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Models o f  developmental continuity and change in quantitative pheno- 
types may be tested using longitudinal data from twins. We illustrate a 
procedure for establishing the power and required sample sizes for de- 
tecting developmental transmission against an alternative common-fac- 
tor hypothesis. We explore the general effects o f  different heritabilities, 
different fidelities o f  environmental and genetic developmental transmis- 
sion, and varying numbers o f  occasions of  measurement. In addition, a 
constraint o f  wide application is postulated for the action o f  the envi- 
ronment; either environmental effects are transmitted (learned) and oc- 
casion specific or they exert a constant influence which is not transmitted 
(learned). While the situations we examine are necessarily restricted here, 
our explorations of  power show that, providing that we measure on at 
least four occasions, it is easy to detect developmental transmission with 
workable sample sizes. 
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I N T R O D U C T I O N  

D e v e l o p m e n t a l  con t inu i ty  o r  " t r a c k i n g "  is so ub iqu i tous  a p h e n o m e n o n  
tha t  i ts  o b s e r v a t i o n  h a r d l y  d r a w s  c o m m e n t .  F o r  p h y s i c a l  c h a r a c t e r i s t i c s  
such  as  he igh t  and  we igh t  o r  p s y c h o l o g i c a l  c h a r a c t e r i s t i c s  such  as intel -  
l igence ,  a p o s i t i v e  co r r e l a t i on  o f  m e a s u r e m e n t s  f rom one  o c c a s i o n  to  the  
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next is expected during both growth and adulthood. For a phenotype such 
as blood pressure the tracking phenomenon is also well established (e.g., 
Harlan et al.,  1973; Sneiderman et al.,  1976); individuals with higher blood 
pressures early in life tend to be those with higher blood pressures later 
on. Two mechanisms may give rise to such continuity. First, a common 
genetic or environmental disposition may influence an individual's ob- 
served score or phenotype whenever he/she is measured. For example, 
we may suppose that throughout early adulthood the constitutional prop- 
erties of an individual's cardiovascular system give rise to consistently 
high or low blood pressure. The perturbations around this mean level, 
perhaps associated with an illness or an especially stressful period for the 
individual, are transient and whatever caused this perturbation has no 
effect on later occasions. We can call this a common-factor mechanism 
or pleiotropy. 

The alternative possibility is that earlier influences are transmitted 
from occasion to occasion and so give rise to the measured continuity. 
For some cognitive tests a consequence of learning may be a transmission 
of environmental influences from occasion to occasion. For blood pres- 
sure, the effects of high or low levels at one age may persist and influence 
levels at later ages. In such a case, intervention to prevent the expression 
of high blood pressure at one age would have directly transmitted benefits 
later on. 

We would like to be able to distinguish between common-factor and 
transmission mechanisms, or determine the relative influence of each, 
and to estimate environmental and genetic contributions to these. For a 
disease process such as hypertension, which is associated with extreme 
scores on an underlying continuum, failure to reject a common-factor 
model for longitudinal continuity during adulthood would suggest that 
changes in exercise habits or diet have had little or no implications for 
risk; at most, the effects are transient. Rejection of the common-factor 
model in favor of the transmission model suggests the etiological impor- 
tance of environmentally determined changes in exposure to risks during 
adulthood only if the transmission is shown not to be solely through ge- 
netic influences. 

Given its importance, this problem has received relatively little at- 
tention in behavior genetics. While there are a number of discussions of 
developmental data and their analysis (e.g., Nesselroade and BaRes, 1979; 
Rogosa and Willett, 1985), only recently have these been set specifically 
in the context of genetic analysis. Where they have (e.g., Province and 
Rao, 1985), developmental changes have been described by arbitrary sta- 
tistical functions which provide few insights into the causal process. How- 
ever, Eaves et al. (1986b) and McArdle (1986) have outlined some general 
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implications of  a priori developmental  genetic models for quantitative 
traits. Boomsma and Molenaar (1987) have confirmed in a specific case 
how it is possible to reject a common-factor  model when the true mech- 
anism is an occasion-to-occasion transmission. In this paper  we cast the 
general approach of  Eaves et  al. (1986b) in the linear structural equation 
model of  Joreskog and Sorbom (1984) and show how to determine the 
power  of  a longitudinal twin study to reject an inappropriate common- 
factor  hypothesis  and to detect  environmental  and genetic occasion-to- 
occasion transmission during growth. Throughout  the current  discussion 
we restrict  ourselves to situations in which our observations begin at the 
initiation of  a developmental  transmission process,  and we assume that 
the effects of this process are superimposed on otherwise stationary con- 
temporary  contributions from common and specific factors. Using re- 
stricted examples we illustrate general properties of the models and the 
method for calculating the power of any particular study to reject an 
inappropriate common factor  model (Satorra and Saris, 1985). We then 
discuss and illustrate less restricted examples of  the approach and dem- 
onstrate  that quite small longitudinal studies will readily detect  
transmission. 

