Interrelationships among Serum Thyroxine, Triiodothyronine, Reverse Triiodothyronine, and Thyroid-Stimulating Hormone in Iodine-Deficient Pregnant Women and Their Offspring: Effects of Iodine Supplementation

J. ENRIQUE SILVA* AND SERGIO SILVA

Department of Endocrinology, Hospital del Salvador, University of Chile, East School of Medicine (J.E.S.), and the Department of Obstetrics and Gynecology, Hospital Sotero del Rio, National Health Service, Santiago, Chile

ABSTRACT. Adaptation to iodine deficiency (ID) requires changes in thyroid and pituitary function that have been well characterized in animals. The present studies were undertaken to analyze the relationships between serum thyroid hormones and TSH concentrations in iodine-deficient pregnant women as well as their newborns. The broad range of iodine intake of the population studied, from very low to adequate, allowed us to describe quantitatively the relationships among iodine intake, thyroid hormones, and TSH. The interpretation of the data was supported by the effects that iodine supplementation had on these various hormones and is consistent with animal observations. About 250 pregnant women from an iodine-deficient area were studied. Fifty percent had a urinary iodine excretion of 50 µg I/g creatinine (cr) or less; 25% had 50-100 µg I/g-cr, and about 20% had 100-200 µg I/g cr. Baseline serum hormone concentrations on first examination (mean ± SD) were: T4, 8.0 ± 0.7 µg/dl; T3, 179 ± 45 ng/dl; rT3, 25 ± 9 ng/dl, and TSH, 2.9 ± 1.7 µU/ml. All values were independent of the age of gestation between 10-40 weeks. Serum T4 and urinary I correlated linearly in a double reciprocal plot (r = 0.90; P < 0.001). Serum TSH correlated with the reciprocal of serum T4 (r = 0.76; P < 0.005). In 36 women, oral iodine supplementation (OIS; 300 µg I/day for 4-16 weeks) increased total serum T4 from 8.7 ± 2.4 to 12.5 ± 1.8 µg/dl (P < 0.001), decreased TSH from 2.8 ± 1.0 to 1.5 ± 0.8 µU/ml (P < 0.001), and increased rT3 from 21 ± 7 to 25 ± 9 ng/dl (P < 0.02; all by paired t tests); serum T3 remained unchanged (187 ± 25 and 180 ± 46 ng/dl), as did T4 and T3, free fractions. The free T4 concentration, which was lower than that in nonpregnant adults before treatment (1.63 ± 0.4 vs. 2.30 ± 0.4 µg/dl; P < 0.001), increased to 2.3 ± 0.4 with OIS (P < 0.001). No change in any of these variables was observed in 10 untreated controls followed for similar lengths of time. Cord serum T4 and rT3 were higher in the offspring of OIS mothers (11.3 ± 1.5 µg/dl and 226 ± 55 ng/dl) than in those of untreated mothers (9.3 ± 1.7 µg/dl and 183 ± 37 ng/dl; P < 0.001 and P < 0.005, respectively). Newborn serum T4 correlated with the mothers' value (P < 0.001) but was found to be less affected by iodine intake than the mothers' results.

We conclude that: 1) the decrease in TSH observed with OIS was due to the increase in serum T4, since serum T3 was unchanged, this stressing the critical role of the reduced serum T4 in the adaptation to ID; 2) the small difference in serum TSH was physiologically significant, since this was associated with a compensatory increase in thyroidal T3 secretion during ID; 3) the larger increase in serum T4 induced by OIS in maternal as opposed to corresponding cord sera suggests that the fetus is relatively protected against ID; and 4) these findings are in agreement with previous animal studies, suggesting applicability of the latter to human thyroid physiology (J Clin Endocrinol Metab 52: 671, 1981)

