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Genome-wide associations for birth weight and
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Birth weight (BW) has been shown to be influenced by both fetal
and maternal factors and in observational studies is reproducibly
associated with future risk of adult metabolic diseases including
type 2 diabetes (T2D) and cardiovascular disease'. These life-
course associations have often been attributed to the impact of an
adverse early life environment. Here, we performed a multi-ancestry
genome-wide association study (GWAS) meta-analysis of BW in
153,781 individuals, identifying 60 loci where fetal genotype was
associated with BW (P < 5 x 10~%). Overall, approximately 15%
of variance in BW was captured by assays of fetal genetic variation.
Using genetic association alone, we found strong inverse genetic
correlations between BW and systolic blood pressure (R, = —0.22,
P=5.5x10""3), T2D (R;=—0.27, P=1.1 X 10~°) and coronary
artery disease (R;= —0. 30 P=6.5 x 107?). In addition, using large -
cohort datasets, we demonstrated that genetic factors were the
major contributor to the negative covariance between BW and future
cardiometabolic risk. Pathway analyses indicated that the protein
products of genes within BW-associated regions were enriched for
diverse processes including insulin signalling, glucose homeostasis,
glycogen biosynthesis and chromatin remodelling. There was also
enrichment of associations with BW in known imprinted regions
(P=1.9 X 10~%). We demonstrate that life-course associations

between early growth phenotypes and adult cardiometabolic disease
are in part the result of shared genetic effects and identify some of the
pathways through which these causal genetic effects are mediated.

We combined GWAS data for BW from 153,781 individuals rep-
resenting multiple ancestries from 37 studies across three compo-
nents (Extended Data Fig. 1 and Supplementary Table 1): (i) 75,891
individuals of European ancestry from 30 studies; (ii) 67,786 individuals
of European ancestry from the UK Biobank; and (iii) 10,104 individuals
of diverse ancestries (African American, Chinese, Filipino, Surinamese,
Turkish and Moroccan) from six studies. Within each study, BW was
Z-score transformed separately in males and females after excluding
non-singletons and premature births and adjusting for gestational age
where available. Genotypes were imputed using reference panels from
the 1000 Genomes (1000G) Project? or combined 1000G and UK10K
projects® (Supplementary Table 2). We performed quality control
assessments to confirm that the distribution of BW was consistent
across studies, irrespective of the data collection protocol, and
confirmed that self-reported BW in the UK Biobank showed genetic
and phenotypic associations consistent with those seen for measured
BW in other studies* (Methods).

We identified 60 loci (of which 59 were autosomal) associated with
BW at genome-wide significance (P < 5 x 10~®) in either the European
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ancestry or trans-ancestry meta-analyses (Extended Data Fig. 2a,
Extended Data Table 1a and Supplementary Data; Methods). For lead
single nucleotide polymorphisms (SNPs), we observed no heteroge-
neity in allelic effects between the three study components (Cochran’s
Q statistic P>0.00083) (Supplementary Table 3). We found that 53 of
these loci were novel in that the lead SNP mapped >2 Mb away from,
and was independent (R? < 0.05 in the European (EUR) component
of 1000G) of, the seven previously reported BW signals®, all of
which were confirmed in this larger analysis (Supplementary Table
4). Approximate conditional analysis in the European ancestry data
indicated that three of these novel loci (near ZBTB7B, HMGA1 and
PTCHI) harboured multiple distinct association signals that attained
genome-wide significance (P <5 x 10~%) (Methods, Supplementary
Table 5 and Extended Data Fig. 3).

The lead variants for most signals mapped to non-coding sequences,
and at only two loci, ADRBI (1s7076938; R*=0.99 with ADRBI G389R)
and NRIPI (rs2229742, R448G), did the association data point to
potential causal non-synonymous coding variants (Supplementary
Table 6 and Methods). Lead SNPs for all but two loci (those map-
ping near YKT6-GCK and SUZ12P1-CRLF3) were common (minor
allele frequency (MAF) > 5%) with individually modest effects on
BW (3=0.020-0.053 standard deviations (s.d.) per allele, equivalent
to 10-26 g). This was despite the much-improved coverage of low-
frequency variants in this study (compared to previous HapMap 2
imputed meta-analyses, ref. 5) reflecting imputation from larger,
and more complete, reference panels (Extended Data Table 1b).
Indeed, all but five of the common variant association signals were
tagged by variants (EUR R?>0.6) in the HapMap 2 reference panel
(Supplementary Tables 4, 5), indicating that most of the novel discov-
eries in the present study were driven by increased sample size®. Fine-
mapping analysis yielded 14 regions in which fewer than ten variants
contributed to the locus-specific credible sets that accounted for >99%
of the posterior probability of association (Methods and Supplementary
Table 7). The greatest refinement was at YKT6-GCK, where the
credible set included only the low frequency variant rs138715366,
which maps intronic to YKT6. These credible-set variants collectively
showed enrichment for overlap with DNasel hypersensitivity sites,
particularly those generated, by ENCODE, from fetal (4.2-fold, 95%
CI 1.8-10.7) and neonatal tissues (4.9-fold, 1.8-11.0) (Supplementary
Fig. 1, Supplementary Table 8 and Methods).

In combination, the 62 distinct genome-wide significant signals
at the 59 autosomal loci explained at least 2.0 £ 1.1% (standard error
(s.e.)) of variance in BW (Supplementary Table 9 and Methods), which
is similar in magnitude to that attributable to sex or maternal body mass
index (BMI)°. However, the variance in BW captured collectively by
all autosomal genotyped variants on the array was considerably larger,
estimated at 15.1 £0.9% in the UK Biobank (Methods). These figures
are consistent with a large number of genetic variants with smaller
effects contributing to variation in BW.

Associations between fetal genotype and BW could result from
indirect effects of the maternal genotype influencing BW via the
intrauterine environment, given the correlation (R ~ 0.5) between
maternal and fetal genotype. However, two lines of evidence indicated
that variation in the fetal genome was the predominant driver of
BW associations. First, an analysis of the global contribution of
maternal versus fetal genetic variation, using a maternal genome-
wide complex trait analysis (GCTA) model (ref. 6) (Methods) applied
to 4,382 mother—child pairs, estimated that the child’s genotype
(0c?=0.2440.11) made a larger contribution to BW variance than
either the mother’s genotype (o,?=0.04 £ 0.10), or the covariance
between the two (ocy =0.04 4 0.08). Second, when we compared
the point estimates of the BW-effect size dependent on maternal
genotype at each of the 60 loci (as measured in up to 68,254 women’)
with those dependent on fetal genotype (using European ancestry data
from 143,677 individuals in the present study), fetal variation had a
greater impact than maternal variation at 93% of the loci (55 out of 60;
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binomial P=10""!) (Supplementary Table 10, Extended Data Figs 4, 5
and Methods). The power to further disentangle maternal and fetal
contributions using analyses of fetal genotype which were conditional
on maternal genotype was constrained by the limited sample size
available (n=12,909 mother-child pairs) (Supplementary Table 11).

Collectively, these analyses provide evidence that the fetal genotype
has a substantial impact on early growth, as measured by BW. We
used these genetic associations to understand the causal relationships
underlying observed associations between BW and disease, and to
characterize the processes responsible.

To quantify the shared genetic contribution to BW and other
health-related traits, we estimated their genetic correlations
using linkage-disequilibrium score regression® (Methods). BW
(in European ancestry samples) showed strong positive genetic
correlations with anthropometric and obesity-related traits
including birth length (R;=0.81, P=2.0 x 10~ *!) and, in adults,
height (R;=0.41, P=4.8 x 10~>?), waist circumference (Ry;=0.18,
P=3.9x107'%) and BMI (R;=0.11, P=7.3 x 10~). By contrast,
BW showed inverse genetic correlations with indicators of adverse
metabolic and cardiovascular health including coronary artery disease
(CAD, Rg=—0.30, P=6.5 x 10™?), systolic blood pressure (SBP, R;=
—0.22,P=5.5%10"") and T2D (Ry=—0.27, P=1.1 x 10~%) (Fig. 1,
Supplementary Table 12). The correlations between BW and adult car-
diometabolic phenotypes are of similar magnitude, although direction-
ally opposite, to the reported genetic correlations between adult BMI
and those same cardiometabolic outcomes®. These findings support
observational associations between a history of paternal T2D and lower
BW (ref. 4), and establish more generally that the observed life-course
associations between early growth and adult disease, at least in part,
reflect the impact of shared genetic variants that influence both sets
of phenotypes.

In an effort to estimate the extent of genetic contribution to these
life-course associations, we first focused on data from the UK Biobank
(n=>57,715). For many of the traits for which data were available,
genetic variation contributed substantially to the life-course relation-
ship between BW and adult phenotypes, and in some cases appeared
to be the major source of covariance between the traits. For example,
we estimated that 85% (95% CI=70-99%) of the negative covariance
between BW and SBP was explained by shared genetic associations cap-
tured by directly genotyped SNPs (Supplementary Table 13, Methods
and Supplementary Fig. 2). For continuous cardiometabolic measures,
including lipids and fasting glycaemia, for which measures are not cur-
rently available in the UK Biobank, we used data from the Northern
Finland Birth Cohort (n=5,009), and obtained similar results
(Supplementary Table 13). However, these estimates were limited, not
only by wide confidence intervals, but also by the assumption of a lin-
ear relationship between BW and each of the phenotypes and by the
inability to explicitly model maternal genotypic effects. In other words,
the inverse genetic correlations between BW and cardiometabolic traits
may not exclusively reflect genetic effects mediated directly through
the offspring, but also effects mediated by maternal genotype acting
indirectly on the fetus via perturbation of the in utero environment.
Nevertheless, these estimates indicate that a substantial proportion of
the variance in cardiometabolic risk that correlates with BW can be
attributed to the effects of common genetic variation.

