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Variance-Component Estimation

with Complex Pedigrees

In the numerous forms of analysis of variance (ANOVA)discussed in previ-
ous chapters, variance components were estimated by equating observed mean
Squares to expressions describing their expected values, these being functionsof
the variance components. ANOVAhasthenice feature that the estimators for the
variance componentsare unbiased regardless of whether the data are normally
distributed, but it also has twosignificant limitations. First, field observations
often yield records on a variety of relatives, such as offspring, parents, or sibs,
that cannotbe analyzedjointly with ANOVA. Second, ANOVAestimatesofvari-
ance components require that sample sizes be well balanced, with the numberof
observationsfor each set of conditions being essentially equal. In field situations,
individuals are often lost, and even the most carefully crafted balanced design
can quickly collapse into an extremely unbalanced one. Although modifications
to the ANOVA sumsof squares have been proposed to account for unbalanced
data (Henderson 1953, Searle et al. 1992), their sampling properties are poorly
understood.

Unlike ANOVA estimators, maximum likelihood (ML) and restricted
maximum likelihood (REML)estimators do not place any special demands on
the design orbalanceof data. Such estimatesare ideal for the unbalanced designs
thatarise in quantitative genetics, as they can be obtained readily for any arbitrary
pedigree of individuals. Since many aspects ofML and REMLestimationare quite
difficult technically, the detailed mathematics can obscure the general power and
flexibility of the methods. Therefore, our main concernis to make the theory more
accessible to the nonspecialist, and as a consequence, weare not as thoroughin
our coverage of the literature as in previous chapters. Also, unlike elsewhere in
this book, we occasionally rely upon mathematical machinery (such as matrix
derivatives) that is not fully developed here (see Appendix for an introduction).
This chapter is mathematically difficult in places, and the reader will do wellto
review someof the advanced topics in Chapter 8 (such as the multivariate normal
and expectations of quadratic products) and Appendix 4.

Westartat a relatively elementary level, providing a simple example to show
how ML and REMLprocedures can be used to estimate variance components
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and howthese estimates differ. We then develop the ML and REML equationsfor
variance-componentestimation under the general mixed model(introduced in
Chapter 26). Extension of these methodsto multiple traits, wherein full covariance
matrices, rather than single variance components, must be estimated, are then
reviewed. We conclude our coverage of ML/REML by examining a numberof
computational methodsfor solving the ML/REMLequations.

ML/REML methods provide a powerful approach to estimating variance
components in populations with complex but knownpedigrees. In studies of
natural populations, however, the relationships between individuals are often
uncertain. We close the book with a brief discussion of a new and conceptually
simple procedure thatyields estimates of variance components using relatedness
estimatesindirectly inferred from information on molecular markers. This excit-
ing developmentisof potentially great utility for the quantitative-genetic analysis
of natural populations in undisturbedsettings.

While our focusis largely on the estimation of additive genetic and environ-
mental variances, we remind the reader that ML/REMLanalysis can be applied
to a widevariety of issues(as wasthe case with BLUP), including those involving
the estimation of nonadditive genetic variances (Henderson 1985b), mutational
variances (Wray 1990), genetic covariances across environments (Platenkamp and
Shaw 1992), and maternal and cytoplasmic genetic variances (Southwood etal.
1989).

ML VERSUS REMLESTIMATES OF VARIANCE COMPONENTS

Althoughalgebraically tedious, maximum likelihood (ML)is conceptually very
simple. It was introduced to variance component-estimation by Hartley and Rao
(1967). For a specified model, such as Equation 26.1, and a specified form for
the joint distribution of the elements of y, ML estimates the parametersof the
distribution that maximizethelikelihood ofthe observeddata.Thisdistributionis
almost always assumedtobe multivariate normal. An advantage ofMLestimators
is their efficiency — they simultaneously utilize all of the available data and
account for any nonindependence.

One drawbackwith variance-componentestimation via the usual maximum
likelihood approachisthatall fixed effects are assumed to be known without error.
Thisis rarely true in practice, and as a consequence, MLestimators yield biased
estimates of variance components. Most notably (as we show below), estimates
of the residual variance tend to be downwardly biased. This bias occurs because
the observed deviations of individual phenotypic values from an estimated pop-
ulation meantend to be smaller than their deviations from the true (parametric)
mean. Such bias can becomequite large when a model contains numerousfixed
effects, particularly when sample sizes are small.

Unlike ML estimators, restricted maximum likelihood (REML) estimators
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maximize only the portion of the likelihood that does not depend onthe fixed
effects. In this sense, REMLis a restricted version of ML. The elimination of bias

by REMLis analogous to the removal of bias that arises in the estimate of a
variance component whenthe mean squared deviation is divided by the degrees
of freedom instead of by the sample size (Chapter 2, and below). REML does
not alwayseliminate all of the bias in parameter estimation, since many methods
for obtaining REML estimates cannot return negative estimates of a variance
component. However,this source of bias also exists with ML, so REMLis clearly
the preferred method for analyzing large data sets with complexstructure. In the
ideal case of a completely balanced design,REMLyields estimates of variance
components that are identical to those obtained byclassical analysis of variance.
Since it wasfirst introducedto breeders by Patterson and Thompson(1971), many
thorough references to REML,its justification, and its various applications have
been published (Harville 1977; Ott 1979; Henderson 1984b, 1986; Gianola and
Fernando 1986; Little and Rubin 1987; Robinson 1987; Searle 1987; Shaw 1987;

Searle et al. 1992).

A Simple Example of ML versus REML

In an attempt to make the distinction between ML and REMLlikelihood equa-
tions as simple and transparentas possible, we start with a useful pedagogical
connection between ML and REMLnoticed by Foulley (1993), confining ourat-
tention to a very simple application — the estimation of the mean and variance
of a set of independent observations. In this case, the mixed model reduces to

y=l1pt+e (27.1)

where p is the population mean(thefixed effect), 1 isan x 1 column vectorof ones
(equivalent to the design matrix X in Equation 26.1), and the covariance matrix
of residuals about the mean is assumed to be R = 071.

