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T
2D, a leading cause of morbidity globally, is projected to affect 
up to 629 million people by 2045 (ref. 1). People with T2D are 
at increased risk of developing a wide range of macro- and 

microvascular outcomes2 and there are large disparities in preva-
lence, severity and comorbidities across global populations. Over 400 
common variants have been identified that confer disease suscepti-
bility3,4, yet because most studies have been performed in cohorts 
of European or Asian ancestry, the impact of these variants across 
all ancestry groups needs to be quantified. Identification of genetic 
factors and genes that underlie T2D-related complications could 
inform clinical management strategies, including patient stratifica-
tion or optimization of study design of randomized controlled trials. 
The lack of large, multi-ancestry richly phenotyped cohorts linked to 
genetic data has made it difficult to address these questions.

We conducted a multi-ancestry association study of T2D risk 
comprising 228,499 individuals with T2D and 1,178,783 control 
individuals of European, African American, Hispanic, South Asian 
and East Asian ancestry. We investigated the association of a T2D PRS 
with major T2D-related macrovascular outcomes (CHD, ischemic  

stroke and PAD) and three microvascular diseases (CKD, retinopa-
thy and neuropathy) in the MVP5. Subsequently, we conducted a 
genome-wide SNP–T2D interaction analysis in the MVP to identify 
genetic variants where the effect of the SNP on the vascular out-
come depends on the context of T2D presence. We also performed 
association analyses of genetically predicted expression levels and 
expression quantitative trait–T2D colocalization analyses to iden-
tify the effects of gene–tissue pairs that influence T2D risk through 
inter-individual variation in expression.

This study complements prior genetic studies of T2D through 
the use of large-scale clinical data in conjunction with polygenic 
scores and evaluation of context specificity for genetic effects on 
T2D vascular sequelae, and by describing the regulatory circuits 
that influence T2D risk.

Results
Study populations. We performed a genome-wide, multi-ancestry 
T2D-association analysis (228,499 cases and 1,178,783 controls) that 
encompassed five ancestral groups (Europeans, African Americans, 
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Hispanics, South Asians and East Asians) by meta-analyzing 
genome-wide association study (GWAS) summary statistics derived 
from the MVP5 and other studies with non-overlapping partici-
pants: the DIAMANTE Consortium3, Penn Medicine Biobank6, 
the Pakistan Genomic Resource7, Biobank Japan4, the Malmö 

Diet and Cancer Study8, Medstar9 and PennCath9 (Methods and 
Supplementary Tables 1 and 2). MVP participants (n = 273,409) 
comprised predominantly male subjects (91.6%) and were classi-
fied as Europeans (72.1%), African Americans (19.5%), Hispanics 
(7.5%) and Asians (0.9%) (Supplementary Table 3).
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Fig. 1 | Trans-ancestry GWAS meta-analysis identifies 318 loci associated with T2D. The graph represents a circos plot performed in 228,499 T2D cases 

and 1,178,783 controls. The outer track corresponds to –log10(P) for association with T2D in the trans-ancestry meta-analysis using a fixed-effects model 

with inverse-variance weighting of log odds ratios (y axis truncated at 30), by chromosomal position. The red line indicates genome-wide significance 

(P = 5.0 × 10−8). Purple gene labels indicate genes that were identified in skeletal muscle eQTLs by S-PrediXcan analysis, red gene names indicate genes 

identified in adipose eQTLs, black gene names indicate genes identified in pancreas eQTLs, and blue gene names indicate genes that were identified 

in eQTLs from arteries. The green band corresponds to measures of heterogeneity related to the index SNPs associated with T2D that were generated 

using Cochran’s Q statistic. Dot sizes are proportional to I2 or ancestry-related heterogeneity. The inner track corresponds to –log10(P) for association 

with skeletal muscle, adipose, pancreas and artery tissue eQTLs from S-PrediXcan analysis (y axis truncated at 20), by chromosomal position. The red 

line indicates genome-wide significance (P = 5.0 × 10−8). Inset, effects of all 318 index SNPs on T2D by minor allele frequency, stratified and colored by 

ancestral group.
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Single-variant autosomal analyses. We identified 558 indepen-
dent sentinel SNPs (286 previously unreported, >500 kb and r2 
linkage disequilibrium (LD) < 0.05 from previous reports; see 
Methods)3,4,10,11 associated with T2D (Fig. 1, Table 1, Supplementary 
Tables 4–8 and Extended Data Fig. 1). Twenty-one additional SNPs 
were associated at genome-wide significance in an ancestry-specific 
analysis of Europeans only (Supplementary Table 6). We found that 
novel loci had smaller magnitudes of effect (average beta regression 
coefficient of 0.032 ± 0.012 per allele) than previously established 
SNPs (average beta of 0.054 ± 0.045 per allele; Supplementary Table 
5), which presumably results from enhanced power to discover 
weaker effects due to the large sample size and ancestral diversity. 
Genome-wide chip heritability analysis explained 19% of the T2D 
risk on a liability scale3.

In analysis focused on African American participants (Table 1), 
we observed a total of 21 loci associated with T2D susceptibility at 
genome-wide significance, 16 of which were in strong LD with estab-
lished T2D variants. Three variants were novel and their effects on 
T2D appeared to be specific to African Americans. Single-variant 
analysis in the Hispanic subset identified two associated SNPs, both 
of which tagged previously reported T2D loci (Supplementary Table 
7). No novel associations were observed among the individuals of 
Asian ancestry (Supplementary Table 8).

Polygenicity and population stratification. To evaluate whether 
the observed genomic inflation was due to the polygenic nature of 
T2D or due to underlying population stratification, LD score regres-
sion (LDSC)12 was used in Europeans and Asians to compare lambda 
genomic control (GC)13 and LDSC intercept (Methods). In Asians, a 
total of 1,077,427 SNPs were analyzed, which resulted in a lambda GC 

of 1.342 and intercept of 1.094 (SE = 0.012). In Europeans, 1,198,787 
SNPs were analyzed, which resulted in a lambda GC of 1.863 and 
intercept of 1.139 (SE = 0.016). Admixture-adjusted LDSC14 was 
used in African Americans and Hispanics. A total of 945,603 SNPs 
were analyzed in African Americans, with lambda GC of 1.180 and 
intercept of 1.048 (SE = 0.007). For Hispanics, 1,077,427 SNPs were 
analyzed, with lambda GC of 1.093 and intercept of 1.091 (SE = 
0.113). Except perhaps for Hispanics (where the estimated error on 
the intercept is large), these results suggest that a substantial part of 
the observed inflation these populations is due to T2D polygenicity.

X-chromosome analyses. In a trans-ancestry analysis of the X chro-
mosome, we identified a total of ten association signals for T2D, 
of which seven were novel (Table 2, Supplementary Table 9 and 
Extended Data Fig. 2). A European-restricted analysis identified 
four loci on the X chromosome, all of which were identified in the 
trans-ancestry meta-analysis. One novel X-chromosome locus was 
associated with T2D specifically in African Americans. Of note, one 
novel trans-ancestry association was identified near the androgen 
receptor (AR) gene and was in strong LD with a previously reported 
variant (rs4509480), which was previously shown to associate with 
male-pattern baldness (EUR r2 = 0.98, rs200644307).

Effect heterogeneity between Europeans and African Americans. 
Whereas at most loci we found no evidence for heterogeneity of 
effect estimates between Europeans and African Americans, we 
did observe that 44 (7.9%) variants had significantly different effect 
size estimates between the two groups (Supplementary Table 10). 
Remarkably, four loci near SLC30A8, PTPRQ, GRB10 and SALL2 
showed higher effect sizes for T2D at stronger levels of significance 

Table 1 | T2D locus discovery in African Americans

Description Lead SNP RSID EA NEA EAF Beta SE P n n Cojo Established SNP

Novel AA chr12:38710523 rs7315028 G A 0.882 0.124 0.022 1.5 × 10−8 56,150 1 –

chr12:57968738 rs11172254 G A 0.817 0.097 0.017 1.8 × 10−8 56,150 1 –

chr12:88338461 rs10745460 T A 0.660 0.079 0.014 3.7 × 10−8 56,150 0 –

Novel TE chr7:50887174 rs7781440 C T 0.284 −0.086 0.015 5.3 × 10−9 56,150 0 –

chr12:80985872 rs1528287 G T 0.059 −0.494 0.080 8.2 × 10−10 56,150 1 –

Established chr3:123065778 rs11708067 G A 0.151 −0.118 0.018 2.3 × 10−11 56,150 0 chr3:123082398

chr3:185534482 rs9859406 G A 0.257 −0.115 0.015 5.7 × 10−14 56,150 0 chr3:185829891

chr5:55807370 rs464605 C T 0.429 -0.077 0.013 1.1 × 10−9 56,150 0 chr5:55860781

chr6:39016636 rs10305420 C T 0.920 0.142 0.025 8.5 × 10−9 56,150 0 chr6:39282371

chr7:15064896 – G T 0.565 0.101 0.013 2.7 × 10−15 56,150 0 chr7:15060429

chr7:28180556 rs864745 C T 0.257 −0.083 0.014 1.1 × 10−8 56,150 0 chr7:28198677

chr7:44185088 rs2908274 G A 0.359 −0.089 0.014 5.4 × 10−11 56,150 1 chr7:44266184

chr8:41510260 rs12550613 G C 0.310 −0.114 0.014 5.5 × 10−16 56,150 0 chr8:41537318

chr8:118166327 rs60461843 T A 0.939 0.172 0.028 1.3 × 10−9 56,150 1 chr8:118024315

chr9:139241595 rs28562046 G C 0.709 0.080 0.014 2.8 × 10−8 56,150 0 chr9:139737088

chr10:114758349 rs7903146 C T 0.706 −0.226 0.014 5.6 × 10−60 56,150 0 chr10:114871594

chr11:2691500 rs231361 G A 0.656 −0.080 0.013 2.2 × 10−9 56,150 2 chr11:2717680

chr11:2858546 rs2237897 C T 0.908 0.143 0.024 2.2 × 10−9 56,150 1 chr11:2717680

chr12:66215214 rs2583938 T A 0.197 −0.123 0.018 3.3 × 10−12 56,150 0 chr12:66358347

chr15:77776498 rs952471 G C 0.534 0.077 0.013 4.2 × 10−9 56,150 0 chr15:77339496

chr16:53811788 rs62033400 G A 0.102 0.151 0.021 6.1 × 10−13 56,150 1 chr16:53758720

