
Reexamining the
Fault Density–

Component Size
Connection

LES HATTON, Programming Research Ltd.

Conventional wisdom,
that smaller components
contain relatively fewer
faults, may be wrong.
This author found
that medium-sized
components were
proportionately more
reliable than small or
large ones. Moreover, he
says, there may be limits
on the fault density we
can achieve.

n software engineering, the lack of experimental evi-
dence often means that anecdotal, intuitive, or some-
times just plain commercial arguments become surpris-
ingly well-entrenched. For example, in spite of the enor-
mous growth of object-oriented technology, there seems
little if any solid, repeatable evidence that it delivers any

of its promised benefits. This is a relatively modern example, but
many such cases permeate the 40-year history of software engi-
neering. In the 1980s, CASE provided similarly extravagant
claims that it was largely unable to deliver, and database technolo-
gy in the ’60s and ’70s went through many traumas before eventu-
ally realizing most of its original promise. Knowledge-based sys-
tems and formal methods have been similarly oversold and are
just beginning to recover from the hype, with cautious progress.
These are all symptoms of a relatively immature discipline. It
should not be surprising if even fundamentally accepted princi-
ples are unsupported by repeatable measurement.

I E E E S O F T W A R E 0 7 4 0 - 7 4 5 9 / 9 7 / $ 1 0 . 0 0 © 1 9 9 7 I E E E 8 9

I

.

For years I subscribed to such a
principle: that modularization, or
structural decomposition, is a good
design concept and therefore always
improves systems. This belief is so
widespread as to be almost unchal-
lengeable. It is responsible for the
important programming language con-
cept of compilation models—which are
either separate, with guaranteed inter-
face consistency (such as C++, Ada, and
Modula-2), or independent, whereby a
system is built in pieces and glued
together later (C and Fortran, for
example). It is a very attractive concept
with strong roots in the “divide and
conquer” principle of traditional engi-

neering. However, this conventional
wisdom may be wrong. Only those
components that fit best into human
short-term memory cache seem to use
it effectively, thereby producing the
lowest fault densities. Bigger and
smaller average component sizes
appear to degrade reliability.

Of course, the proof of modulariza-
tion or any such concept relies on sub-
stantiation, through observing and
measuring real systems. For example,
in conventional engineering systems,
the need for reliability suggests split-
ting an overall design into pieces. This
is embodied in the celebrated and
highly pragmatic KISS (“keep it sim-

ple, stupid”) engineering principle.
This division makes design easy to
manage, but if designs are split into too
many small pieces, reliability may be
prejudiced. By analyzing the results of
some reliability studies, I will show
that the same applies in software: mod-
ularization does not always lead to
more reliable systems. The boxed text
on nomenclature, on page 91, might be
helpful before we look at the data.

CASE HISTORIES

Directly or indirectly, several
important studies have reported the
same phenomenon—that small com-
ponents tend to have disproportionate-
ly more bugs than bigger compo-
nents.1-7 My communications with
Martin Shepperd about his Pascal data
and with Watts Humphrey about his
C++ data also support this conclusion.
Although this does not add up to a
watertight case, there have been no
conflicting studies. The research spans
large and small developments in Ada,
C, C++, Fortran, Pascal, and various
forms of assembly and macro-assembly
language, from various parts of the
world and diverse application areas at
different stages of maturity. In other
words, they have little in common
other than this one phenomenon. In
this sense, components represent artifi-
cial, internal interfaces that data flows
across. In many languages, this might
correspond to a subroutine or function;
in OO languages such as C++, this
might be a class or method.

Is this more than coincidence? I
think so. Software systems seem to
exhibit macroscopic behavior in spite
of their massive internal complexity,
rather like countless molecules in a gas,
which lead to the simple macroscopic
relation PV = RT (pressure × volume =
the general gas constant × tempera-
ture). I examine five of the nine studies
in the box on page 92. The remaining
four corroborate the first five.

9 0 M A R C H / A P R I L 1 9 9 7

Nu
m

be
r o

f n
or

m
al

ize
d

fa
ul

ts

Size in statements

9

8

7

6

5

4

3

2

1

0
10 50 70 90 11030

Predicted data for
new components

Actual data
for new

components

Actual data for
modified components

Predicted data
for modified
components

Figure 1. A comparison of the Moller–Paulish fault data with predictions based on
Equation 1. Data for both new and modified components is shown.

Nu
m

be
r o

f n
or

m
al

ize
d

fa
ul

ts

9

8

7

6

5

4

3

2

1

Predicted data for
new components

Actual data
for new

components

Actual data for
modified components

Predicted data
for modified
components

Figure 2. Faults per 1,000 lines of code, reported in an analysis of 1976–1990
NASA Goddard data.

.

