27

Variance-Component Estimation

with Complex Pedigrees

In the numerous forms of analysis of variance (ANOVA) discussed in previ-
ous chapters, variance components were estimated by equating observed mean
squares to expressions describing their expected values, these being functions of
the variance components. ANOVA has the nice feature that the estimators for the
variance components are unbiased regardless of whether the data are normally
distributed, but it also has two significant limitations. First, field observations
often yield records on a variety of relatives, such as offspring, parents, or sibs,
that cannot be analyzed jointly with ANOVA. Second, ANOVA estimates of vari-
ance components require that sample sizes be well balanced, with the number of
observations for each set of conditions being essentially equal. In field situations,
individuals are often lost, and even the most carefully crafted balanced design
can quickly collapse into an extremely unbalanced one. Although modifications
to the ANOVA sums of squares have been proposed to account for unbalanced
data (Henderson 1953, Searle et al. 1992), their sampling properties are poorly
understood.

Unlike ANOVA estimators, maximum likelihood (ML) and restricted
maximum likelihood (REML) estimators do not place any special demands on
the design or balance of data. Such estimates are ideal for the unbalanced designs
that arise in quantitative genetics, as they can be obtained readily for any arbitrary
pedigree of individuals. Since many aspects of ML and REML estimation are quite
difficult technically, the detailed mathematics can obscure the general power and
flexibility of the methods. Therefore, our main concern is to make the theory more
accessible to the nonspecialist, and as a consequence, we are not as thorough in
our coverage of the literature as in previous chapters. Also, unlike elsewhere in
this book, we occasionally rely upon mathematical machinery (such as matrix
derivatives) that is not fully developed here (see Appendix 3 for an introduction).
This chapter is mathematically difficult in places, and the reader will do well to
review some of the advanced topics in Chapter 8 (such as the multivariate normal
and expectations of quadratic products) and Appendix 4.

We start at a relatively elementary level, providing a simple example to show
how ML and REML procedures can be used to estimate variance components
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and how these estimates differ. We then develop the ML and REML equations for
variance-component estimation under the general mixed model (introduced in
Chapter 26). Extension of these methods to multiple traits, wherein full covariance
matrices, rather than single variance components, must be estimated, are then
reviewed. We conclude our coverage of ML/REML by examining a number of
computational methods for solving the ML /REML equations.

ML/REML methods provide a powerful approach to estimating variance
components in populations with complex but known pedigrees. In studies of
natural populations, however, the relationships between individuals are often
uncertain. We close the book with a brief discussion of a new and conceptually
simple procedure that yields estimates of variance components using relatedness
estimates indirectly inferred from information on molecular markers. This excit-
Ing development is of potentially great utility for the quantitative-genetic analysis
of natural populations in undisturbed settings.

While our focus is largely on the estimation of additive genetic and environ-
mental variances, we remind the reader that ML /REML analysis can be applied
to a wide variety of issues (as was the case with BLUP), including those involving
the estimation of nonadditive genetic variances (Henderson 1985b), mutational
variances (Wray 1990), genetic covariances across environments (Platenkamp and

Although algebraically tedious, maximum likelihood (ML) is conceptually very
simple. It was introduced to variance component-estimation by Hartley and Rao
(1967). For a specified model, such as Equation 26.1, and a specified form for
the joint distribution of the elements of y, ML estimates the parameters of the
distribution that maximize the likelihood of the observed data. This distribution is
almost always assumed to be multivariate normal. An advantage of ML estimators
is their efficiency — they simultaneously utilize all of the available data and

account for any nonindependence.
One drawback with variance-component estimation via the usual maximum

likelihood approach is that all fixed effects are assumed to be known without error.
This is rarely true in practice, and as a consequence, ML estimators yield biased
estimates of variance components. Most notably (as we show below), estimates
of the residual variance tend to be downwardly biased. This bias occurs because
the observed deviations of individual phenotypic values from an estimated pop-
ulation mean tend to be smaller than their deviations from the true (parametric)
mean. Such bias can become quite large when a model contains numerous fixed
etfects, particularly when sample sizes are small.

Unlike ML estimators, restricted maximum likelihood (REML) estimators
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maximize only the portion of the likelihood that does not depend on the fixed
effects. In this sense, REML is a restricted version of ML. The elimination of bias
by REML is analogous to the removal of bias that arises in the estimate of a
variance component when the mean squared deviation is divided by the degrees
of freedom instead of by the sample size (Chapter 2, and below). REML does
not always eliminate all of the bias in parameter estimation, since many methods
for obtaining REML estimates cannot return negative estimates of a variance
component. However, this source of bias also exists with ML, so REML is clearly
the preferred method for analyzing large data sets with complex structure. In the
ideal case of a completely balanced design, REML yields estimates of variance
components that are identical to those obtained by classical analysis of variance.
Since it was first introduced to breeders by Patterson and Thompson (1971), many
thorough references to REML, its justification, and its various applications have
been published (Harville 1977; Ott 1979; Henderson 1984b, 1986; Gianola and
Fernando 1986; Little and Rubin 1987; Robinson 1987; Searle 1987; Shaw 1987:
Searle et al. 1992).