THE MODEL 

A model  for development,  adapted from Eaves et  al. (1986b), is 
shown in Fig. 1. The phenotype is measured on m + 1 occasions, giving 
the observations P0, P1 . . . . .  P~ . . . .  , Pro. The observed phenotype  is 
assumed to be a simple additive function of latent environmental  and 
genetically determined phenotypes,  E ' i  and G'i ,  so that P~ = eE'~ + hG'~. 
We may set h 2 + e 2 = 1 so that h 2 is the heritability at i = 0. On any 
particular occasion with i > 0, the latent environmental  influence may be 
an additive function of  three variables: Ec, the constant environmental  
factor;  Es, the environmental  factor specific to an occasion; and E ' i - 1 ,  
the environmental  effect on the previous occasion. The paths f rom these 
influences are eci, esi, and z~, respectively. Corresponding genetic influ- 
ences have paths g~,  gs~, andjg, respectively. The common-factor  model 
is represented by the special case whenje  = zi = 0, i = 1 . . . .  , m. The 
transmission model is the special case when e~; = gee = 0, i = 0 . . . . .  
m .  2 

z Our reviewers have pointed out that in certain circumstances, namely, whenj (or z) = 1 
and gs (or es) = 0, the common-factor model is formally equivalent to the transmission 
model. Therefore the distinction between a common-factor model and a transmission model 
should be conceived of as a relative one. 
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Fig. 1. The developmental path model for an individual. 

Figure 2 shows the extension of the basic model to include members 
of a twin pair. The correlation r is the genetic correlation between the 
individuals, which is 1 for monozygotic (MZ) twins and .5 for dizygotic 
(DZ) twins under an additive gene action and random mating. (For easier 
reading the i subscripts are dropped for the common-factor and trans- 
mission paths in Fig. 2.) 

Although it is not necessary to do so, this general model may be 
conveniently cast in terms of the widely used scheme for analyzing linear 
structural relationships available as LISREL VI (Joreskog and Sorbom, 
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Fig. 2. The developmental path model for a pair of twins. 
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1984). We observe the 2(m + 1) phenotypes  y = [Pol, Po2, P l l ,  P12, 
. . . .  P i l ,  P i E ,  �9 �9 �9 , P m l ,  P m 2 ] ' ,  where subscript i is the occasion and 
1,2 are the individuals in a twin pair, and we model the resulting 2(m + 
1) • 2(m + l) var iance-covar iance  matrix. The structural equations are 

and then 

where  

-q = B-q + F ~  

Y = A1q, 

"q[4(m + 1) x 1] 

= ' G 02, E'Ol ,  02, �9 �9 G m l ,  m2,  E ' m l ,  m2l , [G Ol, ' E'  . , ' G '  E '  1, 

~[4(m + 2) • 1] = [ G r  GeE, Ecl ,  Er G~ol, G~oe, Esol, 

Es02 . . . . .  Gsml, Gsm2, Esml, Esm2]', 

and 

F[4(m + 1) • 4(m + 2)] 

g~o 0 0 0 
0 gco 0 0 
0 0 e~o 0 
0 0 0 e~o 
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0 gr 0 0 
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A[2(m + 1) x 4(m + 1)] 
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The above gives a direct representat ion of  the model in Figs. 1 and 2 and 
can be used to generate var iance-covar iance  matrices under particular 
sets of  parameter  values. This enables us to explore the characteristic 
effects of  this developmental  model on the expected var iance-covar iance  
matrix under conditions of  interest. However ,  for estimation purposes 
the model is not identified without further restrictions. In practice,  we 
may fix h and e in A so that h 2 is the known or observed heritability at 
i = 0 .  

