Does the Defining Issues Test Measure Psychological Phenomena Distinct From Verbal Ability?: An Examination of Lykken’s Query

Cheryl E. Sanders, David Lubinski, and Camilla Persson Benbow
Iowa State University

This study examined the incremental validity of the Defining Issues Test (DIT), a test purporting to measure moral reasoning ability relative to verbal ability and other major markers of the construct of general intelligence (g). Across 2 independent studies of intellectually precocious adolescents (top 0.5%), results obtained with the DIT revealed that gifted individuals earned significantly higher moral reasoning scores than did their average-ability peers; they also scored higher than college freshmen, who were 4 to 5 years older. The relative standing of the intellectually gifted adolescents on moral reasoning, however, appears to be due to their superior level of verbal ability as opposed to any of a number of the other psychological variables examined here. The hypothesis that the DIT is conceptually distinct from conventional measures of verbal ability was not confirmed. Investigators conducting subsequent studies involving the assessment of moral reasoning are advised to incorporate measures of verbal ability into their designs, thereby enabling them to ascertain whether moral reasoning measures are indeed capturing systematic sources of individual differences distinct from verbal ability. This idea also is relevant to other concepts and measures purporting to assess optimal forms of human functioning more generally (e.g., creativity, ego development, and self-actualization).

In the social sciences, measures do not always assess what they purport to measure, and the causal determinants of our most favorite constructs and outcomes do not always fit prior expectations. All too frequently in social science research, theoretically appealing constructs are assessed and studied without attending to competing variables that might be causally linked to their status as well as the criteria they predict. Socioeconomic status (SES), for example, is a variable that social scientists frequently assume to be causally related to a host of psychologically important phenomena (see the writings of Humphreys, 1991, and Meehl, 1970, 1971a, 1971b, on this topic). In school and work settings, for example, SES is presumed to exert a profound causal role in determining the outcomes on conventional achievement criteria (cf. Humphreys, 1991). More powerful variables exist, however, for predicting academic and vocational criteria (e.g., human abilities; Humphreys, 1992; Lubinski & Davis, 1992; Schmidt, 1994). Yet, they are seldom studied concomitantly with SES (Humphreys, 1991). Indeed, the practice of inferring causal links between SES—the “master variable” of sociological inquiry (Gordon, 1987)—and its many correlates, without evaluating competing correlated factors (such as ability), has been referred to as the sociologist’s fallacy (Jensen, 1973). This common methodological shortcoming is an example of underdetermined causal modeling—and the social sciences are dotted with several others.

One of the more striking examples of this in contemporary psychological research is the tendency for researchers to evaluate the importance of students’ self-efficacy or its manipulation for choosing to embark on conceptually demanding educational or vocational paths, without simultaneously assessing relevant ability requirements necessary for performing competently in the targeted disciplines (for a number of examples, see Betz & Fitzgerald, 1993). Another example can be found in research on parent perceptions of their sons’ and daughters’ strengths and weaknesses. Gender differentiating expectations are frequently interpreted as a function of sex role stereotyping (e.g., Jacobs & Eccles, 1992); although this may be so, more definitive conclusions would be obtained if objective measures of the rated skill domain under analysis were concomitantly assessed (say, for example, ratios’ mathematical reasoning ability), on which parents’ perceptions and ratings are at least partly based. We would then be in a position to determine whether genuine gender differentiating competencies were actually observed and rated with precision, or whether parents’ ratings were indeed moderated by sex role stereotypes and, as such, are systematically biased.

Erroneous suppositions regarding presumed causal paths are
clearly found in discussions of well-known environmental measures. The Moos and Moos (1986) Family Environment Scale (FES) has almost always been interpreted as indexing an *exogenous* source of environmental causality. Robert Plomin and his colleagues have revealed, however, that the FES manifests significant heritabilities across twin and adoption studies (Plomin & Bergman, 1991; Plomin, Reiss, Hetherington, & Howe, 1994) and, hence, an *endogenous* source of genetic variation. As a result, investigators conducting research with the FES and similar measures must now modify their causal conjectures accordingly.

