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Abstract
We provide the first investigation into whether and how much genes explain having health
insurance coverage or not and possiblemechanisms for genetic variation. Using a twin-design
that compares identical and non-identical twins from a national sample of US twins from the
National Survey of Midlife Development in the United States, we find that genetic effects
explain over 40% of the variation in whether a person has any health coverage versus not, and
nearly 50% of the variation in whether individuals younger than 65 have private coverage
versus whether they have no coverage at all. Nearly one third of the genetic variation in
being uninsured versus having private coverage is explained by employment industry, self-
employment status, and income, and together with education, they explain over 40% of the
genetic influence. Marital status, number of children, and available measures of health status,
risk preferences, and prevention effort do not appear to be important channels for genetic
effects. That genes have meaningful effects on the insurance status suggests an important
source of heterogeneity in insurance take up.
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Introduction

There is increasing interest in exploring genetic influences on healthcare utilization (True
et al. 1997; Wehby et al. 2015, 2017). Health insurance status is a key determinant of access
to and use of health services. Is it possible that genes play a significant role in whether some-
one obtains health insurance? While no previous work directly investigates the link between
genetic variation and health insurance status, a burgeoning literature reviewed below has sug-
gested connections between genes and several pathways linked to insurance status including
health status, human capital, and risk preferences. Coverage decisions in the US are increas-
ingly shifting directly to individuals, highlighting the need tomore thoroughly understand the
individual-level determinants of insurance status. Almost nothing is known about whether or
not genetic factors are relevant for explaining the variation in health insurance status across
the population and by how much.

Weprovide thefirst evaluationof the extent towhichgenesmight explain variation between
individuals in having health insurance coverage or being uninsured using a twin design and
a national sample of US twins that is the only national US twin sample with data on health
insurance coverage. We also investigate possible mechanisms related to human capital, labor
market participation, household formation, health, and preferences for risk and prevention.
Understanding whether there is a meaningful genetic link to health insurance decisions could
open the door toward future research to better understand the underlying behavioral mecha-
nisms which may ultimately inform how to more optimally design approaches to influence
the behavioral side of such decisions.

Conceptual framework

Health insurance coverage is influenced by several individual-level traits such as a person’s
preferences for risk and prevention, health status which determines need for healthcare ser-
vices, and human capital which affects access to private coverage via labor market outcomes
(employment, earnings) as well as one’s knowledge about insurance needs and efficiency in
obtaining insurance. These traits may in turn be related to genes, leading to gene-driven vari-
ation in insurance coverage status through those channels (Fig. 1). The evidence for genetic
influence on those traits has largely been based on twin studies similar to ours, but recent work
has also employedmolecular variation on population-based samples of unrelated individuals.

Beginning with preferences, individuals who are more risk averse and discount the future
less are more likely to obtain insurance coverage. Genes can explain 14–20% of differences
in risk aversion (Cesarini et al. 2009; Benjamin et al. 2012) and as much as 30–50% of
the variation in discounting the future (Anokhin et al. 2011). Cronqvist and Siegel (2015),
Cesarini et al. (2010), and Kuhnen and Chiao (2009) also show that genetic variation can
explain between one quarter and one third of financial risk taking behavior. Cronqvist and
Siegel (2015) further note that genetic differences in saving behavior likely reflect genetic
differences between individuals in time preferences or self-control. This genetic influence is
also supported when studying risky behaviors including smoking and alcohol dependence,
which have been shown to have a strong genetic etiology that can explain as much as 50% of
their variation (Boardman et al. 2010;Maes et al. 2004; Stacey et al. 2009;McGue et al. 2013).