Association between genetic variants and T2D in African Americans in the MVP was assessed through logistic regression assuming an additive model of variants with MAF > 1%. A meta-analysis was 

performed using a fixed-effects model with inverse-variance weighting of log odds ratios. Variants were considered to be genome-wide significant if they passed the conventional P value threshold of 5 × 

10−8. AA, African American; TE, trans-ancestry; RSID, RefSNP identification number; EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; beta, effect estimate; SE, standard error; n, sample 

size; n Cojo, additional number of conditionally independent variants identified at the respective locus (and listed in Supplementary Table 12).
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in African Americans compared with Europeans. Of these loci, asso-
ciations with loss-of-function (LOF) variants in SLC30A8 were previ-
ously reported in Europeans, African Americans and South Asians.

Secondary signal analysis. We detected a total of 233 condition-
ally independent SNPs that flanked 49 novel and 108 previously 
reported lead SNPs in Europeans (Supplementary Tables 11 and 
12). We observed no novel conditionally independent variants in 
participants of South Asian, East Asian and Hispanic ancestry.

Fine mapping of lead SNPs with coding variants. To identify cod-
ing variants that may drive the association between the lead SNPs 
and T2D risk, we investigated predicted loss-of-function (pLOF) 
and missense variants near the identified T2D lead variants from 
the European-specific T2D summary statistics (Supplementary 
Table 13). We identified two pLOF (LPL and ANKDD1B) and 45 
missense variants in 47 genes that were in LD with at least one of 
the T2D lead SNPs (r2 > 0.5, MVP reference panel in Europeans) 
and were associated at P < 1.0 × 10−4. Of the 56 pLOF and missense 
variants, 14 missense variants were found to be the sentinel T2D 
SNPs, 19 variants were in LD with novel lead SNPs, and 37 variants 
were previously reported.

Genome-wide coding variant association analysis. We addition-
ally performed a genome-wide screen of all PLOFs and missense 
variants (not bound by proximity to sentinel T2D lead variants) to 
enumerate potential T2D genes not captured by common variant 
tags (Supplementary Table 14). We identified one additional pLOF 
variant in CCHCR1, whereas 37 novel missense variants were asso-
ciated with T2D at P < 5 × 10−8.

Rare coding variant phenome-wide association study. We next 
performed phenome-wide association analysis (PheWAS) for each 

of the three pLOF variants associated with T2D in MVP partici-
pants of European ancestry, UK Biobank data, and Biobank Japan 
(Table 3). These loci included ANKDD1B p.Trp480* (rs34358), 
CCHCR1 p.Trp78* (rs3130453) and LPL p.*474Ser (rs328), and 
they were significantly associated with metabolic and inflammatory 
conditions. Klarin et al.15 previously reported pheWAS associations 
for LPL p.*474Ser with dyslipidemia, coronary atherosclerosis and 
other chronic ischemic heart disease in MVP, and lipid and cardio-
metabolic associations for this variant were also observed in Biobank 
Japan and UK Biobank. In MVP, ANKDD1B p.Trp480* was associ-
ated with dyslipidemia, hypercholesterolemia and diabetic neuro-
logical manifestations. In Biobank Japan, this variant was a range 
of blood and immune cell traits, whereas in UK Biobank, the SNP 
was associated with metabolic and anthropometric traits. In MVP 
and UK Biobank, CCHCR1 p.Trp78* was associated with a battery of 
autoimmune traits and in Biobank Japan this variant was associated 
with total cholesterol, LDL-C, BMI, NK cells and sodium electrolytes.

Transcriptome-wide association analyses. Next, we used common 
variants from the European T2D GWAS meta-analysis to evaluate 
the association of genetically predicted gene expression levels with 
T2D risk across 52 tissues, including kidney and islet cells, using 
S-PrediXcan (Supplementary Table 15 and Extended Data Fig. 3). 
We identified 4,468 statistically significant gene–tissue combination 
pairs that were genetically predictive of T2D risk, of which 4,211 
transcript expression quantitative trait loci (eQTLs) were in LD 
(r2 > 0.5) with T2D signals. We identified 873 genes in this analy-
sis that would not have been identified by nearest-gene annota-
tion alone. The strongest gene–tissue combination signals were for 
NRAP in the cerebellum and TCF7L2 in the aortic artery.

We then used the coloc software package to identify the subset 
of significant genes in which there was a high posterior probability 
that the set of model SNPs in the S-PrediXcan analysis for each gene 

Table 2 | T2D chromosome X analysis (overall results)

Population Lead SNP EA NEA EAF Novel Literature 
SNP

Nearest gene n Cases n 
Controls

Beta SE P

Trans-ancestry chrX:19497290 A G 0.968 1 – MAP3K15 102,683 170,726 0.131 0.023 1.4 × 10−8

chrX:20009166 T C 0.323 1 – BCLAF3;MAP7D2 102,683 170,726 0.058 0.010 7.9 × 10−9

chrX:31851610 T C 0.343 1 – DMD 102,683 170,726 0.047 0.009 3.5 × 10−8

chrX:56902211 A T 0.612 0 X:57170781 SPIN2A;FAAH2 102,683 170,726 −0.069 0.010 1.9 × 10−12

chrX:66168667 A G 0.277 1 – AR;EDA2R 102,683 170,726 0.082 0.011 1.9 × 10−13

chrX:109888390 A C 0.364 1 – RGAG1;CHRDL1 102,683 170,726 −0.048 0.008 7.7 × 10−9

chrX:117955250 T C 0.231 0 X:117915163 IL13RA1 102,683 170,726 0.077 0.010 4.1 × 10−15

chrX:124390172 T C 0.853 1 – TENM1 102,683 170,726 −0.075 0.013 9.0 × 10−9

chrX:135859359 C G 0.407 1 – ARHGEF6 102,683 170,726 −0.049 0.008 7.3 × 10−9

chrX:153882606 C G 0.026 0 X:152908887 CCNQ;DUSP9 102,683 170,726 −0.486 0.026 3.0 × 10−78

European chrX:56759371 T G 0.218 0 X:57170781 SPIN2A;FAAH2 69,869 127,197 0.069 0.013 1.7 × 10−8

chrX:66316809 G A 0.290 1 – EDA2R 69,869 127,197 0.077 0.013 3.4 × 10−9

chrX:117877437 A G 0.223 0 X:117915163 IL13RA1 69,869 127,197 0.118 0.013 5.5 × 10−20

chrX:152898928 C A 0.247 0 X:152908887 CCNQ;DUSP9 69,869 127,197 −0.163 0.012 7.9 × 10−46

African chrX:67255974 C T 0.189 1 – AR;OPHN1 23,305 30,140 0.104 0.019 3.4 × 10−8

American chrX:132597984 C T 0.282 1 – GPC3;GPC4 23,305 30,140 0.135 0.024 1.4 × 10−8

chrX:153882606 C G 0.026 0 X:152908887 G6PD 23,305 30,140 −0.500 0.027 1.6 × 10−76

A sex-stratified (male or female) ancestry-separated (European, African American, Hispanic or Asian) analysis was performed with dosage (number of X-chromosome copies) as the independent variable 

and T2D as the outcome. Covariates included age and first ten PCs of ancestry. The ancestry-specific sex-stratified results are presented in Supplementary Table 9. Output from ancestry-separated male 

and female analyses were then meta-analyzed using a fixed-effects model with inverse-variance weighting of log odds ratios and are shown here. For the trans-ancestry meta-analysis, the ancestry-specific 

sex-meta-analyzed data were additionally meta-analyzed using a fixed-effects model with inverse-variance weighting of log odds ratios. Variants were considered to be genome-wide significant if they 

passed the conventional P value threshold of 5 × 10−8. EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; Beta, effect estimate; SE, standard error; n cases, total number of T2D cases; n 

controls, total number of unaffected controls.
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was associated with gene expression and with T2D. This analysis 
refined the results of the transcriptome-wide association scan and 
excluded some results that might be the consequence of LD between 
causal SNPs for gene expression and T2D. We detected 3,166 gene–
tissue pairs where there was statistically significant association with 
T2D risk and high posterior probability (posterior probability for 
the fourth hypothesis, namely colocalized functional and GWAS 
association, PP4 > 0.8) of colocalization, covering a total of 695 dis-
tinct genes. When the 804 genes were compared to the GWAS cata-
log for mapped and reported genes for all prior studies of diabetes 
or diabetes complications, 687 had not been previously reported. 
Hypergeometric enrichment analysis showed that most enriched 
gene expression signals were in cervical spinal cord, basal ganglia 
and glomerular kidney (Supplementary Table 16).