Such problems of unevaluated competing explanations are ubiquitous not only in psychological research (cf. Scarr, 1992; Scarr & McCartney, 1983), but also at more fundamental levels of measurement. This happens most conspicuously when investigators attempt to establish the construct validity of new, innovative instruments (Dawis, 1992; Lubinski & Dawis, 1992). Measures of favorite constructs (e.g., creativity, ego development, moral reasoning) are frequently constructed and "validated" within elaborate networks of criterion variables and experimental manipulations, without ever considering the possibility that other existing measures might account for the same correlational and experimental findings as well as, or perhaps more comprehensively than, the investigator's purported ("master") construct. Just as predictor-criterion correlations can have competing causal interpretations, innovative measures of constructs may actually reduce to weak measures of other constructs better assessed with preexisting instruments. In what follows, we examine an instance of this possibility.

Assessing Moral Reasoning

In an eye-opening methodological treatment of a number of problems associated with psychological research, such as those illustrated above, David Lykken (1991, p. 35) posed the following query: “One can reasonably wonder whether many of the interesting findings obtained in research on Kohlberg’s (1984) Stages of Moral Development would remain if verbal intelligence had been partialed out in each case.”

The purpose of the present study was to examine Lykken’s (1991) query. We evaluated the Defining Issues Test (DIT), an objective measure of moral reasoning ability that is based on Kohlberg’s system (Rest, 1979a, 1979b), in the context of a number of conventional ability measures. Our analysis was aimed at answering two questions (one is methodological, the other is substantive). Both questions are addressed concurrently: (a) how is the uniqueness of the DIT best established? and (b) does the psychological importance of the DIT reduce to its overlap with verbal ability? The latter question, Lykken’s query, is actually not without some empirical support.

A number of studies have reported substantively meaningful correlations between the DIT and intellectual abilities. Rest (1979a, 1979b), for example, reported correlations between the DIT and intelligence in the .20–.50 range. Also, in earlier empirical work, Kohlberg (1969) himself factually reported correlations between his Moral Judgment Interview and general intelligence, ranging from .30 to .50. Furthermore, discussions of the association between moral reasoning and intelligence have appeared for decades in the psychological literature (e.g., Abel, 1941; Boehm, 1967; Durkin, 1959; Kohlberg, 1969; Perry & Krebs, 1980; Piaget, 1932; Simmons & Zumpf, 1986; Terman, 1925; Whiteman & Kosier, 1964). Yet none have specifically examined the uniqueness of moral reasoning measures relative to conventional markers of intelligence in the context of meaningful psychological criteria (Colby & Kohlberg, 1987). This is precisely what we did.

We used a host of psychological variables to predict DIT scores after partialing out markers of general intelligence—verbal and quantitative abilities and a nonverbal measure of general intelligence. A variety of markers of general intelligence was used, inasmuch as Rest (1979a, 1979b) has reported that math and science test scores seem to predict DIT scores as well as language, vocabulary, and social science test scores. So a corollary hypothesis that emerges is that it is the communality running through heterogeneous collections of cognitive tests, as opposed to the specificity of more circumscribed markers of general intelligence, that overlaps with the DIT. Is it possible then, that, beyond its overlap with verbal ability (or more global measures of general intelligence), the variance shared between the DIT and relevant psychological criteria is nugatory?

1 Meehl (1990a, 1990b), among others, has commented on this problem.

2 Although there are other measures of moral reasoning available, the DIT appears to be an especially good choice for evaluating Lykken’s query. Indeed, in a recent evaluation of this instrument, Rest and Navarrete (1994) concluded: “The fact that the DIT is one of the easiest tests to administer and score (being multiple-choice and computer-scored) should not be held against it. Despite its ease of use, there is no other program of research with other instruments that has produced clearer findings or more useful information about professional ethics. Although other instruments usually involve more pain, there is not inevitably more gain.” (p. 214)