A Simple Example of ML versus REML

In an attempt to make the distinction between ML and REML likelihood equa-
tions as simple and transparent as possible, we start with a useful pedagogical
connection between ML and REML noticed by Foulley (1993), confining our at-
tention to a very simple application — the estimation of the mean and variance
of a set of independent observations. In this case, the mixed model reduces to

y=1u+ e (27.1)

where 1 is the population mean (the fixed effect), 1 is an x 1 column vector of ones
(equivalent to the design matrix X in Equation 26.1), and the covariance matrix
of residuals about the mean is assumed to be R = ¢°I.

What are the ML estimates of u and ¢* based on the n sampled individ-
uals? Assuming the phenotypes are independent of each other and normally
distributed, the probability density of the data y conditional on the parametric
mean and variance is the product of the n univariate normal densities,

p(y | p,0° przlu,

= (27r)_”/2(crz)""n/2 exp i:— Z ________(%2;2/1)2} (27.2)

i=1
where y; is the phenotypic value of the ith individual. Taking the natural logarithm

of the expression on the right, the log-likelihood (Appendix 4) for the observed
data set is

L(y|p,0%) = — = | In(27) + In(c®) + — (y; — W )2} (27.3a)
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Although this is the logarithm of the likelihood of the data given the moments of
the normal distribution (1 and ¢2), it can also be viewed as the log-likelihood of
the parameter estimates, L(u,0° |y), treating the y; as constants and p and 0 as
variables. To obtain estimates of these two distributional parameters, we need at
least two observable statistics. Letting

we have

(g’ T

(27.3b)

Substituting this final expression into Equation 27.3a, the log-likelihood can be
expressed as

| V T — )2
Ly, o?|y) = ____’{23 [ln(27r) +1In(o?) + —— (gg 2 } (27.3c¢)
Differentiating with respect to y and ¢ yields
0L(p,0%ly) _ n(y—p)
_ — 27.
o — (27.4a)
OL(w,o%ly) _ n V+ @ -
53 = =5 1 — = (27.4Db)

By setting these equations equal to zero and solving, we obtain estimators for
the population mean and variance that maximize the likelihood function given

the observed data y. From Equation 27.4a, we obtain an estimator for the mean
that is completely independent of the variance,

uw=7y (27.5a)

where = denotes an estimate. This shows that the standard definition of a sample
mean is, in fact, the ML estimate of the parametric value. Unfortunately, the

solution to Equation 27.4b,

2=V +(y—p)° (27.5b)
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is not independent of the estimated mean, 7, unless the estimated mean happens
to coincide perfectly with the true mean p. The maximum likelihood estimator
of 0* is obtained by assuming that the mean is, in fact, estimated without error,
yielding '
0=V (27.5¢)

Since the term ignored in Equation 27.5b is necessarily positive, Equation 27.5¢
gives a downwardly biased estimate of the true variance o2.

REML removes this bias by accounting for the error in the estimation of p.
From Equation 27.5b, the expected amount by which & underestimates o2 is the
expected value of (7 — u)#, which is simply the sampling variance of the mean,
0 /n. Thus, an improved estimator is

0.2

G =V+E[F-p]=V+— (27.5d)

We cannot, of course, know exactly what this bias is because we do not know ¢
with certainty (indeed, we are trying to estimate it). However, the bias is estimable
because we have a preliminary estimate of o2, the maximum likelihood estimate
V. Thus, starting with the initial estimate of 7<(0) = V, a second improved esti-
mate of the variance is

~ 2
g “(0) :V-i——‘/:-
n n

c°(1) =V +

However, just as this changes the estimate of the variance, it also changes the
estimate of (y — u)“. Hence, a third estimate of o2 would be

522) = v+ 20—y YT/

(f (f

This sequence suggests an iterative approach for estimating the variance,

ci(t+1) =V + Ezn(t) (27.6a)

The final (stable) solution to this equation, 7 ¢, is obtained by setting 5 4(t + 1) =
0 “(t), yielding

mn

~2 & V = _Z_Lil_(_y_?’___y_)z (27.6b)

R n— 1

which is the unbiased estimator of the variance that we normally use (Chapter 2).