Assessment of gene–drug relationships. Of the 695 genes identified 
in the S-PrediXcan analyses, 54 genes had documented interactions 
with a total of 283 FDA-approved drugs and chemical compounds 
that did not have an indication for T2D treatment or reported 
adverse drug events in patients with diabetes by using the Side Effect 
Resource (SIDER) database of drugs and side effects16. The Drug 
Gene Interaction Database (DGIdb v3.0) was used to identify a 
total of 322 gene–drug combinations for which it was predicted that 
the combination would modulate blood glucose, depending on its 
direction of effect on T2D risk with increasing gene expression and 
drug action (activator or inhibitor; Supplementary Table 17). Gene–
drug combinations included several established T2D loci, such as 
KCNJ11, which was targeted by 15 compounds (for example, sul-
fonylureas, glinides and p-glycoprotein inhibitors); SCN3A, which 
was targeted by 57 compounds (for example, anti-arrythmetics and 
anti-epileptics); PIK3CB, which was targeted by 46 compounds (for 
example, cancer drugs); ACE, which was targeted by 36 compounds 
(for example, angiotensin-converting enzyme (ACE) inhibitors); 
HMGCR, which was targeted by 18 compounds (for example, 
HMG-CoA reductase inhibitors); PIK3C2A, which was targeted 
by 15 compounds (for example, anti-cancer drugs); F2, which was 
targeted by 11 compounds (for example, anticoagulants) and BLK, 
which was targeted by 9 compounds (for example, protein kinase 
inhibitors).

Tissue-specific and epigenetic enrichment of T2D heritabil-
ity. To understand the contribution of disease-associated tissues 
to T2D heritability, we performed tissue-specific analysis using 
LDSC17 (Supplementary Table 18). The strongest associations were 
observed in the genomic annotation surveyed in pancreas and 
pancreatic islets (for example, pancreatic islet H3K27ac and pan-
creatic chromatin accessibility, and so on; P < 0.001). We addition-
ally tested for enrichment of epigenetic features using GREGOR18, 
which compares overlap of T2D-associated locus variants rela-
tive to control variants matched for number of LD proxies, allele 
frequency and gene proximity18 (Supplementary Tables 19–21). 
Similar to the results from LDSC, eight of the top ten associated 
hits mapped to the pancreas, including H3K27ac, pancreatic  
islet H3K27ac and pancreatic islet activated enhancer activity, 
among others.

Pathway and functional enrichment analysis. To explore whether 
our results recapitulate the pathophysiology of T2D, we performed 
gene set enrichment analysis with all of the variants using DEPICT 
(P < 1 × 10−5, Supplementary Table 22). Medical subject heading 
(MeSH)-based analysis showed that several different adipose tis-
sues and sites were enriched (for example, abdominal subcutaneous 
fat and white adipose tissue). In addition, DEPICT analysis showed 
that the most significant gene set involved the AKT2 subnetwork, 
lung cancer, the GAB1 signalosome, protein kinase binding, sig-
nal transduction and epidermal growth factor receptor signaling 
(Supplementary Tables 23 and 24).

Genetic correlation between T2D and other phenotypes. 
Genome-wide genetic correlations of T2D were calculated with a 
total of 774 complex traits and diseases by comparing allelic effects 
using LDSC with the European-specific T2D summary statistics 
(Methods). A total of 270 significant associations were observed 
(P < 5 × 10−8; Supplementary Table 25). The strongest positive cor-
relations were observed with waist circumference, overall health, 
BMI and fat mass of arms, legs, body and trunk, hypertension, 
coronary artery disease, dyslipidemia, alcohol intake, wheezing and 
cigarette smoking. There was also a strong negative correlation with 
years of education.

Table 3 | PheWAS of two pLOF variants in MVP participants of European ancestry

Gene RSID Amino acid 
change

PheWAS phenotype P n Cases n Controls OR 95% CI 
lower

95% CI 
upper

ANKDD1B rs34358 p.Trp480* Diabetes mellitus 1.04 × 10−6 62,930 104,442 0.96 0.95 0.98

T2D 1.36 × 10−6 62,531 104,442 0.96 0.95 0.98

T2D with neurological 
manifestations

1.63 ×10−5 14,159 104,442 0.94 0.92 0.97

Disorders of lipid metabolism 5.03 × 10−8 141,535 41,406 1.05 1.03 1.07

Hyperlipidemia 4.66 × 10−8 141,408 41,406 1.05 1.03 1.07

Hypercholesterolemia 2.33 × 10−6 32,008 41,406 1.06 1.03 1.08

CCHCR1 rs3130453 p.Trp78* Diabetes mellitus 4.26 × 10−5 62,930 104,442 0.97 0.96 0.98

Type 1 diabetes 3.99 × 10−7 6,566 104,442 0.91 0.88 0.95

T2D 3.96 × 10−5 62,531 104,442 0.97 0.96 0.98

Epistaxis or throat hemorrhage 1.96 × 10−5 2,751 110,902 1.12 1.07 1.19

Celiac disease 2.72 × 10−19 418 124,470 0.52 0.45 0.60

Microscopic hematuria 1.83 × 10−5 4,078 147,054 1.1 1.05 1.15

Psoriatic arthropathy 7.82 × 10−10 1,077 140,876 0.76 0.70 0.83

The pLOF variants were tested using logistic regression adjusting for age, sex and ten PCs in an additive effects model using the PheWAS R package in R (v3.2.0). Phenotypes were required to have a case 

count of over 25 in order to be included in the PheWAS, and a multiple testing threshold for statistical significance was set to the Bonferroni-corrected P value threshold of 2.8 × 10−5. pLOF, predicted 

loss-of-function; RSID, RefSNP identification number; n Cases (number of cases with PheWAS phenotype); n Controls (number of unaffected controls for the respective PheWAS phenotype); OR, odds 

ratio; CI, confidence interval.
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T2D-related vascular outcomes. Next, we investigated SNP–
T2D interaction effects associated with T2D-related vascular out-
comes among MVP participants of European descent (P < 5 × 
10−8; Methods, Table 4, and Supplementary Table 26). The analy-
sis included a total case count of 67,403 for CKD, 56,285 for CHD, 
35,882 for PAD, 11,796 for acute ischemic stroke (AIS), 13,881 
for retinopathy and 40,475 for neuropathy. We identified several 
genome-wide-significant interactions where the genetic associa-
tions with T2D-related vascular outcomes were modified by T2D 
(Table 4 and Supplementary Table 26). We identified two loci for 
CHD (rs1831733 in chromosome 9p21 and rs602633 near SORT1) 
and one for CKD (rs34857077 in UMOD), for which the difference 
in the effect estimates between T2D strata was genome-wide signifi-
cant (P < 5 × 10−8) and at least one T2D stratum was genome-wide 
significant. We identified one locus for CHD (rs71039916 near 
PDE3A), one for CKD (rs2177223 near TENM3), one for PAD 
(rs3104154 in PTDSS1), one for neuropathy (rs78977169 near 
NRP2), four for retinopathy (rs76754787 near GJA8, rs10733997 in 
SVIL2P, rs2255624 near SLC18A2 and rs4132670 in TCF7L2), as 
well as two for AIS (rs491203 near TMEM51 and rs2134937 near 
TRIQK) that showed genome-wide significance for difference in 
effect estimates between the T2D strata and nominal significance 
(P < 0.001) for at least one T2D stratum.

Polygenic risk scores and T2D-related vascular outcomes. 
Genome-wide polygenic risk scores (gPRSs) for T2D were calcu-
lated in Europeans according to the T2D effect estimates from the 
previously reported DIAMANTE consortium3 and then categorized 
into deciles (Tables 5 and 6). As expected, participants with the 
highest T2D gPRS scores (90–100% T2D gPRS percentile) showed 
the highest risk for T2D (OR = 5.21 and 95% CI 4.94–5.49; Extended 
Data Fig. 5) when compared to the reference group (0–10% T2D 
gPRS percentile) in a cross-sectional study design.

We evaluated whether the T2D gPRS was associated with the risk 
of micro- and macrovascular outcomes in an analysis restricted to 
participants with T2D. The P values were calculated using gPRS as 
a continuous exposure, and odds ratios were calculated by contrast-
ing the top to the bottom gPRS decile (Fig. 2 and Tables 5 and 6). We 
observed strong association between a T2D gPRS and microvascular  

complications, in particular with retinopathy, but to a lesser extent 
with neuropathy and CKD. For macrovascular outcomes, T2D 
gPRS was associated with the risk of PAD, but not with the risk of 
CHD or AIS.