IODINE deficiency (ID) is known to cause alterations in plasma thyroid hormone levels. Characteristically, plasma T4 is low, T3 is normal, and TSH is elevated (1-4). Iodine-deficient animals show no evidence of hypothyroidism (3, 4), probably a reflection of the normal serum T3 concentration (1, 2). The latter seems to be the result of increased thyroidal T3 secretion that compensates for the decreased extrathyroidal production consequent to the diminished availability of T4 (3, 5). The elevated TSH and the low degree of iodination of the thyroglobulin account for this quantitative change in the source of plasma T3 (6). Furthermore, the reduced level of T4 seems to be responsible for the elevated serum TSH concentration (4, 7). There is evidence that this adaptive mechanism may be operative in humans as well, since, except for extremely deficient areas, subnormal serum T3 concentrations are seldom seen in areas affected by endemic goiter (8-13).

Iodine requirements are expected to increase during...
pregnancy, since the fetal iodine pool is being formed and the renal clearance of iodide is elevated (14). It is thus possible that the above-described compensatory mechanism could be overcome, the mother, the fetus, or both could be affected by the lack of T3 in the tissues. Although there are many reports on the levels of T4 and TSH in mothers and newborns of endemic goiter areas, there are only three in which T3 has been measured (15–17). In one of these studies, serum T3 concentrations were found to be low in some women (16), but in the other studies this was not observed (15, 17). The difference might be due to the extremely low iodine intake and the presence of goitrogens in the Ubangi, Zaire subjects (16).

It was of interest to us to see whether moderate or mild iodine deficiency, such as that prevalent in Chile, has a detectable influence on serum thyroid hormone and TSH concentrations. We were particularly interested in the role of serum T4 in TSH regulation and that of the slightly elevated serum TSH in increasing thyroidal T3 secretion. The rather wide range of iodine intake in Chile would allow a quantitative analysis of the relationships among these various hormones which could be complemented by evaluating the effects of iodine supplementation in some of these subjects.

Methods

Subjects

Blood samples were obtained at different gestational ages in 250 pregnant women in prenatal outpatient clinics in eastern greater Santiago. These women came from various suburban and rural areas so that there were some differences in iodine intake due to factors such as iodine content in the water, sea food consumption, and access to iodized salt.1

After obtaining blood and urine samples, the subjects were given 10 drops daily of a 785 μg/ml potassium iodide (KI) solution so as to provide approximately 300 μg I/day. One of every four women was not treated, forming a control group. Blood samples and urine were obtained at subsequent visits and at delivery when a cord blood sample was also collected. The shortest time interval between samples during iodine supplementation was 4 weeks and the longest was 16 weeks (Table 1). In only 36 of the 160 mothers given iodide was the protocol completed successfully and adherence to the regimen validated by urinary iodine excretion. A similar proportion of controls was lost.

Serum samples were frozen until the assays were performed. T3, T4, and rT3 were measured by RIA using specific antibodies and dextran-coated charcoal to separate bound and free fractions (18,19). T3 and T4 antibodies were kindly provided by P. R. Larsen (Boston, MA). The anti-rT3 antibody was raised in our laboratory and had less than 1:8000 cross-reactivity with T4. The normal rT3 serum concentration in nonpregnant adults is 13 ± 4 ng/dl, a figure somewhat lower than that usually reported. The within-assay variation was less than 10% for all three iodothyronine RIAs, and the interassay variation was 15%. All samples from an individual mother and her infant were analyzed simultaneously. Free T3 and free T4 concentrations were estimated from total plasma hormone and the dialyzable fraction as measured by equilibrium dialysis (20). TSH was quantitated by RIA using standard and antibodies generously provided by the National Pituitary Agency. Iodine was measured in the urine by the sodium arsenite-ceric acid method in a Technicon Autoanalyzer (Technicon Instrument Co., San Francisco, CA). Total creatinine (cr) was determined in the urine by conventional methods (21).

