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Natural selection drives evolving populations up the fitness

landscape, the projection from nucleotide sequence space

to organismal reproductive success. While it has long been

appreciated that topographic complexities on fitness

landscapes can arise only as a consequence of epistatic

interactions between mutations, evolutionary genetics has

mainly focused on epistasis between pairs of mutations.

Here we propose a generalization to the classical population

genetic treatment of pairwise epistasis that yields

expressions for epistasis among arbitrary subsets of

mutations of all orders (pairwise, three-way, etc.). Our

approach reveals substantial higher-order epistasis in almost

every published fitness landscape. Furthermore we

demonstrate that higher-order epistasis is critically important

in two systems we know best. We conclude that higher-order

epistasis deserves empirical and theoretical attention from

evolutionary geneticists.
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Introduction
Epistasis is the geneticist’s term for mutational inter-

action. Colloquially, epistasis can be regarded as our

surprise at the phenotype when mutations are combined,

given the constituent mutations’ individual effects. The

recognition of epistasis between pairs of mutations in

both discrete, Mendelian [1] and continuous [2,3] traits

goes back roughly 100 years, but recent experimental

advances draw attention to interactions between more

than two mutations. For example, how often does pair-

wise epistasis itself vary with genetic background [4�,5��]?
Current Opinion in Genetics & Development 2013, 23:700–707 
Critically, such higher-order interactions cannot be cap-

tured by pairwise epistasis [6,7].

Epistasis is also fundamental to systems biology, because

interdependencies are intrinsic to networks, its central

object of study. For example, data on pairwise epistasis

between gene deletions have provided insight into meta-

bolic networks in yeast [8��,9,10] and E. coli [11]. Epistasis

is also of critical importance to the analysis of genome-

wide association data [12,13]

For population and evolutionary geneticists, one pheno-

type is of particular interest: reproductive success (or

fitness). Theoretical and experimental results link pair-

wise epistasis for fitness to speciation [e.g. [14,15]], the

evolutionary advantage of recombination [e.g. [16–18]]

and opportunities for adaptation [e.g. [19��,20]]. Our own

interest in higher-order epistasis began from an appreci-

ation that only epistasis [21,22�] can give rise to topo-

graphic complexities on the fitness landscape [23]. To

illustrate this point, first consider nucleotide sequence

space [24], in which all pairs of genotypes differing by a

single point mutation are adjacent to one another. The

fitness landscape is then the projection from such a

spatially organized sequence space to organismal fitness.

Finally, ruggedness in the fitness landscape arises if an

only if the sign of the fitness effect of mutations varies

with genetic background, elsewhere called sign epistasis

[21]. Importantly however, we lack a more complete

quantitative understanding of the relationship between

landscape topography and higher-order epistasis.

Here we first review recent empirical studies that follow

the groundbreaking approach of Malcolm et al. [25] to

describe fitness landscapes using reverse genetics. That

study characterized the combinatorially complete set of

eight alleles of an avian lysozyme defined by all combi-

nations of three missense mutations. Other studies have

used traditional genetic crosses or random mutagenesis to

describe fitness landscapes. Whatever their method, these

recent surveys demonstrate that fitness landscapes are not

terribly smooth [19��,25–29,30��].

The next challenge is to characterize the epistasis in

these data [31�]. In any system defined by point mutations

at L sites, there are
L
k

� �
subsets of k mutations which

may or may not interact. Consequently there may be this

number of epistatic terms of order k. Here we propose a
www.sciencedirect.com
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generalization of the classical population genetic

framework which allows us to compute epistasis of all

orders (see Box 1). Using this approach we find substantial

amounts of higher-order epistasis in almost every pub-

lished dataset. We also show that higher-order epistasis is

of evolutionary importance in two systems we know best.

Empirical fitness landscapes
Table 1 lists the 14 systems we know of in which fitness

(or a proxy phenotype) for all combinations of some set of
Box 1 – A natural framework for computing epistasis of arbitrary ord

Abstractly, any combinatorially complete fitness landscape is a mapping fro

represented as a vector W
*

of 2L fitness values, ordered by an L bit binary

absence of the mutation at the corresponding loci [28]. Thus for example, in

the element W011 represents the fitness of the genotype carrying mutation

The Walsh Transform is a linear transformation of W
*

into another vector E
*

, c

by an L bit binary number, but here digits 1 and 0 represent the presence

corresponding interaction term. For example again assuming three mutatio

The Walsh transformation yields E
*

by multiplying W
*

with an invertible, sym

(figure). Because C is its own inverse to within a constant, subsequent mu

the identity matrix.) In general, there will then be
L
k

� �
terms involving exac

that the order of each element in E
*

is the number of 1’s in its subscript.