Discussion
We report the discovery of 318 novel autosomal and X-chromosomal 
variants associated with T2D susceptibility in a trans-ancestry 
GWAS. We also report 13 variants associated with differences in 
T2D-related micro- and macrovascular outcomes between indi-
viduals with and without diabetes. The substantial locus discovery 
was achieved by combining data from several large-scale biobanks 
and consortia, where the MVP data constituted over 40% of all 
cases of T2D. Furthermore, we present the largest cohort of African 
Americans including over 56,000 participants, substantially larger 
than previous African-specific studies published to date.

Analyses of coding variants identified 44 variants associated 
with T2D, including three pLOF variants in the LPL, ANKDD1B 
and CCHCR1 genes. We identified 804 putative causal genes at both 
novel and previously reported loci, including 54 genes that were 
found to be possible targets for FDA-approved drugs and chemical 
compounds. Our SNP–T2D interaction analyses identified several 
loci at which the association between a genetic variant and a vas-
cular outcome differed between people with T2D as compared to 
those without. We also found that a high polygenic risk for T2D 
strongly increased the risk for retinopathy in individuals with T2D, 
as well as for CKD, neuropathy and PAD.

T2D is highly prevalent in people of African ancestry; however, 
there are a total of three published T2D GWAS reports in this ances-
tral group with only four definitely detected loci19–21. In our study 
with over 56,000 participants of recent African ancestry, we report 
four novel loci for T2D that are solely observed in this ancestral 
group, including one that is located on the X chromosome. Of the 
previously reported loci, only rs3842770 (INS–IGF2) was repli-
cated here. We did not observe replication either with rs7560163 
(ref. 21) or rs73284431, reported from a large study conducted in 
sub-Saharan Africa. The reported HLA-B variant rs2244020 did 
not replicate in our study, but we did observe a significant asso-
ciation with another SNP in the HLA region (rs10305420, OR 

Table 4 | Genome-wide interaction analysis of vascular and non-vascular complications (not stratified by T2D status)

Outcome type Outcome SNP RSID NE EA EAF P for interaction Nearest gene

Vascular CHD chr9:22076071 rs1831733 T C 0.482 1.6 × 10−13 CDKN2B;CDKN2A

chr1:109821511 rs602633 G T 0.216 4.4 × 10−10 SORT1

chr12:20231526 rs71039916 TCTTA T 0.034 8.2 × 10−9 PDE3A

AIS chr1:15429233 rs491203 G A 0.057 7.6 × 10−9 TMEM51

chr8:94056373 rs2134937 T C 0.049 3.3 × 10−8 TRIQK

PAD chr8:97331026 rs3104154 C T 0.044 3.0 × 10−8 PTDSS1

Non-vascular Retinopathy chr1:146606059 rs76754787 ATT AT 0.030 1.2 × 10−11 GJA8

chr10:30992882 rs10733997 A G 0.037 9.7 × 10−9 SVIL2P

chr10:119646217 rs2255624 T G 0.032 1.6 × 10−8 SLC18A2

chr10:114767771 rs4132670 G A 0.319 2.1 × 10−8 TCF7L2

CKD chr16:20356012 rs34857077 G GA 0.237 6.4 × 10−19 UMOD

chr4:181816870 rs2177223 T C 0.038 2.8 × 10−8 TENM3

Neuropathy chr2:206668118 rs78977169 CATA C 0.023 3.4 × 10−8 NRP2

The analysis included a total case count of 67,403 for CKD, 56,285 for CHD, 35,882 for PAD, 11,796 for AIS, 13,881 for retinopathy and 40,475 for neuropathy. Results stratified by T2D presence (yes or 

no) are presented in Supplementary Table 26. A logistic regression analysis was performed among MVP participants of European ancestry, in which the respective outcome was tested with SNP, T2D, 

SNPxT2D, age, sex and ten PCs as covariates. P values for interaction between SNP and T2D are noted in the column labeled P for interaction. Variants were considered to show a statistically different effect 

between people with and without T2D if the P value for interaction was genome-wide significant (P < 5 × 10−8) and at least one T2D-stratum showed nominal significance (P < 0.001; Supplementary Table 

26). RSID, RefSNP identification number; NEA, non-effect allele; EA, effect allele; EAF, effect allele frequency.
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1.15 and P = 8.5 × 10−9). We observed that the major G-allele of 
chrX:153882606 (rs782270174) was associated with increased risk 
of T2D in African Americans. This variant is in high LD (r2 = 0.93) 
with G6PD G202A (rs1050828), for which the minor allele is asso-
ciated with lower HbA1c due to shorter RBC lifespan22. In a post 
hoc analysis, we examined the relationship of chrX:153882606 
to the most recent value of HbA1c, obtained prior to MVP study 
enrollment in African American males, and did observe a strong 
negative association (beta = −0.072, SE = 0.0015, n = 55,165 and 
P < 1.0 × 10−322). Therefore, we cannot rule out the possibility that 
the apparent protective association of T2D at rs782270174 in reality 
reflects under-diagnosis of T2D due to reduced HbA1c in African 
Americans. We did not replicate the association of the AGTR2 vari-
ant (rs146662075, chrX:115408811) as reported by Bonas-Guarch 
et al.10, which might be the result of poor imputation of the 1000 
Genomes reference panel for this variant.

The presence of a coding variant near a tagging SNP does not 
constitute enough evidence to infer a causal association. However, 
recent exome-array genotyping of over 350,000 individuals identi-
fied 40 coding variants associated with T2D, of which 26 mapped 
near known risk-associated loci23. Similarly, an exome sequencing 
study in over 40,000 participants reported 15 variants associated 
with T2D, of which only 2 were not previously reported by GWAS24. 
Sequencing efforts are indispensable for identifying causal variants 
and genes related to disease, as well as for providing insight into 
the contributions of ultra-rare alleles while adding to the value of 
array-based association studies.

Our transcriptome-wide analyses identified 804 putatively causal 
genes, including 54 genes that appear to be regulated by approved 
drugs and 687 genes that have not been reported previously. 
Some of these genes are already well established for T2D etiology 
(for example KCNJ11). Except for skeletal muscle, the tissues that 

Table 5 | Polygenic risk scores and vascular outcomes

Outcome type Outcome T2D PRS 
decile

n Cases n Controls OR 95% CI 
lower

95% CI 
upper

P P for linear 
trend

Vascular CHD 0–10% 2,913 3,924 1.00 Ref. Ref. – 0.636

10–20% 2,940 3,924 1.01 0.92 1.12 0.811

20–30% 2,958 3,924 0.98 0.89 1.08 0.742

30–40% 2,934 3,924 0.99 0.90 1.09 0.835

40–50% 2,988 3,924 1.01 0.92 1.11 0.801

50–60% 3,001 3,924 0.98 0.90 1.08 0.744

60–70% 2,977 3,924 1.01 0.92 1.10 0.887

70–80% 2,916 3,924 1.02 0.93 1.12 0.632

80–90% 3,032 3,924 0.96 0.88 1.05 0.391

90–100% 3,038 3,924 1.03 0.94 1.12 0.537

AIS 0–10% 555 6,027 1.00 Ref. Ref. – 0.070

10–20% 563 6,027 0.90 0.76 1.07 0.238

20–30% 583 6,027 0.98 0.83 1.15 0.782

30–40% 619 6,027 0.98 0.84 1.15 0.821

40–50% 530 6,027 0.99 0.85 1.16 0.924

50–60% 576 6,027 0.99 0.85 1.16 0.941

60–70% 645 6,027 0.97 0.83 1.13 0.672

70–80% 590 6,027 1.04 0.90 1.20 0.611

80–90% 558 6,027 1.05 0.91 1.22 0.494

90–100% 627 6,027 1.02 0.89 1.17 0.784

PAD 0–10% 1,966 4,871 1.00 Ref. Ref. – 2.0 × 10−7

10–20% 1,964 4,871 1.00 0.93 1.08 0.927

20–30% 1,948 4,871 1.01 0.93 1.08 0.890

30–40% 1,984 4,871 1.04 0.96 1.12 0.361

40–50% 1,964 4,871 1.03 0.96 1.11 0.425

50–60% 1,950 4,871 1.02 0.95 1.10 0.559

60–70% 1,972 4,871 1.05 0.98 1.14 0.165

70–80% 1,960 4,871 1.05 0.97 1.13 0.203

80–90% 2,019 4,871 1.10 1.02 1.19 0.010

90–100% 2,102 4,871 1.20 1.11 1.29 1.9 × 10–6

In the MVP participants of European ancestry with T2D, gPRSs for T2D were generated by calculating a linear combination of weights derived from the Europeans in the DIAMANTE Consortium, using the 

prune and threshold method in PRSice-2 software (pruning r2 = 0.8, P = 0.05). The gPRSs were divided into deciles and the risk of T2D-related vascular outcomes was assessed using a logistic regression 

model, using the lowest decile (0–10%) as the reference category, together with the potential confounding factors of age, sex and the first ten PCs of European ancestry. The decile-specific P values are 

shown in the column labeled P. In a separate logistic regression analysis, the continuous PRS was set as the dependent variable together with age, sex and the first ten PCs, and the P value for linear trend 

is shown in the column labeled P for linear trend. For CHD, a CHD PRS (from CARDIoGRAMplusC4D and UK Biobank) is included in the regression model as an additional covariate. For AIS, a stroke PRS 

(from the MEGASTROKE Consortium) is included in the regression model as an additional covariate. n Cases, number of cases with the respective vascular outcome; n Controls, number of unaffected 

controls for the respective vascular outcome; OR, odds ratio; CI, confidence interval.
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showed strongest associations are not known to be of importance in 
T2D etiology. However, this could be simply explained by the fact 
that eQTLs appear to be ubiquitous across tissues and that eQTL 
discovery across tissues may not be the same, given the eQTL effect 
sizes and sample sizes of T2D-relevant tissues. We did not observe 
any significant association in the islet α- and β-cells, which could 
be the result of the small sample size (for example 30 α-cells and 
19 β-cells). In addition, whole islet transcriptomes are notoriously 
variable due to the large differences in islet composition among 
humans, and a few transcripts make up half the transcriptome25.