3 Our hypothesis that the meaningful individual differences assessed by the DIT reduce to the dominant dimension defined by the communality of many different kinds of cognitive tests, namely general intelligence (Humphreys, 1979), is also reinforced by auxiliary data. The construct of general intelligence actually does surface as predictively central in many contexts outside of educational and vocational settings and across more behavioral ecologies than many psychologists realize (Brand, 1987; Humphreys, Rich, & Davey, 1985; Lubinski & Dawis, 1992). As the late Starke R. Hathaway used to tell all of his clinical advisees, “We tend to treat general intelligence as if it only operated in educational and vocational contexts; but actually, it saturates everything we do and is a salient aspect of personality” (Paul E. Meehl, July 1993, personal communication). Readers also might find interest the remarkable consensus among leading psychometricians on how human intellectual abilities are organized (cf. Ackerman, 1987, 1988; Carroll, 1993; Gustafsson, 1988; Humphreys, 1979; Snow & Lohman, 1989; Vernon, 1961). The general consensus is that the intellectual repertoire is organized hierarchically, with the construct of general intelligence at the vertex and accounting for approximately half of the variance running through heterogeneous collections of ability tests in the full range of talent. This dimension of individual differences defines the level of sophistication of the intellectual repertoire; but the specificity of its three major markers (viz., verbal, quantitative, and spatial group factors) contain incremental validity beyond the general factor—and we actually demonstrate this for verbal ability in the present study. See Humphreys, Lubinski, and Yao (1993) and Lubinski and Dawis (1992) for further and more detailed discussions on the nature and organization of human intellectual abilities and their many correlates.
In the present study, in addition to a variety of cognitive measures, criterion variables were drawn from a number of other psychological domains (reported to be significantly related to the DIT in other research): leisure activities (Biggs & Barnett, 1981; Duffy, 1982; Laubscher, 1988), personality (Cauble, 1976; Hanson & Mullis, 1985), values (Lockley, 1976), and a variety of background and family characteristics (Parikh, 1980; Rest, Cooper, Coder, Masanz, & Anderson, 1974; Snarey, Reimer, & Kohlberg, 1984). We wanted to determine the nature and strength of the relationship between these various measures and the DIT, after removing the variance shared by markers of general intelligence through partial correlation.

Method

Two studies were included in this research for purposes of replication. This cuts down the possibility of interpreting chance correlations and partialled correlations. Both studies focused on gifted youths who attended the CY-TAG (Challenges for Youth—Talented and Gifted) and Iowa Governor's Summer Institute (IGSI) programs at Iowa State University. These are summer programs designed to better meet the educational needs of intellectually gifted adolescents (Benbow, 1990; Benbow & Stanley, 1983; Lubinski & Benbow, 1994). Study 1 was conducted in 1990 and included 147 males and 121 females; Study 2 was carried out in 1991 with 136 males and 119 females. Study 2 followed Lyken’s (1968) three-tiered nomenclature for conducting replications in psychological research and constituted a literal replication of Study 1.

Individuals are eligible for CY-TAG and IGSI programs if they are currently enrolled in 7th to 10th grades and if they qualify as intellectually gifted. Students are selected for CY-TAG on the basis of College Board Scholastic Aptitude Test (SAT) scores or scores on the American College Test (ACT) assessment, tests normally administered to 11th and 12th grade students intending to enroll in college. Additional requirements for CY-TAG involve earning one of the following test scores as a 7th grader: ≥ 500 on the SAT-Math (SAT-M) subtest, ≥ 430 on the SAT-Verbal (SAT-V) subtest, ≥ 930 on SAT-M + SAT-V, or ≥ 20 on any ACT subtest. Minimum SAT and ACT scores earned by CY-TAG participants at age 12 to 13 are comparable to the average score received by college-bound high school senior males. Although selection for the IGSI was not based on SAT or ACT scores, many such students had taken these tests. Those who had earned scores comparable to CY-TAG participants were included in the present research. Thus, the sample represents approximately the top 0.5% in intellectual ability as measured by the SAT or ACT. The gifted youths volunteered for the research in return for a subsidy to the program. Because not all students who qualified for CY-TAG were administered the SAT, our analyses with SAT-M and SAT-V scores consist of only 92 males and 72 females (Study 1) and 102 males and 83 females (Study 2).4

To establish baselines for evaluating the overall DIT performance of our intellectually gifted adolescents, we include means and standard deviations from the DIT manual as well as from two separate studies conducted at Iowa State University for other purposes. One of these latter two groups consisted of individuals of equivalent chronological age to the gifted youths (30 male and 27 female 12- to 14-year-olds) but of the same SES as our gifted participants. Their SES was not significantly different from our gifted participants. Thus, the sample represents a particular stage of moral judgment. The participants are asked to rate the importance of each statement and to select the four most important issues, ranking them in order of importance. Scores are based on the relative importance participants place on stage-related statements (cf. Rest, 1973, 1975, 1976).