To elucidate the biological pathways and processes underlying regu-
lation of fetal growth, we first performed gene set enrichment analysis
of our BW GWAS analysis using MAGENTA (Meta-Analysis Gene-
set Enrichment of variaNT Associations, ref. 9) approach (Methods).
Twelve pathways reached study-wide significance (false discovery rate,
FDR < 0.05), including pathways involved in metabolism (insulin
signalling, glycogen biosynthesis and cholesterol biosynthesis),
growth (IGF signalling and growth hormone pathway) and devel-
opment (chromatin remodelling) (Extended Data Table 2a). Similar
pathways were detected in a complementary analysis in which we
analysed empirical protein—protein interaction (PPI) data identifying
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Figure 1 | Genome-wide genetic correlation between BW and
a range of traits and diseases in later life. Genetic correlation
(Rg) and corresponding s.e. (error bars) between BW and the
traits displayed on the x axis were estimated using linkage-
disequilibrium score regression (ref. 8). The genetic correlation
estimates (Ry) are colour coded according to their intensity and
direction (red for positive and blue for inverse correlation).
WHRadjBMI, waist-hip ratio adjusted for body mass index;
HOMA-B/IR, homeostasis model assessment of beta-cell
function/insulin resistance; HbAlc, haemoglobin Alc; BMD, bone
mineral density; ADHD, attention deficit hyperactivity disorder.
See Supplementary Table 12 for references for each of the traits
and diseases displayed.
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13 PPI network modules with marked (Z score > 5) enrichment for
BW-association scores (Extended Data Table 2b, Extended Data
Fig. 6a, b and Methods). The proteins within these modules were them-
selves enriched for diverse processes related to metabolism, growth and
development (Extended Data Fig. 6a, b).

We also observed enrichment of BW association signals across the
set of 77 imprinted genes defined by the Genotype-Tissue Expression
(GTEx) project (ref. 10) (P=1.9 x 10~ Extended Data Table 2a and
Supplementary Table 14). Such enrichment is consistent with the
‘parental conflict’ hypothesis regarding the allocation of maternal
resources to the fetus'!. Although the role of imprinted genes in
fetal growth has been described in animal models and rare human
disorders'?, these data provide a large-scale, systematic indication
of their contribution to normal variation in BW. Of the 60 genome-
wide significant loci, two (INS-IGF2 and RBI) fall within (or near)
imprinted regions (Extended Data Fig. 2b), with a noteworthy third
signal at DLK1 (previously fetal antigen-1; P=>5.6 x 10~%). Parent-
of-origin specific analyses to further investigate these individual loci
(comparing heterozygote versus homozygote BW variance in 57,715
unrelated individuals, and testing BW associations with paternal versus
maternal alleles in 4,908 mother—child pairs; see Methods) proved,
despite these sample sizes, to be underpowered (Extended Data Fig. 7
and Supplementary Tables 15, 16).

Many of the genome-wide signals for BW detected here are also
established genome-wide association signals for a wide variety of
cardiometabolic traits (Fig. 2). These include the BW signals near
CDKALI1, ADCY5, HHEX-IDE and ANKI (also genome-wide
significant for T2D), NT5C2 (for blood pressure, CAD and BMI) and
ADRBI (for blood pressure). We used two approaches to understand
whether this pattern of adult trait association represented a generic
property of BW-associated loci or reflected heterogeneous mechanisms
linking BW to adult disease.

First, we applied unsupervised hierarchical clustering (Methods) to
the non-BW trait association statistics for the 60 significant BW loci.
The resultant heat map showed the heterogeneity of locus-specific effect
sizes across the range of adult traits (Fig. 2 and Supplementary Table 17).
For example, it revealed that the associations between BW-raising
alleles and increased adult height are concentrated amongst a subset

ofloci including HHIP and GNA12, and highlighted particularly strong
associations with lipid traits for variants at the TRIBI and MAFB loci.

Second, we constructed trait-specific ‘point-of-contact’ (PoC) PPI
networks from proteins represented in both the global BW PPI network
and equivalent PPI networks generated for each of the adult traits
(Methods and Extended Data Figs 6c—e). We reasoned that these PoC
PPI networks would be enriched for the specific proteins mediating the
observed links between BW and adult traits, generating hypotheses that
are amenable to subsequent empirical validation. To highlight processes
implicated in specific BW-trait associations, we overlaid these PoC PPI
with the top 50 pathways that were over-represented in the global BW
PPI network. These analyses revealed, for example, that proteins in
the Wnt canonical signalling pathway were detected in the PoC PPI
network only for blood pressure traits. We used these PPI overlaps to
highlight the specific transcripts within BW GWAS loci that were likely
to mediate the mechanistic links. For example, the overlap between the
Wnt signalling pathway and the PoC PPI network for the intersection
of BW and blood pressure-related traits implicated FZD9 as the likely
effector gene at the MLXIPL BW locus (Extended Data Fig. 6d and
Supplementary Table 6).

We focused our more detailed investigation of the mechanistic links
between early growth and adult traits on two phenotypic areas: arterial
blood pressure and T2D/glycaemia. Across both the overall GWAS and
specifically among the 60 significant BW loci, most BW-raising alleles
were associated with reduced blood pressure (Figs 1, 2); the strongest
inverse associations were seen for the loci near NT5C2, FES, NRIP1,
EBFI and PTHIR. However, we also observed locus-specific hetero-
geneity in the genetic relationships between blood pressure and BW:
the SBP-raising allele at ADRBI'? is associated with higher, rather than
lower, BW (Extended Data Fig. 8a). When we considered the reciprocal
relationship, that is, the effects on BW of blood-pressure-raising alleles
at 30 reported loci for SBP'*!4, there was an excess of associations
(5 out of 30 with lower BW at P < 0.05; binomial P=0.0026; Extended
Data Fig. 8a). To dissect maternal and fetal genotype effects at these
loci, we tested the impact on BW of a risk score generated from the 30
SBP SNPs, restricted to the untransmitted maternal haplotype score!®
in a set of 5,201 mother-child pairs. Analysis of these loci indicated that
maternal genotype effects on the intrauterine environment probably
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Figure 2 | Hierarchical clustering of BW loci based on similarity of
overlap with adult diseases, metabolic and anthropometric traits. For
the lead SNP at each BW locus (x axis), Z scores (aligned to BW-raising
allele) were obtained from publicly available GWAS for various traits

(y axis; see Supplementary Table 17). A positive Z score (red) indicates a
positive association between the BW-raising allele and the outcome trait,

contribute to the inverse genetic correlation between SBP and BW
(Methods and Supplementary Table 18), and was consistent with
the results of a wider study of >30,000 women which demonstrated
associations between a maternal genetic score for SBP (conditional on
fetal genotype) and lower offspring BW!.

The blood-pressure-raising allele with the largest BW-lowering
effect mapped to the NT5C2 locus (index variant for BW, rs74233809,
R?=0.98 with index variant for blood pressure, rs11191548; ref. 14) and
was also associated with lower adult BMI (R* = 0.99 with rs11191560;
ref. 17). The BW-lowering allele at rs74233809 is a proxy for a recently
described!® functional variant in the nearby CYP17A1 gene (R>=0.92
with rs138009835). The CYP17A1 gene encodes the cytochrome
P450c17a enzyme CYP17 (ref. 19), which catalyses key steps in steroi-
dogenesis that determine the balance between mineralocorticoid,
glucocorticoid and androgen synthesis. This variant has been shown to
alter transcriptional efficiency in vitro and is associated with increased
urinary tetrahydroaldosterone excretion'®. CYPI7AI is expressed in
fetal adrenal glands and testes from early gestation?® as well as in the
placenta?!. These data suggest that variation in CYP17A1 expression
contributes to the observational association between low BW and adult
hypertension?2.

When we analysed 45 loci associated with CAD?, the inverse genetic
correlation between CAD and BW was concentrated amongst the five
CAD loci with primary blood pressure associations. This suggests that
genetic determinants of blood pressure play a leading role in mediating
the life-course associations between BW and CAD (Extended Data
Fig. 8b, e).

Linkage-disequilibrium score regression analyses demonstrated
overall inverse genetic correlation between lower BW and elevated risk
of T2D (Fig. 1). However, the locus-specific heat map indicates a heter-
ogeneous pattern across individual loci (Fig. 2). To explore this further,
we tested the 84 reported T2D loci®* for association with BW. Some T2D
risk alleles (such as those at ADCY5, CDKALI and HHEX-IDE) were
strongly associated with lower BW, while others (including ANKI and
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while a negative Z score (blue) indicates an inverse association. BW loci
and traits were clustered according to the Euclidean distance amongst
Z scores (see Methods). Squares are outlined with a solid black line if the
BW locus is significantly (P < 5x 107%) associated with the trait in publicly
available GWAS, or with a dashed line if reported significant elsewhere.

MTNRIB) were associated with higher BW (Extended Data Fig. 8c).
This was in contrast with the BW effects of 422 known height loci*®
(Extended Data Fig. 8d), which showed a strong positive correlation
consistent with the overall genetic correlation between height and BW,
indicating that the growth effects of many height loci start prenatally
and persist into adulthood.

