To understand their argument we must consider it in detail.

Feldman and Lewontin begin by terming the analysis of variance a local perturbation analysis, as indeed it is under certain assumptions (and geometry and the natural sciences likewise). Then they introduce broad heritability, which can be determined only from the study of identical twins reared apart in random environments, provided that gene-environment covariance and differential effects of prenatal environment are negligible. Since in practice broad heritability is not estimable, flogging it seems unnecessary. They next conclude that “statistical inference about the heritability of traits that are phenotypically plastic is invalid.” What does this mean when heritability is the complement of plasticity? They cite approvingly two comments by Moran on genotype-environment covariance, both of which were subsequently corrected (1). A valid treatment of gene-environment covariance was introduced more than half a century ago by Wright and later refined (2).

I take greatest exception to the section of the article in which the authors advocate a purely empirical method of calculating the risk of genetic disease, thereby attacking a promising development in genetic counseling—the use of genetic models. Most genetic disease is of complex etiology. Until recently, recurrence of such conditions could be estimated only by empirical calculation of risks. This method depends on no detailed genetic analysis, considers only the child immediately following the proband, and pools families of different composition, ignoring normal siblings, more remote relatives, sex, age, quantitative information, and etiological heterogeneity. The dictionary definition of “empiric” is “one who deviates from the rules of science or accepted practice; one who relies upon practical experience alone, disregarding all theoretical and philosophic considerations; hence a quack, a charlatan”—the very apotheosis of local perturbation.

Hemophilia illustrates the way in which the empirical calculation of risks can be first a step forward, then backward. Almost 2000 years ago the Talmud used empirical risk calculation: later-born sons of a woman who had lost two boys due to bleeding were not to be circumcized, nor were the sons of her sisters; but paternal half-sibs were treated as normal individuals. While remarkably accurate for its day, this is less predictive than the determination of genetic risks based on detection of carrier women, which does not require the signal of two prior deaths. Faults of empirical risk calculation are rectified in complex segregation analysis, which gives specific and precise estimates of genetic risks (3). One of the required parameters is heritability. Feldman and Lewontin’s statement that “confusing risks can be calculated separately for various ages, socioeconomic classes, cultural patterns, and the like,” does not convey to the reader that affection of family members is the central factor in genetic counseling. The counselor who follows the advice of Feldman and Lewontin and prefers the empirical calculation of risks to the more complete specification provided by genetic analysis is giving his patient second-rate service.

After this fallacy, so damaging to medical genetics, discussion of gene-environment interaction and intergroup differences is anticlimactic. Interaction diminishes family resemblance and need not concern those whose task is to explain resemblance, not dissimilarity. The heritability of group differences cannot be predicted from intragroup heritability, but no geneticist supposes that it could.

Feldman and Lewontin have generalized their attack on a particular psychologist to include a significant part of science. They are concerned about possible abuse of genetics by nongeneticists, forgetting how often dire prophecies are dispelled by investigation (4). The evil they fear thrives in the obscurity they cultivate. Their clumsy harrying of biometrical genetics is entirely unbecoming and does only senseless harm to the cause of science and humanity (5).

NEWTON E. MORTON

Population Genetics Laboratory,

University of Hawaii,

1980 East-West Road,

Honolulu, Hawaii 96822

References

In contrast to Feldman and Lewontin, we welcome the recent swing of psychology from the environmental excesses of the past to a more balanced view of the biological bases of behavior (1). Behavioral genetics is but one part of a zeitgeist that is bridging the gap between the study of behavior and the study of biology, a movement that includes both sociobiology and psychobiology (2).

Contrary to the impression that Feldman and Lewontin create, it is not difficult to find examples of the usefulness of
that it identifies politicans the specific genotype-environment interaction and discredit mined policy."