Of particular clinical importance, we identified several genes 
that are therapeutic targets for medications in patients treated for 
cardiometabolic conditions. We identified two genes, SCN3A and 
SV2A, whose expression is modified by anti-epileptic agents, and 
evidence exists that anti-epileptic agents may influence glucose reg-
ulation. A randomized controlled trial has reported that the anti-
convulsant valproic acid lowers blood glucose concentrations26. The 

information from the gene–drug analyses may facilitate future drug 
repurposing screens.

It is possible that the use of the T2D gPRS provides an oppor-
tunity to identify patients who are at the highest risk of develop-
ing microvascular complications, such as retinopathy. Here, we 
observed that among vascular outcomes, the T2D gPRS was most 
significantly associated with retinopathy. In addition, we observed 
significant associations with other T2D-related outcomes such as 
CKD, PAD and neuropathy. Studies at specific loci using both com-
mon and rare coding variants will be required to understand path-
ways leading to T2D-related vascular outcomes.

In a SNP–T2D interaction analysis on T2D-related vascular 
outcomes, we identified 13 loci at which the effect on outcome was 
different between the strata of T2D, of which 3 occurred at previ-
ously established variants and 10 had not been reported previously. 
Our findings have clinical translational potential for risk stratifi-
cation and the identification of individuals with diabetes who are  

Table 6 | Polygenic risk scores and non-vascular outcomes

Outcome type Outcome T2D PRS 
decile

n Cases n Controls OR 95% CI 
lower

95% CI 
upper

P P for linear 
trend

Non-vascular Retinopathy 0–10% 792 4,533 1.00 Ref. Ref. – 3.1 × 10−32

10–20% 832 4,533 1.08 0.97 1.20 0.158

20–30% 795 4,533 1.05 0.94 1.17 0.364

30–40% 852 4,533 1.14 1.02 1.26 0.019

40–50% 814 4,533 1.08 0.97 1.20 0.152

50–60% 891 4,533 1.20 1.08 1.33 6.8 × 10−4

60–70% 901 4,533 1.25 1.13 1.39 3.1 × 10−5

70–80% 936 4,533 1.30 1.17 1.45 6.8 × 10−7

80–90% 1,031 4,533 1.47 1.33 1.63 2.2 × 10−13

90–100% 1,069 4,533 1.59 1.44 1.77 4.2 × 10−19

CKD 0–10% 3,446 3,391 1.00 Ref. Ref. – 7.3 × 10−6

10–20% 3,490 3,391 1.03 0.93 1.15 0.508

20–30% 3,439 3,391 1.04 0.94 1.14 0.488

30–40% 3,463 3,391 1.05 0.95 1.16 0.323

40–50% 3,370 3,391 1.04 0.95 1.14 0.409

50–60% 3,362 3,391 1.07 0.97 1.17 0.166

60–70% 3,389 3,391 1.07 0.98 1.17 0.129

70–80% 3,285 3,391 1.07 0.98 1.17 0.121

80–90% 3,373 3,391 1.07 0.98 1.16 0.151

90–100% 3,326 3,391 1.16 1.07 1.26 5.9 ×10−4

Neuropathy 0–10% 2,176 3,814 1.00 Ref. Ref. – 7.9 × 10−8

10–20% 2,193 3,814 1.03 0.96 1.11 0.436

20–30% 2,217 3,814 1.07 0.99 1.15 0.075

30–40% 2,218 3,814 1.06 0.99 1.15 0.110

40–50% 2,217 3,814 1.05 0.98 1.13 0.192

50–60% 2,293 3,814 1.11 1.03 1.20 0.006

60–70% 2,261 3,814 1.10 1.02 1.18 0.014

70–80% 2,253 3,814 1.10 1.02 1.19 0.009

80–90% 2,265 3,814 1.11 1.03 1.19 0.007

90–100% 2,377 3,814 1.21 1.12 1.30 9.7 × 10−7

In the MVP participants of European ancestry with T2D, gPRSs for T2D were generated by calculating a linear combination of weights derived from the Europeans in the DIAMANTE Consortium, using 

the prune and threshold method in PRSice-2 software (pruning r2 = 0.8, P = 0.05). The gPRSs were divided into deciles and the risk of T2D-related non-vascular outcomes was assessed using a logistic 

regression model using the lowest decile (0–10%) as the reference category, together with the potential confounding factors of age, sex and the first ten PCs of European ancestry. The decile-specific P 

values are shown in the column labeled P. In a separate logistic regression analysis, the continuous PRS was set as the dependent variable together with age, sex and the first ten PCs, and the P value for 

linear trend is shown in the column labeled P for linear trend. For CKD, a CKD PRS (from the CKDgen Consortium) is included in the regression model as an additional covariate. n Cases, number of cases 

with the respective non-vascular outcome; n Controls, number of unaffected controls for the respective non-vascular outcome; OR, odds ratio; CI, confidence interval.
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predisposed to develop subsequent vascular outcomes, and present 
therapeutic opportunities to attenuate the risk of diabetes progres-
sion in individuals with T2D.

For T2D-related retinopathy, four variants were found to  
have different effect sizes between people with and without T2D. 
The strongest signal for interaction in relation to retinopathy was 
observed for GJA8. Deletion of this gene has been associated with 
eye abnormalities and retinopathy of prematurity in premature 
infants, inherited cataracts, visual impairment and cardiac defects 
and eye abnormalities27–29. TCF7L2 is a known diabetes locus  
and its association with progression to retinopathy has been estab-
lished previously30. SLC18A2 is expressed in adult retina and retinal 
pigment epithelium tissues; the product of this gene is involved in 
the transport of monoamines into secretory vesicles for exocyto-
sis31. SVILP1 has been previously shown to be associated with thia-
mine (vitamin B1), which is frequently prescribed to people with  
blurry vision32.

For CKD, we identified two loci, UMOD and TENM3, with gene–
T2D interaction effects. UMOD encodes uromodulin, which is 
exclusively produced by the kidney tubule, where it plays an impor-
tant role in kidney and urine function. A large-scale study in over 
133,000 participants has shown that the serum creatinine-lowering 

allele in UMOD (rs12917707) is more prevalent in individuals with 
diabetes and with CKD as compared to participants without diabe-
tes and without CKD33. Variation in TENM3 has been associated 
with cholangitis and kidney disorders in the UK Biobank34.

SNP-T2D interaction analysis of neuropathy identified one 
locus, NRP2. NRP2 encodes neuropilin-2, which is an essential cell 
surface receptor involved in VEGF-dependent angiogenesis and 
sensory nerve regeneration.

For CHD, we identified several SNP–T2D interactions. Variation 
at chromosome 9p21 has previously been associated with CHD and 
T2D. SORT1 is a lipid-associated locus; in our analyses, allelic varia-
tion at this locus that decreases CHD risk and decreases lipids con-
ferred a stronger protection in people with T2D compared to those 
without T2D. Coupled with findings in mice that identified SORT1 
as a novel target of insulin signaling, our findings raise the hypoth-
esis that SORT1 may contribute to altered hepatic apoB metabolism 
under insulin-resistant conditions.

The SNP rs71039916 is located near PDE3A and colocalizes with 
a SNP (rs3752728, D′ = 0.867 and r2 = 0.08) that is associated with 
diastolic blood pressure35,36. As a phosphodiesterase that reduces 
cAMP levels, the PDE3A protein limits protein kinase A/cAMP 
signaling and has been shown to affect proliferation of vascular 
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Fig. 2 | T2D genome-wide polygenic risk score is mainly predictive of microvascular outcomes. A T2D gPRS was calculated and categorized into deciles 

on the basis of the scores in controls. The PRS-outcome associations are shown for macrovascular outcomes (CKD: 67,403 cases and 129,827 controls; 

CHD: 56,285 cases and 140,945 controls; PAD: 35,882 cases and 161,348 controls) and for microvascular outcomes (AIS: 11,796 cases and 178,481 

controls; retinopathy: 13,881 cases and 123,538 controls; neuropathy: 40,475 cases and 110,331 controls). Effect sizes and 95% confidence intervals are 

shown per decile per micro- or macrovascular outcome. For each of the complication outcomes, separate logistic regression models were fitted for people 

with T2D, and the models include the following independent variables: T2D PRS (from the DIAMANTE Consortium), age, sex, BMI and ten PCAs. For 

CHD, a CHD PRS (from CardiogramplusC4DplusUKBB) was included in the regression model as an additional covariate. For AIS, a stroke PRS (from the 

MEGASTROKE Consortium) was included in the regression model as an additional covariate. For CKD, a CKD PRS (from the CKDgen Consortium) was 

included in the regression model as an additional covariate.
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smooth muscle cells37. Research in cell lines has shown that cAMP 
levels might impact the regulation of insulin secretion in pancreatic 
β-cells, and more recent gene ablation studies in mice have estab-
lished that cAMP/CREB signaling controls the insulinotropic and 
anti-apoptotic effects of GLP-1 signaling in adult mouse β-cells38. 
Subcutaneous adipose tissue of patients with T2D show increased 
PDE activity, and inverse correlations between total PDE3 activity 
and BMI have been reported in adipocytes39.