The contrasting associations of T2D-risk alleles with both higher
and lower BW probably reflect the differential impacts, across loci,
of variation in the maternal and fetal genomes. Observational data
link paternal diabetes with lower offspring BW*, indicating that the
inheritance of T2D risk alleles by the fetus tends, in line with the
linkage-disequilibrium score regression analysis, to reduce growth.
These relationships are consistent with the precepts of the ‘fetal insulin
hypothesis® and reflect the potential for reduced insulin secretion and/
or signalling to lead to both reduced fetal growth and, many decades
later, enhanced predisposition to T2D. In line with this, the inferred
paternal transmitted haplotype score generated from the 84 T2D risk
variants was associated with lower BW (P=0.045) in 5,201 mother—
child pairs (Methods and Supplementary Table 18). In contrast,
maternal diabetes is observationally associated with higher offspring
BW*, reflecting the ability of maternal hyperglycaemia to stimulate fetal
insulin secretion. The contribution of genotype-dependent maternal
hyperglycaemia to BW is in line with the evidence, from a recent study,
that maternal genotype scores for fasting glucose and T2D (conditional
on fetal genotype) were causally associated with higher offspring BW'®.
It is also consistent with the observation that a subset of glucose-raising
alleles is associated with higher BW”. For example, the T2D-risk variant
at MTNRIB (which also has a marked effect on fasting glucose levels
in non-diabetic individuals*”*®) was amongst the subset of BW loci
(5 out of 60) for which the BW effect attributable to maternal genotype
exceeded that associated with the fetal genotype (maternal: 5=0.048,
P=5.1 x 10715 fetal: 3=10.023, P=2.9 x 10~%) (Supplementary
Table 10 and Extended Data Figs 4, 5). Thus, both maternal and fetal
genetic effects connect BW to later T2D risk, albeit acting in opposing
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directions. When we categorized T2D loci using a classification of
physiological functions derived from their effects on related glycaemic
and anthropometric traits?’, we found that T2D-risk alleles associated
with lower BW were those typically characterized by reduced insulin
processing and secretion without detectable changes in fasting glucose
(the ‘Beta Cell’ cluster in Extended Data Fig. 8f).

The YTKG6 signal at rs138715366 is notable not only because the
genetic data indicate that a single low-frequency non-coding variant
is driving the association signal (see above) but also because of the
proximity of this signal to GCK. Rare coding variants in glucoki-
nase are causal for a form of monogenic hyperglycaemia and lead
to large reductions in BW when parental alleles are passed on to
their offspring®. In addition, common non-coding variants nearby
are implicated in T2D risk and fasting hyperglycaemia®®. However,
the latter variants are conditionally independent of rs138715366
(Supplementary Table 19) and show no comparable association with
lower BW. Either rs138715366 acts through effector transcripts other
than GCK, or the impact of the low-frequency SNP near YKT6 on
GCK expression involves tissue- and/or temporal-specific variation in
regulatory impact.

In conclusion, we have identified 60 genetic loci associated with BW
and used them to gain insights into the aetiology of fetal growth and
into well-established, but until now poorly understood, life-course
disease associations. The evidence that the relationship between early
growth and later metabolic disease has an appreciable genetic com-
ponent contrasts with, but is not necessarily incompatible with, the
emphasis on adverse early environmental events highlighted by the
fetal origins hypothesis'. As we have shown, these genetic effects reflect
variation in both the fetal and the maternal genome: the impact of
the latter on the offspring’s predisposition to adult disease could be
mediated, at least in part, through perturbation of the antenatal and
early life environment. Future mechanistic and genetic studies should
support reconciliation between these alternative, but complementary,
explanations for the far-reaching life-course associations that exist
between events in early life and predisposition to cardiometabolic
disease several decades later.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS

Ethics statement. All human research was approved by the relevant institutional
review boards and conducted according to the Declaration of Helsinki. All par-
ticipants provided written informed consent. Ethical approval for the study was
obtained from the ALSPAC Ethics and Law Committee and the local Research
Ethics Committees.

Study-level analyses. No statistical methods were used to predetermine sample
size: to maximise power to detect association signals, we set out to collect the largest
possible set of samples for which the combination of genome-wide genotyping
data and reliable measures of BW could be made available for analysis. Within
each study, BW was collected from a variety of sources, including measurements
at birth by medical practitioners, obstetric records, medical registers, interviews
with the mother and self-report as adults (Supplementary Table 1). BW was
Z-score transformed separately in males and females. Individuals with extreme BW
(>5s.d. from the sex-specific study mean), monozygotic or polyzygotic siblings, or
preterm births (gestational age <37 weeks, where this information was available)
were excluded from downstream association analyses (Supplementary Table 1).

Within each study, stringent quality control of the GWAS genotype scaffold was
carried out before imputation (Supplementary Table 2). Each scaffold was then
pre-phased and imputed®*>! up to reference panels from the 1000G project? or the
combined 1000G and UK10K projects® (Supplementary Table 2). Association of
BW with each variant passing established GWAS quality control filters®? was tested
in a linear regression framework, under an additive model for the allelic effect, after
adjustment for study-specific covariates, including gestational age, where available
(Supplementary Table 2). Where necessary, population structure was accounted for
by adjustment for axes of genetic variation from principal components analysis*>
and subsequent genomic control correction®, or inclusion of a genetic relationship
matrix in a mixed model* (Supplementary Table 2). We calculated the genomic
control inflation factor () in each study to confirm that study-level population
structure was accounted for before meta-analysis.

Preparation, quality control and genetic analysis in UK Biobank samples. UK
Biobank phenotype data were available for 502,655 participants®. All participants
in the UK Biobank were asked to recall their BW, of which 279,971 did so at either
the baseline or follow-up assessment visit. Of these, 7,686 participants reported
being part of multiple births and were excluded from downstream analyses.
Ancestry checks, based on self-reported ancestry, resulted in the exclusion of 8,998
additional participants reported not to be white European. Of those individuals
reporting BW at baseline and follow-up assessments, 393 were excluded because
the two reported values differed by more than 0.5kg. For those reporting different
values (<0.5kg) between baseline and follow-up, we took the baseline measure
forward for downstream analyses. We then excluded 36,716 individuals reporting
values <2.5kg or >4.5kg as implausible for live term births before 1970. In total
226,178 participants had data relating to BW that matched these inclusion criteria.

Genotype data from the May 2015 release were available for a subset of 152,249
participants from UK Biobank. In addition to the quality control metrics performed
centrally by UK Biobank, we defined a subset of ‘white European’ ancestry samples
using a K-means (K=4) clustering approach based on the first four genetically
determined principal components. A maximum of 67,786 individuals (40,425
females and 27,361 males) with genotype and valid BW measures were available
for downstream analyses. We tested for association with BW, assuming an additive
allelic effect, in a linear mixed model implemented in BOLT-LMM (ref. 37) to
account for cryptic population structure and relatedness. Genotyping array was
included as a binary covariate in all models. Total chip heritability (that is, the
variance explained by all autosomal polymorphic genotyped SNPs passing quality
control) was calculated using restricted maximum likelihood (REML) imple-
mented in BOLT-LMM (ref. 37). We additionally analysed the association between
BW and directly genotyped SNPs on the X chromosome: for this analysis, we used
57,715 unrelated individuals with BW available and identified by UK Biobank as
white British. We excluded SNPs with evidence of deviation from Hardy-Weinberg
equilibrium (P< 1 x 10~%), MAF < 0.01 or overall missing rate >0.015, resulting
in 19,423 SNPs for analysis in Plink v1.07 (http://pngu.mgh.harvard.edu/purcell/
plink/)*, with the first five ancestry principal components as covariates.

In both the full UK Biobank sample and our refined sample, we observed that
BW was associated with sex, year of birth and maternal smoking (P < 0.0015, all in
the expected directions), confirming more comprehensive previous validation of
self-reported BW*. We additionally verified that BW associations with lead SNPs
at seven established loci® based on self-report in UK Biobank were consistent with
those previously published.

European ancestry meta-analysis. The European ancestry meta-analysis consisted
of two components: (i) 75,891 individuals from 30 GWAS from Europe, USA
and Australia; and (ii) 67,786 individuals of white European origin from the
UK Biobank. In the first component, we combined sex-specific BW association
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summary statistics across studies in a fixed-effects meta-analysis, implemented in
GWAMA (ref. 39) and applied a second round of genomic control** (\gc=1.001).
Subsequently, we combined association summary statistics from this component
with the UK Biobank in a European ancestry fixed-effects meta-analysis, imple-
mented in GWAMA (ref. 39). Variants failing GWAS quality control filters in
the UK Biobank, reported in less than 50% of the total sample size in the first
component, or with MAF <0.1%, were excluded from the European ancestry
meta-analysis. We aggregated X-chromosome association summary statistics from
the UK Biobank (19,423 SNPs) with corresponding statistics from the European
GWAS component using fixed effects P-value-based meta-analysis in METAL
(ref. 40) (max n=99,152).

We were concerned that self-reported BW as adults in the UK Biobank would
not be comparable with that obtained from more stringent collection methods used
in other European ancestry GWAS. In addition, the UK Biobank lacked informa-
tion on gestational age for adjustment, which could have an impact on strength
of association compared with the results obtained from other European ancestry
GWAS. However, we observed no evidence of heterogeneity in BW allelic effects
at lead SNPs between the two components of European ancestry meta-analysis,
using Cochran’s Q statistic*! implemented in GWAMA (ref. 39) after Bonferroni
correction (P> 0.00083) (Supplementary Table 3). We tested for heterogeneity in
allelic effects between studies within the European component using Cochran’s Q.
At loci demonstrating evidence of heterogeneity, we confirmed that association
signals were not driven by outlying studies by visual inspection of forest plots.
We performed sensitivity analyses to assess the impact of covariate adjustment
(gestational age and population structure) on heterogeneity.

