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  Historical Context 

 Quantitative genetics, as a scientific field of research, 
was firmly established by the 1960s, with theory broadly 
consistent with empirical data from selection experi-
ments in model organisms and genetic improvement 
programs in animal and plant breeding. In particular, a 
polygenic model underlying quantitative trait genetic 
variation was widely accepted. For binary (0–1) traits, a 
threshold (liability) model had been proposed  [1] , al-
though its uptake was not without controversy (see for 
example the review by Fraser  [2] ). Although this model 
was not widely adopted by human geneticists as a model 
for disease, there were exceptions, see for example Carter 
 [3]  and Gottesman and Shields  [4] , and some landmark 
papers, e.g.  [4, 5] , for schizophrenia provided empirical 
evidence which showed that the risk to relatives was con-
sistent with such a model.

  For common diseases in humans, such as psychiatric 
disorders, heart disease and hypertension, the prevailing 
paradigm in the 1970s was Mendelian, i.e. that the cause 
of disease in an affected individual is due to a single fac-
tor, usually a single mutation or sometimes an environ-
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Abstract

 It is nearly one hundred years, since R.A. Fisher published his 
now famous paper that started the field of quantitative ge-
netics. That paper reconciled Mendelian genetics (as exem-
plified by Mendel’s peas) and the biometrical approach to 
quantitative traits (as exemplified by the correlation and re-
gression approaches from Galton and Pearson), by showing 
that a simple model of many genes of small effects, each fol-
lowing Mendel’s laws of segregation and inheritance, plus 
environmental variation could account for the observed re-
semblance between relatives. In this review, we discuss a 
number of concepts and misconceptions about the assump-
tions and limitations of polygenic models of common dis-
eases in human populations.  © 2016 S. Karger AG, Basel 
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mental insult (e.g. a head injury leading to a brain dis-
ease). In fact, for some researchers working in human ge-
netics, this is still the paradigm today, despite strong 
empirical evidence against this model. Moreover, some of 
the misconceptions of polygenic models discussed in
Fraser’s 1976 review  [2]  are still just as relevant today.

  Genetic Factors and Risk to Relatives 

 Diseases that we term ‘common’ may still affect only a 
small proportion of the population, and the first line of 
evidence that these diseases may be underpinned by ge-
netic factors, at least in part, comes from an increased risk 
of disease in relatives of those affected. James  [6]  provid-
ed a simple framework to equate the observable data with 
standard quantitative genetic models. He showed that on 
the observed probability (or risk of disease) scale, the risk 
to relative with relationship R (K R ) can be expressed in 
terms of the risk in the population (K) and the pheno-
typic covariance between probands and their relatives on 
the observed 0–1 scale (cov R )

  K R  = K + cov R /K. (1)

  This equation is completely general and does not depend 
on assumptions about the sources of the phenotypic co-
variance, nor about any underlying continuous scale. It 
can also be expressed as 

 λ R  – 1 = cov R /K 2 , (2)

  with λ R  being the relative risk to relatives (K R /K)  [7] . 
Equations 1 and 2 are sometimes referred to as the ‘James’ 
Identity’  [8] . 

 For many diseases, adoption studies imply only a small 
contribution from environmental factors to the pheno-
typic covariance between relatives. So if we assume a ge-
netic model such that the only covariance between rela-
tives is due to genetic factors, then the phenotypic covari-
ance on the 0–1 scale can be decomposed into genetic 
variance components  [6] ,

R 0 0cov ,k l
A k D lk l r u V  

  where  V  A  (  k  )  D  (  l  )  denotes the genetic variance components 
with  k A  and  l D  terms, given an additive genetic relation-
ship coefficient of  r  and a dominance coefficient of rela-
tionship of  u . So for R = monozygotic (MZ) twins,  r  = 1 
and  u  = 1 and, 

  cov MZ  =  V  A  +  V  D  +  V  AA  +  V  AD  + 
 V  DD  +  V  AAD  +  V  AAA    + ... =  V  G . (3)

  Likewise for R = full-sibs (FS), where  r  =  1 / 2  and  u  =  1 / 4 , 
 

FScov ...
2 4 4 8 16 16 8

A D AA AD DD AAD AAAV V V V V V V
 
(4)

  James’s  [6]  contribution is important because this formu-
lation provides a framework to test the observed frequen-
cies (or relative risks) in relatives against single-locus ver-
sus multi-locus models. A single-locus model for human 
disease – the prevailing view at that time – does not give 
rise to epistatic variance and hence gives different predic-
tions of risk across different classes of relatives compared 
to multi-locus models  [6] . Therefore, it provides a strat-
egy, in principle (if the data sets are sufficiently large and 
if there are multiple classes of relatives), to test the valid-
ity of a single-locus model compared to a multi-locus 
model from observable data. 