A critical feature of the Walsh framework is that its basis is orthogonal, sinc

each Walsh coefficient is independent of all others, which explains why pair

also links the Walsh transform to both the discrete Fourier transform [60,6

We now develop the connection between Walsh coefficients and familiar 

First order Walsh coefficients (i.e. those with a single 1 in their subscript) 

denotes wild-type), which represent the fitness effect of single mutations. To

the figure):

1

8
½ðW 000 � W 001Þ þ ðW 010 � W 011Þ þ ðW 100 � W 101Þ þ ðW 110

By grouping terms we have highlighted the fact that E001 is proportional to t

on the 000, 010, 100, and 110 genetic backgrounds. Thus, E001 is exactly

backgrounds. Following the subscripting convention outlined above for E
*

, w

s001� 2E001 given the combinatorially complete fitness vector W
*

. We simila

for mutations at the center and leftmost loci.

Continuing in this manner we see that second order Walsh coefficients (i.e

epistatic coefficients. Classically, epistasis between two mutations i and j i

expected and observed fitness. Assuming an additive expectation, this m

ðWA � Ww:t:Þ þ ðWB � Ww:t:Þ� ¼ ðWw:t: � WAÞ � ðWB � WABÞ. (Note that eA

Now compare the rightmost expression for eAB with a second order Wals

E011 ¼
1

8
f½ðW 000 � W 001Þ � ðW 010 � W 011Þ� þ ½ðW 100 � W 101Þ

(the fourth line of the figure). The two terms in square brackets each have the

state at the leftmost locus, that is, except for genetic background. Thus E

averaged across backgrounds. Again following the subscripting conventio

e011 � 4E011. (And similarly e101� 4E101 and e110 � 4E110.)

The pattern described for first and second order Walsh coefficients can b

datasets of L mutations. In particular, every kth order Walsh coefficient wi

involves 2k differences. Hence, we compute the kth order epistatic coefficien

close connection between our epistatic coefficients and those in the Taylo

Two points of reference are useful (Figure 1a). On additive (or log-transform

order and above are numerically equal to zero. And in contrast, on fitness la

any probability density function, mean squared epistatic coefficients incre

between these two extremes.

www.sciencedirect.com 
point mutations has been reported. Interestingly, while

the datasets are formally similar, these studies spring from

three distinct intellectual traditions.

The original case [25] begins from the observation that in

game bird lysozyme, threonine-isoleucine-serine and ser-

ine-valine-threonine are the only two amino acid triplets

that are ever observed at residues 40, 55 and 99, respect-

ively. The authors reasoned that these two extant forms

must be linked phylogenetically by some succession of
er

m all 2L genotypes defined by L biallelic loci to fitness [21]. This can be

 number whose digits 1 and 0, respectively, signal the presence or

 a system with three mutations there are 23 = 8 fitness values in W
*

, and

s at only the second and third loci.

alled the Walsh coefficients [57–59]. E
*

also has 2L values, again ordered

 or absence of a contribution from the mutation at each locus to the

ns, E011 represents the interaction between the second and third loci.

metric 2L � 2L transformation matrix C together with a constant 2�L

ltiplication of E
*

by C restores W
*

. (Algebraically, 2�L�C�C = I, where I is

tly k interacting loci in E
*

; we describe these as kth order terms, and note

e the dot product of any two row vectors in C is zero. In other words,

wise interactions cannot capture higher-order terms. This orthogonality

1], and 2k factorial analysis from experimental design [46,62].

population genetic parameters.

are related to classical selection coefficients (s = Wmutant � Ww.t., w.t.

 see this consider E001 (the second line in the 3-locus case illustrated in

� W 111Þ�

he sum of four quantities: the effect of a mutation at the rightmost locus

 half the effect of a mutation at the rightmost locus, averaged over all

e compute the average selection coefficient for the rightmost mutation

rly compute average selection coefficients s010� 2E010 and s100 � 2E100

. those with two 1’s in their subscript) are intimately related to pairwise

s represented by eij, equal to the difference between a double mutant’s

eans that for two arbitrary mutations A and B, eAB ¼ WAB � ½Ww:t:þ
B is symmetric with respect to mutations A and B: eAB = eBA.)