We were also concerned that overlap of individuals (duplicated or related)
between the two components of the European ancestry meta-analysis might lead
to false positive association signals. We performed bivariate linkage-disequilibrium
score regression8 using the two components of the European ancestry meta-analysis
and observed a genetic covariance intercept of 0.0156 +0.0058 (s.e.), indicating
a maximum of 1,119 duplicate individuals. Univariate linkage-disequilibrium
score regression® of the European ancestry meta-analysis estimated the intercept
as 1.0426, which may indicate population structure or relatedness that was not
adequately accounted for in the analysis. To assess the impact of this inflation on
the European ancestry meta-analysis, we expanded the standard errors of BW
allelic effect size estimates and re-calculated association P values. On the basis of
this adjusted analysis, only the lead SNP at MTNRIB dropped below genome-wide
significance (rs10830963, P=5.5 x 10~%).

Trans-ancestry meta-analysis. The trans-ancestry meta-analysis combined the
two European ancestry components with an additional 10,104 individuals from
six GWAS from diverse ancestry groups: African American, Chinese, Filipino,
Surinamese, Turkish and Moroccan. Within each GWAS, we first combined
sex-specific BW association summary statistics in a fixed-effects meta-analysis,
implemented in GWAMA (ref. 39) and applied a second round of genomic
control®*. Subsequently, we combined association summary statistics from the
six non-European GWAS and the two European ancestry components in a trans-
ancestry fixed-effects meta-analysis, implemented in GWAMA (ref. 39). Variants
failing GWAS quality control filters in the UK Biobank, reported in less than 50%
of the total sample size in the first component, or with MAF <0.1%, were excluded
from the trans-ancestry meta-analysis. We tested for heterogeneity in allelic effects
between ancestries using Cochran’s Q (ref. 41).

Approximate conditional analysis. We searched for multiple distinct BW
association signals in each of the established and novel loci, defined as 1 Mb
up- and down-stream of the lead SNP from the trans-ancestry meta-analysis,
through approximate conditional analysis. We applied GCTA (ref. 42) to identify
‘index SNPs’ for distinct association signals attaining genome-wide significance
(P<5x10%) in the European ancestry meta-analysis using a reference sample
of 5,000 individuals of white British origin, randomly selected from the UK
Biobank, to approximate patterns of linkage disequilibrium between variants in
these regions. Note that we performed approximate conditioning on the basis of
only the European ancestry meta-analysis because GCTA cannot accommodate
linkage-disequilibrium variation between diverse populations.

Prioritizing candidate genes in each BW locus. We combined a number of
approaches to prioritize the most likely candidate gene(s) in each BW locus.
Expression quantitative trait loci (eQTLs) were obtained from the Genotype
Tissue Expression (GTEx) Project*?, the GEUVADIS project*! and eleven other
studies*>° using HaploReg v4 (ref. 56). We interrogated coding variants for each
BW lead SNP and its proxies (EUR R? > 0.8) using Ensembl*” and HaploReg. Their
likely functional consequences were predicted by SIFT (ref. 58) and PolyPhen2
(ref. 59). Biological candidacy was assessed by presence in significantly enriched
gene set pathways from MAGENTA analyses (see below for details). We extracted
all genes within 300kb of all lead BW SNPs and searched for connectivity between
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any genes using STRING (ref. 60). If two or more genes between two separate BW
loci were connected, they were given an increased prior for both being plausible
candidates. We also applied protein—protein interaction (PPI) analysis (see below
for details) to all genes within 300kb of each lead BW SNPs and ranked the genes
based on the score for connectivity with the surrounding genes.

Evaluation of imputation quality of the low-frequency variant at the YKT6-
GCKlocus. At the YKT6-GCK locus, the lead SNP (rs138715366) was found at
a low frequency in European ancestry populations (MAF =0.92%) and was even
rarer in other ancestry groups (MAF =0.23% in African Americans, otherwise
monomorphic) and was not present in the HapMap reference panel®!. To assess the
accuracy of imputation for this low-frequency variant, we genotyped rs138715366
in the Northern Finland Birth Cohort (NFBC) 1966 (Supplementary Table 1). Of
the 5,009 samples in the study, 4,704 were successfully imputed and genotyped
(or sequenced) for rs138715366. The overall concordance rate between imputed
and directly assayed genotypes was 99.8% and for directly assayed heterozygote
calls was 75.0%.

Fine-mapping analyses. We investigated linkage-disequilibrium differences
between populations contributing to the trans-ancestry meta-analysis and to take
advantage of the improved coverage of common and low-frequency variation
offered by 1000G or 1000G and UK10K combined imputation to localize variants
driving each distinct association signal achieving locus-wide significance. For
each distinct signal, we used MANTRA (ref. 62) to construct 99% credible sets of
variants® that together account for 99% of the posterior probability of driving the
association. MANTRA incorporates a prior model of relatedness between studies,
based on mean pair-wise allele frequency differences across loci, to account for
heterogeneity in allelic effects (Supplementary Table 3). MANTRA has been
demonstrated, by simulation, to improve localization of causal variants compared
with either a fixed- or random-effects trans-ancestry meta-analysis®>®4,

For loci with only one signal of association, we used MANTRA to combine
summary statistics from the six non-European GWAS and the two European
ancestry components. However, for loci with multiple distinct association signals,
we used MANTRA to combine summary statistics from approximate conditioning
for the two European components, separately for each signal.

For each distinct signal, we calculated the posterior probability that the jth
variant, 7cy, is driving the association, given by

Aj
ZkAk

where the summation is over all variants mapping within the (conditional)
meta-analysis across the locus. In this expression, /; is the Bayes’ factor in
favour of association from the MANTRA analysis. A 99% credible set® was then
constructed by: (i) ranking all variants according to their Bayes’ factor, A; and
(ii) including ranked variants until their cumulative posterior probability
exceeds 0.99.

Genomic annotation. We used genomic annotations of DNasel hypersensitive
sites (DHS) from the ENCODE (ref. 65 project and protein coding genes from
GENCODE (ref. 66). We filtered cell types that are cancer cell lines (karyotype
‘cancer’ from https://genome.ucsc.edu/ENCODE/cell Types.html), and merged data
from multiple samples from the same cell type. This resulted in 128 DHS cell-type
annotations, as well as 4 gene-based annotations (coding exon, 5'UTR, 3'UTR and
1kb upstream of the transcription start site (TSS)). First, we tested for the effect of
each cell type DHS and gene annotation individually using the Bayes’ factors for
all variants in the 62 credible sets using fgwas (ref. 67). Second, we categorized the
annotations into ‘genic;, ‘fetal DHS; ‘embryonic DHS, ‘stem cell DHS, ‘neonatal
DHS’ and ‘adult DHS’ based on the description fields from ENCODE, and tested
for the effect of each category individually as described above using fgwas. Third,
we then tested the effect of each category by including all categories in a joint model
using fgwas. For each of the three analyses, we obtained the estimated effects and
95% confidence intervals (CI) for each annotation, and considered an annotation
enriched if the 95% CI did not overlap zero.

Estimation of genetic variance explained. The ‘variance explained’ statistic
was calculated using the REML method implemented in GCTA (ref. 68). We
considered the variance explained by two sets of SNPs: (i) lead SNPs of all 62
distinct association signals at the 59 established and novel autosomal BW loci
identified in the European-specific or trans-ancestry meta-analyses; (ii) lead SNPs
of 55 distinct association signals at the 52 novel autosomal BW loci (Extended
Data Table 1a and Supplementary Table 7). The ‘variance explained’ was calculated
in samples of European ancestry in the Hyperglycemia and Adverse Pregnancy
Outcome (HAPO) study® (independent of the meta-analysis) and two studies
that were part of the European ancestry meta-analysis: NFBC1966 and Generation
R (Supplementary Table 1). In each study, the genetic relationship matrix was
estimated for each set of SNPs and was tested individually against BW (males

7TC]' =

and females combined) with study specific covariates. These analyses provided
an estimate and s.e. for the variance explained by each of the given sets of SNPs.
Examining the relative effects on BW of maternal and fetal genotype at the 60
identified loci. We performed four sets of analyses. First, we used GWAS data
from 4,382 mother—child pairs in the Avon Longitudinal Study of Parents and
Children (ALSPAC) study to fit a ‘maternal-GCTA model® to estimate the extent
to which the maternal genome might influence offspring BW independent of the
fetal genome. The maternal-GCTA model uses genome-wide genetic similarity
between mothers and offspring to partition the phenotypic variance in BW into
components due to the maternal genotype, the child’s genotype, the covariance
between the two and environmental sources of variation.

Second, we compared associations with BW of the fetal versus maternal
genotype at each of the 60 BW loci. The maternal allelic effect on offspring BW
was obtained from a maternal GWAS meta-analysis of 68,254 European mothers
from the EGG Consortium (1= 19,626)” and the UK Biobank (n = 48,628). In
the UK Biobank, mothers were asked to report the BW of their first child. Women
of European ancestry with genotype data available in the May 2015 data release
were included, and those with reported BW equivalent to <2.5kg or >4.5kg were
excluded. No information on gestational age or gender of child was available.
BW of first child was associated with maternal factors such as smoking status,
BMI and height in the expected directions. Of the 68,254 women included in the
maternal GWAS, 13% were mothers of individuals included in the current fetal
European ancestry GWAS, and a further ~45% were themselves (with their own
BW) included in the fetal GWAS.

Third, we additionally conducted analyses in 12,909 mother-child pairs from
nine contributing studies: at each of the 60 loci, we compared the effect of the fetal
genotype on BW adjusted for sex and gestational age, with and without adjust-
ment for maternal genotype. We reciprocally compared the association between
the maternal genotype and BW with and without adjustment for fetal genotype.