There is also evidence that an individual’s preferences over preventing disease are influ-
enced by genes. For example, over one third of the variation in beliefs about whether personal
actions canmodify heart disease and cancer risksmay be explained by genetic effects (Wehby
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Fig. 1 Conceptual channels between genes and health insurance coverage.Notes The potential channel through
household formation discussed above is omitted from the figure for brevity

et al. 2015). This genetic influence is more prominent when examining prevention effort
(about 50% of the variation explained by genetic differences; Wehby et al. 2015). Consistent
with those findings, there is evidence of strong genetic influence on key prevention activities
such as participation in exercise (40–70% of variance explained by genetic effects; Moor
et al. 2011; Stubbe et al. 2006), seeking preventive care such as having a preventive check-up
(40% explained by genetic effects; Wehby et al. 2015) or women’s participation in cancer
screening programs (37–66% explained by genetic effects; Treloar et al. 1999), as well as
health indicators tied to lifestyle such as body mass index (between 40 and 90% of the varia-
tion in body mass index is linked to genes; Elks et al. 2012; Carlsson et al. 2013; Boardman
et al. 2015). Other personal traits specifically measured in relation to health decisions includ-
ing self-efficacy and beliefs about healthcare effectiveness have also been examined but not
found to be influenced by genes (Wehby et al. 2015).

The influence of health status on health insurance status, particularly through adverse
selection, is well recognized (Cutler and Zeckhauser 1998; Cutler et al. 2008) and suggests
another link between genes and insurance. There is ample evidence that genes affect health
status which can generate indirect effects on the need and demand for insurance coverage.
As direct evidence of adverse selection based on genetic risk, Oster et al. (2010) find that
individuals carrying the genetic mutation for Huntington’s disease are more likely to obtain
long-term care insurance. The effects of genes on coverage through health status are likely
much broader, however, as genes influence the incidence and severity of chronic physical
and mental health diseases such as diabetes, hypertension, major depression, and asthma,
among others; at least a third of the variation in each of those conditions can be explained by
genetic effects (e.g. Agarwal et al. 2005; Carlsson et al. 2013; Kendler et al. 2006; Thomsen
et al. 2010). Wehby et al. (2015) find that as much as half of the variance in the number of
chronic conditions can be explained by genetic differences. Consistent with the connection
to chronic diseases, genes explain an important fraction of the variation in use of prescription
drugs (~40%,Wehby et al. 2015), seeking treatments for chronic conditions includingmental
health, joint problems, hearing problems (42–56%, True et al. 1997), and self-reported health
status (Romeis et al. 2000, 2005; Wehby et al. 2015). Furthermore, polygenic scores for
several chronic conditions have been associated with various measures of functional health
and wellbeing (Wehby et al. 2018).
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Genetic effects on human capital accumulation, which in turn affects labor market par-
ticipation and income, represents an additional channel for genetic variation in insurance
coverage. Human capital can reduce information costs, resulting in more effective search for
and enrollment in health plans. Empirically, educational attainment is one of the key indi-
cators of human capital that is also linked to insurance coverage (Cutler and Lleras-Muney
2006; Fang et al. 2008). Several studies suggest that genes can explain between a third and
two thirds of the variation in educational attainment (Branigan et al. 2013; Boardman et al.
2015), raising the possibly of an indirect genetic effect on insurance through educational
attainment and other forms of human capital accumulation. Interestingly however, there does
not appear to be an important genetic effect on a measure of one’s knowledge about own
health (Wehby et al. 2015). Another potential connection with labor market participation is
through self-employment, since genetic differences may explain nearly half of the variation
in self-employment status (generally considered a proxy for entrepreneurship) (van der Loos
et al. 2013) and since most employed individuals gain coverage through their employers.

A weaker indirect effect may occur through household formation given that individuals
can obtain insurance coverage through their spouse or may be more likely to obtain family
coverage if they have children. There is some evidence of genetic variation in marriage status
at younger ages (20–40) but not older ages (Trumbetta et al. 2007) as well as on fertility
indicators such as number of births and age at first child (Kosova et al. 2010). As detailed
below, we investigate whether these potential channels explain observed genetic variation in
insurance coverage.

Methods

Data

We employ data from the National Survey of Midlife Development in the United States
(MIDUS I; Brim et al. 2017). The MIDUS included a national sample of 957 twin pairs
in 1995 and 1996 from which data on several socioeconomic and health indicators were
obtained. The sample includes an age range from 25 to 74 years. The sample declines to 907
pairs with data on identical/non-identical status and consistent data on age/birth year between
the twins. In our first analysis, we make no restrictions on the type of health insurance (public
or private) and focus on uninsured versus any insurance. Themain analytical sample excludes
55 pairs because of missing data on coverage for one or both twins resulting in a total of 769
twin pairs, including 307 identical twin pairs and 462 non-identical twin pairs (268 same-sex
pairs and 194 different-sex pairs).

