












genetic variants by reintroducing the archaic
form found in Neanderthals and Denisovans
and measuring the effects during neurode-
velopment using human cortical organoids.
Using CRISPR-Cas9 genome-editing techno-

logy in human iPSCs, we replaced the modern
human allele of the NOVA1 gene with the
ancestral allele found in Neanderthals and
Denisovans, which contains a single-nucleotide
substitution at position 200 that causes an
isoleucine-to-valine change. NOVA1 is a con-
served neuron-specific splicing factor respon-
sible for producingmany brain-specificmRNA
isoforms (13–15). Alternative splicing is thought
to be particularly important in the brain, be-
cause neural tissues express a number of brain-
specific splicing factors necessary for proper
cortical development (17, 35). The specific role
of NOVA1 on alternative splicing of its targets
is context dependent (36). Further, the bind-
ing targets of NOVA1 are divergent, leading

NOVA1 to bind to different pre-mRNAs in the
genomes of different species (37).
Our results indicate that the in vivo RNA

binding landscape is largely unaltered by the
archaic-specificNOVA1 alteration, and the dif-
ferential splicing activity might be related to
other causes, such as binding dynamics or
cofactors, for example. We also observed
differences in gene expression, organoid
morphology, and cell proliferation when com-
paring cortical organoids carrying theNOVA1Ar/Ar

and the NOVA1Hu/Hu genetic variants (Figs. 2
and 3). Furthermore, the NOVA1Ar/Ar cortical
organoids displayed distinct excitatory syn-
aptic changes (Fig. 6), which may have led to
the observed alterations in neural network
development.
There are limitations to our approach. First,

our experiments necessarily used a specific
human genetic background of NOVA1 target
sequences, i.e., those in these human cell lines.

It is likely that the genetic backgrounds be-
tween the archaic hominin and modern hu-
mans differed such that much of the genetic
variation in these human cell lines did not
coexist with the archaic version of NOVA1.
Targets of the human-specific NOVA1 that
currently exist in humans may have under-
gone compensatory genetic changes to adapt
to the derived version of NOVA1 prevalent
among humans today.
For NOVA1 targets, the NOVA1Ar/Ar splicing

phenotype in a human genetic background
may have generated a totally new phenotype:
neither humannorNeanderthal norDenisovan.
Given the diversity of archaic ancestry within
extant human genomes, similar experiments
using a panel of human genetic backgrounds,
with differing amounts and types of Neanderthal
ancestry, could further refine the list of direct
targets and splice events specific to human
NOVA1 splicing regulation.

Trujillo et al., Science 371, eaax2537 (2021) 12 February 2021 6 of 10

Fig. 4. Global analysis of
splicing among different
samples. (A) A plot of the first
two principal components from
a PCA of cassette inclusion
frequency shows that replicates
from different cell lines cluster
together. Note how NOVA1Ko/Ko

cluster differently from the other
edited versions. (B) The second
principal component positively
correlates with NOVA1 expression.
(C) Numbers of differential
splicing events of different types
from comparisons between
NOVA1Hu/Hu and NOVA1Ar/Ar

cortical organoids at early and
late stages of maturation. More
differential splicing is found
between NOVA1Hu/Hu and
NOVA1Ko/Ko than between
NOVA1Hu/Hu and NOVA1Ar/Ar,
and more differential splicing is
found at later stages than at
early stages. (D) A set of genes
exhibiting alternative splicing
changes on the basis of NOVA1
variants at different stages of
maturation. N.E. (not expressed)
refers to splicing events with
insufficient expression for
splicing analysis.
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However, the splicing differences observed
in the NOVA1Ar/Ar cortical organoid compared
with those observed in NOVA1Hu/Hu can be in-
terpreted as the first step toward a full under-
standing of the role of the human-specific
version of NOVA1. As with all directed muta-
genesis experiments, the genetic background
may alter the phenotype. Nevertheless, this
approach provides an efficient route for dis-
covering genes and pathways affected by ar-
chaic and modern NOVA1 proteins.
Although we tried to mitigate CRISPR-Cas9

off-targets, we cannot exclude the possibility
that the phenotypic observations reported here
are due to undetectable or untargeted genetic
variants with secondary consequences to
NOVA1 activity. Our approach also cannot
directly compare brain organoids with ances-
tral brain endocasts. Brain organoids allow for
the observation and experimentation of as-
pects of the developing neural tissue in the
dish, whereas studies of human tissue and
fossil endocasts describe the phenotypic out-
come of such processes.