To obtain a solution for this particular example, iteration of Equation 27.6a
is not really necessary. However, with models containing multiple fixed effects in
the form of the vector u, closed solutions such as Equation 27.6b are not usually
possible, particularly in complex pedigree analyses involving unbalanced data.
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In those cases, as we will see below, iterative procedures can still yield solutions
that are asymptotically unbiased.

Note that the REML estimators given by Equations 27.5a and 27.6b were
derived under the assumption of normality. That these same solutions can be
acquired without reference to any particular distribution (Chapter 2) provides
some evidence that REML estimators may often be fairly robust to violations of
the normality assumption.

ML ESTIMATES OF VARIANCE COMPONENTS IN THE
GENERAL MIXED MODEL

In light of the fundamental role that the mixed model plays in quantitative ge-
netics, we attempt in this section to give a clear step-by-step development of the
maximum likelihood procedures, following the same steps that were used above
for the simple model (y = 1 x4 + e). Although REML is preferred over ML as a
method of analysis, we start with ML, since REML estimation can be expressed
as an ML problem by a simple linear transform.

We start with the general mixed model (Equation 26.1), y = X3 + Zu + e,
and we assume that u ~ MVN(0, G) and e ~ MVN(0, R). Under this model, y
is also multivariate normal, with mean X3 and variance-covariance matrix V =
ZGZ" + R. Recalling the form of the multivariate normal distribution (Equation
8.24), the probability density of the data y, analogous to that in Equation 27.2, is

p(y | XB, V) = (2r) "?| V| /2 exp —-;—(y -XB) 'V i (y-XB)| (27.7a)

The next step, analogous to Equation 27.3a, is to take the natural logarithm of the
expression on the right of Equation 27.7a. This yields the log-likelihood of 3 and

V given the observed data (X,y) as

LB,V I[X,y) = —g In(27) — % In| V|- %(y -XB)'V (y—XpB) (27.7b)
The following discussion considers u = a to be the vector of additive genetic
(breeding) values. The variance components that we are trying to estimate are
embedded within G and R, and we assume that G = 04 A, where A is the ad-
ditive genetic relationship matrix, and that R = 0%, 1, i.e., the residual deviations
of different individuals are independent and homoscedastic.
This approach extends readily to the estimation of additional variance com-

ponents by using the generalized model

y=XB+)» Zu;+e (27.82)
1=1



VARIANCE-COMPONENT ESTIMATION /85

where the m vectors of random effects (u;) are assumed to be uncorrelated, with
u; ~ MVN(0, o2 B;) and B, being a matrix of known constants. This more general
model can incorporate estimates of dominance and other nonadditive variances,
and maternal effects variances, to name a few (see Chapter 26). The log-likelihood

is still given by Equation 27.7b, but now the covariance matrix V consists of m + 1
(unknown) variances,

V=> 02Z;B;,Z] +0%1 (27.8b)

We now move on to the partial derivatives of the log-likelihood required for
the derivation of the ML estimators. Consider first the derivative with respect
to the vector of fixed effects, 3. This derivative involves only the final term of

Equation 27.7b, and its procurement is facilitated by using a general result for
matrix derivatives. Applying Equation A3.25d,

Oy —XB)"'V (y - XB)]

— T'xr—1/,, _
53 = —2XTv~ iy - X3 (27.9)
which yields
aL(/Ba(;g Xa Y) _ XTV—l(y _ X,@) (27_10)

Obtaining the partial derivatives with respect to the variances 0% and 0%
involves two other general results from matrix theory (Searle 1982, pp. 335-336).
If M is a square matrix whose elements are functions of a scalar variable z, then

Oln | M| _10M
—. = tr (M 5 ) (27.11a)
oM™ = —M"~ 18M M~ (27.11Db)
ox Az

where tr, the trace, denotes the sum of the diagonal elements of a square ma-
trix (Chapter 8). The trace operator appears frequently in this chapter, and the
following properties will prove usetul

(27.12a)
(27.12b)
(27.12c¢)
(27.12d)

where I,, is the n x n identity matrix.
Recall that prior to the differentiation of Equation 27.3a, we rewrote the sum
of squared deviations of observed mean phenotypes from the population mean
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in terms of (y; — u) and ¥ — pu. Performing the analogous changes in matrix form,
we find that

(y - XB)TVHy-XB) = (y - XB)TV(y - XB)
+(B-B)TXTVIX(B-8) (27.13)

where 3 is the estimate of 3. (This step is not really necessary here, but its incor-
poration will allow us to see the bias in ML estimates of the variance components,
as it did in the previous section.)