Whatare the MLestimatesof 4 and o? based on the n sampled individ-
uals? Assuming the phenotypes are independentof each other and normally
distributed, the probability density of the data y conditional on the parametric
mean andvarianceis the product of the n univariate normal densities,

p(y | u,07 = [Trtlao

_ (21)—7/2(g?2)-"/2 exp - > (Yi — ee 072)

— 20?

wherey;is the phenotypic value of the ith individual. Taking the natural logarithm
of the expression on the right, the log-likelihood (Appendix 4) for the observed
datasetis

L(y |“,0°) = — In(2m) + Info") + —3 (ui -| (27.3a)
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Althoughthis is the logarithm of the likelihood of the data given the moments of

the normaldistribution (j: and a7), it can also be viewedasthe log-likelihood of

the parameterestimates, L(,07 | y), treating the y; as constants and ys and o” as

variables. To obtain estimates of these two distributional parameters, we needat

least two observable statistics. Letting

mn i=1 " w=1

we have

d(H - HYP? = Dw - 7+ 7-4)?
t=1 w=1

=u -9+OG - 4 )+209- 2) Si -3)
w=1 i=l i=l

=n(V+(9~#)?] (27.3b)
Substituting this final expression into Equation 27.3a, the log-likelihood can be

expressed as

V y—p)?
L(p,07 |y) = -5 in(2n) + In(o?) +oe (27.3c)

Differentiating with respect to and o? yields

OL(u,o"ly) _ ny - 4)api =—S (27.4a)

OL(u,o7|y) on V+(9- 4)?

By setting these equations equalto zero andsolving, weobtain estimatorsfor

the population mean andvariance that maximize the likelihood function given

the observed data y. From Equation 27.4a, we obtain an estimator for the mean

that is completely independentof the variance,

w=Y (27.5a)

where ~ denotes anestimate. This showsthat the standard definition of a sample

meanis, in fact, the ML estimate of the parametric value. Unfortunately, the

solution to Equation 27.4b,

6° =V4+(y-p)’ (27.5b)
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is not independentof the estimated mean, 7, unless the estimated mean happens
to coincide perfectly with the true mean y. The maximum likelihood estimator
of o? is obtained by assuming that the meanis, in fact, estimated withouterror,
yielding

G7 =V (27.5c)

Since the term ignored in Equation 27.5b is necessarily positive, Equation 27.5c
gives a downwardly biased estimate of the true variance o”.

REML removesthis bias by accounting for the error in the estimation of p.
From Equation 27.5b, the expected amount by which G? underestimates o?is the
expected value of (y — 4)”, which is simply the sampling variance of the mean,
o*/n. Thus, an improved estimatoris

o2

e7=V+El(¥- ny]=V+— (27-5d)
Wecannot, of course, know exactly whatthis bias is because we do not know o”
with certainty (indeed, weare trying to estimateit). However, the bias is estimable
because wehavea preliminary estimate of a”, the maximum likelihood estimate
V. Thus, starting with the initial estimate of ¢7(0) = V, a second improvedesti-
mate of the varianceis

s2y-ve 7 O yy”
nr Tr

 

However, just as this changes the estimate of the variance, it also changes the
estimate of (y — )*. Hence, a third estimate of c* would be

522) =v 2LyVtWin)
Tv Tv

 

This sequence suggests an iterative approach for estimating the variance,

o7(t+1)=V+a (27.6a) 

Thefinal (stable) solution to this equation, G7, is obtained by setting ¢?(t + 1) =
g(t), yielding

 (27.6b)

whichis the unbiased estimatorof the variance that we normally use (Chapter2).
To obtain a solution for this particular example, iteration of Equation 27.6a

is not really necessary. However, with models containing multiple fixed effects in
the form of the vector u, closed solutions such as Equation 27.6b are not usually
possible, particularly in complex pedigree analyses involving unbalanced data.
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In those cases, as we will see below, iterative procedures canstill yield solutions

that are asymptotically unbiased.
Note that the REMLestimators given by Equations 27.5a and 27.6b were

derived under the assumption of normality. That these same solutions can be
acquired without reference to any particular distribution (Chapter 2) provides
some evidence that REML estimators may often be fairly robust to violations of
the normality assumption.

ML ESTIMATES OF VARIANCE COMPONENTSIN THE

GENERAL MIXED MODEL

In light of the fundamental role that the mixed modelplays in quantitative ge-
netics, we attemptin this section to give a clear step-by-step developmentof the
maximum likelihood procedures, following the same steps that were used above
for the simple model (y = 1+ e). Although REMLis preferred over ML as a
methodof analysis, we start with ML, since REML estimation can be expressed
as an ML problem by a simple linear transform.

We start with the general mixed model (Equation 26.1), y = XG+ Zu+e,

and we assume that u ~ MVN(0, G) and e ~ MVN(0, R). Under this model, y
is also multivariate normal, with mean Xand variance-covariance matrix V =
ZGZ’ +R. Recalling the form of the multivariate normaldistribution (Equation
8.24), the probability density of the data y, analogousto that in Equation 27.2,is

p(y | XB, V) = (27)~"/?| V|7"/? exp —5(y — XB)'V""(y—X)|_—(27.7a)

The next step, analogous to Equation 27.3a, is to take the natural logarithm of the
expression on the right of Equation 27.7a. This yields the log-likelihood of G and

V given the observed data (X, y) as

L(8,V|X.y) =~ (2x) — 5in|V| ~ 5(y-XB)"V-My — XB) (27-76)

The following discussion considers u = a to be the vector of additive genetic

(breeding) values. The variance components that weare trying to estimate are

embedded within G and R, and we assumethat G = 04, A, where is the ad-
ditive genetic relationship matrix, and that R = 07 I, i.e., the residual deviations

of different individuals are independent and homoscedastic.