In an additional model, we focus on private insurance versus uninsured among individuals
who are not age-eligible for Medicare. Our expectation is that genetic variation is greater
in this group when focusing on choice of private coverage compared to the main analysis.
Therefore, we exclude individuals aged 65 or older (94%ofwhomhadMedicare) and individ-
uals younger than 65 who had Medicaid or military insurance (only 47 pairs). This second
analysis tests the robustness of our results to availability and demand of public coverage.
This analysis includes 583 twin pairs, with 240 identical pairs and 343 non-identical pairs
(190 same-sex pairs and 153 different-sex pairs). The number of publicly insured individuals
younger than 65 in this sample is too small to allow for an analysis comparing uninsured
versus public coverage only. However, we also examine genetic variation in uninsured versus
any coverage among individuals younger than 65 as an additional model, adding back the
small sample of publicly insured individuals.
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Empirical strategy

The outcome of interest in this study is having health insurance coverage or not. Pri-
vately insured individuals can have employment-based coverage (from their or their spouses’
employer or union) or may obtain individual (non-group) coverage on their own. Publicly
insured individuals include those with Medicare, Medicaid, or military insurance. Individ-
uals without coverage in this analysis are those without any health care coverage plan. As
mentioned above, we first examine uninsured versus private or public coverage then focus
on uninsured versus private coverage.

We implement a twin comparisonmodel to decompose the variation in having health insur-
ance coverage or not across genetic and environmental differences. Identifying the overall
genetic and environmental variation in a trait using this approach is based on the fact that
identical twins share all genetic variants, while non-identical twins share on average half
of the genetic variants, but also assumes that identical twins do not share a more similar
household environment than non-identical ones (commonly referred to as the equal envi-
ronment assumption). This assumption still holds if the greater similarity in the household
environment for identical twins is driven by their similar genes. Identical versus non-identical
twin status in the MIDUS I has been shown not to be related to household demographic and
socioeconomic indicators including race, family financial status, family history of moving
to new neighborhoods during childhood, and maternal education (Wehby et al. 2015). Other
assumptions in the basic twin model include parents not being genetically related, additive
genetic effects (the effect of each copy of a genetic variant can be summed linearly), and no
or minimal interactions between genetic and environmental factors, although some of these
assumptions can be relaxed. For instance, we estimate below both additive and non-additive
genetic effects. Gene-by-environment interactions limit the generalizability of the estimated
genetic variation with changing environments. For example, it is possible that the Affordable
Care Act (ACA) has modified genetic variation in coverage. In our case, we recognize that
our estimates are specific to the insurance policy environment at the time when our data
were collected (1995–1996). Thus, our estimates can be viewed as a reference for evaluating
changes in genetic variation in coverage in later periods. Despite concerns about some of its
assumptions (e.g. Charney and English 2013; Domingue et al. 2014; Burt and Simons 2014),
the basic model of comparing twins has been shown to be generally robust (Barnes et al.
2014).

We follow a regression based approach to decompose the variation in being uninsured into
three sources of variation: genes, environment shared between twins, environment unique to
each twin. Specifically, our main estimation follows a generalized mixed model estimated
by a probit function with random effects and innovated by Rabe-Hesketh et al. (2008) based
on the following error decomposition model:

Ii j � v + Ai j + Di j + Ci j + Ei j . (1)

In Eq. (1), the uninsured status (0/1) of twin i of twin-pair j is a function of the overall
uninsured rate plus several error components including additive genetic effects (A), domi-
nant genetic effects (D), shared environmental effects (C), and unique environmental effects
(E). Each component is assumed to be normally distributed with a mean zero and a constant
variance. Each genetic variant consisting of aDNAbase pair referred to as a single-nucleotide-
polymorphism (SNP) can have two copies (alleles) which can be the same or different. In an
additive model, the genetic effect from a variant is the linear sum of the genetic effects of the
two alleles. In contrast, dominant effects result from interactions between the two copies of
a genetic variant (making their joint influence not simply the sum of their individual effects).
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Shared environmental factors (C) in this context can be the household environment rele-
vant to insurance coverage, while unique environmental factors (E) can include differences
in availability and characteristics of employer-sponsored insurance between twins and in
characteristics of the local individual (non-group) insurance markets.