 Liability Threshold Model 

 A particular multi-locus model is the threshold model 
that Falconer  [9]  and Crittenden  [10]  described building 
on the work of others. An unobserved liability threshold 
model to explain observations on discrete characters was 
first proposed by Sewall Wright in the context of the 
number of toes in guinea pigs  [1] . The quantitative ge-
netic theory that showed the correspondence between ge-
netic parameters on a scale of liability and an observed 
binary scale was developed later  [11] , in particular in the 
appendix developed by Alan Robertson. The theory in 
this paper used a linear approximation from a Taylor se-
ries expansion to transform from an additive scale of li-
ability to a discrete 0–1 scale. Assuming that the liability 
threshold model is a reasonable model to explain obser-
vations on a binary scale, the paper by Dempster and Ler-
ner  [11]  had important implications for the response to 
selection in populations undergoing selection. In particu-
lar, if genetic variation on the scale of liability is fully ad-
ditive, then genetic variation on a binary scale can be 
highly epistatic. This implies that the estimation of addi-
tive genetic variance on the observed scale from the re-
semblance between relatives is biased upwards, the bias 
depending on whether close relatives (e.g. full-sibs) or 
more distant relatives (e.g. half-sibs) are used for estima-
tion. In addition, the predicted response to selection 
based upon narrow sense heritability on the 0–1 scale can 
be biased downwards or upwards, the bias being a func-
tion of heritability of liability, population prevalence and 
selection intensity.
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  The linear transformation of heritability from the ob-
served 0–1 scale to that of liability is

  2
2

2

1
,o

l

h K K
h

z

 
(5)

  with K being the population lifetime prevalence and z the 
height of the normal curve at the truncation point per-
taining to K  [11] . In human studies (of the pre-genomics 
era), accurate estimates of narrow-sense heritability on 
the observed scale were hard to achieve, as the sample 
sizes were limited and disease status could only be record-
ed on close family members, e.g. identical or non-identi-
cal twin pairs. 

 Falconer  [9]  (and Crittenden  [10] ) showed that
the resemblance between relatives on discrete scales can 
be framed in the theory of response to truncation selec-
tion, and derived the estimation of heritability on the 
scale of liability directly from the lifetime prevalence 
(called ‘incidence’ by Falconer) in probands (ascer-
tained individuals who have the trait/disease of interest) 
and their relatives. Falconer’s method to estimate heri-
tability is a linear regression of mean liability of relatives 
of probands on mean liability of probands, both as a 
deviation from the population mean. This is analogous 
to a ratio of response to selection and selection differen-
tial, and he showed that heritability of liability could be 
estimated from two measures, risk of disease in the pop-
ulation (K) and risk of disease in relatives of those af-
fected (K R ), 

 
2 ,R
l

R

T T
h

a i

 
(6)

  where  a  R  is the additive genetic relationship between the 
relatives,  T =  Φ –1 (1 –  K ) and  T  R  = Φ –1 (1 –  K  R ) are the 
thresholds of the normal distribution that truncate pro-
portions  K  and  K  R  ,  respectively.  i  is the mean liability of 
the diseased group in the population, calculated as  i  =
 z / K , where  z  =  φ ( T ) ,  as in Fisher  [12] . 

 The derivation of the expected disease concordance 
rate for MZ twin pairs under a liability threshold model 
was an extension from Charles Smith  [13] . Smith made 
an important observation that the expected concor-
dance rate can be low even when the heritability of lia-
bility is high. Conversely, a low MZ concordance rate 
for a disease with prevalence of, say,  ≤ 1% does not im-
ply that genetic factors are unimportant. To this day, 
there is much confusion in human genetics about the 
relationship between heritability and disease concor-
dance in relatives, particularly MZ twins. Smith ex-
panded on this study by showing how the proband con-

cordance rate can be used to estimate heritability of li-
ability from a design including both dizygotic and MZ 
twin pairs  [14] .