This approach extendsreadily to the estimation of additional variance com-

ponents by using the generalized model

y=X6+) Zu+e (27.8a)
ti=1
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wherethe m vectors of random effects (u;) are assumedto be uncorrelated, with
u; ~ MVN(0, o? B;) and B; being a matrix of known constants. This more general
model can incorporate estimates of dominance and other nonadditive variances,

and maternaleffects variances, to namea few (see Chapter 26). The log-likelihood
is still given by Equation 27.7b, but now the covariance matrix V consists of m+ 1
(unknown)variances,

V =) 007 Z,B; Zi +051 (27.8b)

We now moveonto the partial derivatives of the log-likelihood required for
the derivation of the ML estimators. Considerfirst the derivative with respect
to the vector of fixed effects, 3. This derivative involves only the final term of

Equation 27.7b, and its procurementis facilitated by using a general result for
matrix derivatives. Applying Equation A3.25d,

Ol(y — XB)?Vy — XB) _ Ty7-1 _5B = —-2X° V “(y

—

XB) (27.9)

whichyields

eyX, y) _ XTV-lly — XB) (27.10)

Obtaining the partial derivatives with respect to the variances 04 and o%
involves two other general results from matrix theory (Searle 1982, pp. 335-336).
If M is a square matrix whose elements are functionsof a scalar variable z, then

 

Oln|M| | _,0M

—1

OM - yt2M ye (27.11b)
Ox Ox

wheretr, the trace, denotes the sum of the diagonal elements of a square ma-
trix (Chapter 8). The trace operator appears frequently in this chapter, and the
following properties will prove useful

tr(a A) = atr(A) (27.12a)

tr(I,) = (27.12b)

tr (BnxmAmxn) = (AmxnBnxm) (27.12c)

tr(A +C) = tr(A) + tr(C) (27.12d)

whereI, is the n x n identity matrix.
Recall that priorto the differentiation of Equation 27.3a, we rewrote the sum

of squared deviations of observed mean phenotypes from the population mean
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in termsof (y; — 4) and ¥ — yu. Performing the analogous changesin matrix form,

wefind that

(y — XB)"V-'(y — XB) = (y - XB)Vly — XB)
+ (8-B)TX?V'X(B-B) (27.18)

where 73 is the estimate of 3. (This step is not really necessary here, butits incor-
poration will allow usto see the bias in ML estimates of the variance components,
as it did in the previoussection.)

Moving nowto the derivatives with respect to the variance components, we
first assume the simple case of only two unknownvariances, typically o% and
o2,. Writing V in termsof these two components, we have V = 02, ZAZ’ + 02,1.
Using the notation of 0? to denote the variance componentbeing estimated, we
have

OV I when o? = 07
i OB (27.14a)—_ = VV, =

ZAZ"' when o? = 0%

Substituting Equation 27.13 into Equation 27.7b, using Equations 27.11a,b, and
letting o? denote either 0%, or o%, we obtain the general equation

1

PHB

NPEY) __Tecv-tv,) + ey — XB)’'VV-y ~ XB)Oo?

+ 5 (8 - B)'XTVV,VX(8 - B) (27.14b)

where V; is given by Equation 27.14a. Equations 27.10 and 27.14b are directly

analogous to Equations 27.4a,b derived above. Note that V; is a fixed matrix of
knownconstants, whereas V = 02 ZAZ’ + 021 is function of the variance-
componentestimates. More generally, with m random effects plus a residualerror

(Equation 27.8a), Equation 27.14b holdsfor each of the m+ 1 variance components

with
ov. fi when o? = 0%~V,=
Oo? Z;B;Z; otherwise

The maximum likelihood (ML) estimators are obtained by setting Equations
27.10 and 27.14b equal to zero and solving. Using Equation 27.10 alone,a little

rearranging gives the MLestimate of the vectorof fixed effects as

 (27.15)

8=(KTV X)OXTV -y (27.16)

Note that this is the BLUE (best linear unbiased estimator) of G obtained in the

previous chapter (Equation 26.3). The ML estimators for the variance components

are obtained by setting @ = G in Equation 27.14b, rendering the last term equal

to zero. Rearranging, we obtain

A A~A—]1 A~A—1 ~

tr(VV;)=(y-XB)'V. VV (y — XB) (27.17a)
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This equation can be simplified by using the matrix

P=V!}—VUtX(X?V'X)1X?Vv (27.17b)

which will appear frequently throughout therest of the chapter. In particular, we
havethe very useful result that

Py = Vly — V7!X(X7V7!X)XTVly = V-Hy — XB) (27.17c)

Usingthis identity, Equation 27.17a can be more compactly written as

tr(VV;) = yPViPy (27.174)

where weuse the notation P to remindthe readerthat P, being a function of V,
depends on the variance componentsthat we are trying to estimate. Although
it may not be immediately apparent, Equation 27.17d is directly analogous to
Equation 27.5c. The variance estimates that we wish to obtain, ¢4 and G,are
contained on both sides of Equation 27.17d, embeddedin the inverted variance-

~—1
covariance matrix V that appears in P.

In summary, the MLestimates satisfy the solutions to Equation 27.16 (for
the fixed effects) and the set of equations for the variance components (Equation
27.17d). For the additive model assumed above, the two variance equationsare

tr(V) = y’PPy for o% (27.18a)

tr(VZAZ") = y’PZAZPy for o%, (27.18b)

Moregenerally, with m randomeffects plus a residual (Equation 27.8a), the set of

m +1 MLequationsfor the variances of random effects is

tr(V) = y’PPy for o% (27.19a)

tr(V-Z,B,Z7) =y?PZ,B;Z7Py for 02, 1<i<m_ (27.19)

where P now uses

t=1

These solutions have two troublesome properties. First, unlike our simple

example at the start of this chapter where there was a closed form estimator for

the fixed effect yz, the ML vector of fixed effects G is a function of the variance-

covariance matrix V, which in turn contains the variance components that we

wish to estimate. Second, becausethese solutions involve the inverse of V, they
are nonlinear functions of the variance components. As a consequence, there is
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no simple one-step solution. ML estimation of 3, 04,, and 0% requiresan iterative
procedure, several steps of which are described below.

Example1. Consider the simple animal model, y = X@+a+e,wherethereis
only one observation per individual (Z = I), and weassumea ~ MVN(0, 04, A)
and e ~ MVN(0, 0%, I). In this case, the ML equations become

where
~~

| V=G5A+GZ1

and is obtained by substituting V into Equation 27.17b.