Since the r in �9 are given, we estimate only the parameters  in F and 
B from the longitudinal data. 

GENERAL PROPERTIES OF THE MODEL AND ITS RESOLUTION 

The Change in Phenotypic  Variance  

Suppose that on any occasion there is an input from contemporary  
genetic and environmental  influences, from either common factors or fac- 
tors specific to that occasion, such that the resulting phenotypic  variance 
is constant;  for example, we may set gr = gel = �9 �9 �9 gc/, and so on, 
with 
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e 2 ( e c  2 + es  2) + h 2 ( g c  2 + g s  2) = 1. 

I f  we now introduce posit ive developmental  t ransmission f rom the 
previous occasion,  its consequence is an increase in this phenotypic  var- 
iance. Eaves  e t  a l .  (1986b) have  shown how this variance increases toward  
an asymptot ic  value for their model.  Setting j l  = j2 = �9 �9 �9 jm = j and 
Z l  = Z 2  = �9 �9 �9 Z m  = Z ,  when con temporary  influences are specific to 
each occasion,  i.e., gc = ec = 0, then 

Vpm = h 2 ( 1  + j 2  + . . .  j2m) 4- e2(1  + Z 2 -t- . . .  z2m), 

simplifying to 

_ j z j  + e2 , where k = m + 1. 
1 --  Z 2 J  

With both general and specific influences we have 

Vpm = hZ[gcZak + gsZbk] + e2[ecZck + e sZdk] ,  

where  

a x  = bk  - 1 - j2k 
1 _ _ j z  , 

C k  = 
I 1  - -  z k  1 2 1 - -  Z 2 k  

- ( - S - - / _ z j  d k  - I - z - - - - ~  " 

Thus an important  general  result is that developmenta l  t ransmission 
will give increasing phenotypic  variance with age, up to an asympto t ic  
value, such as that observed for adult systolic blood pressure  (Hewit t  e t  

a l . ,  1988). Of  course  where  measurements  are age standardized or on an 
arbi trary scale, such information will not be directly available. Moreover ,  
at equilibrium, but not before,  the process  will become  a stat ionary pro- 
cess (Fredericksen and Rotondo,  1979). 

The effects on covariances  or correlations be tween relatives will de- 
pend on the relative predominance  of  environmental  or  genetic trans- 
mission. Under  random mating and additive gene action the genetic co- 
var iance be tween individuals measured  on occasions k - 1 and l - 1, 
respect ively,  l _-< k, will be  

where  

C o v p ~ , p l  = rh2[gcZak,1 + gs2bk,t], 

(1 - j k )  (1 - f )  j k - l ( 1  _ _  j2l) 
ak,  l = (1 -- j)2 , bk,1 -- 1 -- j2 , 
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and r is the coefficient of  relationship. I f  there is no genetic t ransmission 
( j  = 0), but there is environmental  transmission,  then, of  course,  the 
correlation between relatives will decline with age. 

Phenotype-to-Phenotype Transmiss ion 

The model  as we have outlined it does not specify direct measured  
phenotype- to-measured  phenotype  transmission. Eaves  et al. (1986b) 
noted that such direct transmission is formally equivalent to setting j = 
z in our model;  formulating the model as we have facilitates pa ramete r  
est imation and permits a test  of  the assumption of  phenotype- to-pheno-  
type transmission. The independent identification and est imation of all 
three  developmental  paths will be considered in another  paper.  

