Lithium in Portuguese drinking water: A preliminary study to assess its benefits to mental health.

Conference Paper · September 2014

4 authors, including:

Maria Orquidia Neves
Technical University of Lisbon
38 PUBLICATIONS 134 CITATIONS

H.G.M. Eggenkamp
Institut de Physique du Globe de Paris
90 PUBLICATIONS 957 CITATIONS

Frederico Simões do Couto
University of Lisbon
33 PUBLICATIONS 166 CITATIONS

Some of the authors of this publication are also working on these related projects:

- To understand the redox variations and interactions between hydro-, bio- and atmosphere (BRISOACTIONS): the power of bromine stable isotopes View project
- UCROP- View project

All content following this page was uploaded by H.G.M. Eggenkamp on 23 November 2014.

The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
Lithium in Portuguese drinking water
A preliminary study to assess its benefits to mental health

O. Neves*, H.G.M. Eggenkamp**, F. Simões do Couto***, J.M. Marques*
* CERENA/CEPIGST, Instituto Superior Técnico, Universidade de Lisboa
** Flemish Instuit for Technological Research (VITO NV), Belgium
*** Instituto de Farmacologia e Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa

INTRODUCTION

Lithium (Li) is a trace element present in grains, vegetables, some animal-derived foods and drinking water. Research is proving that it is an essential element that the human body needs for optimizing health and wellbeing. However, the human dietary Li requirement has not yet been established. Diet provides up to 2.5 mg/day and in some world regions high amounts of Li may be provided from drinking water. The effects of Li at therapeutic doses (600-1200 mg/day) on mental disorders are widely recognized by the psychiatric community. Research developed at geographical locations (Table 1).

Table 1 – Li concentrations in tap water from different sources.

<table>
<thead>
<tr>
<th>Data</th>
<th>Li (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study (18/4)*</td>
<td><1 190 11.5</td>
</tr>
<tr>
<td>Tap waters (Central Portugal)</td>
<td>170 - 1300</td>
</tr>
<tr>
<td>(21/1):14-21</td>
<td>11.5</td>
</tr>
<tr>
<td>(18/1)</td>
<td>0.7</td>
</tr>
<tr>
<td>(18/1)</td>
<td>70</td>
</tr>
<tr>
<td>Austria (9/6440)</td>
<td>3.3 1300 11.3</td>
</tr>
</tbody>
</table>

*<1 not available data

This study reports the preliminary results of lithium concentration and distribution in Portuguese drinking waters (both tap and bottled water) in order to:

- characterize the levels of this element in one of the principal sources of human diet intake
- assess if there is any relation between lithium concentrations in tap water and the mortality rate from suicide, for the period 2008-2011

METHODS

- About 45 tap water samples (Fig. 1) were collected in 2011 from private houses from across 18 Districts on the Portuguese mainland.
- Tap water may be derived from groundwater or from surface water (e.g. lakes, rivers, artificial reservoirs) and could be mixed in the distribution system.
- Samples are representative of the water that Portuguese individuals drink or use to cook foodstuffs every day.
- Around 23 brands of bottled waters (13 natural mineral and 10 spring waters) were purchased in supermarkets, they are groundwaters which are bottled directly at the source or groundwaters pumped from drilled wells and subsequently bottled.
- Lithium was analyzed by ICP-MS at a certified laboratory (Actlabs, Canada), after being acidified (HNO₃, until pH < 2) and without sample filtration after collection.
- Mortality rate from suicide (intentional self-harm: ICD-10 codes X60-X84) for the period 2008-2011 was collected at Instituto Nacional de Estatística (INE). (source: http://www.unicer.pt).

RESULTS

Tap waters

- Li concentrations: < 1 to 190 µg/L (Fig. 2; median of 4 µg/L).
- Only 3 municipalities with Li concentration higher than 40 µg/L.
- Maximum Li concentration detected in Castelo Branco City (Central Portugal).

Bottled waters

- Li concentrations: < 1 to 2201 µg/L (Fig. 2; median of 16 µg/L).
- Seven bottled mineral waters with Li concentration higher than 170 µg/L.
- Campina, Frizé, Pedras Salgadas and Vidago (Fig. 3) present the highest Li concentrations.

DISCUSSION

No correlation between average Li levels in tap water (for 18 Portuguese Districts) and suicide (intentional self-harm) rate in the 45 Portuguese municipalities seems not to be correlated with lithium levels in tap waters (Fig. 4).

- The highest Li concentrations in bottled mineral water reflect the geology of the source region (Northern Portugal; magmatic rocks with Li-rich minerals).
- Suicide (intentional self-harm) rate in the 45 Portuguese municipalities seems not to be correlated with lithium levels in tap waters (Fig. 4).

- As in other countries the consumption of bottled waters is significantly increasing and has become an important factor for health issues. Adults consuming (0.5L/day) of some of the investigated mineral waters would reach the suggested provisional recommended dietary allowance (RDA) dose of 1 mg Li/day (5).

CONCLUSIONS

- Portuguese tap waters present lower Li concentrations than natural mineral bottled waters.
- Lithium levels in the investigated tap waters are not correlated to mortality rate from suicide (intentional self-harm) for the period 2008-2011.
- To validate (or not) this preliminary study the research should be extended to all 308 Portuguese municipalities (even from Madeira and Azores islands).
- As suicide is a complex phenomenon with many variables, those should be also taken into account in a future research.
- The consuming of some bottled mineral water may contribute to increase the daily Li intake.
- Some of these mineral waters will be used in controlled studies to investigate possible additional benefits in patients suffering from mild to moderate major depressive disorders.

[5] Flemish Institut for Technological Research (VITO NV), Belgium