If we further allow for dominance, the model becomes modified to y = X3 +
a+d+e. Assuming a ~ MVN(0,0%4 A), d ~ MVN(0,c?, D), ande ~
MVN(0, c2, 1), the ML equations now become

 

Standard Errors of ML Estimates

Recall from the theory of maximum likelihood (Appendix 4) that standard errors
of ML estimates can be obtained from the appropriate elements of the inverse
of the Fisher information matrix (F) involving the vector of parameters being
estimated (©). The elements of F are functions of the second derivatives of the
log-likelihood function, evaluated by substitutingML estimatesofthe parameters,

(27.20)
~~

PL ) = PL
e-6Bag = 2 (aa 00;) 080; 00,  
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The sampling variance of the ML estimate of the parameter6; is approximated by
F;,* (the ith diagonal element of F~'), while the sampling covariance between
the MLestimates of 6; and 0; is approximated by Ft.

Computing the partials for the mixed modelgives the information matrix for
the MLestimates of 3 and o? (the vector of variance-componentestimates) as

X*v'X 0
F= ( 0 s) (27.21)

where 1

Sig = 5 tt (V-tV;V~'V;) (27.22)

with V; given by Equation 27.15 (Searle et al. 1992). Inverting gives

—1Tyy-1
Fol= ( (x Vv x) 0 (27.23)

0 s~*

Hence,

—1
o(B;,8;) = (X*V"'X) | | o(0?, 0) = (S"1),. (27.24)

The MLestimatesfor fixed effects are uncorrelated with those for variance com-

ponents,i.e., 0(G;, 05) = 0.

 

Example 2. For the simple model with dominance (Example 1), the Fisher
information submatrix S dealing with the ML variance estimates (0%, 7%, 0%.)
1S

tr(V‘AVA) t(V'tAV'D) tr(V7tAV7')

S= 5 t(VOIAV?D) &(VDVD) &(V-DV-?)

tr(V-'AV"')  tr(Vo'DV7!) tr(VotV7")

where is as given in Example1.

 

RESTRICTED MAXIMUM LIKELIHOOD

REMLis based on linear transformation of the observation vector y that removes
the fixed effects from the model. The simplest way to see howthis is doneis to
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imagine a transformation matrix K associated with the design matrix X for the
modelunder consideration such that

KX = 0 (27.25)

Applying this transformation matrix to the mixed modelyields

y’ = Ky = K(X6+ Za+e)

= KZa+ Ke (27.26a)

The linear contrasts y* are equivalent to residual deviations from the estimated
fixed effects, akin to using ys = y; — ¥ in the introductory example used at the

start of this chapter. REML estimates of variance components are equivalent to

MLestimates of the transformed variables. Thus, we can use the MLsolutions
outlined above by making the following substitutions:

Ky for y, KX=0 for X, KZ for Z, KVK’for V_ (27.26b)

While REMLappearsto require the additional task of finding a matrix K that

satisfies Equation 27.25, the REML equations can actually be expressed directly
in termsof V, y, and P. This result follows from the very useful identity, proven
in Searle et al. (1992), that K satisfies

P = K’(KVK’)"!K (27.27)

Noting that

(y*)" (V*)""y* = (y7K*)(KVK*)"!(Ky) = y7Py (27.27)

and substituting the expressions given as 27.26b into Equation 27.17a, after some

rearrangement, the ML equations yield the REML estimators,

tr(P) = y’PPy for o%, (27.28a)

tr(PZAZ_) = y’PZAZ'Py for o% (27.28b)

Note that REML doesnotreturn estimatesof 3, since the fixed effects are removed

by setting @" = 0.
Since the transformation y* = Kysatisfying Equation 27.25 solely depends

on the design matrix, this general approachstill holds with m uncorrelated ran-

dom vectors. In this case, Equation 27.8a expandsto

y*=) KZ,u;+Ke (27.29)
i=l
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and the REMLequationsfor the m + 1 variance components become

a i

tr(P) = y’PPy for 02, (27.30a)

tr(PZ;B;Z!)=y'™PZ,B;Z? Py  foro?,1<i<m  (27.30b)

whereP is now function of V = S67 Z,B;Z) +621.
With REML, the information matrix contains only items corresponding to

variance-componentestimates, so F = S, where

1
S55 = 9 tr( PV;PV; ) (27.31a)

with V; given by Equation 27.15. Estimates of the sampling variances and covari-
ances of the variance-componentestimates are obtained from the inverse of the
matrix S, as described above.

 

Example 3. The REML variance-componentestimates for the single-records
dominance model of Example 2, y = XGB+a+d-+e,satisfy

tr(P) = y’PPy for o%

tr(PA) = y’PAPy for o%

tr(PD) = y’PDPy for 0%,

where P is defined as in Equation 27.17b with V = ¢4 A+62D+6G1. For
purposes of estimating sampling variances and covariances of these estimates,
the information matrix is given by

t(PAPA) tr(PAPD) t(PAP)

S=5 t(PAPD) t(PDPD) t( PDP)

t(PAP) t(PDP) tr(PP)

Whenthe estimate of P is inserted into this matrix, the standard errors of the

variance-componentestimates are obtained as the square roots of the diagonal

elements of S~*, and the covariance between G? and a* is given by Si.
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Multivariate Analysis

Whenmultiple characters are measuredinindividuals, the most complete analysis
includesall characters, even if our interest is only in a subset of them. Aside from
the information provided on the genetic covariances amongtraits, multivariate
analysis can improve the accuracy of variance-component estimates for single
traits for the simple reason that correlated characters provide information about
each other. Balancing these advantages are computationaldifficulties that increase
with the numberof characters underconsideration.