The Effect of  Transmiss ion Along  with a Constant  Env ironment  

Unlike genetic effects which contribute to both  intra- and interindi- 
vidual covariance,  the environmental  effects in our model contribute only 
to intraindividual covariance across occasions.  One consequence of this 
is that  i f j  < z, then t e s t - r e t e s t  correlations will increase during devel- 
opment ,  while correlations between relatives decrease.  The intraindivi- 
dual environment  covariance between occasions k - 1 and l - 1, l < k, 
will be 

where  

and 

Covp~ ,p  l = eZ[ec2Ck, l + es2dk,1], 

(1 - z k)(1 - z l) 
Ck, l = "  (1 - z) 2 

zk-t(1 _ z2t) 
dk,t - 1 - -  Z 2 

Displayed in Table I are equilibrium values of  ak, l(= ak, k) d~,l and 
dk,~ for k - l = 1 together with illustrative value of  Vp, rtest,retest, and 
rMz for the case h 2 = e 2 and gc 2 = gs 2 = ec 2 = es 2 and for g 2  = e2 ,  
g 2  = e 2  = 0. The important  conclusion f rom Table I is that when z > 
j the t e s t - r e t e s t  stability can increase considerably as a consequence  of  
t ransmit ted constant  environments ,  while the MZ correlation falls. 

In reality there are few phenotypes  whose t e s t - r e t e s t  stability cor- 
relation is as high as .8, while the correlation between identical twins is 
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as low as .2, with the possible exception of hand preference. This suggests 
that if transmission of environmental influences rather than genetic influ- 
ence predominates, then those environmental influences must occur on 
specific occasions rather than continuously. Even when j  = z, i.e., trans- 
mission is effectively phenotypic without regard to its genetic or envi- 
ronmental cause, only if the MZ correlation is markedly less than the 
test-retest  stability can ec take other than low or zero values. For traits 
influenced by a shared family environment the argument comes to hinge 
on the relative magnitude of the MZ and DZ correlations, which in the 
presence of a constant, shared, and developmentally transmitted envi- 
ronmental influence, will rapidly approach each other in magnitude. For 
traits such as IQ, where the reverse is the case, i.e., rMz and r , z  diverge 
from birth to adolescence, environmental influences are seen to be oc- 
casion specific whether shared or individual, while genetic influences act 
continuously on the phenotype (Eaves et al., 1986b). 

In short, for most traits of interest, environmental effects will be 
found to be either developmentally transmitted but occasion specific or 
constant but not developmentally transmitted, but not both. 

No Unambiguous Resolution with Measurements on Three or Fewer 
Occasions 

Our principal concern is discriminating between developmental trans- 
mission and common-factor accounts of developmental continuity. For 
individuals, with measurements on just three occasions we have three 
unique covariances and three variances. Even when the process is purely 
a transmission process, leading to a perfect simplex correlation matrix, 
a single common-factor model with distinct common-factor loadings for 
each occasion, along with specifics, will be formally equivalent (Joreskog, 
1974). Similarly twin data from three occasions yield 12 unique variances 
and covariances which are fit perfectly by the 12 parameters of a genetic 
and environmental unconstrained common-factor model. Of course while 
such a model will have no predictive value and may be less parsimonious, 
we need to be aware that longitudinal studies with measurements on three 
or fewer occasions are insufficient to resolve even simple models of de- 
velopment, in the absence of further restrictive assumptions. Having said 
this, in practice a considerable amount of background knowledge of tes t -  
retest stabilities, typical values of correlations between relatives, and pop- 
ulation variances is often available; putting this background information 
together with that from a study having measurements on only two oc- 
casions may prove useful in generating plausible hypotheses about de- 
velopment (Hewitt et al., 1988). 
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POWER CALCULATIONS 

The procedure followed for computing the power to reject an incor- 
rect model is similar to that set out by Martin et  al. (1978) and Eaves et  

al. (1986). The robustness of the procedure has also been demonstrated 
in the context of structural equation modeling by Satorra and Saris (1985). 
First the true covariance matrix between the Pi is generated for a partic- 
ular set of parameter values. We then find the ML estimates for the pa- 
rameters of the false model. For this purpose we have employed the LIS- 
REL VI estimation package (Joreskog and Sorbom, 1984), which 
minimizes the likelihood function. 

F = l n ] X l  - ln lS]  + t r ( S X - 1 )  _ k, 

where S is the "observed" covariance matrix, X is the expected covar- 
lance matrix under the model being tested, and k is the number of manifest 
variables. In our case S is the expected covariance matrix on the true 
model and X is the expected covariance matrix under the model being 
tested. If the observed variables follow a multivariate normal distribution 
and the sample sizes (N) are reasonably large, then N - 1 times the 
minimum value of F is distributed as • with s - p degrees of freedom, 
where s is the number of observed statistics and p is the number of pa- 
rameters. The X 2 may be used as a likelihood-ratio test of the adequacy 
of a constrained model, and we may reject the incorrect model on the 
basis of this test. Since the X 2 statistic is a function of sample size we 
may estimate the size of the study required to give sufficient power in 
the following way. 