Fourth, we used the method of Zhang et al. 15 to test associations between BW
and the maternal untransmitted, maternal transmitted and inferred paternal
transmitted haplotype score of 422 height SNPs?, 30 SBP SNPs'*!* and 84 T2D
SNPs?* in 5,201 mother—child pairs from the ALSPAC study.
Linkage-disequilibrium score regression. The use of linkage-disequilibrium
score regression to estimate the genetic correlation between two traits/diseases
has been described in detail elsewhere”. Briefly, the linkage-disequilibrium score
is a measure of how much genetic variation each variant tags; if a variant has a
high linkage-disequilibrium score then it is in high linkage disequilibrium with
many nearby polymorphisms. Variants with high linkage-disequilibrium scores
are more likely to contain more true signals and hence provide more chance of
overlap with genuine signals between GWAS. The linkage-disequilibrium score
regression method uses summary statistics from the GWAS meta-analysis of BW
and the other traits of interest, calculates the cross-product of test statistics at each
SNP, and then regresses the cross-product on the linkage-disequilibrium score.
Bulik-Sullivan ef al.”® show that the slope of the regression is a function of the
genetic covariance between traits:

N NINZ,Ug
Rkiuls NS
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where Nj is the sample size for study i, p, is the genetic covariance, M is the number
of SNPs in the reference panel with MAF between 5% and 50%, /; is the linkage-
disequilibrium score for SNP j, N; quantifies the number of individuals that overlap
both studies, and p is the phenotypic correlation amongst the N; overlapping
samples. Thus, if there is sample overlap (or cryptic relatedness between samples),
it will only affect the intercept from the regression (that is, the term ’]—Ns) and
JNiIN2

E(zijz)) =

not the slope, and hence estimates of the genetic covariance will not be biased by
sample overlap. Likewise, population stratification will affect the intercept but will
have minimal impact on the slope (that is, intuitively since population stratification
does not correlate with linkage disequilibrium between nearby markers).
Summary statistics from the GWAS meta-analysis for traits and diseases of
interest were downloaded from the relevant consortium website. The summary
statistics files were reformatted for linkage-disequilibrium score regression
analysis using the munge_sumstats.py python script provided on the developer’s
website (https://github.com/bulik/ldsc). For each trait, we filtered the summary
statistics to the subset of HapMap 3 SNPs’!, as advised by the developers, to
ensure that no bias was introduced due to poor imputation quality. Summary
statistics from the European-specific BW meta-analysis were used because of the
variable linkage-disequilibrium structure between ancestry groups. Where the
sample size for each SNP was included in the results file this was flagged using
N-col; if no sample size was available then the maximum sample size reported in
the reference for the GWAS meta-analysis was used. SNPs were excluded for the
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following reasons: MAF < 0.01; ambiguous strand; duplicate rsID; non-autosomal
SNPs; reported sample size less than 60% of the total available. Once all files were
reformatted, we used the ldsc.py python script, also on the developers’ website, to
calculate the genetic correlation between BW and each of the traits and diseases.
The European linkage-disequilibrium score files calculated from the 1000G
reference panel and provided by the developers were used for the analysis. Where
multiple GWAS meta-analyses had been conducted on the same phenotype (that
is, over a period of years), the genetic correlation with BW was estimated using
each set of summary statistics and presented in Supplementary Table 12. The
phenotypes with multiple GWAS included height, BMI, waist-hip ratio (adjusted
for BMI), total cholesterol, triglycerides, high density lipoprotein (HDL) and low
density lipoprotein (LDL). The estimate of the genetic correlation between the
multiple GWAS meta-analyses on the same phenotype were comparable and the
later GWAS had a smaller standard error due to the increased sample size, so
only the genetic correlation between BW and the most recent meta-analyses were
presented in Fig. 2.

In the published GWAS for blood pressure'* the phenotype was adjusted for
BMI. Caution is needed when interpreting the genetic correlation between BW
and BMI-adjusted SBP owing to the potential for collider bias’. Since BMI is
associated with both blood pressure and BW, it is possible that the use of a blood
pressure genetic score adjusted for BMI might bias the genetic correlation estimate
towards a more negative value. To verify that the inverse genetic correlation with
BW (rg=—0.26,5.e.=0.05, P=6.5 X 10~%) was not due to collider bias caused by
the BMI adjustment of the phenotype, we obtained an alternative estimate using
UK Biobank GWAS data for SBP that was unadjusted for BMI and obtained a
similar result (R;= —0.22, s.e.=0.03, P=5.5 x 10~ "%). The SBP phenotype in the
UK Biobank was prepared as follows. Two blood pressure readings were taken at
assessment, approximately 5 min apart. We included all individuals with an auto-
mated blood pressure reading (taken using an automated Omron blood pressure
monitor). Two valid measurements were available for most participants (averaged
to create a blood pressure variable, or alternatively a single reading was used if only
one was available). Individuals were excluded if the two readings differed by more
than 4.56s.d. Blood pressure measurements more than 4.56 s.d. away from the
mean were excluded. We accounted for blood pressure medication use by adding
15mm Hg to the SBP measure. Blood pressure was adjusted for age, sex and centre
location and then inverse rank normalized. We performed the GWAS on 127,698
individuals of British descent using BOLT-LMM (ref. 37), with genotyping array
as covariate.

Estimating the proportion of the BW-adult traits covariance attributable to
genotyped SNPs. We estimated the phenotypic, genetic and residual correlations
as well as the genetic and residual covariance between BW and several quantitative
traits and/or disease outcomes in the UK Biobank using directly genotyped SNPs
and the REML method implemented in BOLT-LMM (ref. 37). The traits examined
included T2D, SBP, diastolic blood pressure, CAD, height, BMI, weight, waist-hip
ratio, hip circumference, waist circumference, obesity, overweight, age at menarche,
asthma, and smoking. Where phenotypes were not available (for example, serum
blood measures are not currently available in the UK Biobank), we obtained
estimates using the NFBC1966 study (for correlations/covariance between BW and
triglycerides, total cholesterol, HDL, LDL, fasting glucose and fasting insulin). In
the UK Biobank analysis, we used 57,715 unrelated individuals with BW available
and identified by the UK Biobank as white British. SNPs with evidence of deviation
from Hardy-Weinberg equilibrium (P< 1 x 107°), MAF < 0.05 or overall missing
rate >0.015 were excluded, resulting in 328,928 SNPs for analysis. We included the
first five ancestry principal components as covariates. In the NFBC1966 analysis,
5,009 individuals with BW were enrolled. Genotyped SNPs that passed quality
control (Supplementary Table 2) were included, resulting in 324,895 SNPs for
analysis. The first three ancestry principal components and sex were included
as covariates.

Gene set enrichment analysis. Meta-analysis gene-set enrichment of variant
associations (MAGENTA) was used to explore pathway-based associations using
summary statistics from the trans-ancestry meta-analysis. MAGENTA implements
a gene set enrichment analysis (GSEA) based approach, as previously described’.
Briefly, each gene in the genome was mapped to a single index SNP with the
lowest P value within a 110kb upstream and 40kb downstream window. This
P value, representing a gene score, was then corrected for confounding factors
such as gene size, SNP density and linkage-disequilibrium-related properties in a
regression model. Genes within the HLA-region were excluded from analysis due
to difficulties in accounting for gene density and linkage-disequilibrium patterns.
Each mapped gene in the genome was then ranked by its adjusted gene score. At
a given significance threshold (95th and 75th percentiles of all gene scores), the
observed number of gene scores in a given pathway, with a ranked score above
the specified threshold percentile, was calculated. This observed statistic was
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then compared to 1,000,000 randomly permuted pathways of identical size. This
generates an empirical GSEA P value for each pathway. Significance was attained
when an individual pathway reached a FDR < 0.05 in either analysis. In total, 3,216
pre-defined biological pathways from Gene Ontology, PANTHER, KEGG and
Ingenuity were tested for enrichment of multiple modest associations with BW.
The MAGENTA software was also used for enrichment testing of custom gene sets.
Protein-protein interaction network analyses. We used the integrative
protein-interaction-network-based pathway analysis (iPINBPA) method”>. Briefly,
we generated gene-wise P values from the trans-ancestry meta-analysis using
VEGAS?2 (ref. 74), which mapped the SNPs to genes and accounted for possible
confounders, such as linkage-disequilibrium between markers. The empirical
gene-wise P values were calculated using simulations from the multivariate normal
distribution. Those that were nominally significant (P <0.01) were selected as
‘seed genes, and were collated within a high confidence version of inweb3
(ref. 75) to weight the nodes in the network following a guilt-by-association
approach. In a second step, a network score was defined by the combination of
the Z scores derived from the gene-wise P values with node weights using the
Liptak-Stouffer method’®. A heuristic algorithm was then applied to extensively
search for modules enriched in genes with low P values. The modules were
further normalized using a null distribution of 10,000 random networks. Only
those modules with Z score > 5 were selected. Finally, the union of all modules
constructed a BW-overall PPI network. Both the proteins on the individual
modules and on the overall BW-PPI were interrogated for enrichment in Gene
Ontology terms (biological processes) using a hypergeometric test. Terms were
considered as significant when the adjusted P value, following the Benjamini—
Hochberg procedure, was below 0.05.

Point of contact analyses. The same methodology described above was applied
to 16 different adult traits resulting in a number of enriched modules per trait.
Different modules for each trait were combined in a single component and the
intersection between these trait-specific components and the BW component
was calculated. This intersection was defined as the PoC network. We used the
resulting PoC networks in downstream analyses to interrogate which set of proteins
connected BW variation and adult trait variation via pathways enriched in the
overall BW analysis.

Parent-of-origin specific associations. We first searched for evidence of
parent-of-origin effects in the UK Biobank samples by comparing variance between
heterozygotes and homozygotes using Quicktest (ref. 77). In this analysis, we
used only unrelated individuals identified genetically as of white British origin
(n=57,715). Principal components were generated using these individuals and the
first five were used to adjust for population structure as covariates in the analysis,
in addition to a binary indicator for genotyping array.