Extension of univariate REMLto the analysis of multiple traits is straightfor-
ward. Suppose n charactersare of interest. From our development of multivariate
BLUPin the previous chapter, the variance components for the simple additive
model now becomethe elements of the n x n covariance matrices C and E of
additive genetic and environmental effects, whose elements are, respectively, de-
noted by o,(i, 7) and og(i, 7). Thus, instead of two variances, we are now faced
with the estimation of n(n + 1) variance-covariance elements. From Chapter 26,
for the simple animal model G = C ® A and R = E @T, where ® denotes the
Kronecker product, and A is the relationship matrix. The log-likelihood function
for multiple characters is given by Equation 27.7b, with the design matrix X now
constructed as in Equation 26.31, and

V=G+R=C@QA+EOI

While the set of n(n + 1) REML equations can be obtained by differentiating
the log-likelihood with respect to each variance / covariance component, the com-
putational demandsof multivariate analysis increase rapidly with the numberof
characters. However, as we saw for multivariate BLUP analysis in Chapter 26,
canonical transformation provides an elegant way of reducing ann-dimensional
multivariate analysis to n one-dimensional analyses. An additional complexity
that arises whenthis approach is applied to REMLis that the transformation ma-
trix Q is a function of C and E,the matrices that weare trying to estimate. Aswill
be seen below, this can generally be accommodated by the iterative procedures
that are routinely employed in REMLanalysis, by starting with someinitial esti-
mate of Q, computing C and E by univariate analyses based on this Q, and then
using these new estimates to compute a new Q. Further details can be found in
Meyer(1985), Schaeffer (1986), Taylor et al. (1985), Jensen and Mao (1988), and

Thompson and Hill (1990).

ML/REMLEstimation in Populations underSelection

Selection changes the additive genetic variance of a character by generating ga-
metic phase disequilibria and changingallele frequencies. Thus, genetic variance
estimates generated from selected individuals can be quite different from those in
the unselected base population from which they descended. Undertheinfinitesi-
mal model (which assumesthe character to be determined by a very large number
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of loci, each with small effect), changes in the additive genetic variance are en-
tirely due to gametic phase disequilibria. Thus, under this model, once selection
is stopped, recombination decays the disequilibria away, returning the additive
genetic variance to the level present before selection. Hence, to the extent that
this model is approximated in nature, interest is usually in the additive genetic
variance in the unselected base population rather than that observed within a set
of selected individuals.

Undercertain experimental settings, REML variance-componentestimates
have the unique feature of being uninfluenced by selection.In particular, if the
base population consists of unrelated, unselected, and noninbred individuals
and phenotypic data are available for all selected and unselected individuals,
then REMLyieldsessentially unbiased estimates of the additive genetic variance
in the base population (Henderson 1949, Hendersonet al. 1959, Curnow 1961,
Thompson 1973, Rothschild et al. 1979, Sorensen and Kennedy 1984, Gianola and
Fernando 1986, Gianola et al. 1988, Fernando and Gianola 1990). On the other
hand, van der Werf and colleagues (van der Werf 1990, van der Werf and de
Boer 1990, van der Werf and Thompson 1992) show that when the base popu-
lation consists of previously selected individuals, REML provides no protection
from biased estimates of the additive genetic variance in the population prior to
selection, even if the entire pedigree of individuals back to the base population
is included. Likewise, if selection acts on a suite of unmeasured characters that
are correlated with characters included in the model, REML cangenerate biased
estimates of the variances and covariances of the measured characters (Schaeffer
and Song 1978).

Given that the conditions under which REMLyields unbiased estimatesare
likely to be violated in most natural populations, why should such estimates be
used? One reason is that, even though imperfect, likelihood methods always
at least partially account for biases introduced byselection, in part because the
additive genetic relationship matrix A corrects for the pattern of flow of genetic
information from generation to generation (Sorensen and Kennedy 1984). Other
variance-component estimators, such as those derived from ANOVA, make no
such correction.

SOLVING THE ML/REML EQUATIONS

Because the equations for the ML/REMLsolutionsare highly nonlinear, closed
analytical solutionsare only available in very specialcases(e.g., certain completely
balanced designs). In principle, the solutions can be obtained by performing an
exhaustive grid search — computing the log-likelihood of the data at each point
on a grid covering the entire range of parameter space, andletting the solution
be defined by the point on the grid giving the largest log-likelihood. However,
this procedure is impractical under ML if 3 contains more than a few elements,
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since each element of 3 adds to the dimensionality of the search. Under REML,
the dimensionality of parameter space can be greatly reduced, but the likelihood

function is considerably more complicated to compute. Thus, simple grid searches

are rarely used by themselves, although they are sometimes used in conjunction

with other methodsthatrestrict the search to one or a few dimensions.
A widevariety of iterative techniques for solving ML/REML equations have

been proposed based on various modifications of two basic approaches: the

Newton-Raphsonalgorithm and the EM algorithm. Both proceduresstart with

preliminary estimatesof the parameters (obtained, for example, by ordinary least-
squares analysis), and using information on the slope of the likelihood surface,

these estimates are then movedin a direction that increases the log-likelihood of

the data. The revised estimates are subsequently modified in an iterative fashion,

until a satisfactory degree of convergence on a final set of estimates has been
achieved. With these types of approaches, the search for ML/REMLsolutions
avoids spending huge amounts of computational time in regions of low likeli-

hood. Such hill-climbing methods are not guaranteed to converge on the global
maximum ofthe likelihood function, but potential problems with secondary peaks

in the likelihood surface can be investigated throughthe use of different starting

values.
Our review of numerical methodsfor obtaining solutions to the ML/REML

equationsis intentionally brief, focusing only on the generalprinciples. All of the

methodsare very intensive computationally whenlarge pedigrees are involved, as

they usually require the inversionof large matrices at each step. Detailed reviews

of this highly technical area appear in Meyer(1989b), Harville and Callanan (1990),

and Searle et al. (1992).

Derivative-based Methods

The Newton-Raphson (NR) algorithm, a standard methodfor numerically solving

coupledsets of nonlinear equations, has been used extensively to solve ML/REML

equations (Harville 1977, Jennrich and Sampson 1976, Searle et al. 1992). Specific

applications to genetic variance-componentestimation include Langeetal. (1977)

for ML estimates of additive and dominancevariancesfor single characters and

Meyer (1983, 1985) for REMLestimates of the additive genetic covariance matrix

for multiple characters. We confine our discussion of Newton-Raphsoniteration

to REMLestimates, as applications to ML follow in a similar fashion.

The Newton-Raphson method obtains the REML estimate of the vector of

parameters © bystarting with someinitial value ©) and theniterating to con-

vergenceto a final solution by using

1 0Lelkt!) — Ef) _ (H™) 70 om (27.32)

where 0 L/d @ is a columnvectorofthe partials of the log-likelihood function with

respect to each parameter evaluated at the estimate @“”), and H is the Hessian
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matrix of all second-orderpartial derivatives of the log-likelihood L with respect
to the variance components. H~! and 0L/0@ respectively provide measures of
the curvature and theslope (and directionality) of the likelihood surface, given
the currentestimates. Their product gives a projected degree of movementof the
vector © towardsan improvedsetof valuesto be usedin the nextiteration.