Statistical analysis was done by paired or unpaired Student's t test as appropriate. Correlation analyses were done on a Hewlett-Packard calculator (model 9815A, Hewlett-Packard Co., Palo Alto, CA). Linear transformations were performed to fit the data to nonlinear functions when appropriate. Our working hypotheses were: 1) that the iodine intake was the independent variable influencing the secretion of T4 and, therefore, serum T3 (3,4), and 2) that the low level of the latter was a very important, if not the most important, signal to increase TSH secretion in these women. Therefore, in fitting the data to a given general equation, urinary iodine or serum T3 was taken as the independent variable x, and the values were arbitrarily divided into small intervals. The variable y was then averaged for each x interval (22). Provided the scatter of y around the line was reasonably uniform, the points were fitted to the model that gave the highest coefficient of correlation. This approach makes weighting of the points unnecessary (22). The variation of y is not equally dependent on the variation of x in the whole range of x, but there is no way to determine when other factors different from the change in x begin to significantly influence the variation of y. These other factors might have been overestimated by weighting the data by the number of observations at each x interval.

Results

The distribution of iodine excretion in the population examined is shown in Fig. 1. As expected, it varied widely. Since total cr in the 24-h urine in this population ranges between 0.8–1.2 g/day, the I to cr ratios are a good approximation of daily intake. Fifty percent of the analyzed population had 50 μg I/g or less, indicating a significant degree of ID. About 25% excreted between 50–100 μg I/day, which can be considered a moderate deficiency, and only 15% had an adequate iodine intake (23).

The serum iodothyronine and TSH concentrations are presented in Fig. 2. It is apparent that none of the variables measured between 10–40 weeks was influenced by the duration of pregnancy. For the analysis of the influence of iodine intake on plasma levels of T4, T3, and TSH, urinary iodine was

1 Not all of the salt is iodized in Chile. Fifty salt samples from northern and eastern Santiago ranged from 0–135 μg/g salt; more than 50% were below 10, and only 12% of the samples were between 60–135 μg/g (Silva, J. E., and P. Michaud, unpublished observations).
Table 1. Effect of iodine supplementation on serum thyroid hormones and TSH concentrations during pregnancy (mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>Urinary iodide (μg/g cr)*</th>
<th>T4 (μg/dl)</th>
<th>T3 (ng/dl)</th>
<th>rT3 (ng/dl)</th>
<th>TSH (μU/ml)</th>
<th>Time since conception (weeks)</th>
<th>Observation time interval (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated mothers (n = 36)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>53 ± 33</td>
<td>8.7 ± 2.4</td>
<td>187 ± 25</td>
<td>21 ± 7</td>
<td>2.8 ± 1.4</td>
<td>9-32</td>
<td></td>
</tr>
<tr>
<td>KI</td>
<td>376 ± 456</td>
<td>12.5 ± 1.8</td>
<td>180 ± 46</td>
<td>25 ± 9</td>
<td>1.5 ± 0.8</td>
<td>15-40</td>
<td>4-16</td>
</tr>
<tr>
<td>Change</td>
<td>+323 ± 450</td>
<td>+3.8 ± 2.2</td>
<td>-7 ± 46</td>
<td>+4 ± 10</td>
<td>-1.3 ± 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated controls (n = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>54 ± 36</td>
<td>9.4 ± 2.2</td>
<td>179 ± 33</td>
<td>22 ± 7</td>
<td>3.0 ± 2.1</td>
<td>11-30</td>
<td></td>
</tr>
<tr>
<td>End observation</td>
<td>56 ± 25</td>
<td>9.3 ± 2.6</td>
<td>165 ± 36</td>
<td>24 ± 8</td>
<td>2.6 ± 1.6</td>
<td>21-40</td>
<td>4-16</td>
</tr>
<tr>
<td>Change</td>
<td>+2 ± 18</td>
<td>-0.1 ± 2.8</td>
<td>-14 ± 43</td>
<td>+2 ± 9</td>
<td>-0.4 ± 0.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P by paired t test.

* Micrograms of iodine per g urinary cr.
+ Potassium iodide (~300 μg I/day).