With these caveats clearly stated, the results
described here support the hypothesis that the
archaic NOVA1Ar/Ar genetic variant alters cor-
tical organoid development in amodernhuman
background. Thus, we hypothesize that this
genetic change was an important event in
the evolution of the modern human-specific
neural phenotype and should undergo fur-
ther studies.

Materials and methods summary
Haplotype analyses

Phased variant calls from the 1000 Genomes
Project (11) and the SGDP (12) were down-
loaded, along with high-coverage BAM files
for the Vindija (5) and Altai (4) Neanderthals
and the high-coverage Denisovan (3). After
compiling our list of human-specific fixed de-
rived alleles, we used the 1000 Genomes Proj-
ect data to scan for unrecombined haplotypes
around each. We defined an unrecombined
haplotype as the span of sites upstream and
downstream of the allele for which nomodern
human in the 1000 Genomes Project dataset

shares a derived allele with an archaic homi-
nin. Any haplotype that fell within a centro-
meric or telomeric region was discarded. We
calculated pairwise nucleotide diversity and
Watterson’s estimator of theta (38) within each
human-specific haplotype using only biallelic
SNPs for which the ancestral allele is known.
We calculated Tajima’s D from these two
values and then normalized Tajima’s D within
each haplotype by dividing it by its minimum
possible value (39).

Cell source and NOVA1 cortical
organoid generation

Two neurotypical iPSC lines and related clones
were previously characterized and validated
(20, 40). Human iPSC colonies were expanded
on feeder-free conditions on Matrigel-coated
dishes (BD Biosciences, San Jose, CA, USA)
with mTeSR1 medium (StemCell Technologies,
Vancouver, Canada) changed daily. Human
editedNOVA1Ar/Ar,NOVA1Ko/Ar, andNOVA1Ko/Ko

iPSC lines were generated using the CRISPR-
Cas9 genome-editing system to induce a point
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Fig. 5. Human and archaic
NOVA1 binding profile.
(A) Counts of significantly
enriched binding sites (peaks)
identified in each genic region
indicated (two replicates from
one cell line; NOVA1Hu/Hu

n = 1 clone, NOVA1Ar/Ar n = 1 clone,
NOVA1Ko/Ko n = 1 clone, and
NOVA1Ko/Ar n = 1 clone). Signifi-
cantly enriched peaks are peaks
with fold change >4 relative to
input and P < 0.001 (chi-square
test) in at least one of two
replicate experiments. (B) Venn
diagram of called peaks for
each genotype showing overlap
between NOVA1Hu/Hu and
NOVA1Ar/Ar binding sites. (C) Top
two motifs enriched in HOMER
(hypergeometric optimization
of motif enrichment) analysis.
Motif enrichment of nucleotides in
peak regions was calculated rela-
tive to background sequences
matched for the same genic
regions. (D) Normalized read
density of input and immuno-
precipitation samples for two rep-
licates of NOVA1Hu/Hu and
NOVA1Ar/Ar binding events in two
target genes: GTF2I and NOVA1.
Peaks called are shown in red
boxes for each genotype
(two replicates from one cell line;
NOVA1Hu/Hu n = 1 clone and
NOVA1Ar/Ar n = 1 clone).
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mutation insertion [Val200→Iso (V200I)] by
substituting codon 200 GTA (Val) with ATC
(Iso) at both alleles. Then, we used the pro-
tocol described elsewhere to generate func-
tional cortical organoids (20).

Immunofluorescence staining and immunoblot

Cortical organoids were fixed with 4% para-
formaldehyde, cryopreserved in 30% sucrose,
and sliced in a cryostat. The sliced samples
were permeabilized and blocked and then in-
cubated with primary antibodies overnight at
4°C. After washing, the slices were incubated
with secondary antibodies for 2 hours at room
temperature. The nuclei were stained using
4′,6-diamidino-2-phenylindole (DAPI) solution
(1 mg/ml). The slides were mounted using
ProLong Gold antifade reagent and analyzed
under a fluorescence microscope (Axio Ob-
server Apotome, Zeiss).

Cortical organoids were lysed in radioimmu-
noprecipitation assay (RIPA) buffer with pro-
tease inhibitors. NeuN, GFAP, CTIP2, TBR1,
FOXG1, Homer1, Syn1, VGlut1, PSD95, and
NOVA1 were used as primary antibodies, as
previously performed (20). IRDye 800CW goat
anti-rabbit and IRDye 680RD goat anti-mouse
(1:6000) were used as secondary antibodies.
Signal intensities were measured using the
Odyssey Image Studio and normalized by
actin relative quantification.