That is clearly influenced by the concept the phrenic. That is, the evidence concerning the manic-depressive psychoses is not limited to the population sampled and that genotype-environment interaction and correlation may be important. These points are misinterpreted by Feldman and Lewontin to mean that quantitative genetic analyses are, therefore, of no use. The conclusion does not follow (5). The very purpose of quantitative genetic studies is to describe genetic variability in a specific population and to ascribe that variability to environmental differences and genetic differences in that population (6). The question of generalizing to other samples and other times can only be answered empirically (the evidence with respect to cognitive abilities suggests considerable generalizability). Feldman and Lewontin seem to be more concerned with the question of what could be rather than what is. That is a legitimate concern, of course, but it should not be the basis for a critique of quantitative genetic analysis.

One aspect of their article that was most disturbing to us was its polemical nature. Feldman and Lewontin imply that the motivation of geneticists is eugenic and that they are the dupes of politicians who "use genetic misinformation to rationalize a politically determined policy." Rather than attempting to discredit research in behavioral genetics, the authors could better serve science by encouraging the search for specific genotype-environment interactions or genotype-environment correlations that they assume to be so important.

In addition to these general issues, it is necessary to address one technical point.

Precision balances and weighing systems by SAUTER.

Electronic Precision Balance, Type K 1200

Electronic Precision Balance, Type E 300/2 3000

Electronic Precision Balance, Type R 2 55

Precision Balance, Type SM 1000

Precision Balance, Type KM 200/KM 1000

Analytical Balance, Type 404/13

SAUTER balances have earned a reputation for ease of operation, economy and practical technology. No wonder SAUTER balances are the choice in research and development laboratories, in industry and scientific institutions just about everywhere.

SAUTER precision loading balances have weighing ranges from 160 g to 10 kg and more. Resolution from 1 mg to 1 g. SAUTER analytical balances are available with weighing ranges of 100 and 200 g.

Resolution of 0.01 mg or 0.1 mg.

Electronic precision balances are available with weighing ranges of 120 g, 300 g, 1200 g, 3000 g, 12 kg, 25 kg and 120 kg.

The K 1200, for example, combines two weighing ranges in one balance, touch a button and you can switch to a capacity ten times greater – from 120 g and a readability of 0.01 g to 1200 g and a readability of 0.1 g. Shown here is but a small sample of the complete SAUTER line affording high accuracy in weighing ranges from a few grams up to a ton.

Please write and let us help solve your particular balance problems.
concerning Feldman and Lewontin’s discussion of the relationship between within-group heritability \(h^2_w \) and between-group heritability \(h^2_B \), which they also use to symbolize heritability in the broad sense). Although not cited by Feldman and Lewontin, \(h^2_B \) was first expressed as a function of \(h^2_w \) (their equation 3) by DeFries (7). DeFries made two points: (i) There is a mathematical relationship between \(h^2_B \) and \(h^2_w \), contrary to what Lewontin (8) had previously asserted; and (ii) nevertheless, high \(h^2_B \) by no means implies high \(h^2_B \). Feldman and Lewontin agree with the second point, but they state that the first point is “entirely spurious” because equation 3 does not describe an “causal relationship.” Surely they cannot mean that all noncausal mathematical relationships are entirely spurious (9).

Although we disagree with many of the assertions contained in their article, we share Feldman and Lewontin’s interest in reliable data on adoptions. We believe that well-designed adoption studies can provide the best information about the relative importance of heredity as a cause of individual differences in human behavior, as well as the first solid information concerning the importance of genotype-environment correlations and interactions (5).

ROBERT PLOMIN
J. C. DEFRIES
Institute for Behavioral Genetics,
University of Colorado, Boulder 80309

References and Notes
1. See, for example, the 1975 presidential address of the American Psychological Association [D. T. Campbell. Am. Psychol. 30, 12 (Dec. 1975)].
9. Causality of the intraclass genetic correlation \(r \) and \(h^2 \) is irrelevant to the existence of a relationship between \(h^2_B \) and \(h^2_w \). Nonetheless, the assertion that \(r \) is dependent on \(h^2_w \) and not vice versa is wrong. For example, if \(h^2_B \) is fixed, then the two parameters are essentially coordinate in status.