In summary, we have identified 318 novel genetic variants asso-
ciated with T2D risk and T2D-related vascular outcomes, including 
3 population-specific autosomal loci in African Americans, 8 vari-
ants on the X chromosome, and an additional 13 variants associated 
with differences in T2D-related micro- and macrovascular outcomes 
across diabetic strata. Over 21% of our discovery sample comprised 
non-European participants; indeed, the African American component 
alone included over 56,000 subjects. We hope this baseline data set will 
provide a resource to better understand the genetic etiology of disease 
and maximize the benefits of polygenic risk prediction in these groups.
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Methods
Overview. We conducted a large-scale multi-ancestry T2D GWAS of 
common variants in over 1.4 million participants. We subsequently conducted 
analyses to facilitate the prioritization of these individual findings, including 
transcriptome-wide predicted gene expression, secondary signal analysis, 
T2D-related vascular outcomes analysis, coding variant mapping and a drug 
repurposing screen.

Discovery cohort. The MVP is a large cohort of fully consented veterans of the 
US military forces recruited from 63 participating Department of Veterans Affairs 
(VA) medical facilities5. Recruitment started in 2011, and all veterans were eligible 
for participation (Supplementary Table 3). We analyzed clinical data to July 2017 
for participants who enrolled between January 2011 and October 2016. All study 
participants provided blood samples for DNA extraction and genotyping, and 
completed surveys about their health, lifestyle, and military experiences. Consent 
to participate and permission to re-contact was provided after counseling by 
research staff and mailing of informational materials. Study participation included 
providing consent to access the electronic health records of the participant for 
research purposes and data that captured a median follow-up time of 10 years 
at time of study enrollment. The electronic health care record of each veteran 
was integrated into the MVP biorepository, and included inpatient International 
Classification of Diseases (ICD-9-CM and ICD-10-CM) diagnosis codes, Current 
Procedural Terminology (CPT) procedure codes, clinical laboratory measurements 
and reports of diagnostic imaging modalities. Researchers were provided data that 
was de-identified except for dates. Blood samples were collected by phlebotomists 
and banked at the VA Central Biorepository in Boston, where DNA was extracted 
and shipped to two external centers for genotyping. The MVP received ethical and 
study protocol approval from the VA Central Institutional Review Board (cIRB) in 
accordance with the principles outlined in the Declaration of Helsinki.

Genotyping. DNA extracted from buffy coat was genotyped using a custom 
Affymetrix Axiom biobank array. The MVP 1.0 genotyping array contains a total 
of 723,305 SNPs, enriched for low frequency variants in African and Hispanic 
populations, and variants associated with diseases common to the VA population5.

Genotype quality control. Standard quality control and genotype calling 
algorithms were applied using the Affymetrix Power Tools Suite (v1.18). Duplicate 
samples, samples with more heterozygosity than expected and samples with over 
2.5% of missing genotype calls were excluded. We excluded related individuals 
(halfway between second- and third-degree relatives or closer) with KING 
software40. Before imputation, variants that were poorly called or that deviated 
from their expected allele frequency based on reference data from the 1000 
Genomes Project were excluded41. After prephasing using EAGLE v2, genotypes 
were imputed via Minimac4 software42 from the 1000 Genomes Project phase 3, 
version 5 reference panel. The top 30 principal components (PCs) were computed 
using FlashPCA in all MVP participants and an additional 2,504 individuals from 
1000 Genomes. These PCs were used for the unification of self-reported race/
ancestry and genetically inferred ancestry to compose ancestral groups43.

Race and ancestry. Information on race and ancestry was obtained from 
self-reported data through centralized VA data collection methods using 
standardized survey forms, or through the use of information from the VA 
Corporate Data Warehouse or Observational Medical Outcomes Partnership data. 
Self-reported race/ancestry was missing in 3.67% of participants, and 39.4% of 
participants had some form of discordant information between the various data 
sources. Race and ancestry categories were merged to form the ancestral groups 
using a unifying classification algorithm based on self-identified race/ethnicity and 
genetically inferred ancestral information, termed HARE (Harmonized Ancestry 
and Race/Ethnicity)43. Using this approach, all but 6,257 (1.78%) participants were 
assigned to one of the four ancestral groups.

Phenotype classification. ICD-9-CM diagnosis codes from electronic health care 
records were available for MVP participants from as early as 1998. Participants 
were classified as a T2D case if they had 2 or more T2D-related diagnosis codes 
(ICD-9-CM 250.2x) from VA or fee basis inpatient stays or face-to-face primary 
care outpatient visits in the 731 days before the enrollment date up to 1 July 2017, 
excluding those with co-occurring diagnosis codes for T1D (250.1x), secondary 
or other diabetes, or a medical condition that may cause diabetes (249.xx). 
Participants were selected as controls if they had no ICD-9-CM diagnosis code for 
type 1, type 2 or secondary diabetes mellitus up to July 2017.

For T2D-related vascular outcomes, the following definitions were used. CHD 
was defined as at least one admission to a VA hospital with discharge diagnosis 
of admission for myocardial information, or at least one procedure code for 
revascularization (coronary artery bypass grafting or percutaneous coronary 
intervention), or at least 2 ICD-9-CM codes for CAD (410 to 414) registered on 
at least 2 separate encounters. PAD: was defined as the presence of 2 or more 
ICD-9-CM codes or CPT codes as outlined in Klarin et al.15, or having 1 code 
and 2 or more visits to a vascular surgeon within a 14-month period. AIS was 
defined as the presence of at least 1 ICD-9-CM discharge diagnosis code for stroke 

excluding head injury or rehab (433.x1, 434 (excluding 434.x0), and 436)44; CKD 
was classified as an estimated glomerular filtration rate of <60 ml min−1 per 1.73 m2 
on two separate occasions 90 days apart, or ICD-9-CM diagnosis codes for chronic 
renal failure (585) and/or a history of kidney transplantation (ICD-9-CM code 
V42). Neuropathy was defined using the following ICD-9-CM diagnosis codes: 
diabetic neuropathy (356.9 or 250.6), amyotrophy (358.1), cranial nerve palsy 
(951.0, 951.1 or 951.3), mono-neuropathy (354.0–355.9), Charcot’s arthropathy 
(713.5), polyneuropathy (357.2), neurogenic bladder (596.54), autonomic 
neuropathy (337.0 or 337.1) or orthostatic hypotension (458). Retinopathy 
was defined using the ICD-9-DM diagnosis codes for: T2D with ophthalmic 
manifestations (250.50 or 250.52), retinal detachments and defects (361.0 or 361.1), 
disorders of vitreous body (379.2), other retinal disorders (362.0, 362.1, 362.3, 
362.81, 362.83 or 362.84), excluding ICD-9-CM codes associated with macular 
degeneration (362.5).

MVP analysis. We tested imputed SNPs that passed quality control (for example, 
HWE > 1.0 × 10−10, INFO > 0.3 and call rate > 0.975) for association with 
T2D through logistic regression assuming an additive model of variants with 
MAF > 0.1% in Europeans, and MAF > 1% in African Americans, Hispanics and 
Asians using PLINK2a45. Covariates included age, sex and ten PCs of genetic 
ancestry.

Meta-analysis. Summary statistics available from previously published T2D GWAS 
studies were obtained for meta-analysis (Supplementary Table 2). All cohorts were 
imputed using the 1000 Genomes Project phase 3, v5 reference panel, with the 
exception of the DIAMANTE Consortium, where genotype calls were imputed 
using the Haplotype Reference Consortium reference panel. Only SNPs with 
ancestry-specific MAF > 1% in these studies were used. Ancestry-specific and 
multi-ancestry meta-analysis were performed using in a fixed-effects model using 
METAL with inverse-variance weighting of log odds ratios46. Between-study allelic 
effect size heterogeneity was assessed with Cochran’s Q statistic as implemented 
in METAL. Variants were considered to be genome-wide significant if they passed 
the conventional P value threshold of 5 × 10−8. We excluded variants with a high 
amount of heterogeneity (I2 statistic > 75%) across the ancestral groups.