Consider again the mixed model with m randomfactors plus a residual,

y=Xs+>> Z,u; +e

i=1

where u; ~ MVN(0, oc? B;) for 1 < i < m, and B; isa square symmetric n; x n;
matrix of known constants. The residuals are also assumed to be multivariate
normal with e ~ MVN(0, 02,1). Since y is the sum of multivariate normals, it is
also multivariate normal with y ~ MVN(XQ, V), where

V =) 0? ZB; Z7 + 02,1
w=1

Under REML, @ = (97, 0, ---, o%)" and Equations 27.14b and 27.27b give
the elements of 0 L/0 0 as

OL

Oo?
1 1eet(Pv, ) +5y7PHOV,Py (27.33)

e
 

 

where V;is given by Equation 27.15 and P“»is calculated from Equation 27.17b
using the current variance-componentestimates in @'*). Searle et al. (1992) give
the elements of H for REMLas

1 1H‘”) = se =5tr (Pp Vv; P®) V;) ~y7P“ V;,P“ V, PM y (27.34)

whereagain thepartials are evaluated using 0,
A common variant of the Newton-Raphson algorithm is Fisher’s scoring

method, which replaces the inverse of the Hessian matrix in Equation 27.32 byits
expected value, which after allowing for a changein sign,turns outto be defined
by the inverse of Fisher’s information matrix, —F7! (Equation 27.20). This reduces
the iterative equation to

—1 L
e(k+l) — Gh) 4 (Fr) OL (27.35a)

0 -

with 1

FY = 5 tr(/P™) v, P®) Vv; ) (27.35b)
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There are several motivations for employing this modification. First, as noted

above, the inverse of the information matrix, when evaluated at the REML values,

estimates the standard errors for these estimates. Second, F is easier to compute

than H—! (compare Equations 27.34 and 27.35b). Finally, Fisher’s scoring method
appears to be slightly more robustto initial values than strict Newton-Raphson

iteration (Jennrich and Sampson 1976).

 

Example 4. Again consider the simple animal model with a single observation

per individual, y = XG + a+ e. For REMLestimates,letting

(0%) —tr(P)+y’PPy
e*) = gives 5079

(o2,)*) —tr(PA)+y?7PAPy

Note that P is a function of the current variance-componentestimates, with

P= (VO — (VANOXRTVOX)ERTEV

where

V™®= (64)A+ (02)I

with A beingthe relationship matrix for the inviduals being measured.Likewise,

from Equation 27.34 the Hessian matrix H is given by

21 tr(PP) — 2y’PPPy tr(PAP ) — 2y'PAPPy

8 e°

1

eo *\ u(PAP)—2y7PAPPy  t( PAPA) —2y7PAPAPy
 

 

and the Fisher information matrix by

tr( PP) tr( PAP )2p-—6 (#4) =
JO tr(PPA)  t(PAPA)
 

Note that P is really indexed by k since it depends on the current estimates of

the unknownvariance components, G2 and G#.
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EM Methods

The idea behind the EM (expectation/maximization) algorithm for variance-
componentanalysis is that if we knew the values of the random effects, we could
estimate the variances in a simple fashion directly from them. Focusing on the
general mixed modeldefined by Equation 27.8a, the variances of the random and
residualeffects are defined respectively to be

Eu?B>'u;
a? —By (27.36a)

4

E/e?7 e;|2, =
nr

(27.36b)

where n and n; are, respectively, the number of elements in e and u,. Equation
27.36a follows from Equation 8.22, which, since E/u;] = 0, reduces to

E[ ujB;*u,] = tr(By'o?B,;) = 07tr(In,) = 2; 07
4

Thelast two steps follow from Equations 27.12a and 27.12b, respectively. Equation
27.36b followsin a similar fashion. In actuality, of course, we only know y,not
the underlying vectors of random effects (u;) or residual deviations(e).

Underlying the EM algorithm is the idea, discussed in Chapter 26, that the
information in y provides a basis for making predictions about the elementsof
u; and e. In the context of variance-componentanalysis, we need to go a step
beyond BLUPestimation of u,; and e,as it is actually the quadratic products of
u; and e in the numerators of Equations 27.36a,b that we need to predict. Here,
in the interest of clarity and space, we skip over a numberof steps to the final
solution (see Searle et al. 1992, pp. 297-304 for a complete derivation). Searle et
al. show that the conditional distribution of u given the observed y is MVN,with

Elu;|y] = oa? ZV(y — XB) = oa? Z)Py

and

o7(uily) =o71,, —of Z7V2;

Substituting into Equation 8.22, after some simplication, the expectation of the
quadratic product in Equation 27.36a, conditional on the observed y, becomes

E(u;B;*u;|y] = ni0o7 + of Ly’ PViPy — tr( PV; | (27.37a)

where V; = Z; B; Z;_ as given by Equation 27.15. Similar logic gives

Ele’e|y] =no%,+o0%[y’? PPy — tr(P)| (27.37b)

These expressions define expected quadratic values, conditionalon the particular
set of observations y, under the assumption that the true variance components
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are known. Theastute readerwill immediately notice that our problem has hardly
been solved, since weare trying to estimate the variance components.