DIT. We assessed moral reasoning with the DIT, a standardized instrument based on Kohlberg’s (1984) theory of moral development and constructed by Rest (1979a, 1979b). It is an objective instrument consisting of six story dilemmas, each describing a situation requiring an ethical decision. Associated with each dilemma are 12 statements representing a particular stage of moral judgment. The participants are asked to rate the importance of each statement and to select the four most important issues, ranking them in order of importance. Scores are based on the relative importance participants place on stage-related statements (cf. Rest, 1973, 1975, 1976).

FES. We assessed the social–environmental characteristics of family with the FES (Moos & Moos, 1986). The FES consists of 10 scales, which are classified into three domains: relationships, personal growth, and system maintenance. The relationship class is made up of the Cohesion, Expressiveness, and Conflict subscales. This cluster assesses the extent to which family members are supportive, open, and expressive with each other. The personal growth cluster includes Independence, Achievement Orientation, Intellectual–Cultural Orientation, Active–Recreational Orientation, and Moral–Religious Emphasis subscales. This group of scales focuses on the degree to which family members are assertive, self-sufficient, and interested in political, social, intellectual, religious, cultural, and recreational activities. The system maintenance cluster includes Organization and Control subscales. This class involves how important structure and organization are in the family unit.

There are three forms of the FES: the Real, Ideal, and an Expectations form. We used the Real form in this research. It measures the students’ perceptions of their family environment as it currently exists.

ACL. We used the ACL (Gough & Heilbrun, 1983) to assess personality attributes. The ACL is composed of 300 adjectives used to form 37 scales, which, in turn, are categorized into five classes. The first class, measuring needs, consists of: achievement, dominance, endurance, order, intracereption, nurturance, affiliation, heterosociality, exhibition, autonomy, aggression, change, succorance, abasement, and deference. The second class, measuring values, includes: high origence, low intellectence; high origence, high intellectence; low origence, low intellectence; and low origence, high intellectence. The third class, measuring needs, consists of: achievement, dominance, endurance, order, intracereption, nurturance, affiliation, heterosociality, exhibition, autonomy, aggression, change, succorance, abasement, and deference. The fourth class, measuring values, includes: high origence, low intellectence; high origence, high intellectence; low origence, low intellectence; and low origence, high intellectence. The fifth class, measuring values, includes: high origence, low intellectence; high origence, high intellectence; low origence, low intellectence; and low origence, high intellectence.

SOV. We used the SOV (Allport et al., 1970) to assess six basic aspects of personality in an ipsative fashion. The six values include theoretical, economic, aesthetic, social, political, and religious values. The SOV is based on the view that people’s personalities are assessed by their stage of moral judgment. Associated with each dilemma are 12 statements representing a particular stage of moral judgment. The participants are asked to rate the importance of each statement and to select the four most important issues, ranking them in order of importance. Scores are based on the relative importance participants place on stage-related statements (cf. Rest, 1973, 1975, 1976).

Raven’s Advanced Progressive Matrices. We used the Raven’s matrices (Raven, Court, & Raven, 1977) as a test of nonverbal reasoning

4 Mean levels on the DIT for these participants were actually all a bit higher than those reported in Table 1, but not significantly so.
ability. It consists of 36 items. Each item involves a pattern of figures and options for solving a relational problem.

Background questionnaire for CY-TAG students. The background questionnaire for CY-TAG students is a general information survey completed by all participants of CY-TAG and Iowa Governor’s Institute programs. Demographic information, as well as questions pertaining to students’ feelings and opinions, are included in the questionnaire. The following four items were used from this questionnaire as indexes of SES: paternal educational level, maternal educational level, paternal occupation, and maternal occupation.

Activities questionnaire. We used an activities questionnaire to assess extent of participation in various leisure activities and hobbies. Factor analytic investigations of this instrument have revealed five interpretable dimensions (all of which will be used in the present investigation): Involvement in Nonfiction Reading, School Clubs, Math/Science-Related Activities, Video Games, and Fiction Reading.

Data collection. The questionnaires were administered by mail, before students actually attended the summer programs, whereas the DIT and Raven’s matrices were administered in classroom settings once the students arrived at CY-TAG or IGSI.

Results

For efficiency in exposition, results obtained from Study 1 and Study 2 are presented concurrently. Means and standard deviations of the DIT are reported in Table 1, by gender, along with data collected on average-ability, age-equivalent peers and college students (who were 4 to 5 years older than the other two groups). In both studies, the gifted adolescents appeared to be more advanced in terms of their moral reasoning abilities (and the other abilities) than both their age-equivalent peers and the college sample.