eCLIP library preparation and
computational analysis

The assay was performed as previously de-
scribed (28, 41). Briefly, organoids were mech-
anically and enzymatically dissociated into cell
suspension. Two percent of lysate was re-
tained for preparation of a size-matched
input library, and the remaining 98% was

subject to immunoprecipitation using 50 ml
of anti-NOVA1 antibody (Santa Cruz; 512Y
sc-100334) coupled to magnetic dynabeads
(Invitrogen 11203D). Bound RNA fragments
were dephosphorylated and 3′-end ligated
with an RNA adapter. Reverse transcription
was performed with AffinityScript (Agilent),
and cDNAs were 5′-end ligated with a DNA
adaptor. The cDNA products were amplified
with Q5 PCRmix (NEB) to yield a sequencing
library. Libraries were sequenced on the
Illumina HiSeq4000 in SE75 mode to a
depth of ~40 million reads per library. Reads
were processed as described previously (28).
Briefly, reads were adapter-trimmed and
mapped to human-specific repetitive ele-
ments from RepBase (version 18.05) by STAR
(42). Peaks passing significance thresholds
in either replicate were kept for downstream
analyses.
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Fig. 6. Introduction of NOVA1 archaic genetic variant in modern human
alters synaptic proteins. (A) Representative images of electron microscopy
of synaptic ultrastructure in cortical organoids with different genotypes. Scale
bar, 500 nm. (B) Western blot analysis validated predicted gene expression
reduction of synaptic protein markers (NOVA1Hu/Hu SYN1 n = 5, PSD95 n = 6,
five clones; NOVA1Ar/Ar SYN1 n = 5, PSD95 n = 6, five clones; NOVA1Ko/Ko

n = 1 clone; and NOVA1Ko/Ar n = 1 clone; unpaired t test NOVA1Hu/Hu versus
NOVA1Ar/Ar, P = 0.0276 and P = 0.0089). Data are shown as mean ± SEM;
individual cell lines are indicated by a different symbol. *P < 0.05; **P < 0.01.
(C) Reduction of post- and presynaptic marker colocalization in cortical neurons
carrying the NOVA1Ar/Ar variant (47 neurons from three clones of NOVA1Hu/Hu,
61 neurons from three clones of NOVA1Ar/Ar, 28 neurons from two clones of

NOVA1Ko/Ko, and 20 neurons from one clone of NOVA1Ko/Ar; ANOVA Kruskal-
Wallis test, ***P < 0.001). Data are shown as mean ± SEM; individual
cell lines are indicated by a different symbol. Scale bar, 2 mm. (D) Hierarchical
clustering by principal components of multiplex coimmunoprecipitation data
clustered samples by genotype. The dendrogram is overlaid on a graph of
individuals by PC1 and PC2. (E) Heatmap of ANC∩CNA significant
interactions, showing the normalized median fluorescent intensity of each
interaction in each sample. (F) Dynamic interaction map of protein
coassociations shown in (E). Edges connecting protein nodes represent
significantly different interactions. Line color and thickness represent the
direction and magnitude, respectively, of the difference (one cell line; two
clones of NOVA1Hu/Hu and two clones of NOVA1Ar/Ar).
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Splicing quantification

To quantify splicing, we used juncBASE (36)
to calculate a percent spliced in (PSI) value
for each alternative splicing event. We ran
juncBASE on the read alignments, using
GENCODE v19 (43) as the annotation set. To
call differentially spliced events, we used the
pairwise Fisher’s test script. We considered
a splicing event to be differentially spliced
if the replicates of the human control were
not significantly different from each other,
but the replicates of the sample were all sig-
nificantly different from the control. To vi-
sualize the differences in splicing between
the different cell lines and time points, we
performed PCA on the PSI values for each
sample and cassette exon splicing event.

MEA recording

MEA electrophysiological recordings were
performed as described elsewhere (12). Briefly,
cortical organoids were plated on 12-well
MEA plates (Axion Biosystems, Atlanta, GA,
USA). Recordings were performed using the
Maestro MEA system and AxIS Software
Spontaneous Neural Configuration (Axion

Biosystems). Spikes were detected with AxIS
software using an adaptive threshold cross-
ing set to 5.5 times the standard deviation of
the estimated noise for each electrode. Bright-
field images were captured from each well to
assess for neural density and electrode cover-
age over time.
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alters neuronal network activity. (A) Scheme of a cortical organoid plated
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cortical organoids (B). Although the number of total spikes does not differ,
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(n = 20 MEA wells per genotype); *P < 0.05, two-sided unpaired Student’s

t test. After performing spike sorting, the analysis disclosed a wider variability
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cortical organoids, as shown in the probability densities of (C) firing rate
and (D) CV and as displayed in (E) 2D distribution and (F) raster plots from
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