The covariance matrix of A within and across twin pairs is a function of the constant
variance multiplied by a matrix of weights based on genetic similarity (100% between iden-
tical twins and 50% between non-identical twins): diagonal entries are 1; off-diagonal terms
are 1 for identical twins and 0.5 for non-identical twins in the same families and 0 across
twins from different families (see further details in Rabe-Hesketh et al. 2008). Similarly,
the covariance matrix of D involves a similar weighting matrix, except that the off-diagonal
terms are 0.25 for non-identical twins following genetic theory. For C, the diagonal terms
and off-diagonal terms for twins from the same family are 1 in the covariance weighting
matrix and 0 otherwise. Finally for E, all off-diagonal terms are 0. In the linear model, the
covariance of I is then simply the sum of the covariances of these four components: A, D, C,
and E.

Of course, identifying all four components simultaneously is impossible. Therefore, one
has to impose restrictions on one or more of these components in order to separate these
sources of variation. In the first specification, we assume all genetic effects to be additive (A)
and assume no genetic dominance (this model is commonly referred to as the ACE model).
In the second specification, we add the restriction that shared environmental effects are null
and only estimate additive genetic effects and unique environmental effects (AE model).
In the third specification, we relax the hypothesis of all genetic effects being additive and
separate genetic effects into both additive and dominant components (ADE model), while
continuing to assume null shared environmental influence. Details on the parameterizations
for these specifications are included in Rabe-Hesketh et al. (2008). From all these models,
we estimate the proportion of the variance in being uninsured that is due to genetic effects;
this parameter is commonly referred to as “genetic heritability” or h2, which is defined as
follows under each of the three specifications mentioned above (standard errors obtained via
the delta-method):

ACE : h2 � σ 2
A

σ 2
A + σ 2

C + σ 2
E

(2a)

AE : h2 � σ 2
A

σ 2
A + σ 2

E

(2b)

ADE : h2 � σ 2
A + σ 2

D

σ 2
A + σ 2

D + σ 2
E

(2c)

In its basic form, we estimate the regression without any covariates. We then add gender
as a covariate to account for opposite-sex non-identical twins. Next, we explore several of
the potential channels for genetic variation in health insurance status noted above. First, we
examine education as a proxy for human capital and indicator for time discounting prefer-
ences. Next, we add indicators for full- and part-time employment, self-employment, and
household income quintiles to capture availability and affordability of insurance. In alterna-
tive models, we include indicators for the work industry of employed individuals based
on industry code aggregations in MIDUS I (professional services, manufacturing, agri-
culture/mining/construction, and other industries); we also estimate a model including an
aggregated socioeconomic status index (SEI) capturing occupational status based on income
and education and developed in MIDUS I. Next, we add marital status to examine household
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formation and potential availability of insurance through a spouse. We then control for health
status by including the number of chronic health conditions and self-rated health in order
to capture individual health needs and account for the potential of adverse selection. Next,
we add excessive alcohol consumption, smoking, and use of illicit drugs and medications
on one’s own (excluding normal use of pain killers such as for a headache) as indicators of
risk preferences. Finally, we control for prevention preferences (overall and for heart disease
and cancer) and overall prevention effort. While these variables may not uniquely capture
the hypothesized channels, all are conceptually relevant for insurance status. When adding
covariates, we estimate all models for the sample with complete data on all covariates to
ensure no changes in sample composition which includes 680 twin pairs when including
both private and public coverage and individuals older than 65 and 538 twin pairs when
focusing on private coverage versus uninsured among individuals younger than 65. Table 1
shows summary statistics for the analytical sample with complete data on all covariates when
including both private and public coverage (supplementary Table S1 shows summary statis-
tics for individuals younger than 65 years and excluding publicly covered individuals and
their co-twins).