We determine X~2_p = k', which is a measure of the inadequacy of 
the false model based on an arbitrary sample size; it is convenient to take 
n = 100. Using tables based on the noncentral chi-square distribution 
(Pearson and Hartley, 1972), we may determine the value of k to ensure 
rejection of the false model at the ~ = 5% level of significance in a given 
proportion, [3, of the studies. The required sample size is given by 

N = Xlh'  x 100. 

If the degrees of freedom for • are greater than 100, then the avail- 
able tables may be used with graphical extrapolation to give h to a good 
approximation. Alternatively, and more accurately, we may use the non- 
central chi-square function (PROBCHI) implemented by SAS (SAS In- 
stitute, 1985), which yields 

= 1 - PROBCHI(x~-~, dr, X), 

where [3 is the power attained at the 100e~% level of significance for given 
degrees of freedom and noncentrality parameters k. It is a simple enough 
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matter to determine the required h for any specified values of [3, o~, and 
df (Hewitt and Heath, 1988). Using this procedure we are able to explore 
the relationship between power, and hence the necessary sample sizes, 
and various aspects of the traits to be studied. For example, we can see 
what are the effects of differences in the fidelity of developmental trans- 
mission of the trait, the relative importance of transmission of environ- 
mental versus genetic influences, and the heritability of the trait. 

THE EFFECT OF INITIAL HERITABILITY ON POWER 

To explore the general characteristics of the system we first generated 
the " t rue"  covariance matrices for pairs of MZ and DZ twins. Rather 
than try all possible numbers of occasions we chose a number which was 
greater than three but reasonably accommodated by LISREL VI. Setting 
the number of occasions at six yielded a 12 x 12 covariance matrix of 
individual scores Pol, Po2, Pl l ,  P12 . . . . .  P m l ,  Pm2, where m = 5, for 
each zygosity. 

We are initially interested in situations where gc = ec = 0, that is, 
the developmental continuity is a consequence of transmission in the ab- 
sence of common-factor influences on the phenotype. We imposed the 
additional constraint that gsi = esi = 1, i = 0 . . . . .  m. 

Our false model, however, assumes that j = z = 0 and attempts to 
account for continuity by the common-factor hypothesis. In estimating 
the parameters of the model we initially imposed the constraints that 
gso = g s l  = " ' "  = gsm, and eso = e s l  = . . . .  e s m .  

To identify the remaining parameters we set h and e to their true 
values. Under these conditions the power of a given twin study to reject 
the common-factor model depends on the magnitudes o f j  and z and the 
heritability of the phenotype. 

Table II shows the k' values generated by LISREL VI for the inad- 
equacy of the common-factor model fitted to the covariance matrix. Also 
given are the corresponding approximate sample sizes for 90% certainty 
of rejecting the model at the 5% level of significance, based on 152 df. 

In many applications we cannot be sure whether the units of mea- 
surement are equivalent from occasion to occasion. Nevertheless, we 
model the unstandardized covariance matrix in order that the chi-square 
interpretation of the likelihood is valid (Joreskog and Sorbom, 1984). To 
accommodate this situation we have generated as a "worst case" the true 
model expected correlation matrix and modeled it as a covariance matrix. 
As can be seen from Table II there is only a small loss of power to detect 
transmission. 
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Table II. The  Pat tern of  Consequences  of  Different  j ,  z ,  and Heritability Values  
for Noncentra l i ty  Parameters  (k ' )  and Required Sample  Sizes (N) ~ 