We also examined 4,908 mother—child pairs in ALSPAC and determined the
parental origin of the alleles where possible”®. Briefly, the method used mother-
child pairs to determine the parent of origin of each allele. For example, if the
mother/child genotypes were AA/Aa, the child’s maternal/paternal allele combi-
nation was A/a. For the situation where both mother and child were heterozygous,
the child’s maternal/paternal alleles could not be directly specified. However, the
parental origin of the alleles could be determined by phasing the genotype data
and comparing maternal and child haplotypes. We then tested these alleles for
association with BW adjusting for sex and gestational age.

Statistical power in these currently available sample sizes was insufficient to rule

out widespread parent-of-origin effects across the regions tested. Using the mean
(0.034s.d.) and MAF (0.28) of the identified loci, we estimate that we would need
at least 200,000 unrelated individuals or 70,000 mother—child pairs for 80% power
to detect parent-of-origin effects at P < 0.00085.
Hierarchical clustering of BW loci. To explore the different patterns of association
between BW and other anthropometric/metabolic/endocrine traits and diseases,
we performed hierarchical clustering analysis. The lead SNP (or proxy, EUR
R*>0.6) at the 60 BW loci was queried in publicly available GWAS meta-
analysis datasets or in GWAS results obtained through collaboration”. Results
were available for 53 of those loci and the extracted Z score (allelic effect/s.e.,
Supplementary Table 17) was aligned to the BW-raising allele. We performed
two dimensional clustering by trait and by locus. We computed the Euclidean
distance amongst Z scores of the extracted traits and loci and performed complete
hierarchical clustering implemented in the pvclust package (http://www.sigmath.
es.osaka-u.ac.jp/shimo-lab/prog/pvclust/) in R v3.2.0 (http://www.R-project.org/).
Clustering uncertainty was measured by multiscale bootstrap resampling estimated
from 1,000 replicates. We used o= 0.05 to define distinct clusters and, based on
the bootstrap analysis, calculated the Calinski index to identify the number of
well-supported clusters (cascadeKM function, vegan package, http://CRAN.R-
project.org/package=vegan). Clustering was visualized by constructing dendro-
grams and a heat map.
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Separately from the hierarchical clustering analysis, we queried the lead SNP
at EPASI in a GWAS of haematological traits® because variation at that locus has
previously been implicated in BW and adaptation to hypoxia at high altitudes in
Tibetans®"#? (Supplementary Table 17).
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EGG (European descent) UK Biobank (European descent) EGG (Non-European descent)
N=75,891 from 30 studies N=67,786 from 1 study N=10,104 from 6 studies
1000 Genomes (Phase 1 v3) imputation 1000 Genomes + UK10K imputation 1000 Genomes (Phase 1 v3) imputation
Additive genetic model Linear mixed model Additive genetic model
Study-level QC Study-level QC Study-level QC
IMPUTE info >0.4, minimac r2 >0.3 IMPUTE info >0.3 IMPUTE info >0.4, minimac r2>0.3
Minor allele count 23 Minor allele count 23

Genomic correction (+)

Meta-analysis + QC

Fixed-effects meta-analysis
Genomic correction (++)
250% of the samples contributing

75,891 individuals 67,786 individuals Up to 10,104 individuals
10,356,488 variants 42,581,480 variants Up to 24,554,342 variants

t e — _
\/

European meta-analysis + QC Trans-ancestry meta-analysis + QC
Fixed-effects meta-analysis MANTRA / Fixed-effects meta-analysis
Minor allele frequency 20.1% Minor allele frequency 20.1%
No INDELs No INDELs
143,677 individuals 153,781 individuals
16,245,524 SNPs 22,434,434 SNPs

Extended Data Figure 1 | Flow chart of the study design.
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Extended Data Figure 2 | Manhattan and quantile-quantile (QQ) plots
of the trans-ancestry meta-analysis for BW. a, Manhattan (main panel)
and QQ (top right) plots of genome-wide association results for BW from
trans-ancestry meta-analysis of up to 153,781 individuals. The association
P value (on —log scale) for each of up to 22,434,434 SNPs (y axis) was
plotted against the genomic position (NCBI Build 37; x axis). Association
signals that reached genome-wide significance (P <5 x 10~%) are shown
in green if novel and pink if previously reported. In the QQ plot, the black
dots represent observed P values and the grey line represents expected

P values under the null distribution. The red dots represent observed

P values after excluding the previously identified signals®. b, Manhattan

© 2016 Macmillan Publishers Limited

(main panel) and QQ (top right) plots of trans-ethnic GWAS meta-
analysis for BW highlighting the reported imprinted regions described in
Supplementary Table 14. Novel association signals that reached genome-
wide significance (P < 5 x 10~%) and mapped to imprinted regions are
shown in green. Genomic regions outside imprinted regions are shaded
in grey. SNPs in the imprinted regions are shown in light blue or dark
blue, depending on chromosome number (odd or even). In the QQ plot,
the black dots represent observed P values and the grey lines represent
expected P values and their 95% confidence intervals under the null
distribution for the SNPs within the imprinted regions.
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Extended Data Figure 3 | Regional plots for multiple distinct signals SNPs were plotted with their association P values (on a —logj scale) as a
at three BW loci. Regional plots for each locus, ZBTB7B (a), HMGAI function of genomic position (NCBI Build 37). Estimated recombination
(b) and PTCHI (c), are displayed from: the unconditional European- rates (blue lines) were plotted to reflect the local linkage-disequilibrium
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Extended Data Figure 4 | Comparison of fetal effect sizes and maternal
effect sizes at 60 known and novel birth weight loci, for the first 24
loci. The remaining loci are shown in Extended Data Fig. 5a. For each
BW locus, the following six effect sizes (with 95% CI) are shown, all
aligned to the same BW-raising allele: fetal GWAS, fetal allelic effect

on BW (from European ancestry meta-analysis of up to n = 143,677
individuals); fetal_unadjusted, fetal allelic effect on BW (unconditioned
in n = 12,909 mother-child pairs); fetal _adjusted, fetal effect (conditioned
on maternal genotype, n = 12,909); maternal_GWAS, maternal allelic
effect on offspring BW (from meta-analysis of up to n = 68,254 European
mothers)’; maternal_unadjusted, maternal allelic effect on offspring

BW (unconditioned, n=12,909); maternal_adjusted, maternal effect
(conditioned on fetal genotype, n=12,909). The 60 BW loci were ordered
by chromosome and position (Supplementary Tables 10, 11). These

plots illustrate that, in large GWAS of BW, fetal effect size estimates are
larger than those of maternal at 55 out of 60 identified loci (binomial
P=1x10"""), suggesting that most of the associations are driven by the
fetal genotype. In conditional analyses that modelled the effects of both
maternal and fetal genotypes (n = 12,909 mother—child pairs), confidence
intervals around the estimates were wide, precluding inference about the
likely contribution of maternal versus fetal genotype at individual loci.
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Extended Data Figure 5 | Comparison of fetal effect sizes and maternal effect sizes at 60 known and novel birth weight loci, for the remaining 36
loci. a, Continued from Extended Data Fig. 4. b, The scatter plot illustrates the difference between the fetal (x axis) and maternal (y axis) effect sizes in
the overall maternal versus fetal GWAS results.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LETTER

Null distribution based on 10,000 random networks

a b w“_
S i
g
g
i
2 <_| -4 -
M Module 1 (244 proteins) S f\ 28 B g
28 = §
Module 2 (96 proteins) 28 =3 g 3
8552 :
I Module 3 (89 proteins) BN
. [ Module 4 (81 proteins) o H Beis
o 812Fasf
B Module 5 (69 proteins) > 288285
. 2 232E
P « o [ Module 6 (31 proteins) 2 ;2828 u§§ 3 Pz
g 8% 25, k-1
[ Module 7 (41 proteins) [a] % %; H 3% sf
& 382 BE &
N I Module 8 (42 proteins) S 585 H s £
5083 H
[l Module 9 (35 proteins) EHS H =
sE2cet §
M Module 10 (37 proteins) 233323 ¢
17 Module 11 (36 proteins) bl gé g H
17 Module 12 (34 proteins) ggﬁ,’;g ;'
|Module 13 (34 proteins) W
o
o
I T T T 1
-5 0 5 10 15
c Z-score
8.07 insulin receptor signaling pathway (adjip BW = 2.9x107)
n 55 T ti llation of N bic ithetic 10°)
- Bosiive reguiation avglﬁ?ie mp".f%’;.;;s"'v‘}?ﬁss’n oo D’
510
oS oy o e st e (ol o = h) B
vasularsndotele roh factr tecoplc sl paines (e BW = 110 ?
gﬂsn ve reguiaton of proai prosphona H
epsion Tacepor snaing paway (acp B
Poronie ss-induce (adjp BW = 5.1x10) ':
renal water homeostasis adjp BW = '11110‘ 2
sl of o knasa A ooty (2o 34
spholipase C activi "y T
10‘} :
ibion of sl sacreton ‘.?"’ ’"’7 51 Lk
ﬁgmn smalmg pamway ,..1,,,“’(6 /=3 <
hegaive roguiason o tnotica ok Sghlig paway (acjp BW = 1.2¢10% 0
lipopolysaccharide-mediated signzlmq paihvay(acjp BW =7.1x10°)
Riaton of MABK aciy (ac BW = 3 11

integrn-mediated signaing panva
transition of milotic cell ¢
el mgraton (a

)
o adlp BW 2 5x109
222 mammary gland development(acjp BW = 4.4x10°)

) yt‘
92 316 postiv rogulatonof canonical Wik signaing ey (adlp BWS 75105
] 2 rotin kinase B sgnaing (acp BW ~ 26x109
i factor receptor
response o hypoxia (adjp BW = 9.