Results

Our analysis suggests genes as an important source of variation in being uninsured. This is first
revealed in a simple comparison of correlations of being uninsured or not between identical
and non-identical twins. The correlation in uninsured versus private/public coverage between
identical twins was twice that among fraternal twins (0.438 vs. 0.216). The difference is more
prominent when focusing on uninsured versus private coverage among individuals younger
than 65 years (0.578 among identical twins vs. 0.238 among fraternal twins).

In Table 2, we present the variance proportions accounted for by genetic and shared envi-
ronmental effects based on the generalized linear mixed model without controlling for any
covariates. Across the three genetic models, ACE, AE, and ADE, we observe similar results
for genetic variation. As much as 43% of the variance in uninsured versus private/public
insurance is accounted for by genetic effects. As expected, genetic variation is more pro-
nounced when focusing on individuals younger than 65 years and excluding public coverage
because of the greater choices that individuals face in those circumstances; genes account
for 50% of the variation in being uninsured versus having private coverage. The estimate of
insurance variation explained by shared environment based on the ACE model was practi-
cally 0, suggesting that the remaining variation is explained by environmental factors unique
to each twin, and that the AE model is a preferred model to the ACE model. Overall, genetic
variation from the ADE model combining additive and dominant genetic effects is virtually
the same as that of the ACE or AE models.

Next, we evaluate the extent to which selective demographic, socioeconomic, and health
characteristics that vary between twins explain the observed genetic variation by introducing
these as covariates into the model. Because we use individuals with complete data on all
covariates for these regressions, we first re-estimate the variance proportion accounted for by
genetic effects without adjusting for any covariates in this specific sample. We find overall
similar estimates (46% of variance in uninsured vs. private/public coverage and 50% of
variance in private coverage vs. uninsured among individuals younger than 65 explained by
genetic effects). Then, we first test the sensitivity of the main estimates to controlling for
sex. Next, we successively add the following variables: (1) education as a proxy for human
capital; (2) employment indicators and income which influence availability/affordability of
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Table 1 Sample description for individuals with complete data on all variables excluding individuals with
public coverage and their co-twins and individuals 65 years and older

Variable Description Mean SD

Uninsureda 0/1 indicator for being
uninsured relative to having
private health insurance

0.084 0.277

Male 0/1 indicator for male vs.
female

0.451 0.498

Less than high schoolb 0/1 indicator for less than
high school graduate

0.089 0.285

Some collegeb 0/1 indicator for some college 0.305 0.461

College graduateb 0/1 indicator for college
graduate

0.305 0.461

Employed 0/1 indicator for employed
individuals

0.660 0.474

Full-time employmentc 0/1 indicator for working 40
or more hours per week on
average in main job

0.512 0.500

Part-time employmentc 0/1 indicator for working less
than 40 h per week on
average in main job

0.148 0.355

Professional servicesd 0/1 indicator for working in
professional services

0.188 0.390

Manufacturingd 0/1 indicator for working in
manufacturing

0.123 0.328

Agriculture/mining/constructiond 0/1 indicator for working in
agriculture, forestry, fishery,
mining or construction

0.041 0.199

Other industryd 0/1 indicator for working in
other industries (e.g.
transportation,
community/public utility,
trade, finance, real estate,
repair)

0.308 0.462

Self-employedc,d 0/1 indicator for
self-employed individuals

0.138 0.345

SEIe Aggregated index for
occupational status based
on income and education
across occupations as
developed in MIDUS I (0
assigned for unemployed or
not self-employed)

31.190 19.985

Income Total household income 60,780 47,426

Married 0/1 indicator for being
married versus unmarried

0.757 0.429

Children Number of biological
children

1.939 1.519

Chronic conditions Number of chronic conditions 2.097 2.161

Health status Self-reported health on a
scale from 1 to 10

7.718 1.496
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Table 1 continued

Variable Description Mean SD

Smoker 0/1 indicator for being a
current smoker

0.200 0.400

Excess alcohol 1–2
timesf

0/1 indicator for using
alcohol excessively 1–2
times in past 12 months

0.143 0.351

Excess alcohol≥3
timesf

0/1 indicator for using
alcohol excessively 3 times
or more in past 12 months

0.079 0.270

Drug use 0/1 indicator for using illicit
drugs or medications on
one’s own (excluding
normal use of
over-the-counter pain
medications)

