabetic controls, despite greater morbidity. This was independent of diabetes-related endpoints, including all-cause mortality.
when compared with intensive treatment with sulphonylureas or insulin [20]. A relative benefit of metformin has also been reported in various observational studies [21,30–34], including decreased risk of cancer [35–38]. Mixed results have been observed, however, in meta-analyses of randomized controlled trials (RCTs) of metformin versus active comparators or placebo. A meta-analysis of trials, including UKPDS, investigating cardiovascular risk in metformin found significant cardiovascular benefit in metformin versus placebo/no therapy (odds ratio = 0.79, p = 0.031) but not in active comparator trials (1.03, p = 0.89) [39]. Another meta-analysis found no evidence to support its hypothesis that metformin lowers cancer risk by one third, nor did eligible trials show a significant effect on all-cause mortality [40]. However, the trials included were clinically heterogeneous and follow-up was short, especially for mortality.

Study Limitations

This study included a large number of patients, who were followed-up for a median of 2.4 years. Unlike RCTs, less strict inclusion and exclusion criteria are often used in observational studies. The data source used for this study, CPRD, contained data collected from routine practice; therefore, some data may be missing and coding imperfections may lead to diabetes misclassification. However, only those patient records meeting CPRD’s quality criteria were included, and rules were applied to maintain consistency in the selection of patients with type 2 diabetes. Data quality in CPRD is considered to be good [41].

As this was an observational study, patients were not randomized to treatment, and uncharacterized confounders may account for some of the differences between groups. Although differences in baseline characteristics existed between the four groups, these were adjusted for as far as possible in the models. However, we could not adjust for some parameters due

Figure 2. Kaplan–Meier curves comparing (a) metformin monotherapy with their matched control group without diabetes, (b) sulphonylurea monotherapy with their matched control group without diabetes and (c) patients aged 71–75 years at baseline for all four cohorts (reported because it is the most frequent 5-year age group in subjects initiating sulphonylurea monotherapy).
to the understandably high percentage of missing data in controls. This may impact on the comparison between metformin monotherapy and sulphonylurea monotherapy particularly. We did not investigate for a dose–response association in this study; however, this would be interesting. We have detailed the profile of the specific types of sulphonylureas that are commonly used in these cohorts in another study, and this is 90% gliclazide [28].

Symptoms of type 2 diabetes can be mild and people with type 2 diabetes can remain undiagnosed for many years [42]. Therefore, it is probable that some controls had undiagnosed type 2 diabetes.

Due to the association between type 2 diabetes and increased cardiovascular risk, people with type 2 diabetes are more likely to be receiving exercise and lifestyle interventions and close monitoring and control of blood pressure and cholesterol levels. Hypertension and hypercholesterolaemia are risk factors for cardiovascular disease but are generally asymptomatic. Therefore, these conditions may be less well diagnosed in the control group.

Conclusion

Considered as a whole, our data suggest that patients with diabetes treated with metformin monotherapy can expect their survival to be at least as good as that of the non-diabetic population while on this specific regimen. We remain unsure about how survival changes relative to those without diabetes once glucose-lowering treatment is intensified, although...
treatment with metformin plus sulphonylurea combination therapy remains concerning [8,28]. For people treated with sulphonylurea monotherapy, our findings further support the hypothesis that this drug class increases the risk of all-cause mortality. Intriguingly, these findings suggest that there may be a prognostic benefit of metformin prophylaxis in people without diabetes.

Acknowledgements

This article was reviewed for scientific content and supported by AstraZeneca/Bristol-Myers Squibb. The funding agencies had no other role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Conflict of Interest

C. A. B. and C. Ll. M. are contractors of, S. E. H. and S. J.-J. are employed by and C. J. C. is a director of Pharmatelligence, a research consultancy receiving funding from pharmaceutical companies. J. M. is an employee of Bristol-Myers Squibb. C. J. C. reports research grants from various health-related organizations, including Abbott, ALK, Astellas, AstraZeneca, Bristol-Myers Squibb, Diabetes UK, the Engineering and Physical Sciences Research Council, the EASD, Ferring, GSK, Jenson (Internis), Lilly, the Medical Research Council, Medtronic, MSD, the National Health Service, Norgine, Pfizer, Sanofi-Aventis, Shire and Wyeth, and consults for Amlyn, Aryx, Astellas, Boehringer Ingelheim, Bristol-Myers Squibb, Diabetes UK, Eisel, Ferring, GSK, Ipsen, Lilly, Medtronic, MSD, Pfizer, Sanofi-Aventis, Takeda and Wyeth. J. P. H. and G. S. report no conflicts of interest.

C. J. C. had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. C. J. C., C. A. B. and S. E. conceptualized the study and design. C. J. C. and S. J.-J. acquired the data for the study. C. J. C., C. A. B., S. E. H., C. Ll. M., J. P. H. and G. S. contributed to analysis and interpretation of data. C. J. C., C. A. B. and S. E. H. drafted the manuscript. All authors were involved in critical revision of the manuscript for important intellectual content. C. A. B. and S. E. H. performed statistical analysis. C. J. C. obtained funding. S. J.-J. provided administrative, technical and material support. C. J. C. supervised the study.

References