Next, for both studies, we correlated all 62 criterion measures with the DIT, by gender. As one would imagine from Type I error expectations and the number of criterion measures used, we obtained a number of statistically significant correlations in both studies. Yet only a small subset of the statistically significant correlations found in Study 1 were replicated in Study 2, for both genders. This underscores the importance of conducting literal replications in studies of this kind. Table 2 consists of the intercorrelations of all the statistically significant correlations of the DIT found in both Study 1 and Study 2 across both genders.

As can be noted, correlations between the cognitive measures and the DIT are the only ones that held up across both studies. Moreover, the DIT appears to be as highly correlated with the measures of intellectual ability as these ability measures are with each other. Although these correlations are modest, we must consider that our sample consisted of a highly restricted range of talent. Thus, the magnitude of these correlations is attenuated appreciably. This is underscored by the light correlations between SAT-V and SAT-M. In college-bound high school seniors (a much less restricted range of talent, but nevertheless restricted) these two scales correlate in the .60-.70 range, compared with the .24-.61 range observed in this study. This speaks to the high degree of overlap among content-distinct intellectual measures, which is frequently underappreciated when working with highly select samples (Benbow, 1988, 1992; Lubinski & Dawis, 1992). This is also why we chose to employ a number of content-distinct markers of general intelligence—to illustrate how the same source of common variance (frequently denoted as g) can manifest itself in different ways (Lubinski & Dawis, 1992).

Following the above analysis, we combined the genders in both Study 1 and Study 2 to form two gender-mixed groups. We then correlated the DIT with all 62 criterion measures for these two samples. In the gender-combined samples, three noncognitive criterion variables manifested replicable correlations with the DIT across both studies (with Study 1, followed by Study 2 correlations given in parentheses): intellectual-cultural orientation (.19, .12), creative personality (.11, .15), and video game playing (−.17, −.18). The correlations for the three cognitive variables and the DIT in the gender-combined sample were: SAT-V (.30, .45), SAT-M (.27, .25), and Raven (.19, .20).

To evaluate whether the replicated covariation between the DIT and the noncognitive variables was distinct from that of our markers of general intelligence, we conducted 18 stepwise multiple regression analyses (following a forward selection procedure). We ran all possible two-predictor pairs between the noncognitive measures (intellectual-cultural orientation, creative personality, and video games) and each of the three markers of general intelligence (SAT-V, SAT-M, and Raven’s matrices), across both studies. Given that the cognitive mea-

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>(N)</th>
<th>(M)</th>
<th>(SD)</th>
<th>(N)</th>
<th>(M)</th>
<th>(SD)</th>
<th>(N)</th>
<th>(M)</th>
<th>(SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1 gifted youths</td>
<td>268</td>
<td>34.9</td>
<td>12.9</td>
<td>147</td>
<td>33.3</td>
<td>12.4</td>
<td>121</td>
<td>36.7</td>
<td>13.3</td>
</tr>
<tr>
<td>Study 2 gifted youths</td>
<td>255</td>
<td>35.6</td>
<td>12.4</td>
<td>136</td>
<td>34.4</td>
<td>12.0</td>
<td>119</td>
<td>36.9</td>
<td>12.8</td>
</tr>
<tr>
<td>Average ability 12- to 14-year-olds</td>
<td>57</td>
<td>22.4</td>
<td>10.6</td>
<td>30</td>
<td>22.5</td>
<td>10.2</td>
<td>27</td>
<td>22.1</td>
<td>11.1</td>
</tr>
<tr>
<td>College freshmen*</td>
<td>131</td>
<td>30.0</td>
<td>12.7</td>
<td>49</td>
<td>30.1</td>
<td>13.0</td>
<td>83</td>
<td>30.0</td>
<td>12.5</td>
</tr>
<tr>
<td>Junior high norms*</td>
<td>1,322</td>
<td>21.9</td>
<td>8.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior high norms*</td>
<td>581</td>
<td>31.8</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note. DIT = Defining Issues Test. DIT-P% = most commonly employed index of moral reasoning assessed by the DIT.