X-chromosome analyses. X-chromosome genotypes were processed separately. 
During prephasing and imputation an additional flag of -chrX was added. 
Post-imputation XWAS quality control included first removing variants in 
pseudo-autosomal regions, second, removing those not in HWE in females 
(P > 1.0 × 10−6) and third, removing those with differential allele frequencies or 
differential missingness (P < 10−7) between male and female controls (Extended 
Data Fig. 2)47. For each ancestry-specific subset, we performed sex-stratified 
analysis where dosages (the number of X-chromosome copies) in individuals with 
T2D were equivalent to controls within each sex stratum. The ancestry-restricted 
sex-stratified X-chromosome analyses were first meta-analyzed into a 
multi-ancestry sex-stratified analysis. Then, the multi-ancestry results from males 
and multi-ancestry results from females were meta-analyzed, in which none of the 
analyzed variants was detected using the Cochran test for heterogeneity (P < 5 × 
10−8). Results are presented in Table 2 and Supplementary Table 9.

Secondary signal analysis. GCTA software was used to conduct approximate 
conditional analyses to detect ancestry-specific distinct association signals at 
each of the lead SNPs. Race-stratified MVP cohorts (197,066 Europeans and 
53,445 African Americans) were used to model LD patterns between variants as a 
reference panel. For each lead SNP, conditionally independent variants that reached 
locus-wide significance (P < 1.0 × 10−5) were considered as secondary signals 
of distinct association. If the minimum distance between any distinct signals 
from two separate loci was less than 500 kb, we performed additional conditional 
analysis including both regions and reassessed the independence of each signal. 
Finally, the predicted conditionally independent variants were tested in a logistic 
regression model in the MVP study only to empirically validate the signal, and 
results are shown in Supplementary Tables 11 and 12.

Coding variant mapping. All imputed variants in MVP were evaluated with 
the Ensemble Variant Effect Predictor, and predicted LOF and missense variants 
were extracted. LD was calculated with established variants, and the effect of the 
missense variant was calculated conditioning on the lead SNP to assess how much 
residual variance was explained by the SNP in T2D risk. A P value of 0.05 was 
considered to be statistically significant.

S-PrediXcan and colocalization analyses. Genetically predicted gene expression 
and its association with T2D risk was estimated using S-PrediXcan. Input included 
meta-analyzed summary statistics from the European T2D GWAS and reference 
eQTL summary statistics for 52 tissues including 48 tissues from GTEx, 2 cell 
types in kidney tissue (glomerulus and tubulus)48, and 2 cell types in pancreatic 
islet tissue (α- and β-cells)49. Analyses incorporated genotype covariance matrices 
based on the 1000 Genomes European populations to account for LD structure. 
Colocalization analysis was performed to address the issue of LD contamination in 
S-PrediXcan analyses. The output is shown in Supplementary Table 15.
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Polygenicity and population stratification. LDSC12 was used to calculate 
population-specific LD scores in Europeans and Asians using SNPs selected from 
HapMap50 after SNPs with INFO < 0.95 and SNPs in the major histocompatibility 
complex region were excluded. Of note, LDSC is likely to be biased in admixed 
populations, and therefore an admixture-adjusted LDSC was used in African 
Americans and Hispanics14.

Tissue- and epigenetic-specific enrichment of T2D heritability. We analyzed 
cell-type-specific annotations to identify enrichments of T2D heritability. First, a 
baseline gene model was generated, which consisted of 53 functional categories 
including UCSC gene models, ENCODE functional annotations51, Roadmap 
epigenomic annotations52 and FANTOM5 enhancers53. Gene expression and 
chromatin data were also analyzed to identify disease-relevant tissues, cell 
types, and tissue-specific epigenetic annotations. We used LDSC12,17,54 to test for 
enriched heritability in regions surrounding genes with the highest tissue-specific 
expression. Sources of data that were analyzed included 53 human tissue or 
cell-type RNA-seq data from GTEx; 152 human, mouse, or rat tissue or cell-type 
array data from the Franke lab55; 3 sets of mouse brain-cell-type array data from 
Cahoy et al.56; 292 mouse immune-cell-type array data from ImmGen57 and 396 
human epigenetic annotations from the Roadmap Epigenomics Consortium52. 
We tested for epigenomic enrichment of genetic variants using GREGOR18. 
We tested for enrichment of 2,747 genomic features selected by the T2D lead 
variants with P < 5 × 10−8, or their LD proxies (r2 > 0.7) relative to control variants. 
Enrichment was considered significant if the enrichment P value was less than the 
Bonferroni-corrected threshold of 1.8 × 10−5 (nominal P = 0.05 of 2725 non-zero 
tested sites). Consortia annotations were obtained and processed as follows. Data 
from the consolidated epigenomes section of the Roadmap Epigenomics Project 
portal52 were downloaded on 10 February 2016. All ENCODE consortium51 data 
were downloaded on 6 January 2016 from the ENCODE project portal by limiting 
to Homo sapiens samples and selecting the named assay, except for the Uniform 
DNase files, which were downloaded on 28 March 2016. We used the FAIRE-seq 
ENCODE data, transcription profiling array data, ChIP–seq files and histone 
data. The complete list of 2,305 ENCODE and Roadmap Epigenomics features 
used is provided in Supplementary Table 20. In addition we performed a literature 
search on PubMed and in the GEO data archive, which focused on the five tissues 
that were most likely to be involved in T2D etiology: pancreas, liver, adipose, 
muscle and intestine. Most searches were performed from 15 August 2016 to 29 
September 2016 and we identified a total of 442 features across 42 publications 
(Supplementary Table 21).

Phenome-wide association analysis. For the three LOF variants that were 
identified using coding variant analysis, we performed a PheWAS to fully leverage 
the diverse nature of MVP as well as the full catalog of relevant ICD-9-CM 
diagnosis and CPT procedure codes (Table 5). Of genotyped veterans, participants 
were included in the PheWAS if their respective electronic health record reflected 
two or more separate encounters in the VA Healthcare System in each of the 
two years prior to enrollment in the MVP. A total of 277,531 veterans spanning 
21,209,658 available ICD-9-CM diagnosis codes were available. We restricted 
our analysis to the subgroup of 197,066 European participants. Diagnosis and 
procedure codes were collapsed to clinical disease groups and corresponding 
controls using predefined groupings58. Phenotypes were required to have a case 
count over 25 in order to be included in the PheWAS, and a multiple testing 
threshold for statistical significance was set to P < 2.8 × 10−5 (Bonferroni method). 
Each of the previously unpublished LOF variants were tested using logistic 
regression adjusting for age, sex and ten PCs in an additive effects model using the 
PheWAS R package in R v3.2.0. The results from these analyses are shown in Table 
3 (Extended Data Fig. 4).

Analysis of T2D-related outcomes. Genetic data on European participants was 
separately analyzed using vascular outcomes as a binary outcome, and T2D as 
an interaction variable with SNPs. Interaction analysis with robust variance was 
applied to reduce the effect of heteroscedasticity59 using SUGEN software (v8.8)60. 
We evaluated the interaction between SNPs and presence of T2D status using 
an interaction term for the two independent variables. Due to the binary nature 
of the outcome, the standard output from the interaction effect estimate was 
interpreted on a multiplicative scale. To obtain interaction on an additive scale, we 
calculated the relative excess risk due to interaction (RERI) metric. In case–control 
studies using the linear additive odds ratio model, as proposed by Richardson and 
Kaufman, in our study takes the form:

Odds ¼ e
β0 ð1 þ β1 ´ SNP þ β2 ´T2D þ β3 ´ SNP ´T2DÞ

in which the coefficient β3 measures the departure from additivity of exposure 
effect on an odds ratio scale; that is,

RERIOR ¼ β3 ¼ OR SNP ´T2Dð Þ � OR T2Dð Þ � OR SNPð Þ þ 1

We performed analysis using a linear odds model to quantify the excess odds 
per unit of the given explanatory variables on the outcome. In this model, RERI 
is an estimate of the excess odds on a linear scale due to the interaction between 

two explanatory variables. In the SNP × T2D interaction analysis, we used a 
significance threshold of P < 5 × 10−8 to denote variants that had statistically 
different effect sizes. An additional filter was applied, and variants for which 
the effect size in at least one of the two T2D strata was nominally significant at 
P < 0.001 were included. Manhattan plots, as shown in Extended Data Fig. 4, Table 
4 and Supplementary Table 26, represent the interaction coefficients on this scale.

Polygenic risk scores and risk of T2D and related outcomes. We constructed 
a gPRS for T2D in the MVP participants of European ancestry by calculating a 
linear combination of weights derived from the Europeans in the DIAMANTE 
Consortium3 using the prune and threshold method in PRSice-2 software. After 
an initial sensitivity analysis, the r2 threshold for pruning was set to 0.8, and the 
P value for significance threshold was set to 0.05. The gPRSs were divided into 
deciles and the risk of T2D was assessed using a logistic regression model using the 
lowest decile as a reference, together with the potential confounding factors of age, 
sex, BMI and the first ten PCs. An additional outcomes analysis was performed 
to evaluate to what extent a T2D gPRS is predictive of T2D-induced morbidities. 
The data set was restricted to participants with T2D, and stratum-restricted T2D 
gPRS deciles were generated. Logistic regression models were applied where the 
micro- and macrovascular conditions were modeled as outcomes, and independent 
variables included strata-restricted gPRS deciles, age, sex and the first ten PCs of 
European ancestry. The data were visualized using shape plots.