  Assumptions of Polygenic Models 

 In Fisher’s model, a large number of variants of small 
effects leads, by the central limit theory, to normal distri-
butions of genetic effects (subsequently called ‘breeding 
values’ in the quantitative genetics literature in the ab-
sence of non-additive variation, but initially called ‘essen-
tial genotypes’ by Fisher  [12] ). The model is sometimes 
called the infinitesimal model, but one does not need an 
infinite number of variants to approach normality (actu-
ally only a small number, of the order of 10 or so, are 
needed). The gene effects do not have to be the same nor 
does gene action need to be strictly additive. In fact, Fish-
er partitioned his genetic variance into additive and dom-
inant components of variation.

  Clearly, the liability threshold model is only one of 
many possible models that link multifactorial contribu-
tions to disease risk to the observed binary outcome. A 
key feature of any multi-locus model for disease that af-
fects only a small proportion of the population is a highly 
non-linear relationship between burden of disease alleles 
and risk of disease  [15] . The liability threshold model is 
the simplest representation, as it depends on only two pa-
rameters: risk of disease in the population and the pro-
portion of variance on the liability scale attributed to ge-
netic factors; hence avoiding modelling individual loci by 
representing many genetic architectures in terms of num-
ber and frequency of risk loci that each could equate to 
explain the same total variance. It is incorrect to state that 
the liability threshold model to disease, and the concept 
of a heritability of liability, cannot be tested with empiri-
cal data. If we knew all risk variants for a particular dis-
ease, and their effect sizes were estimated without error, 
then the liability threshold model could be tested by com-
paring observed and predicted probabilities of disease 
given genotype. In terms of modelling the relationship 
between multiple risk factors and binary outcome, the li-
ability threshold model is (almost) identical to a probit 
model. In addition, an underlying continuous logistic 
scale, as routinely used in epidemiology, results in almost 
identical observations and inference  [16] . Hence whether 
there is a hypothetical threshold on an unobserved nor-
mal or logistic scale makes little difference to inference 
about genetic factors on disease.
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  Additive and Non-Additive Variation 

 There is a great deal of confusion about the meaning 
and implication of additive effects and additive genetic 
variation. This is the case for quantitative traits and even 
worse for binary traits. Fisher parameterised his genetic 
variance from a regression of phenotype on genotype 
(here, genotype can be thought of as 0, 1 or 2 alleles at a 
particular locus). The regression variance is the additive 
genetic variation and the residual variance is the domi-
nance variance. This partitioning is very useful because it 
leads to a natural prediction of the response to natural or 
artificial selection and the resemblance between relatives. 
The confusion arises because the relationship between 
gene action (additive, when the mean value of a heterozy-
gous genotype is exactly between the mean value of the 
homozygous genotypes, or dominant/recessive, when it 
is not) and additive and dominance variation depends on 
allele frequency. Additive genetic variation is the variance 
of ‘average effects’ of an allele, which is the regression co-
efficient from the regression of phenotype on genotype. 
Because of the dependency of the variance components 
on allele frequency, a strong deviation from additive gene 
action can result in mostly additive genetic variation. This 
apparent paradox becomes more extreme when model-
ling higher-order epistatic interactions in multi-loci 
models: the more higher-order interactions, the more ad-
ditive genetic variation  [17] . This observation does not 
mean that the partitioning of observed variance compo-
nents in additive and non-additive genetic variation is not 
useful or wrong. In practice, it means that loci can be de-
tected from modelling simple additive relationships be-
tween the trait and genotypes (SNP dosage).

  Non-additive effects and their resulting variance (if 
any) depend on scale because they are statistically interac-
tion effects. For binary disease traits, this begs the ques-
tion of what scale is appropriate for variance partitioning 
and heritability. Empirical observations on the recur-
rence risk of relatives and the effect of individual genetic 
variants on disease imply that a hypothetical continuous 
scale of risk (liability) fits the data better than an additive 
model on the binary scale  [18] . This is no different from 
the conclusions from epidemiological models of environ-
mental risk factors for common complex diseases. Hence, 
the transformation to the liability scale for disease pro-
vides a useful framework to model disease on an additive 
scale, which fully implies that on the disease scale the 
mode of action is highly non-additive. Many researchers 
set out to detect non-additive effects between loci, but the 
burden of multiple testing means that such studies are 

restricted to scans of two- or three-locus interactions. For 
diseases with a multi-genic or polygenic architecture, 
such approaches are misguided as the non-additive ac-
tion that leads to disease is likely to reflect an increase in 
risk of disease associated with a burden of risk alleles, i.e. 
high-order interactions (or genotypic context [19]). Such 
a disease architecture is consistent with robustness to 
lower burden of risk alleles.