145 

Modefing Modefing 
covariance c o , e l a t i o n  

j z h 2 h '  N k' N 

.1 .1 .1 12.8 b 458 12.8 b 458 
.4 12.8 458 12.8 458 
.8 12.8 b 458 12.8 b 458 

.4 .4 .1 183.9 32 181.5 b 32 
.4 183.9 b 32 181.5 32 
.8 183.9 b 32 181.5 b 32 

.4 .8 .1 630.7 9 548.1 11 
.4 496.8 12 442.6 14 
.8 367.6 16 342.3 17 

.8 .4 .1 218.5 27 212.7 28 
.4 324.4 18 307.3 20 
.8 471.8 12 439.2 14 

.8 .8 .1 691.7 9 596.7 10 
.4 691.9 9 596.7 10 
.8 691.8 b 9 596.7 b 10 

a " T r u e "  model:  gc z = e~ z = 0; gs 2 = e~ z = 1 ; j ,  z, h 2 cons tan t  as given. " F a l s e "  model:  
j = z = 0; g 2 ,  ec2, gs2, es2, h E constant .  

b Values  derived,  not  computed  by L I S R E L  VI. 

It is useful to note that the k' statistic is a linear function of the 
heritability of the trait. Whenj  > z and transmission is primarily genetic, 
power increases with the herital" ility of the trait. When j < z, traits with 
low heritabilities give rise to more powerful tests for rejecting the common 
factor hypothesis. When j = z, that is, the transmission is effectively 
phenotypic, the heritability of the trait is irrelevant. 

The results show that in the simplest situation where transmission is 
the only cause of developmental continuity and has a moderate fidelity 
( j  and z = .4), then studies with as few as 32 pairs each of MZ and DZ 
twins measured on six occasions have a 90% chance of rejecting the sim- 
plest common-factor hypothesis at the 5% level. 

ff the fidelity of transmission is poor (j  and z about.  1, say) then the 
necessary number of pairs of each zygosity rises to about 450 for the same 
power. 

Allowing the common-factor loadings, gr and e r to take independent 
values on each occasion will, as we see below, reduce the noncentrality 
parameters by about 50% or more. However, the general properties of 
the effects on power of different j,  z, and h 2 values for the true model 
will follow those shown in Table II. 
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DISCRIMINATION OF TRANSMISSION AND COMMON-FACTOR 
HYPOTHESES WITH UNRESTRICTED MODELS 

For a more detailed illustration we chose to explore two plausible 
situations in which the true model involves both developmental trans- 
mission and common-factor influences. The expected covariance matrix 
for the six occasions, m = 0, 1 . . . . .  5, was generated under the following 
conditions: 

(I) j = z = .4, go = 1, gs = 0, ec = 0, es = 1, h 2 = .4; 
(II) j = .4, z = .8, g~ = 1, gs = 0, e~ = 0, es = 1, h 2 = .4. 
For each case we considered either restricted, partially restricted, or 

unrestricted single common-factor models and restricted, partially re- 
stricted, or unrestricted transmission models; a restricted model has con- 
stant parameters, a partially restricted model allows the occasion specific 
paths to vary across occasi ms, and an unrestricted model lets all param- 
eters vary across occasions. The required sample size for a given power 
to reject both the inappropriate common factor and the transmission 
model will be the larger of the two indicated in Table IV. In addition to 
varying the restrictiveness of the false models, we explored the effect of 
observing the phenotype on only the first three, four, or five occasions 
instead of six. As before, to allow for the possible absence of scale in- 
variance across occasions, we standardized the covariance matrix, when 
fitting the factor models. However, such a procedure is inappropriate 
when fitting restricted transmission models since these require changes 
in variance. 

We may note first that, as we have already said, a longitudinal twin 
study with measurements on only three occasions is insufficient by itself 
to reject an unrestricted common-factor hypothesis. Perhaps more inter- 
estingly, an unrestricted transmission model cannot be rejected given our 
true model however many occasions we have. However, the transmission 
parameters have to start off greater than unity and decline steadily as the 
growth process moves toward equilibrium. The only way to predict this 
change in transmission values is to suppose that the developmental pro- 
cess can be modeled by a restricted transmission and common-factor 
process together, which will give a more parsimonious account of equally 
good fit. 