Heritability estimates and genetic correlations with other complex traits and 
diseases. LDSC was used to estimate the heritability coefficient, and subsequently 
population and sample prevalence estimates were applied to estimate heritability 
on the liability scale61. A genome-wide genetic correlation analysis was performed 
to investigate possible coregulation or a shared genetic basis between T2D and 
other complex traits and diseases. Pairwise genetic correlation coefficients were 
estimated between the meta-analyzed T2D GWAS summary output in Europeans 
and each of 774 precomputed and publicly available GWAS summary statistics for 
complex traits and diseases by using LDSC through LD Hub v1.9.3 (http://ldsc.
broadinstitute.org). Statistical significance was set to a Bonferroni-corrected level 
of P < 6.5 × 10−5.

Enrichment and pathway analyses. Tissue enrichment for S-PrediXcan results 
was evaluated by calculating exact P values for under- or over-enrichment based 
on the cumulative distribution function of the hypergeometric distribution. 
The Bonferroni-corrected threshold for significance was P < 0.001 considering 
evaluation of 52 tissues. Enrichment analyses in DEPICT62 were conducted using 
lead T2D SNPs. DEPICT is based on predefined phenotypic gene sets from 
multiple databases and Affymetrix HGU133a2.0 expression microarray data 
from over 37,000 subjects to build highly expressed gene sets for MeSH tissue 
and cell-type annotations. Output includes a P value for enrichment and a yes/no 
indicator of whether the false discovery rate q value is significant (P < 0.05).

Evaluation of drug classes for genes with associations with gene expression. To 
identify drug–gene pairs that may be leads for repurposing or may be attractive 
leads for novel inhibitory drugs, we identified drugs that targeted genes whose 
predicted expression was significantly associated with T2D risk in the S-PrediXcan 
analyses and which we predicted would lower blood glucose on the basis of their 
direction of effect on T2D risk with increasing gene expression and drug action 
(activator or inhibitor). Medications with a primary indication for diabetes and 
medications with adverse drug events for patients with diabetes were evaluated 
using the SIDER medications that targeted genes were queried using DGIdb. 
These drug targets represent a set of genes that are both likely to be involved in 
glucose regulation in one or more tissues and can be targeted by drugs. Genes and 
medications identified in this analysis are presented in Supplementary Table 17.

Ethics statement. The Central VA Institutional Review Board (IRB) and 
site-specific Research and Development Committees approved the MVP study. The 
Vanderbilt University Medical Center IRB approved the use of BioVU data for this 
study. All other cohorts participating in this meta-analysis have ethical approval 
from their local institutions. All relevant ethical regulations were followed.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The full summary-level association data from the trans-ancestry, European, 
African American, Hispanic and Asian meta-analysis from this report are 
available through dbGAP under accession number phs001672.v3.p1 (Veterans 
Administration Million Veteran Program Summary Results from Omics Studies). 
Source data are provided with this paper. More specifically, dbGaP accession 
number pha004943.1 refers to the African American–specific summary statistics, 
pha004944.1 to the Asian-specific summary statistics, pha004945.1 refers to the 
European-specific summary statistics, pha004946.1 refers to the Hispanic-specific 
summary statistics, and pha004947.1 refers to the trans-ancestry summary 
statistics.
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Code availability
Imputation was performed using MiniMac4 and EAGLE v2. Association analysis 
was performed using PLINK2A and XWAS v3.0. Post-GWAS processing software 
include: PRSice-2, LD Hub v1.9.3, FlashPCA v2.0, METAL v2011-03-25, 
GCTA-COJO v1.93, S-PrediXcan v0.6.1, SUGEN v8.9, DEPICT v140721, SIDER 
v4.1, DGIdb v3.0 and KING v2.1.6, as outlined in the Methods. Clear code for 
analysis is available at the associated website of each software package. Additional 
analyses were performed in R-3.2.
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Extended Data Fig. 1 | Trans-ethnic and ancestry-specific GWAS Manhattan plots. a–d, Each graph represents a Manhattan plot. The y-axis corresponds 

to –log10 (P) for association with T2D in the respective ancestral group (a, Europeans (148,726 T2D cases, 965,732 controls, λ = 1.21); b, African American 

(24,646 T2D cases, 31,446 controls, λ = 1.08); c, Hispanics (8,616 T2D cases, 11,829 controls, λ = 1.03); d, Asians (46,511 T2D cases, 169,776 controls, 

λ = 1.15)). The x-axis represents chromosomal position on the autosomal genome. The y-axis truncated at 1 × 10−300. Points that are color-coded blue 

correspond to a P-value between 5.0 × 10−8 and 1.0 × 10−6. Points color-coded red indicate genome-wide significance (P = 5.0 × 10−8).
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Extended Data Fig. 2 | Trans-ethnic and ancestry-specific chromosome X Manhattan plots. a–d, Each graph represents a Manhattan plot. The y-axis 

corresponds to –log10 (P) for association with T2D in the respective ancestral group (a, Europeans (69,869 T2D cases, 127,197 controls); b, African 

American (23,305 T2D cases, 30,140 controls); c, Hispanics (8,616 T2D cases, 11,829 controls); d, Asians (893 T2D cases, 1,560 controls)). The x-axis 

represents chromosomal position on chromosome X. The blue line corresponds with a significance threshold of P = 5.0 × 10−8. The red line corresponds 

with genome-wide significance (P = 5.0 × 10−8).
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Extended Data Fig. 3 | Results from PrediXcan analysis using GTEX data. This graph represents an inverted Manhattan plot based on the output 

from the European T2D GWAS (148,726 T2D cases, 965,732 controls). The y-axis corresponds to –log10 (P) for association with genetically predicted 

gene expression in the respective tissue type (color coding shown on the right). Data were analyzed using S-PrediXcan software. The x-axis represents 

chromosomal position on the autosomal genome.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Data analysis

Phenotypic data was collected from the electronic health record and genetic data using the Million Veteran Program (MVP) Axiom array.

Imputation was performed using MiniMac4 and EAGLE (v2), association analysis was performed using PLINK2A and XWAS (v3.0). Post-GWAS processing 

software include: PRSice-2, LD Hub (v1.9.3), FlashPCA (v2.0), METAL (v2011-03-25), GCTA-COJO (v1.93), S-PrediXcan (v0.6.1), SUGEN (v8.9), DEPICT 
(v140721), SIDER(v4.1), DGidb (v3.0), and KING (v2.1.6) as outlined in the Online Methods. Clear code for analysis is available at their associated websites. 

Additional analyses were performed in R-3.2.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 

We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The full summary level association data from the MVP Trans-Ancestry, European, and African American, Hispanic, and Asian T2D meta-analysis from this report are 

available through dbGAP (Accession number: pha004826.1).
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All samples available of main ancestries (European, African, Hispanic, and Asian) were used for analysis (after quality control, see 

Supplementary Table 1 for full details). Sample size was determined based on using all genetic data available from MVP, DIAMANTE 

Consortium, Penn Medicine Biobank, Biobank Japan, MedStar, PennCath, Malmo Cancer and Diet study, and Pakistan Genomic Resource. 

Participants were excluded if they failed to meet case or control definitions.

Data exclusions Data were excluded if they did not pass our pre-established quality control metrics, or if they did not fall within the main ancestries used 

for analysis. Patient were excluded if they had diagnosis codes for type 1 diabetes or secondary diabetes mellitus.

Replication Replication is not applicable, as all available data was used for discovery analysis.  

Randomization Randomization is not applicable, as this is a population based case-control analysis of prevalent data.

Blinding Blinding is not applicable, as this is a population based case-control analysis of prevalent data.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics MVP participants (n = 273,409) are comprised predominantly of male subjects (91.6%) and were classified as Europeans (72.1%), 

African Americans (19.5%), Hispanics (7.5%), and Asians (0.9%)(Supplemental Table 2). The average age at study enrollment 

ranged from 56.1 for Asian to 68.2 for European participants (Supplementary Table 3). Average body mass index (BMI) ranged 

from 28.5 for Asians to 30.8 for African Americans. The proportion of males ranged from 87.2% for African Americans to 93.9% 

for Asians. The prevalence of T2D was 35.5% for Europeans, 36.4% for Asians, 42.1% for Hispanics, and 43.6% for African 

Americans. 

Recruitment Individuals aged 19 to 104 years have been recruited voluntarily from more than 50 VA Medical Centers nationwide for 

participation in the Million Veteran Program biobank study. Recruitment is currently occurring in person at selected sites in the 

VHA health care system. Every Veteran is assigned a study ID number, which is used to track them throughout the entire process 

of recruitment, enrollment, sample collection and use; this approach also provides a level of protection for personal identifiers 

from the outset. Given that study enrollment is voluntary, biases of this study are similar to those of any mega-biobank with 

voluntary enrollment, including survivorship bias. A complete description of the entire MVP Biobank study including recruitment 

can be found at PMID: 26441289. The recruitment criteria for the meta-analyzed studies can be obtained through the following 

PMIDS: DIAMANTE Consortium (30297969), Penn Medicine Biobank (30571185), Pakistan Genomic Resource (28869590), 

Biobank Japan (30718926), Malmo Diet and Cancer Study (8429286), Medstar (21239051) and PennCath (21239051).

Ethics oversight The Million Veteran Program received ethical and study protocol approval from the VA Central Institutional Review Board (IRB) in 

accordance with the principles outlined in the Declaration of Helsinki. 
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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