0.125 0.331

Responsible Response on a 7-category
scale from strongly disagree
to strongly agree to the
following statement:
“Keeping healthy depends
on things that I can do”

6.462 0.922

Prevention effort Response on a 7-category
scale from strongly disagree
to strongly agree to the
following statement: “I
work hard at trying to stay
healthy”

5.646 1.264

Heart disease prevention Response on a 7-category
scale from strongly disagree
to strongly agree to the
following statement: “There
are certain things I can do
for myself to reduce the risk
of a heart attack”

6.699 0.696

Cancer prevention Response on a 7-category
scale from strongly disagree
to strongly agree to the
following statement: “There
are certain things I can do
for myself to reduce the risk
of getting cancer”

6.008 1.205

Descriptive statistics are shown for 1360 individuals (680 twin pairs) with complete data on all variables
aThe uninsured rate in this group is 8.9 when including individuals with information on insurance regardless
of missing data on covariates
bReference is high school graduate
cReference is unemployed or not self-employed with the model including full-time, part-time, and self-
employment as the labor market indicators
d reference is unemployed or not self-employed with the model including the industry indicators (as coded in
MIDUS I) for employed individuals and an indicator for self-employment
eSEI is included as the only labor market indicator when included as a covariate (i.e. the employment and
self-employment indicators are omitted)
f question asks about number of times in past 12 months the person had larger amounts of alcohol or used
alcohol for a longer period than intended
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Table 2 Proportion of variance of uninsured accounted for by genetic effects and shared environment under
different genetic models

Model Genetic variation Shared
environment

Model log
likelihood

Estimate SE 95% CI Estimate

Panel A: Uninsured versus private/public coverage

ACE 0.432 0.14 0.157–0.707 0.000 −456.51

AE 0.432 0.12 0.171–0.625 – −456.51

ADE 0.434 0.136 0.167–0.702 – −456.51

Panel B: Uninsured versus private coverage for adults<65 years excluding public coverage

ACE 0.497 0.217 0.073–0.922 0.000 −376.32

AE 0.500 0.122 0.213–0.686 – −376.32

ADE 0.504 0.138 0.234–0.775 – −376.32

The proportion of the uninsured variance due to unique environment variance is one minus the genetic heri-
tability minus the shared environment proportion in the ACE model
ACE indicates themodel decomposingvariation in coverageover additive genetic effects, environmental effects
shared between twins, and environmental effects unique to each twin. AE indicates the model decomposing
variation in coverage over additive genetic effects and environmental effects unique to each twin
ADE indicates the model decomposing variation in coverage over additive and dominant genetic effects as
well as environmental effects unique to each twin

insurance; (3) household formation including marital status and having biological children
which influence demand for family-based coverage; (4) health status including number of
chronic conditions and self-reported health; (5) risk preferences captured by excessive alcohol
consumption, smoking, and use of drugs and medications on one’s own (excluding normal
use of pain killers); and (6) prevention preferences and overall prevention effort. We limit
this estimation to the AE model due to the insignificance of shared environment effect as
explained above and the similarity of genetic variation between the AE and the ADE model.
Furthermore, the log-likelihood of the threemodels (without covariates) is virtually the same,
making the AE model more appealing than the other two models since it requires estimating
2 instead of 3 parameters (Rabe-Hesketh et al. 2008).

The estimates of the uninsured variance accounted for by genetic effects under the various
sets of control variables are shown inTable 3both for uninsuredversus private/public coverage
and then uninsured versus private coverage only among individuals younger than 65 years.
Controlling for sex has no effect on genetic variation. Education has a slight effect, reducing
genetic variation by 6–9%. Adding employment and income explains an additional 33% of
the genetic effect on coverage (whether uninsured vs. public/private coverage or uninsured
vs. private coverage among individuals younger than 65) in the model that includes indus-
try indicators for employed individuals. This specification including education, employment
industry indicators, self-employment indicator, and income quintile indicators explains the
most of the genetic effect, including nearly 38% of the genetic variation in uninsured versus
private/public coverage and 43% of genetic variation in uninsured versus private coverage
among individuals younger than 65. Including the aggregated SEI as the only labor market
indicator does not explain additional genetic variation. Surprisingly, adding the other covari-
ates—marital status, number of biological children, number of chronic health conditions,
self-rated health, the behavioral indicators for risk preferences (excessive alcohol, smoking,
and illicit drugs and medications on one’s own excluding normal use of pain killer), and
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preferences for prevention and overall prevention, does not explain any additional genetic
effects on either specification of insurance types.