h coefficient, for example,

 þ ðW 110 � W 111Þ�g

 structure of eAB. Furthermore, these terms are identical except for allelic

011 is exactly one fourth the epistasis between the rightmost two loci

n above, we compute the average epistasis between these two loci as

e generalized up to Lth order interactions on combinatorially complete

ll be proportional to the sum of 2L–k interaction terms, each of which

t as 2k times the corresponding Walsh coefficient. We note in passing a

r expansion of the fitness landscape [61].

ed multiplicative) fitness landscapes, all epistatic coefficients of second

ndscapes whose values are independent and identically distributed on

ase exponentially with order. We expect biological datasets to lie

Current Opinion in Genetics & Development 2013, 23:700–707
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Box figure and legend
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The Walsh transform of the fitness landscape ~W into Walsh coefficients ~E. Here we consider the fitness landscape defined by all combinations

of L = 3 mutations in the avian lysozyme characterized by Malcolm et al. [[25]; melting temperature is used as a proxy for fitness]. Each row is

ordered by a binary string whose bits left-to-right correspond to the T40S, I55V and S91T mutations. (Here, T, S, I and V stand for threonine, serine,

isoleucine and valine, respectively, and the number is the mutated residue in the enzyme.) In the case of the fitness landscape vector W
*

, each ‘1’ in

the string signals a contribution from that mutation to the corresponding fitness value. In the Walsh coefficients vector E
*

, each ‘1’ in the string

signals a contribution from that mutation to the corresponding interaction coefficient. Thus for example we observe that the Walsh coefficient

corresponding to the S91T mutation is equal to �1.538C (second line) and that Walsh coefficient corresponding to the I55V and S91T mutations

(fourth line) is equal to zero. C can be written for arbitrary L, as for example with the hadamard() function in the software package Matlab

(Mathworks, Natick, MA).
functionally equivalent alleles defined by other combi-

nations of these three residues. They thus synthesized

all six such lysozymes, and characterized the melting

temperature of each. Remarkably, all conceivable muta-

tional trajectories between the two extant triplets include at

least one mutational intermediate whose melting tempera-

ture is outside the physiologically permissible range [25].

Thus this system exhibits sign epistasis [21], since the same

mutations increase melting temperature in some genetic

contexts while reducing it in others [see Figure 2 in citation

[25]]. The authors concluded that some compensatory

processes must have been at work during the evolution

of bird lysozyme: either other residues influencing melting

temperature, or natural selection responding to other enzy-

matic properties conferred by these mutations.

Many studies follow the lysozyme tradition, finding that

sign epistasis is widespread [26–28,32,33] though not

ubiquitous [19��,30��]. This work has further stimulated

study of the underlying molecular mechanisms of epis-

tasis [32,34,35,36��] as well as epistasis across environ-

ments [37��,38] and epistatic opportunities for

evolutionary reversions [32,37��].

Quite a different motivation for developing such datasets

stems from an interest in genetic load (the steady-state

fitness cost of recurrent deleterious mutations) [reviewed

in [39]] and relatedly, the ability of genetic recombination

to reduce genetic load [reviewed in [40]]. Perhaps because

they derive from older theoretical questions, these studies

often used traditional genetic crosses of visible markers

[39–41]. Interestingly, although extensive epistasis is

observed (including sign epistasis), this work tends not

to support the hypothesis that genetic recombination can

more effectively purge deleterious mutations [41] or speed

adaptation [40]. (But see Conclusions.)
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The final class of studies comes from the protein engin-

eering community. This work uses random mutagenesis

to search for novel enzymatic variants exhibiting desired

catalytic properties in the mutational neighborhood

around some starting allele. Thus this work is not princi-

pally concerned with abstract properties of the fitness

landscape, but of course these properties influence

results. As with the other two classes of studies, this work

has revealed considerable topographic complexities on

fitness landscapes [e.g. [42,43]].

Is higher-order epistasis evolutionarily
important?
Thus topographic complexities are widespread on bio-

logical fitness landscapes. In order to quantify the under-

lying epistasis, we computed all epistatic coefficients for all

datasets in Table 1 using the approach proposed in Box 1.

Figure 1 presents mean squared values as a function of

interaction order for each system. In almost every case the

mean magnitude of higher-order epistatic coefficients is as

large as or larger than the pairwise effects. Although con-

siderable heterogeneity exists among systems, it appears

that substantial higher-order epistasis is common in nature.