The data in Fig. 3 also suggested that decreasing iodine supply was associated with a progressive increase in serum TSH, whereas at higher iodine intake, the serum TSH level was not influenced by further increases in iodine supply. According to the criteria described in Materials and Methods, the relationship was best described by a hyperbolic model: TSH = a + b/1 (r = 0.60; P < 0.05), where a = 2.2 μU/ml and b = 12.2. The parameter a represents the lowest concentration of TSH attainable by correcting the ID.

The data in Table 1 shows the effect of oral iodine supplementation (OIS) on serum concentrations of T4, T3, rT3, and TSH. In the same table are shown the duration of the treatment period as well as the time since conception when the KI was started. Since the changes in T4, TSH, and rT3 did not correlate with the length of KI supplementation (all ≥4 weeks) or the duration of pregnancy at the time iodine was begun, all data were pooled. There was a significant increase in serum T4 and rT3, a decrease in plasma TSH, and no change in plasma T3. In the untreated controls, there was no significant change in any
FIG. 2. Urinary iodine excretion and serum thyroid hormone and TSH concentrations as a function of time after conception in pregnant women in an iodine-deficient area. The subjects were grouped according to the duration of pregnancy at 5-week intervals. The mean ± 1 SD of each variable were plotted against the mean within each interval of time. The figures in parentheses represent the number of women at each interval.

of the variables studied. The agreement between the two urinary iodine measurements supports the idea that the I to cr ratio is a reproducible reflection of the iodine intake.

Table 2 shows the serum free T_4 and T_3 concentrations in 16 mothers and 14 nonpregnant euthyroid adults. In the untreated pregnant subjects, the free T_4 was reduced compared with that of nonpregnant subjects ($P < 0.001$), while serum T_3 was not different. After KI treatment, serum free T_4 increased ($P < 0.001$), becoming equal to that of nonpregnant controls. Since there was no change in the dialyzable fraction, the increase was accounted for by the increase in total serum T_4. The serum free T_3 was unaffected by iodine supplementation. In the same patients, serum TSH fell significantly from $3.0 ± 1.3$ to $1.2 ± 0.6 \mu U/ml$ ($P < 0.001$).

The effect of maternal iodine supplementation on the levels of thyroid hormones and TSH in the newborn are shown in Table 3. The newborns whose mothers received iodine supplementation had higher serum T_4 and T_3 concentrations but showed no difference in serum T_3. The difference in serum TSH was not significant because of the large dispersion of the values, presumably due to the rapid increase of TSH which occurs during the first 30 min of extrauterine life (25). There was a significant correlation between maternal serum T_4 and the corresponding value in the cord (Fig. 5). The slope of the regression line was 0.38, significantly less than 1.0 ($P < 0.001$), suggesting that the increases induced in serum T_4 by iodine intake were smaller in the fetus than in the respective mothers.

Discussion

The overall pattern of thyroid hormones and TSH found in these studies is similar to that in many previous reports of ID (8-13). Serum T_4 is low, serum TSH is increased, and serum T_3 is normal. Fewer studies have dealt with these parameters in pregnancy (15-17), but the trend is the same as that in nonpregnant adults.
ID AND THYROID FUNCTION IN PREGNANCY

FIG. 4. Relationship between serum TSH and T4 concentrations in pregnant women from an iodine-deficient area. Total serum T4 was arbitrarily divided in 1 μg/dl intervals, and the mean ± 1 SD of serum TSH were plotted against the mean T4 within each interval. The continuous curve was calculated from the linear regression shown in the inset. Calculated from a double reciprocal plot of both variables (not shown).