The EM algorithm (Dempsteret al. 1977) attempts to circumventthis prob-
lem by starting with someinitial estimates of the variance components, and then
substituting these as well as y into Equations 27.37a,b to obtain estimates of the
quadratic products. These latter estimates are then substituted into Equations
27.36a,b to obtain improved estimates of the variance components, and then the
entire process is repeated again and again until satisfactory convergence has been
achieved. Defining the quantities estimated by Equations 27.37a,b in the kth iter-

ation as @;\*), and qi) the EM algorithm can be summarizedasfollows:(1) the E

step computesthe expected quadratic products conditional upony, q”, and @.(a)
and (2) the M step substitutes these conditional expectations into the maximum
likelihood estimators (Equations 27.36a,b) to generate the next round of REML
variance-componentestimates, (¢2)(*+)) and (7)(*+)), whichare then appliedto
the next E step. The final REMLestimates are achieved when (¢?)‘*) ~ (2)(**)
and (67)*) ~ (@7)t),

That estimates obtained via the EM algorithm do indeed correspondto the
REMLsolutions can be seen byrecalling the REML Equations 27.30a,b. Upon con-

vergence of the EM algorithm,the termsinbrackets on the right sides of Equations
27.37a,b must be equalto zero, which is equivalent to the REML solutions. When

convergence is reached, the estimates of the variance components are used to

obtain the final estimate of V, and the vectoroffixed effects isthen estimated by

~ ~A—1 A~A—1

B=(X7'V X)1XxX'V y

In general, solutions via the EM algorithm can take considerably moreit-
erations to converge than those via Newton-Raphsoniteration, especially when
heritabilities are low. Moreover, as with the Newton-Raphson algorithm, the EM

algorithm is by no meansguaranteed to converge on the REMLsolution; it some-
times generates multiple solutions for different starting conditions (Groeneveld
and Kovac 1990b). Such problemscanresult from multiple peaksin the likelihood
surface. Since the EM methodin essenceusesthefirst derivativesof the likelihood

function to adjust the variance-componentestimates (compare Equation 27.33 and

the termsin brackets in Equations 27.37a,b), it can get stuck on inflection points

in the likelihood surface as well. Rounding errors can also compromisetheitera-
tive solutions (Boichardet al. 1992). As in the case of derivative-based methods,

manyof these problems can be minimized by performing multiple analyses from
different starting points.

 

Example 5. Consider again the animal model with dominance and a single

record per individual, y = X@+a-+d-+e. The EM equations for the REML
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estimatesof 0%,, 07 , and 0% are

 

AA4A\(k

(G3)"*) = (eR)+ ve {ytP™ APy — (Pal

 

~A4A\(k

(Gp)"t) = (65)+ (ep) iy" PH) Dpy — tr (Pp)|

(@el”
 g2yHH) — (G2)4 ty" p) p®y[pt

where P*)is defined by Equation 27.17b using Vv“) for V where

V® —~ (62)A+ (E2Z)"D4 (G2)1

 

Additional Approaches

Aside from its technical complexities, one of the major limitations of the EM
algorithm for variance-componentestimation is the huge computational demand
imposed bythe needto invert the V matrix each iteration. Thus, several attempts
have been made to develop EM-like algorithms that circumvent the inversion
of V. For example, Smith and Graser (1986) and Graseret al. (1987) propose a

method wherein 1 = o4,/c%, is assumed to be fixed and then, conditional on
this A, an MLestimate of o2, is obtained. With this estimate of 0% in hand, a
search is then performed to obtain anew maximumlikelihood estimate of A, and
the method is repeated until the estimates of \ and o% stabilize. Meyer (1991)
extends this method to multiple characters by performing a grid search over a
larger parameter space.

An alternative method was developed by Thompson and Shaw (1990, 1992)
for both univariate and multivariate applications of the animal model. Conven-
tional application of the EM algorithm doesthe equivalentofestimating the breed-
ing values of each individual conditional on the entire set of observations. The
key to the Thompson-Shaw methodis the computation of expected breedingval-
ues, which are taken to be conditional only on local pedigrees (the individual,
its parents and offspring, and its mate) and on the variance-componentestimates
from the previousiteration. With this approach, the V matrix that needs to be
inverted for each individual contains only the membersof the local pedigree, and

this submatrix is diagonal since, within a pedigree containing only parents and

offspring, breeding values differ only because of random segregation. Additional
simplifications of the EM equations are presented by Thompson and Shaw.
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A MOLECULAR-MARKER-BASED METHODFOR INFERRING

VARIANCE COMPONENTS

One of the greatest technical limitations of all methods for estimating genetic
variance componentsis their requirementfor pairs of individuals of knownrelat-
edness. Except in humans, some animals in zoological parks, and some domes-
ticated species, relationships of free-ranging individuals are generally unknown,
and even in the best situations, paternity is often uncertain. Thus, almostall
quantitative-genetic analyses are performedin artificial settings where the inves-
tigator has control of matings. When such settings are imposed on progeny of
individuals derived from natural populations, uncertainty always remainsas to
the relevance of the observedresults to the field situation, because changesin the
environment can induce changes in variance components. As discussed in Chap-
ter 17, some attempts have been madeto circumventthis difficulty by comparing
the phenotypes of wild-caught parents to those of lab-reared progeny, but such
approachescan only be applied to species that can be readily raised in controlled
settings, and evenin thesecases, the results can be biased. Theidealsetting for any
quantitative-genetic analysis of a natural population is the noninvasive procure-
ment of phenotypic information from random individuals of knownrelatedness.

In principle, the absence of direct observations on relationships can be over-
come by utilizing information recorded from molecular markers. Several meth-
ods have been suggested for the estimation of pairwise values of the coefficients
of coancestry (©,;) and fraternity (A;;) from information on shared alleles at
codominant marker loci (Thompson 1975, Lynch 1988c, Queller and Goodnight
1989, Ritland 1996a). These estimators are not necessarily very efficient unless

large numbers of polymorphicloci are assayed, but most of them do provide un-
biased estimates. Ritland (1996b) madethe clever leap of showing howestimates
of pairwise relatedness can be combined with estimates of pairwise phenotypic
similarity to generate estimates of variance components in undisturbed natural
populations. Ritland’s method, the fundamentals of which webriefly outline be-
low, is conceptually very simple.

Recall that the basic premise underlying all conventional methodsforesti-
mating the additive genetic varianceofa trait is the fact that, for a character with a
purely additive-genetic basis, the phenotypic covariance betweenrelatives (i and
j) has expected value 20;;04. Define the phenotypic similarity of two individuals
with phenotypesz; and z; to be

sii = (2; — Z)(z, _ Z) (27.38)

where Z is the mean phenotype in the population. Since this expressionis in the
form of a phenotypic covariance, under the purely additive model (assuming ran-
dom mating and no shared environmental effects, and an accurate estimate of Z),
the expected valueof s;; is simply 20;;04,. Thus, with a collection of individuals,
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the observed phenotypic similarity can be written in the form of a linear model,

Sig = 200%, + Ci; (27.39)

where 6,, is the estimated value of ©,; for the two individuals, and e;; is the
residual deviation of the observed similarity from its expectation. This expres-
sion assumesthat the marker loci are in gametic phase equilibrium with theloci
underlying the quantitativetrait.