Conclusions

In the first work to explore whether genes are relevant for the variation in health insurance
coverage status in the US, we analyze a twin model and find that over 40% of the variation in
whether adults have health insurance coverage or not can be explained by genetic influences.
The genetic effect is stronger when focusing on uninsured versus private coverage among
individuals younger than 65 years. This is expected because individuals have discretion in
obtaining private coverage or not whereas individual choice is much less important given
the nearly universal availability of Medicare for individuals aged 65 and older. In terms of
underlying channels, we can explain nearly 40% of the genetic effects based on differences in
education, employment industry, self-employment status, and income, with the employment
and income indicators explaining nearly one third of the variation on their own. Marital
status, number of biological children, health status, and indicators for risk taking and disease
prevention as well as overall prevention effort did not explain any of the genetic influence
when added to the specification that included education, employment, and income.

The unexplained genetic variation can still be related to the pathways illustrated in our
conceptual framework above but characterizing it requires better measures of health status,
human capital, and preferences over risk and time discounting. The included measures for
health status indicators and risky behaviors do not mediate any of the genetic effects on
coverage in our models. This may partly be due to measurement errors in those variables
particularly in the risky behaviors that we use (excessive alcohol, smoking, illicit drugs and
use of medications on one’s own excluding normal use of painkillers). We lack better proxies
for risk preferences in this dataset. However, self-rated health status is overall considered a
reasonable measure of health and self-report of chronic conditions is generally concordant
with objective data sources such as claims (Wolinsky et al. 2014). That those health status
measures explain none of the genetic effect suggests that any adverse selection in insurance
that is related to health is largely not linked to genetic factors.

Our work indicates that genes were an important contributor to explaining the variation
in private health coverage status in the US population prior to the ACA. The genetic effects
appear to be partly expressed through economic traits, especially employment and income.
To the extent that individuals have a choice in having health coverage or differences in
access to insurance depending on their employment and income—in contrast to a scenario of
automatic universal coverage (such as in Canada or the United Kingdom)—genetic factors
operating through such channels may continue to result in a proportion of the population
being without health coverage. The reduced genetic variation when adding public coverage
into our analysis and the evidence that employment and income explain nearly one third of
the genetic variation supports this conclusion.

Of course, declining uninsured rates due to theMedicaid expansions and the individual and
employer mandates of the ACA would be expected to reduce genetic influence on insurance
decisions. We are unable to directly quantify the ACA effect on genetic influence because
we lack data on a nationally representative sample of twins after the key provisions of the
ACA related to the Medicaid expansions and the individual mandate had been implemented.
However, several factors would suggest that genetic influence on coverage may still be rele-
vant even after the ACA. Not all states have expanded their Medicaid programs; to date, 33
states and DC expanded their Medicaid programs, 3 states are considering expansion, and
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14 states have not expanded and are not considering expansion (KFF 2018a). Furthermore,
several states either have obtained, are in the process of obtaining, or are considering applying
for federal waivers to tie Medicaid eligibility to work status, which may reduce take-up of
Medicaid coverage. Also, the 2017 Tax Cut and Jobs Act has repealed the individual man-
date penalty of the ACA (effective January 2019), with the CBO projecting an increase in
the number of uninsured individuals by 4 million in 2019 and 13 million in 2027 as a result
(assuming no other changes; CBO 2017). In addition, there is little evidence of large changes
in the employer-sponsored coverage following the ACA and no evidence of a meaningful
change in the uninsured rate among the non-elderly after 2015, with a 10.7% uninsured rate
in 2017 (KFF 2018b). As a whole, this evidence suggests again that genetic factors continue
to partly explain differences in coverage status after the ACA, and highlights the importance
of collecting data on coverage among twins after the ACA to re-estimate genetic variation.