= 1x109

glucose homeostasis (adjp BW = 1.5x
Simuiatory iy lectinecoplrsipaing g:%my (aclp BW = 1.2x10%)

calarresponse o
.y,]‘ﬂs, ?
oicton o gons ectesa Supenic

pathway via death
jp BW= 1.5¢10°)

T os 7gwummadualldsa(hll:’lp5"lln S0 L hgocyosi adlp B
156 ignaing paifvey involved n phagocylsis (adp
L orcadian iythm (acjp B = 6x10%)

’-"J
nscripton fom RNA poymeras Il hypoxia (adjp BW = 3.7x10%)
mage resporse, skgnal ransducion by p33 class modiator (adp B
anaphase-promoting complex-dependent proléssomal ub\qnmn—nependem 9P B = 706109
ransforming rowlh actor bla recaplor signalng pathway (acp BW = 3.7
reguiation of Gel proiferation (adjp BW = 1.5x10%

of insulin

i

& sican

)

L]
point of contact PPI for BW and BP phenotypes point of contact PPI for BW and T2D and FG phenotypes

Extended Data Figure 6 | Protein-protein Interaction (PPI) Network using the same pipeline for each of the adult traits: d, canonical Wnt
analysis. a, The largest global component of BW PPI network containing signalling pathway enriched for PoC PPI between BW and blood pressure
13 modules is shown. b, The histogram shows the null distribution of (BP)-related phenotypes; and e, regulation of insulin secretion pathway
Z scores of BW PPI networks based on 10,000 random networks, and enriched for PoC between BW and T2D/fasting glucose (FG). Red nodes
where the Z scores for the 13 BW modules (M1-13) lie. For each module, indicate those present in PoC for BW and traits of interest; blue nodes
the two most significant GO terms are shown. ¢, A heat map is shown, correspond to the pathway nodes; purple nodes are those present in both
which takes the top 50 biological processes over-represented in the global the pathway and PoC; orange nodes are genes in BW loci that overlap
BW PPI network (listed at the right of the plot), and displays the extent with both the pathway and PoC. Large nodes correspond to genes in BW
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Extended Data Figure 7 | Quantile-Quantile (QQ) plots of variance
comparison between heterozygotes and homozygotes analysis in 57,715
UK Biobank samples and parent-of-origin specific analysis in 4,908
ALSPAC mother-child pairs at 59 autosomal BW loci plus DLK1. a, QQ
plot from the Quicktest analysis (ref. 77) comparing the BW variance of
heterozygotes with homozygotes in 57,715 UK Biobank samples. b, QQ
plot from the parent-of-origin specific analysis testing the association
between BW and maternally transmitted versus paternally transmitted
alleles in 4,908 mother-child pairs from the ALSPAC study (Methods,
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Supplementary Tables 15, 16). In both panels, the black dots represent lead
SNPs at 59 identified autosomal BW loci and a further sub-genome-wide
significant signal for BW near DLK1 (rs6575803; P=5.6 x 10~%). The grey
lines represent expected P values and their 95% confidence intervals under
the null distribution for the 60 SNPs. Both results show trends in favour of
imprinting effects at BW loci; however, despite the large sample size, these
analyses were underpowered (see Methods) and much larger sample sizes
are required for definitive analysis.
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Extended Data Figure 8 | Summary of previously reported loci for SBP, SBP loci. CAD loci with a larger effect on BW concentrated amongst loci
CAD, T2D and adult height and their effect on birth weight. a-d, Effect =~ with primary blood pressure association. f, Effect sizes (with 95% CI) on

sizes (left y axis) of previously reported 30 SBP loci'*!4, 45 CAD loci®*, BW of 32 known T2D loci were plotted, subdivided by previously reported
84 T2D loci** and 422 adult height loci®® were plotted against effects on categories derived from detailed adult physiological data*’. Heterogeneity
BW (x axis). Effect sizes were aligned to the adult trait (or risk)-raising in BW effect sizes between five T2D loci groups with different mechanistic
allele. The colour of each dot indicates BW association P value: red, categories was substantial (Cochran’s Q statistic Ppe;=1.2 x 1077). In

P<5x10°8 orange, 5 X 1078< P<0.001; yellow, 0.001 < P < 0.01; white, pairwise comparisons, the ‘beta cell’ group of variants differed from the
P>0.01. The superimposed grey frequency histogram shows the number other four groups: fasting hyperglycaemia (Ppe;=3 x 107!), insulin

of SNPs (right y axis) in each category of BW effect size. e, Effect sizes resistance (Phey = 0.002), proinsulin (Ppe = 0.78) and unclassified

(with 95% CI) on BW of 45 known CAD loci were plotted arranged in the (Phet=10.02) groups. All of the BW effect sizes plotted in the forest plots
order of CAD effect size from highest to lowest, separating out the known  were aligned to the trait (or risk)-raising allele.
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Extended Data Table 1 | Sixty loci associated with BW (P < 5 x 10~8) in European ancestry meta-analysis of up to 143,677 individuals
and/or trans-ancestry meta-analysis of up to 153,781 individuals