* Iowa State University freshmen.

b Data from the DIT manual (Rest, 1979b).
Table 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT-V</td>
<td>.24</td>
<td>.24</td>
<td>.24</td>
<td>.24</td>
</tr>
<tr>
<td>SAT-M</td>
<td>.61</td>
<td>.61</td>
<td>.61</td>
<td>.61</td>
</tr>
<tr>
<td>Raven</td>
<td>.43</td>
<td>.43</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td>P% score</td>
<td>.34</td>
<td>.34</td>
<td>.34</td>
<td>.34</td>
</tr>
</tbody>
</table>

Note. Correlations for females are above the diagonal; those for males are below. The top correlation in each row is from Study 1 (1990); the bottom correlation is from Study 2 (1991). All P% score correlations are statistically significant at \(p < .05 \) or beyond. Sample sizes for the Scholastic Aptitude Test (SAT) correlations were 92 males and 72 females for Study 1 and 102 males and 83 females for Study 2. Sample sizes for the correlations between the Defining Issues Test (DIT) and the Raven test were 140 males and 117 females for Study 1 and 127 males and 113 females for Study 2. DIT-P% = most commonly employed index of moral reasoning assessed by the DIT; SAT-V = SAT Verbal subtest; SAT-M = SAT Math subtest.

In this study, we found that highly gifted adolescents (top 0.5%) displayed exceptionally high DIT scores relative to their average ability peers and college students four to five years older. This may lead some to suspect that the intellectually gifted are better able to deal with moral issues in a way that is distinct from the general superiority of their intellectual abilities. Yet our evaluation of the hypothesis that the DIT has unique predictive properties relative to markers of general intelligence was evaluated with negative results. This is especially troublesome for establishing the uniqueness of the DIT inasmuch as, given the elite intellectual level of our participants, their restriction of range on the ability measures actually enhances the likelihood of the noncognitive measures achieving incremental validity.

In fact, none of the many noncognitive variables used here manifested significant DIT correlations across both studies for both genders. Moreover, for the gender-mixed samples, the only variable that achieved incremental validity in the prediction of DIT scores was video games (a negative relationship), but only when in direct competition with SAT-M and the Advanced Raven’s matrices; it did not achieve incremental validity following the removal of variance shared with SAT-V. Thus, Lykken (1991) may have hit on something when he chose verbal ability as the critical variable to be partialed from moral reasoning scores. When verbal ability is partialed from the DIT, the remaining variance of the DIT does not overlap significantly with any of the 62 criterion variables examined here. Given that the DIT failed to manifest shared overlap with a wide array of psychological criteria beyond verbal ability, we offer the following generalization: The DIT is simply another way of measuring verbal ability, probably the most salient marker of general intelligence. Future research with the DIT undoubtedly should be aimed at falsifying this generalization.

Now, to be sure, our results are not definitive as we have in no way exhausted the full range of criterion variables that could be justified in a study of this kind. Other criteria may very well paint a different picture. We believe, however, that we have provided sufficient evidence for the need for such a picture if we are to continue using the DIT in psychological research as a measure of moral reasoning ability and casting it as an instrument in possession of predictive properties distinct from verbal ability.

Finally, although the present investigation focused on the DIT and provided disconfirming evidence for its predictive power distinct from verbal ability, Lykken’s (1991) initial query, which motivated this study, is actually more general. Other psychological constructs, especially those of the fulfillment variety (purporting to index sophisticated forms of human development), such as ego development and self-actualization, appear intuitively to be likely candidates for analyses similar to those reported here. In fact, Loevinger (1976) reported correlations between her measure of ego development and general intelligence in the .10—.30 range. It is intriguing to speculate on the extent to which findings based on these instruments (and interpreted in terms of constructs they purport to assess) are actually more centrally related to the construct of general intelligence or the specificity of one of its major markers (e.g., verbal ability). Future investigators are well advised to incorporate markers of general intelligence into their designs to ascertain whether their measures (of constructs purporting to possess some distinctiveness from general intelligence) are getting at anything unique and psychologically meaningful. This could actually result in a more parsimonious, less redundant collection of scientifically significant constructs and measures in psychological science.
References

Humphreys, L. G. (1979). The construct of general intelligence. *Intelligence, 3*, 105–120.

Chiccetti & W. Grove (Eds.), Thinking clearly about psychology (pp. 3–39). Minneapolis: University of Minnesota Press.

Received March 16, 1994
Revision received October 31, 1994
Accepted November 21, 1994