_ Equation 27.39 suggests that an estimate of the narrow-sense heritability,
o,/02, can be procured by regressing pairwise measures of phenotypic similarity
on estimates of the coefficient of coancestry (with half the slope providing the
estimate of 04, and the observed phenotypic variance in the population Var(z)
providingthe estimate of 2). This idea is closely related to the logic underlying
the Haseman-Elston regression in QTL analysis (Chapter16).

Because the ,, are only estimates (andoften rather inaccurate ones), a con-
ventional least-squares analysis would lead to downwardly biased estimatesof
a“, as a consequenceof theinflated estimate of the variance ofrelatedness. Rit-
land (1996b) outlines a method thatprovides an estimateof o2,, the actual variance
of relatedness, which excludes the sampling variance resulting from the use of a
finite numberof markerloci. Letting Var(@) be the estimated actual varianceof re-
latedness and Cov(s, ©) be the covarianceof phenotypicsimilarity and estimated
relatedness, the heritability can be estimated by

7,2 Cov(s, 0)= Wary

Var(a)

(27.40)

under the assumptionsofthe ideal additive model.
This general strategy can be easily extended to the estimation of genetic

correlations amongtraits. For two characters (x and y), the analog of phenotypic
similarity is

Zui — Ze )lZyj — Z Zy i — Zy)( 22,5 — Zseyay = C28

=

Fe)Qus

—

8) + ys

=

ey =) gr

which hasthe sameform as a phenotypic covariance betweentraits. An estimate
of the additive genetic covariance can be obtained by the regression of the Seyij
on ©;;. Letting the regression slopes involvingthe szy,ij, Sr2,ij, ANd Syy ij, be Ory;
bz, and b,, respectively, the additive genetic correlation is then estimated by

 

rA= Dey (27.42)

A useful feature of this approachis that, unlike the situation with heritability
estimation, a corrected estimate of the variance of relatedness is not required.
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Althoughthe three raw regression coefficients are biased, the proportional bias is
identicalfor all three and cancels out in Equation 27.42.

Ritland’s method provides an exciting potential framework for the
quantitative-genetic analysis of natural populations, especially for species that
are difficult to perform controlled matings on and/orto raise in the lab. In pre-
liminary applications with two populationsofthe yellow monkeyflower (Mimulus
guitatus), with 300 individuals assayed per population at 10 polymorphicloci, sig-
nificant heritabilities and strong positive genetic correlations were obtained for
a variety of characters associated with fitness (Ritland and Ritland 1996). Inter-
estingly, lab-based estimates of h? using individuals of knownrelatedness were
often substantially lower than those obtainedin the field with the marker-based
technique. This suggests that heritabilities in the wild are not always depressed,
contrary to the conventional wisdom.

A numberof important technical aspects of this technique remain to be ex-
plored.First, there is the practical issue of the spatial scale on which to sample
individuals. Successful application of the technique requires the presence of ade-
quate varianceof actual relatedness amongpairs of sampled individuals. With too
large an average distance between sampledindividuals, nearly all individualswill
be essentially unrelated, and the marker-based approach will have no power. The
scale beyond which this becomes important will depend on the average dispersal
distances of individuals in the species under consideration. For this reason, the
technique will presumably prove much more useful with sedentary plants than
with mobile animals. On the other hand, with too small a spatial scale of sam-
pling, some phenotypic similarity is likely to arise from the sharing of common
environments. Ritland (1996b) outlines how the inclusion of geographic distance
between individuals in the model can allow for the factoring out of phenotypic
covariance due to shared environments.

Second, as outlined above, the model ignores the contribution of nonaddi-
tive gene action to phenotypic similarity. However, Ritland (1996b) shows how
the model can be readily extended to the joint estimation of additive and domi-
nance genetic variances, using the simple idea that in the presence of dominance,
the genetic covariance between individuals is 20;;0% + A,;o%,. Applications of
the model with dominance involve the regression of phenotypic similarity on
estimates of both 0;; and A,,;.

Third, the marker-based approach to variance-componentanalysis raises a
numberofbasicstatistical issues. The linear modeling approach taken by Ritland
(1996b) would appear to be only one of several alternative estimation methods.
In the context of all of the other methods outlined for complex-pedigree analysis
in this chapter, Ritland’s method is equivalent to partitioning all pairs of mea-
sured individuals into discrete classes based on ©;;, and then simply regressing
phenotypic similarity on 90, ignoring the nonindependenceofthe data (the very
complexity that REMLis designed to deal with). However, rather than transform-
ing the phenotypic data to pairwise measuresof similarity prior to analysis, one



VARIANCE-COMPONENTESTIMATION 803

could conceivably work directly with the individual data in a REML-like frame-
work, as described above.In this case, the elementsof the relationship matrix A
wouldbeestimates rather than actual measuresof relatedness. This alternative
approach wouldpartially account for the nonindependenceof data, which might
in turn lead to moreefficient estimators for the variance components. Onthe other
hand,it is unclear how sampling variance of relatedness, assumed to be zero in
conventional REMLanalysis, would influence the parameterestimates. The cen-
tral point is that there seem to be underlying similarities betweenthestatistical
issues raised with Ritland’s method and with REMLanalysis as conventionally
applied by animal breeders.

Finally, it is unclear how sensitive the results from Ritland’s methodare to
the presence of linkage between QTLs and markerloci. Even if all loci are in
gametic phase equilibrium in the survey population, unless they are unlinked,
they will be nonindependentin restricted regions ofthe pedigree (Chapters 14-16).
This suggests that the residualerrors in estimates of ©;; will not be independent
of those in s,; if the marker loci are linked to QTLs influencing the trait. An
interesting avenue for future investigation is whether the joint distribution of
molecular-marker and phenotype information can be usedto partition the total
genetic variance into componentsassociated with linked vs. unlinked QTLs.