  We Do Not Need to Know Disease Etiology to 

Quantify and Estimate Genetic Variation for Disease 

 From a statistical or genetic (biological) point of view, 
if the aim is to estimate genetic variation and to dissect it 
into contributions from individual loci, there is no rea-
son to treat human disease differently from quantitative 
traits in humans or from disease in other species. There 
is nothing wrong in using data on the observed 0–1 scale 
as if it is a quantitative trait. Animal breeders have been 
selecting against common diseases in their species of in-
terest doing just that, and with success (as measured by 
changes in mean incidence over generations). In recent 
years, the introduction of methods that estimate genetic 
variation contributing to human disease  [20, 21]  has pro-
vided an important stepping stone to the ultimate iden-
tification of individual risk loci. This is because smaller 
sample sizes are needed to estimate the total contribution 
of genetic loci which have provided confidence to con-
tinue investing in increasing sample sizes to allow studies 
that are sufficiently powered to detect individual loci.

  A Model Is Just That 

 All statistical models make assumptions, and clearly 
some models cannot be true (e.g. there are not an infinite 
number of genetic variants contributing to disease risk). 
However, models of disease can be useful and make pre-
dictions that can be tested empirically. When GWAS ex-
periments started to discover robust associations between 
SNP allele and risk to disease, with small effect sizes, a 
polygenic liability threshold model of disease would pre-
dict that with increasing sample size very many such
associations would be detected, and this is exactly what 
happened subsequently. For example, for schizophrenia 
there was a single locus detected in 2009 from about 3,000 
cases and 3,000 controls  [22] , yet by 2014 that number 
had risen to over 100  [23] , consistent with theory.
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  There are a number of diseases for which there are 
common variants of relatively large effect (e.g. auto-im-
mune diseases and dementia) that in combination with 
polygenic variation contribute to overall genetic risk. As-
suming an infinitesimal model of liability to disease for 
such diseases would be inefficient when applied to risk 
prediction  [24, 25] . However, it would not necessarily 
lead to biased estimation of genetic variance from GWAS 
SNP data.

Conclusion

  Empirical data on human diseases and disorders have 
been used to quantify recurrence risk of relatives and to 
dissect population genetic variation into contributions 
from individual loci. It is outside of the scope of this paper 
to review that literature in detail, but there are some broad 
conclusions that can be drawn. Decades of studies in large 
epidemiological cohorts and twin studies  [26]  imply that 
most recurrence risk to relatives is due to genetic factors 
and that the data are consistent with a polygenic model of 
liability. Gene mapping studies in pedigrees have rarely 
led to the identification of mutations of polymorphisms 
with a large effect on risk in those pedigrees. Population-
based gene mapping studies, such as GWAS, have detect-
ed robust associations between genetic variants and a dis-
ease or disorder. The identification of tens or hundreds of 
variants, each with a small effect, has provided empirical 
evidence that there are many more such variants to be 

detected and that one-third to two-thirds of genetic vari-
ation inferred from pedigree data is captured by SNP ar-
rays. Very recently, a number of functional studies have 
led to the resolution of SNP-disease associations to the 
level of individual nucleotides  [27, 28] . In addition, there 
is little empirical evidence to support widespread varia-
tion in liability to disease caused by either gene-gene or 
gene-environmental interactions on that scale. Clearly, 
there are many exceptions to these broad conclusions. 
They include the detection of near-Mendelian mutations 
by linkage studies in families, the contribution of a bur-
den of rare coding mutations to some disorders (e.g.  [29] ) 
and the existence of genes of large effects for some com-
mon diseases/disorders (particularly autoimmune disor-
ders). Nevertheless, across common diseases and disor-
ders, a model such as the liability threshold model is re-
markably consistent with empirical data and useful for 
statistical analysis to quantify and partition genetic varia-
tion in the population, detect new loci and to generate 
genetic predictors.
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