We next addressed the evolutionary consequences of

higher-order epistasis by re-examining two published

systems in greater detail. Typical of the work summarized

in Table 1, we previously characterized the combinato-

rially complete fitness landscape defined by five

mutations in the b-lactamase gene of E. coli [27]. These

mutations jointly increase resistance to the antibiotic

cefotaxime �100,000-fold, and together define 5! = 120

possible mutational trajectories linking the starting and

highest-resistance b-lactamase alleles. Importantly, four

of these five mutations exhibit sign epistasis, and con-

sequently, resistance increased monotonically on only 18 of
www.sciencedirect.com
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Table 1

Published combinatorially complete fitness landscapesa

System (assay) Number of

mutations

Number of

genes

Largest

combinatorially

complete subset

Study’s main findings Figure 1

panel

Citation

Avian lysozyme

(melting temperature)

3 1 3 No selectively neutral pathway

links the only two extant alleles

b [25]

D. melanogaster visible mutant

(productivity and male mating success)

5 5 5 Epistasis and sexual selection

may attenuate genetic load in

natural populations. Higher-order

epistasis observed.

c [39]

E. coli dihydrofolate reductase mutants

(in vitro enzymatic activity)

5 1 3 Fitness landscape smoother than

random; first study to offer

quantitative definition of

roughness

d [42]

E. coli isopropyl malate

dehydrogenase mutants (growth rate)

7 1 7 Essentially all epistasis for fitness

arises in mapping from

biochemistry to fitness

e [26,34]

E. coli b-lactamase mutants

(resistance against two antibiotics)

5 1 5 Sign epistasis constrains the

number of selectively accessible

mutational trajectories to

highest-fitness allele; adaptive

trajectories are rarely reversed

when environment changes

f [27,37��]

Solinaceae sequiterpine mutants

(5-EA synthesis)

9 1 6 Rugged landscape in which

alternate catalytic specificities

are often mutationally nearby

g [43]

A. niger visible mutations (growth rate) 8 8 5 Genetic recombination does little

to speed adaptation; fitness

landscapes have intermediate

ruggedness

h [22�,40]

P. falciparum dihydrofolate reductase

mutants in E. coli (resistance against

an antimalarial drug)

4 1 4 Clinical data consistent with

evolutionary trajectory predicted

from in vitro results

i [28]

Mammalian glucocorticoid receptor

mutants (cortisol binding)

4 1 4 Epistasis renders evolutionary

trajectories selectively

irreversible

j [32]

P. falciparum dihydrofolate reductase

mutants in S. cervisiae (resistance

against two antimalarial drugs)

5 1 3 Landscapes not well correlated

across environments

k [33,38]

S. cerevisiae visible mutations

(growth rate)

6 6 6 Epistasis is variable and genetic

recombination does little to

speed adaptation

l [41]

HIV glycoprotein mutants

(in vitro infectivity)

7 1 5 Common, strong epistasis.

Higher-order effects noted

m [56]

Metholobacterium extorquens beneficial

mutations in novel metabolic

pathway (growth rate)

4 4 4 Negative pairwise epistasis

among beneficial mutations

n [19��]

E. coli beneficial mutations (growth rate) 5 5 5 Negative pairwise epistasis

among beneficial mutations

o [30��]

a Sorted by year of publication.
the 120 trajectories [27]. In other words, epistasis renders

many mutational trajectories selectively inaccessible.

What is the relationship between selective accessibility

and epistatic coefficients in these data? To test the

hypothesis that higher-order terms might contribute only

modestly to the number of selectively accessible muta-

tional trajectories, we took advantage of the fact that one

can easily convert from epistatic components back to

fitness landscapes (see Box 1). For each order we thus
www.sciencedirect.com 
computed the number of selectively accessible trajec-

tories on the premise that all higher-order epistatic coef-

ficients were zero. When only first-order terms are non-

zero the landscape is by definition additive (see circles in

Figure 1a) and thus drug resistance must increase mono-

tonically along all 120 mutational trajectories. But inter-

estingly, the number of selectively accessible trajectories

drops almost linearly (r2 = 0.97) as successively higher-

order epistatic coefficients are included in the landscape

(data not shown). Thus this characteristic of fitness
Current Opinion in Genetics & Development 2013, 23:700–707
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Figure 1
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Epistatic coefficients as a function of order. Because epistatic coefficients may be positive or negative (Box 1), mean squared values are shown. The

zeroth-order epistatic coefficient is the mean fitness across all genotypes (see Box 1); in each case here, fitness values were normalized to make this

quantity equal to 1.0. First-order and second-order coefficients are analogous to classical selection coefficients and classical pairwise epistasis

terms, respectively (see Box 1). Error bars represent standard deviation among coefficients of given order; those that extend to the x-axis overlap 0.
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landscapes seems to depend almost equally on all orders

of epistasis.