Turning to the sample sizes needed to reject restricted false models, 
the upper halves of Tables III and IV record an encouraging outcome. 
Even to reject an unrestricted common-factor hypothesis will require only 
about 100 pairs of each zygosity measured on four occasions. If the num- 
ber of occasions can be increased to six, the required sample sizes fall 
to about 50 or fewer pairs of each zygosity, depending on the magnitude 
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Table IlL Noncentrality Parameters (X') and Required Sample Sizes (N) for Case I 

CaseI. Wor ld : j=  z = .4, g~ = 1, gs = 0, e~ = 0, e~ = 1, h 2 = .4 

Number of occasions 

Model Parameter 6 5 4 3 

Restricted factor model: 
j = z = 0; go, gs, ee, e~ const. 

Partially restricted factor model: 
j = z = 0; go, ec const. 

Unrestricted factor model: 
j = z = 0  

Restricted transmission model: 
gc = ee = 0 ; j ,  z, gs, es const. 

Partially restricted transmission 
model: 
gc = ec = 0 ; j ,  z const. 

Unrestricted transmission model: 
ge = ee = 0 

k' 223.88 158.21 95.70 40.71 
df 152 106 68 38 
N 26 32 44 82 

X' 175.82 116.20 63.37 21.53 
df 142 98 62 34 
N 32 42 64 142 

h' 103.28 62.33 30.15 .00 
df 132 90 56 30 
N 54 77 129 - -  

X' 116.99 88.56 61.10 35.58 
df 152 106 68 38 
N 50 57 69 94 

X' 8.80 6.95 4.72 2.38 
df 142 98 62 34 
N 647 704 856 1339 

k '  .00 .00 .00 .00 
" d r "  134 92 58 32 

of the transmission parameters. Generally for this purpose, increasing the 
number of occasions is more productive than increasing the number of 
subjects. 

Against this picture of reasonable power to reject an inappropriate 
common-factor hypothesis, the power to reject transmission models, ex- 
cept of the most restricted type, is poor. It would appear that given both 
transmission and a common pleiotropic genetic factor, we are unlikely to 
be able to detect the common genetic factor statistically. 

DISCUSSION 

Beyond simply describing developmental trends, progress in under- 
standing the genetic and environmental causes of continuity and change 
requires formalized and testable hypotheses. These hypotheses should 
have explanatory power, that is, they should predict the quantitative re- 
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Table IV. Noncentrality Parameters (k') and Required Sample Sizes (N) for Case II 

Case I I .  Wor ld : j  = .4, z = .8, go = 1, gs = 0, ec = 0, es = 1, h 2 = .4 

Number  of  occasions 

Model Parameter 6 5 4 3 

Restricted factormodel:  
j = z = 0; go, gs, ee, es const. ~' 598.19 386.70 209.09 76.32 

df 152 106 68 38 
N 10 13 20 44 

Parf ial lyrestr ic tedfactormodel:  
j = z = 0; go, eo const. ~' 465.38 277.58 130.61 29.74 

df 142 98 62 34 
N 12 18 31 107 

Unrest f ic tedfactormodel :  
j = z = 0 k' 266.70 149.28 64.58 .00 

df 132 90 56 30 
N 21 32 60 - -  

Restricted transmission model: 
gc = ec = 0; j ,  z, g~, es const, h '  84.91 73.12 59.51 43.02 

df 152 106 68 38 
N 69 69 71 77 

Partially restricted transmission 
model: 
go = ec = O;j, z const, h' 12.72 10.77 8.10 4.41 

df 142 98 62 34 
N 448 454 499 723 

Unrest f ic tedtransmiss ionmodel :  
ge = ee = 0 h' .00 .00 .00 .00 

" d r '  134 92 58 32 

lationships they seek to explain and not simply describe them using ar- 
bitrary mathematical functions of increasing complexity. The common- 
factor and transmission model described here and elsewhere (Eaves et 
al., 1986b) sets out to predict changing intra- and interindividual variance- 
covariance patterns in terms of a small number of parameters. Its success 
should depend on the conformity of empirical reality to the model. If it 
does not, then the model is not testable. Where such a model is testable 
and appropriate, its explanatory and predictive power is considerable. 
The focus of this paper has been the power of longitudinal twin studies 
to resolve the contributions of these common-factor and transmission 
mechanisms during growth. Although we have imposed quite restrictive 
assumptions, there are a number of workable generalizations. 