Since iodine requirements are expected to increase during pregnancy (14), iodine-deficient women might not be expected to increase their total T4 normally in response to the pregnancy-induced increase in thyroxine-binding globulin (26). The data in Table 2 show that while serum T4 is not higher in pregnant women than in nonpregnant controls, serum T3 is. The failure of T4 to increase results in a lower free T4 concentration than that in nonpregnant controls, but, interestingly, the free T3 concentration is not different. The assumption has been made that the fall in free T4 is related to ID. The data shown in Fig. 3 suggest a nonlinear type of relationship between urinary iodine and serum T4. The model that fits the data (r = 0.90) is in agreement with the fact that the rate of synthesis of T4, as a function of iodine availability, is a saturable phenomenon (24). Pretell et al. (15), plotting data from different geographical areas and from endemic goitrous patients treated with iodized oil, observed that there was a correlation between urinary iodide and total serum T4 only when the former was less than 50 μg/g cr, which is consistent with Fig. 3. The data in Fig. 3 also show that higher serum TSH concentrations are found with lower urinary iodine excretion, and further, that the low serum T4 may be the signal for the elevated TSH secretion, since serum T3 did not change over the observed range of iodine excretion. An inverse relationship (probably not linear) would be expected between serum T4 and TSH concentrations. The model that best described this relationship was hyperbolic: TSH = a + b/T4, as shown in Fig. 4.

The interactions among dietary iodine supply, plasma T4, and TSH, suggested by the observations described in this study, were further supported by the effects that iodine supplementation had on these various hormones. Observing Fig. 3 and considering the basal level of iodine intake of the women given OIS, one would predict only a modest increase in serum T4 and free T4 concentrations and only a slight fall in plasma TSH with iodine supplementation in this population. Thus, the highest predictable serum T4 and the lowest predictable serum TSH levels based on Fig. 3 are 10.5 μg/dl and 2.2 μU/ml, respectively. In addition, the lowest predictable TSH based on the relationship it bears to serum T4 is 2.4 μU/ml. By looking at the effect of OIS in the same subjects, the individual variation and the influence of factors other than iodine intake on T4 and TSH alluded to in Materials and Methods are all minimized. Considering that these sources of variation were present in the mathematical analysis, the agreement between both observed and calculated figures is very good. On the other hand, the post-OIS values of T4 and TSH are virtually the same as those recently found by Harada et al. (27) in pregnant women with sufficient iodine intake.

Since serum T3 does not change with iodine supplementation, the increase in T4 appears to be responsible for the decrease in TSH. The slightly increased pretreatment serum TSH (1.3 μU/ml; Table 1) disclosed only by iodine treatment is apparently sufficient to increase the thyroidal secretion of T3 enough to compensate for the reduced extrathyroidal T3 production from T4. In iodine-deficient rats, the metabolic clearances of T3 and T4 are unchanged (3), and the increase in the intrathyroidal ratio of T3 to T4, due in part to the increased TSH (6), can account for the elevated T3 to T4 ratio in the serum (1).

Since thyroid hormones do not cross the placenta (28), the increases in cord serum T4 levels in infants of iodine-supplemented mothers are probably the consequence of the change in maternal plasma I−. However, the increase in the maternal serum T4 is greater than was apparent in the newborns. In part, this observation may be due to the difference in thyroxine-binding globulin levels in
TABLE 2. Serum free T4 and T3 concentrations in iodine-deficient pregnant women: effect of iodine supplementation (mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>T4 (µg/dl)</th>
<th>Free fraction (x 10^-3)</th>
<th>T3 (µg/dl)</th>
<th>Free fraction (x 10^-3)</th>
<th>TSH (µU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nonpregnant adult (n = 14)</td>
<td>7.7 ± 1.8</td>
<td>30 ± 5</td>
<td>2.3 ± 0.4</td>
<td>124 ± 26</td>
<td>28 ± 4</td>
</tr>
<tr>
<td>2. Pregnant before OIS (n = 14)</td>
<td>8.1 ± 2.5</td>
<td>20 ± 4*</td>
<td>1.5 ± 0.4</td>
<td>184 ± 25*</td>
<td>18 ± 4*</td>
</tr>
<tr>
<td>3. Pregnant after OIS</td>
<td>12.2 ± 1.9*</td>
<td>19 ± 3*</td>
<td>2.3 ± 0.4</td>
<td>177 ± 38*</td>
<td>17 ± 2*</td>
</tr>
</tbody>
</table>

P 2 vs. 3 (paired) <0.001 NS <0.001 NS NS NS <0.001

* P < 0.001 vs. nonpregnant control.