An implication of our results is that the policy environment in the mid-1990s did not
dissipate the large influence of intrinsic personal traits on private health insurance coverage.
Until the recent ACA driven healthcare reform, there had been little change in the policy
environment regarding access to private coverage and private insurance markets that would
have dramatically modified genetic variation in coverage. Our results therefore may serve as
a benchmark to examine whether genetic variation in coverage choices have changed over
the past 20 years.

Our findings highlight the value of future research to examine the genetic mechanisms
that influence health coverage choices and the intermediary behavioral or health channels.
Identifying thesemechanismsmay improve our understanding of howhealth insurance policy
changes such as the ACA impact coverage choices and inform future adjustments to the way
insurance policies are implemented. An example of interventions that may eventually be
informed by such future research is whether to have health insurance be an opt-out choice
rather than opt-in, similar to ongoing experiments in saving for retirement. Characterizing
genetic influences could also prove useful in understanding differential individual responses
to insurance availability or mandates. Improvements in understanding the decision making
process to seek or not seek health insurance may further lead to beneficial gains in the way
individuals are informed and educated about related programs such as retirement programs,
annuities, life insurance, etc.

We employ a regression-based model of the basic twin design which has been shown
to be generally robust to the assumptions it makes. It is important to note, however, that
genetic influence in this design may be over or under-estimated depending on a range of
factors including gene-environment correlations and interactions and the extent of genetic
correlations between spouses, although empirical estimates available for some political traits
do not suggestmajor biases (Verhulst 2013). Further, the higher the genetic similarity between
spouses, the greater the underestimation bias in twin studies. Spouses may have positive
genetic correlation on average across the pathways throughwhich genetic effects on insurance
coverage may develop (Fig. 1). While it is impossible for us to sign the bias or infer its
magnitude, the key point is that there is no reason to expect a priori that the twin model
would over-estimate the genetic influence on health insurance coverage.

Even though we study a national sample of twins, the results may not be nationally gener-
alizable. To assess the representativeness of the twin sample, we compare key characteristics
to a nationally representative sample of individuals within a similar age range (25–74) from
the March Supplement of the 1995 Current Population Survey (Supplementary Table S2).
The two samples were close on mean age (~45 years) and employed to population ratio (~65
vs. 68%). The uninsured rate was lower in the twin sample (9% vs. 14%) and education
(~30% vs. 24% college graduates), household income ($59,000 vs. $49,000), and number
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of children (2 vs. 0.9) were higher. Also, the twin sample had larger proportions of Whites
(95% vs. 84%), married individuals (74% vs. 66%), and females (56% vs. 49%). Because of
the lower variability in coverage and higher socioeconomic status overall in the twin sam-
ple, our estimates may represent a lower bound of genetic variation in a more diverse and
representative sample.

Finally, given the evidence of genetic variation in healthcare use and health (e.g. Wehby
et al. 2015, 2017, 2018), our results suggest genes as another important source of unobservable
heterogeneity that may result (if ignored) in selection bias when investigating the effects
of insurance on health and healthcare use. To illustrate this potential bias, we examined
associations between uninsured status and self-reported health within twin pairs separately
for identical and non-identical twins.We did this by regressing self-reported health (on a scale
from 1 to 10) on private coverage versus uninsured status usingOLS including twin-pair fixed
effects separately for the two twin groups and clustering standard errors at the twin-pair level.
We found that coverage was associated with a 9% (relative to mean) increase in health status
among non-identical twins, but had a practically null association among identical twins. This
ad hoc analysis provides an example of how genetic variation can be an important confounder
for examining the relationship between insurance and health or healthcare use in analyses
that focus on “association estimates” without an exogenous source of coverage variation, and
indicates that direct adjustment for observable confounders is insufficient for removing that
bias. Collecting data on a large and nationally representative sample of twins may, therefore,
be useful for studying insurance effects on health and healthcare use. Furthermore, as national
surveys begin to collect genetic information and as genetic variants associated with health
coverage decisions are characterized in future research, researchers may be able to directly
adjust for such genetic effects in general (i.e. non-twin) samples.
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