Moving now to the derivatives with respect to the variance components, we
first assume the simple case of only two unknown variances, typically % and
02 . Writing V in terms of these two components, we have V = 0% ZAZ" + 02 1.

Using the notation of o7 to denote the variance component being estimated, we
have

o0V I when ¢? = ¢4
=V, = { z ” (27.14a)

007 ZAZ' when o? = o2

Substituting Equation 27.13 into Equation 27.7b, using Equations 27.11a,b, and

letting o denote either o4 or 0%, we obtain the general equation

1

1 ~ ~

Oo'?

+ %(B’ — ,B)TXTV_lviV“lX(E — B.) (27.14Db)

where V; is given by Equation 27.14a. Equations 27.10 and 27.14b are directly
analogous to Equations 27.4a,b derived above. Note that V; is a fixed matrix of
known constants, whereas V = 02 ZAZ" + 021 is a function of the variance-
component estimates. More generally, with m random effects plus a residual error
(Equation 27.8a), Equation 27.14b holds for each of the m + 1 variance components

with

OV I when o¢? = o+
V. — { E (27.15)

004 Z.B,Z;] otherwise
The maximum likelihood (ML) estimators are obtained by setting Equations

27.10 and 27.14b equal to zero and solving. Using Equation 27.10 alone, a little
rearranging gives the ML estimate of the vector of fixed effects as

~ ~—1

3= (XTV X)) X7V y (27.16)

Note that this is the BLUE (best linear unbiased estimator) of 3 obtained in the
previous chapter (Equation 26.3). The ML estimators for the variance components

are obtained by setting 3 = Bin Equation 27.14b, rendering the last term equal
to zero. Rearranging, we obtain

tr(V. V,))=(y—-XB8)'V V.,V (y—X3) (27.17a)
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This equation can be simplified by using the matrix
P=v!l-vixxtvix)-ixtv- (27.17D)

which will appear frequently throughout the rest of the chapter. In particular, we
have the very useful result that

Py = Vly - VvV 1X(XTV X)) XTV~ly = V'i(y — X33) (27.17¢)

Using this identity, Equation 27.17a can be more compactly written as

tr({/_lvi) = yTPV,Py (27.17d)

where we use the notation P to remind the reader that P, being a function of V.,
depends on the variance components that we are trying to estimate. Although
it may not be immediately apparent, Equation 27.17d is directly analogous to
Equation 27.5c. The variance estimates that we wish to obtain, 55 and £, are

contained on both sides of Equation 27.17d, embedded in the inverted variance-
~ —1
covariance matrix V. that appears in P.

In summary, the ML estimates satisfy the solutions to Equation 27.16 (for
the fixed effects) and the set of equations for the variance components (Equation
27.17d). For the additive model assumed above, the two variance equations are

tr({}_l) = y'PPy for o% (27.18a)
tr(V  ZAZT) = yTPZAZ Py for o3 (27.18b)

More generally, with m random effects plus a residual (Equation 27.8a), the set of
m + 1 ML equations for the variances of random effects is

tr(V ) = yTPPy for o2 (27.19a)
tr({}_lziB@-Z?) = yTiSZiBiZ?iSy for 07,1 <i<m (27.19b)

where P now uses

(27.19¢)

These solutions have two troublesome properties. First, unlike our simple
example at the start of this chapter where there was a closed form estimator for

the fixed effect i, the ML vector of fixed ettects 3 is a function of the variance-
covariance matrix V, which in turn contains the variance components that we

wish to estimate. Second, because these solutions involve the inverse of V, they
are nonlinear functions of the variance components. As a consequence, there is
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no simple one-step solution. ML estimation of 3, 0%, and ¢% requires an iterative
procedure, several steps of which are described below.

Example1. Consider the simple animal model, y = X3+ a+ e, where thereis
only one observation perindividual (4 = I),and weassumea ~ MVN(O, 0?4 A)
and € ~ MVN(0, 0% I). In this case, the ML equations become

where

W

and P is obtained by substituting V into Equation 27.17b.

If we further allow for dominance, the model becomes modified to y = X3 +
a+ d + e. Assuming a ~ MVN(0,0% A), d ~ MVN(0,0% D), and e ~
MVN(O0, 0% I), the ML equations now become

Standard Errors of ML Estimates

Recall from the theory of maximum likelihood (Appendix 4) that standard errors
of ML estimates can be obtained from the appropriate elements of the inverse
of the Fisher information matrix (F) involving the vector of parameters being
estimated (@). The elements of F are functions of the second derivatives of the
log-likelihood function, evaluated by substituting ML estimates of the parameters,

(27.20)

e

©

02L 0L
Vi = o (aei aej) ~ 06,00,

G

















