Under our assumptions, a hallmark of the superposition of devel- 
opmental transmission on a system otherwise in equilibrium is a rise in 
phenotypic variance up to a new asymptotic value. If we are analyzing 
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standardized data, this will be detected as a decrease in the proportion 
of variance which is occasion specific. For preadolescent cognitive de- 
velopment (Eaves et al., 1986b), adult blood pressure (Hewitt et al., 1988), 
and Scholastic Aptitude Test scores (Joreskog, 1974; Hilton, 1969), for 
example, changes consistent with transmission superimposed on contem- 
porary variance are observed. In the absence of this kind of change, 
transmission is not a useful hypothesis to account for developmental con- 
tinuity, although some ad hoc provisions could permit a fit to the data. 
For example, we might reasonably allow the contemporary variance at 
i = 0 to take a value different from, and perhaps larger than, the sub- 
sequent contemporary variances. This uses additional degrees of freedom 
and weakens the developmental hypotheses. In practice, however, we 
may need to weaken our assumptions in this way to fit actual data. 

A second result of general importance applies where environmental 
transmission, e.g., learning, predominates over transmission of genetic 
effects (z > j). In such situations the developmental pattern of test-retest 
and twin pair correlations which is usually observed arises under our 
model only when transmitted environmental effects are occasion specific 
rather than constant in their primary action. To give this some substance, 
suppose that an individual environmental influence such as the presence 
or absence of a particular experience (perhaps a vocabulary game) in- 
creased or decreased a child' s vocabulary score during a particular month 
and that this increase or decrease is transmitted forward from month to 
month. If the games have the same ownership and each month ownership 
of the game contributes again to the vocabulary score, then the results 
will be increasing variance and increasing test-retest correlation but de- 
creasing family resemblance if the games are randomly distributed to chil- 
dren initially or decreasing genetically based resemblance if the games 
are allocated to whole families who share them. In the latter case the 
difference between the MZ and the DZ correlation would diminish with 
increasing reliability of the test scores, while in the former case (which 
is studied in detail in Table I) MZ correlations will decline as test-retest 
reliabilities rise. Neither of these results is observed for human traits with 
the exception, as we have noted, of hand preference. This suggests that 
the effects of our environmental experience either are not transmitted 
forward (i.e., learned) or do not continue to exert an impact from month 
to month. Presumably the direct effect of a given environmental input is 
short-lived; a particular input is beneficial but is soon outgrown and ex- 
posure to the next critical environmental input is not highly correlated 
environmentally with exposure to the previous input. This specific con- 
clusion is not new in behavior genetics but we may now assert it as a 
general result for traits where MZ and DZ correlations do not converge 
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and where MZ correlations do not decline relative to test-retest 
reliabilities. 

As far as longitudinal twin study design is concerned, the power to 
detect genetic and environmental transmission will depend, among other 
things, on the relative magnitudes of the transmission parameters, the 
initial heritability, the sample sizes, and the number of occasions of mea- 
surement. As we would expect, higher initial heritabilities make it easier 
to detect genetic transmission but more difficult to detect environmental 
transmission. Nevertheless, unless the transmission is of extremely poor 
fidelity, the results of our power calculations suggest that we will have 
no difficulty in detecting it against an alternative common-factor model. 
Although confining ourselves to consideration of a single common factor 
or pleiotropic gene action throughout development might be considered 
too restrictive, merely increasing the number of common factors as the 
number of occasions of measurement rises can lead only to ad hoc de- 
scription rather than explanation. Our real difficulty, however, is in re- 
jecting plausible developmental transmission models, and we shall return 
to this elsewhere (Hewitt et al., 1988). 

In finding that within the range studied, additional occasions were 
generally more productive than additional subjects for resolving our de- 
velopmental models, we noted that subject compliance and other practical 
considerations, such as the length of the study, necessitated a compromise 
here. A practical solution which is likely to be of considerable use is the 
overlapping cohort design (Heath and Eaves, 1986). We have been able 
to show that in a variety of situations interesting aspects of an a priori 
developmental model are testable and that the sample sizes required need 
not be unreasonably large. The exact situation depends on the true pa- 
rameters and which aspects of the model are to be tested. 
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