a =
Position Alleles European ancestry Trans-ancestry
Locus Lead SNP Chr: (b, bar) EffectOther =T B (SE) Pvalue B(SE) P-value
Previously reported loci
CCNL1-LEKR1 rs13322435 3 156,795,468 AG 0.59 0.053 (0.004)  3.7x10*'  0.052(0.004)  1.3x10°*
HMGA2 151351394 12 66,351,826 TIC 0.48 0.044 (0.004)  1.9x10%  0.043 (0.004)  2.0x10°
CDKAL1 1535261542 6 20,675,792 C/A 0.73 0.044 (0.004)  4.4x10%  0.044 (0.004)  9.7x10°°
ADCY5 1511719201 3 123,068,744 T/C 0.23 0.046 (0.004)  2.4x10®  0.046 (0.004)  6.4x10°
ADRB1 rs7076938 10 115,789,375 T/C 0.73 0.036 (0.004)  4.7x10"®  0.035(0.004) ~ 4.7x10"®
LCORL 15925098 4 17,919,811 G/A 0.28 0.034 (0.004)  5.4x10"°  0.032(0.004)  1.3x10"°
5q11.2 rs854037 5 57,091,783 AG 0.80 0.027 (0.005)  2.2x10°  0.025(0.005)  3.5x10°
Novel loci
EPAS1 151374204 2 46,484,205 T 0.70 0.047 (0.004)  6.2x10%°  0.046 (0.004)  1.5x10°
YKT6-GCK 15138715366 7 44,246,271 cr 0.99 0.241(0.023)  7.2x10*°  0.244 (0.023)  1.4x10*°
ESR1 rs1101081 6 152,032,917 cr 0.73 0.038 (0.004)  1.6x10"°  0.037 (0.004)  6.1x10%°
PTCH1 1528510415 9 98,245,026 G/A 0.09 0.056 (0.007)  1.5x10"7  0.053(0.006)  4.0x10"
CLDN7 rs113086489 17 7,171,356 T/C 0.55 0.031 (0.004)  9.1x10™®  0.030 (0.004)  1.3x10°
HHEX-IDE 1s61862780 10 94,468,643 TIC 0.52 0.028 (0.004)  3.0x10"*  0.028(0.004)  9.5x10°
STRBP 1700059 9 125,824,055 G/A 0.16 0.033 (0.005) ~ 4.7x10"°  0.036 (0.005)  1.2x10"?
HHIP 1s6537307 4 145,601,863 G/A 0.48 0.025(0.004)  9.5x10"®  0.026 (0.004)  1.3x10?
ZBTB7B rs3753639 1 154,986,091 cr 0.23 0.031(0.004)  7.3x10"®  0.031(0.004)  1.3x10"*
SREBF2 1$62240962 22 42,259,524 cr 0.92 0.047 (0.007)  9.7x10"®  0.047 (0.007)  3.7x10
MLXIPL rs62466330 7 73,056,805 cT 0.07 0.049 (0.008)  1.2x10"°  0.051(0.007)  5.9x10"*
ANK1-NKX6-3 rs13266210 8 41,533,514 AG 0.79 0.031(0.005)  1.3x10""  0.030(0.004)  1.6x10™"
L3MBTL3 1s1415701 6 130,345,835 G/A 0.73 0.025 (0.004)  2.6x10°  0.027 (0.004)  4.0x10™"
ATAD2B 1s7575873 2 23,962,647 AG 0.88 0.038 (0.008)  1.3x10""  0.036 (0.006)  6.2x10"
C200rf203 528530618 20 31,275,581 AG 0.50 0.026 (0.004) 7.7x10" 0.024 (0.004) 8.4x10™"
MAFB 16016377 20 39,172,728 T/C 0.45 0.024 (0.004)  9.5x107°  0.024 (0.004)  3.7x10"°
CPA3 rs10935733 3 148,622,968 T/C 0.42 0.022 (0.004) 9.2x10°  0.023 (0.004)  6.2x10"°
INS-IGF2 rs72851023 1 2,130,620 T/C 0.07 0.048 (0.008)  2.9x107°  0.046 (0.007)  6.8x10™"°
IGF2BP3 rs11765649 7 23,479,013 T/C 0.76 0.027 (0.004)  5.8x10™°  0.026 (0.004)  1.0x10°
WNT4-ZBTB40 152473248 1 22,536,643 cr 0.87 0.033 (0.006)  1.1x10°  0.033(0.005)  1.1x10°
IGF1R 157402982 15 99,193,269 NG 0.42 0.023 (0.004)  2.3x10°  0.023(0.004)  1.1x10°
PLAC1 1511096402 X 133,827,868 G/A 0.25 0.028 (0.005)  1.3x10° N/A N/A
EBF1 157729301 5 157,886,953 AG 0.72 0.024 (0.004)  1.6x10°  0.025(0.004)  1.3x10°
SUZ12P1-CRLF3  rs144843919 17 29,037,339 G/A 0.96 0.066 (0.012)  1.4x10°  0.068 (0.011)  1.5x10°
FCGR2B 172480273 1 161,644,871 C/A 0.17 0.031(0.005)  8.0x10"°  0.030 (0.005)  1.5x10°
RNF219-AS1 151819436 13 78,580,283 cr 0.87 0.033 (0.006)  6.3x10°  0.033(0.005)  1.8x10°
NT5C2 1574233809 10 104,913,940 cm 0.08 0.037 (0.007)  5.2x10°  0.039(0.006)  1.8x10°
SLC45A4 1512543725 8 142,247,979 G/A 0.60 0.023 (0.004)  1.2x10°  0.022(0.004)  1.9x10°
GPR139 151011939 16 19,992,996 G/A 0.31 0.022 (0.004)  1.3x107  0.024 (0.004)  2.7x10°
SP6-SP2 1512942207 17 45,968,294 crr 0.30 0.022(0.004)  51x10°  0.024(0.004)  3.0x10°
GNA12 15798489 7 2,801,803 cr 0.74 0.023 (0.004)  2.0x10°  0.024 (0.004)  5.0x10°
PHF19 157847628 9 123,631,225 G/A 0.67 0.023 (0.004)  1.0x10°  0.023(0.004)  5.4x10°
PLEKHAT 152421016 10 124,167,512 T/C 0.48 0.021 (0.004)  1.8x10°  0.021(0.004)  6.1x10°
JAGT 156040076 20 10,658,882 ClG 0.51 0.023 (0.004)  2.0x10°  0.022(0.004)  7.2x10°
LINC00332 152324499 13 40,662,001 G/C 0.67 0.022 (0.004)  7.3x10°  0.023(0.004)  8.3x10°
IGF1 157964361 12 102,994,878 AG 0.08 0.039 (0.007)  4.7x10°  0.038(0.007)  9.7x10°
FES 1s12906125 15 91,427,612 G/A 0.69 0.023 (0.004)  1.7x10°  0.023(0.004)  1.0x10°
TBX20 156959887 7 35,295,365 AG 0.61 0.023 (0.004)  1.5x10°  0.021(0.004)  1.0x10°
HMGA1 157742369 6 34,165,721 G/A 0.19 0.028 (0.005)  1.0x10°  0.027 (0.005)  1.1x10°®
HIST1H2BE 159379832 6 26,186,200 AG 0.71 0.023(0.004)  6.6x10°  0.024(0.004)  1.2x10°
PTHIR 152242116 3 46,941,116 AG 0.39 0.022 (0.004)  1.4x10°  0.021(0.004)  1.2x10°
NRIP1 152229742 21 16,339,172 GIC 0.87 0.036 (0.006)  2.2x10°  0.034 (0.006)  1.5x10°
RB1 152854355 13 48,882,363 G/A 0.26 0.023 (0.004)  9.8x10°  0.024 (0.004)  2.2x10°
KREMEN1 15134594 22 29,468,456 cr 0.35 0.023 (0.004)  1.0x10°  0.022(0.004)  2.2x10°
APOLD1 rs11055034 12 12,890,626 C/A 0.73 0.022 (0.004)  1.8x107  0.023(0.004)  2.3x10°
PEPD 1s10402712 19 33,926,013 AG 0.27 0.022(0.004)  4.4x107  0.023(0.004)  2.3x10°
ACTL9 rs61154119 19 8,787,750 TG 0.84 0.028 (0.005)  1.1x107  0.028(0.005)  2.3x10°
LPAR1 152150052 9 113,945,067 TA 0.50 0.021 (0.004)  2.2x10°  0.020 (0.004)  2.8x10°
ITPR2 1512823128 12 26,872,730 T/C 0.56 0.021 (0.004)  1.9x10°  0.020 (0.004)  3.2x10°
DTL 1s61830764 1 212,289,976 AG 0.36 0.022(0.004)  56x10°  0.022(0.004)  4.5x10°
TRIB1 156989280 8 126,508,746 G/A 0.70 0.022 (0.004)  2.2x107  0.022(0.004)  5.0x10°
MTNR1B 1510830963 11 92,708,710 G/C 0.27 0.023 (0.004)  2.9x10°  0.022(0.004)  1.0x107
ABCC9 rs139975827 12 22,068,161 G/A 0.63 0.025 (0.004) _ 1.1x10° _ 0.022(0.004) _ 1.0x10”
b ,
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a, Effects (3 values) were aligned to the BW-raising allele. Effect allele frequency (EAF) was obtained from the trans-ancestry meta-analysis, except for PLACI, for which the EAF was obtained from
the European ancestry meta-analysis due to lack of X chromosome data from the non-European studies. Chr, chromosome; bp, base pair; b37, build 37; EAF, effect allele frequency; SE, standard error.
b, The effect of the lead SNP (absolute value of 3, y axis) is given as a function of minor allele frequency (x axis) for 60 known (pink) and novel (green) BW loci from the trans-ancestry meta-analysis.
Error bars are proportional to the standard error of the effect size. The dashed line indicates 80% power to detect association at genome-wide significance level for the sample size in trans-ancestry
meta-analysis.
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Extended Data Table 2 | Gene set enrichment analysis and protein-protein interaction (PPI) analysis
a. Gene set enrichment analysis

95th percentile enrichment

75th percentile enrichment

cutoff cutoff
Number of Expected Expected
genes (observed) (observed)
(mapped to number of number of
Database Gene set MAGENTA) P FDR genes P FDR genes
GOTERM Positive regulation of glycogen
biosynthetic process 10 (10) 5.6x10°  0.005 1(5) 3.6x10°  0.18 3(7)
GOTERM Insulin-like growth factor receptor binding 13 (13) 2.4x10° 0.006 1 (6) 0.02 0.35 3(7)
GOTERM Positive regulation of glucose import 22 (22) 1.0x10™ 0.019 1(7) 0.02 0.36 6 (10)
GOTERM Insulin receptor signalling pathway 35 (34) 2.8x10° 0.022 2(9) 4.3x10° 0.27 9 (16)
GOTERM Chromatin remodelling complex 11 (9) 9.0x10™ 0.036 0 (4) 0.16 0.55 2 (4)
KEGG Glycosphyngolipid biosynthesis globo-
series 14 (13) 2.6x10°  0.037 1 (4) 0.21 0.48 3(5)
KEGG Melanoma 71 (67) 1.6x10° 0.037 3(10) 0.05 0.35 17 (23)
KEGG Terpenoid backbone biosynthesis 15 (15) 5.9x10° 0.039 1(1) 0.15 0.44 4 (6)
KEGG Type 2 Diabetes Mellitus 47 (45) 2.2x10° 0.040 2(8) 0.14 0.46 11 (15)
Panther Cholesterol biosynthesis 11 (11) 1.8x10° 0.040 1(4) 0.29 0.64 3 (4)
BIOCARTA  Growth hormone pathway 28 (27) 3.0x10™ 0.044 1(7) 0.11 0.25 7 (10)
KEGG Oocyte meiosis 114 (108) 1.0x10°  0.048 5(14) 0.07 0.45 27 (34)
Custom gene set of imprinted genes
GTEX Imprinted genes (All) 77 (72) 1.9x10™ - 4(12) 0.11 - 18 (23)
GTEX Imprinted genes (Primary) 38 (35) 6.9x10° - 2 (6) 0.14 - 9(12)
GTEX Imprinted genes (Primary + Suggestive) 55 (50) 0.010 - 3(7) 0.25 - 13 (15)
b. Protein-protein interaction analysis
Number of genes
(overlapped with
Database Pathway PPI network) Z score P adjusted P*
GOTERM Epidermal growth factor receptor signalling pathway 198 (31) 7.97 3.3x10™ 1.4x10°
GOTERM Insulin receptor signalling pathway 151 (26) 7.90 1.1x10° 2.9x107
GOTERM Stimulatory C-type lectin receptor signalling pathway 121 (22) 7.59 7.5x10° 1.2x10°®
GOTERM Negative regulation of canonical Wnt signalling pathway 152 (25) 7.46 6.2x10° 1.2x10°®
GOTERM Notch signalling pathway 129 (22) 7.21 2.6x10° 3.3x10°
GOTERM Cellular response to insulin stimulus 71 (16) 7.62 3.7x10° 4.1x10°
GOTERM Positive regulation of glycogen biosynthetic process 15 (8) 9.39 5.3x10® 5.1x10°
GOTERM Positive regulation of protein phosphorylation 114 (20) 7.03 6.8x10° 5.9x10°
GOTERM Positive regulation of glucose import 27 (10) 8.42 8.3x10° 6.5x10°
GOTERM Fc-epsilon receptor signalling pathway 186 (26) 6.58 9.6x10° 6.8x10°

Two complementary analyses of the overall GWAS summary data identified enrichment of BW associations in biological pathways related to metabolism, growth and development. a, The top results
(FDR < 0.05 at the 95th percentile enrichment threshold) from a total of 3,216 biological pathways tested for enrichment of multiple modest associations with BW. Additionally, results are shown for
custom sets of imprinted genes: Primary, genes identified as highly likely to be imprinted in the GTEx database (tested n=38); Primary + suggestive, genes identified as highly likely and suggestively
imprinted in GTEx (n=55); All, the above plus genes selected from the literature where imprinting status is consistent in GTEx (n=77). b, The results of a complementary analysis of empirical PPI data,
displaying the top 10 most significant pathways enriched for BW-association scores.
2P value is adjusted for multiple correction using the Benjamini-Hochberg method.
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