We also computed all epistatic coefficients on the fitness

landscape defined by a simple model of protein folding

stability [44��] given by 1/(1 + eDG/kbT). Here DG is the free

energy of folding, kb is Boltzman’s constant and T is

temperature. Beginning from a wild type protein with

typical folding stability DG = �8 kcal/mol [44��], assum-

ing that DG values are additive [45] and that mutations

have DDG = 1 kcal/mol [44��], we find that on this land-

scape mean squared epistatic coefficients for fitness

increase monotonically and almost exponentially with

order (triangles in Figure 1a).

Conclusions: evolutionary biologists should
worry about higher-order epistasis
While empirical fitness landscapes were first characterized

almost 25 years ago [25], the past few years have seen an

explosion in this work, and several empirical facts are now

beginning to emerge. Here we propose a natural general-

ization to the classical measure for pairwise epistasis (Box

1) which reveals substantial higher-order epistasis in almost

every empirical system examined (Figure 1). We also show

that higher-order epistasis is of critical evolutionary import-

ance in the two systems we know best. As outlined in the

introduction, these findings have direct implications for

many branches of systems biology.

We are aware of two other studies that explore higher-

order interactions in experimental data using an approach

closely related to ours. One demonstrates several intri-

guing regularities among higher-order interactions in a

meta-analysis of 113 combinatorially complete exper-

iments from the engineering literature [46]. The other

shares our specific interests in the statistical properties of

fitness landscapes [47].

Our chief novelty has been to propose a generalization to

the classical population genetic approach for computing

pairwise epistasis, to now address epistatic interactions of

all order. Importantly, higher-order epistasis is formally

independent of the pairwise effects (see Box 1). While we

have not addressed the consequences of experimental

measurement error for our approach, the influence of such

noise on interaction coefficients computed in a closely
(Figure 1 Legend Continued) (a) Theoretical fitness landscapes. Additive 

constituent mutations, which in turn were drawn uniformly on the interval [

(squares) genotypic fitness values were drawn independently and identica

squared epistatic coefficient increases exponentially with order. We expect

stability model (triangles) considers the fitness landscape defined by 1/(1 +

DDG = 1 kcal/mol [44��]. Here DG is the free energy of folding, kb is Boltzma

Empirical fitness landscapes in Table 1; citations given in square brackets. Gr

were log-transformed before epistatic coefficients were computed. In cases 

identified (panels d, g, k, m) results for a randomly selected subset is show

www.sciencedirect.com 
related manner was very modest [47] in one dataset [43]

examined here. We also note that other approaches for

computing epistatic coefficients of arbitrary order are

possible and may prove useful in some contexts.

The theoretical implications of higher-order epistasis

remain unknown. For example, substantial attention

has traditionally been paid to the role of positive and

negative pairwise epistasis in the evolutionary persistence

of genetic recombination [48], but under what circum-

stances will recombination be favored in the face of

higher-order effects [40,49,50]? Moreover we now have

several classification schemes for epistasis, including the

distinction between one-dimensional and multidimen-

sional epistasis [50], sign and magnitude epistasis [21]

and between pairwise and higher-order effects. These

definitions derive from different intellectual motivations,

but it may be possible to use the present framework to

integrate these traditions into a single conceptual appar-

atus.

Finally, we acknowledge an important limitation to the

approach used here: its dependence on combinatorially

complete datasets. This follows from the fact that the

fitness landscape and its epistatic coefficients are simple

transformations of one another: they both have 2L degrees

of freedom. Thus as L (the number of mutations of interest)

increases in any given system, the amount of bench work

required to compute all epistatic coefficients increases

exponentially [51]. Fortunately our framework can also

yield expressions for a subset of epistatic coefficients from

combinatorially incomplete datasets of corresponding size

[46,52]. Recently published analyses based on alignments

of naturally occurring protein-coding sequences demon-

strate that a great deal of evolutionary information is

already present in pairwise epistasis [53,54�,55]. We now

look forward to analogous work that capitalizes on the

theoretical opportunities posed here to explore the con-

sequences of epistatic interactions among mutational sub-

sets larger than two but possibly still much smaller than L.
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