TABLE 3. Effect of iodine supplementation during pregnancy on serum thyroid hormones and TSH concentrations in maternal and cord blood at delivery (mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>Maternal</th>
<th>Cord</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated</td>
<td>Treated</td>
</tr>
<tr>
<td>T4 (µg/dl)</td>
<td>8.8 ± 1.7 (32)</td>
<td>12.1 ± 1.9 (24) <0.001</td>
</tr>
<tr>
<td>T3 (ng/dl)</td>
<td>172 ± 26 (33)</td>
<td>157 ± 34 (23) NS</td>
</tr>
<tr>
<td>rT3 (ng/dl)</td>
<td>26 ± 12 (34)</td>
<td>24 ± 16 (25) NS</td>
</tr>
<tr>
<td>TSH (µU/ml)</td>
<td>2.9 ± 1.8 (34)</td>
<td>2.2 ± 1.2 (25) NS</td>
</tr>
<tr>
<td>Urinary I (µg/g cr)</td>
<td>127 ± 54</td>
<td>493 ± 586 <0.005</td>
</tr>
</tbody>
</table>

The number of cases is in parentheses.

FIG. 5. Linear regression between maternal and cord serum T4 levels in subjects living in an iodine-deficient area. , Untreated mother-newborn pairs; O, those who received iodine supplementation.

Mothers and newborns (26), but it may also reflect the participation of compensatory mechanisms that partially protect the fetus from the low maternal iodine intake. Whereas after correction of ID, the ratio of cord serum T4 to maternal serum T4 was 0.96 ± 0.16 (SD), the same ratio in the untreated controls was significantly higher (1.12 ± 0.25; P < 0.025, calculated from the individual data presented in Table 3). Therefore, at a same low iodine intake, fetal serum T2 is less reduced than that of the mother. The ability of the placenta to concentrate iodine, demonstrated in other species, may be the mechanism (29).

The increases observed in maternal and cord serum rT3 with iodine supplementation are probably a reflection of the higher serum T4 concentration. In both cases, the relative increase in rT3 was similar to that of T4. This indicates that iodine did not induce a change in the capacity of the tissues to convert T4 to T3, since the enzyme that regulates this reaction seems to be the same 5’-monodeiodinase that catalyzes the degradation of rT3 to 3,3’-diiodothyronine (30).

The data and their interpretation are consistent with experimental studies showing that unless the ID is extreme, plasma T3 remains constant, probably accounting for the lack of detectable manifestations of hypothyroidism other than an elevation of TSH (3, 4, 31, 32). The fall in T4 is likely to be responsible for the elevation of TSH, and the latter is probably the cause of the compensatory increase in thyroidal T3 secretion. However, the lower plasma T4 level in the fetus might not be without consequences, since it has been recently shown that, at least in the rat, plasma T4 is an important source of intracellular T3 in the brain (33).

Acknowledgments

We are deeply indebted to the personnel of the Prenatal Out-Patient Clinics and of the Hospital Sotero del Rio that made possible the collection of samples and to Ms. M. E. Madrid, C. Keitel, L. Madariaga, M. Larrondo, and C. Jara for their dedicated technical assistance. The
careful secretarial work of Melissa Jones is also appreciated. Finally, we would particularly like to acknowledge Dr. P. R. Larsen for his generous gift of antibodies and his significant contribution to the presentation of the manuscript.

References

4. Larsen PR, Frumes RD 1977 Comparison of the biological effects of triiodothyronine and triiodothyronine in the rat. Endocrinology 100:980
32. Silva JE, Dick TE, Larsen PR 1978 The contribution of local tissue thyroid hormone monodeiodination to the nuclear 3,3',5'-triiodothyronine in pituitary, liver and kidney of euthyroid rats. Endocrinology 103:1196