A composite analysis. The strikingly
similar qualitative behavior of the case
histories coupled with the logarithmic
behavior that Hopkins and I observed
suggest the use of such a logarithmic
relationship when we try to quantitative-
ly unify the data. As an example, Figure
1 shows the assembly data reported by
Karl-Heinz Moller and D.J. Paulish3

plotted against a logarithmic curve.
The other case studies showed simi-

lar behavior, prompting me to see if
some underlying mechanism was at
work. Although necessarily speculative,
this study led me to devise a model
from which we can make interesting
predictions—predictions that can be
tested in future experiments.

A PROPOSED UNDERLYING
PRINCIPLE

It is easy to get the impression from
these case histories that developing soft-
ware systems with low fault densities is
exceedingly difficult. In fact, analysis of
the literature reveals graphs such as that

shown in Figure 2. This data was com-
piled from NASA Goddard data by the
University of Maryland’s Software
Engineering Laboratory, as quoted in
the December 1991 special edition of
Business Week. First of all, in spite of
NASA’s enormous resources and talent
pool, the average was still five to six
faults per KLOC. Other studies have
reported similar fault densities.4,8 More
telling is the observation that in Figure
2, improvement has been achieved
mostly by improving the bad processes,
not the good ones. This fact suggests
that consistency, a process issue, has
improved much more than actual fault
density, a product issue. The simple
conclusion is that the average across
many languages and development
efforts for “good” software is around six
faults per KLOC, and that with our best
techniques, we can achieve 0.5–1 fault
per KLOC. Perfection will always elude
us, of course, but the intractability of
achieving systematically better fault
densities than have been achieved so far
also suggests that some other limitation
may be at work.

Given the ubiquitous nature of this
trend, it is worthwhile to attempt to
model it. At the very least, this model
would have to explain not only the log-
arithmic relationship of faults to com-
ponent size for small to medium com-
ponents, but also the rapid but qualita-
tively similar departure from this
behavior for very large components,
for different languages. This latter fac-
tor suggests that the cause may relate
to the way the human mind manipu-
lates symbolic data, rather than to any
specific property of the software itself.

Although simple probabilistic mod-
els can be constructed, these usually
degenerate into mere data fitting.
Instead, I chose to base my model upon
findings from human memory research.

The seminal work of G. Miller
shows that humans can cope with
around 7 ± 2 pieces of information at a
time via short-term memory, indepen-
dent of information content.9 For
example, a binary sequence contains
inherently less information than a
sequence of base-10 numbers, but the
length of the sequence that can be

I E E E S O FT W A R E 9 1

Discussions of reliability in the literature exhibit consider-
able confusion over the various uses of the terms error, fault,
failure, mistake, defect, and bug. This is compounded by the
IEEE model of error → fault → failure when compared with
the IEC 1508 safety-related software standard model of fault →
error → failure. This article uses the IEEE model, so fault will
denote an inconsistency in the code that may or may not lead
directly to failure, depending on external circumstances. To
complicate matters further, fault density is the number of faults
divided by some measure of size, usually lines of source code.

Unfortunately, there is no standard definition of fault, nor of
line of code. Different sources show a ratio of benign to severe
failure as high as 25:1. In addition, common languages vary as
much as 2:1 in their definitions of lines of code. For example,
on average, the total number of executable lines of C code is
approximately half of the total number of newline characters.
Both are commonly used measures. This makes comparing
fault densities in different systems very difficult unless such def-
initions are made explicit. Fortunately, studies tend to be self-
consistent, so the phenomenon reported here is not affected.

Faults per KLOC is often quoted as a measure of software
system reliability. But what is it?

At some point in time, a system is implemented with the
hope that it is fault-free. As time goes by and use increases,
users encounter and report faults. Hence faults per KLOC,
the number of faults divided by some measure of the number
of lines of code, is a function of time. In a system subject only
to corrective maintenance, faults occur rarely, so the time-

dependent faults per KLOC will approach an asymptote as
time increases. In reality, only this asymptote makes sense for
comparing the reliability of different systems. So, given that
the asymptote can never be reached, the faults per KLOC
and the rate of change of this value are required to compare
such systems effectively.

Of course, real systems are subject to continual noncor-
rective change, so things become rather more complex. No
notion of rate of change of faults per KLOC was available for
any of the data in this study, although both mature and
immature systems were present, with the same behavior
observed. This would suggest that the observed defect behav-
ior is present through the life cycle, supporting even further
the conjecture that it is a macroscopic property. If only
immature systems had been present in the studies, it could
have been argued that smaller components may get exercised
more. This does not seem to be the case.

A further related point, also observed in the NAG library
study, is that when component fault densities are plotted as a
function of size, the usage of each component must be taken
into account. The models discussed in this article are essen-
tially asymptotic, and the fault densities they predict are
therefore an envelope to which component fault densities will
tend only as they are used sufficiently to begin to flush out
faults. An unused component has complexity but no faults, by
definition. The literature reports apparently near-zero-defect
systems that have turned out on closer inspection to have
been unused.

NOMENCLATURE

.

absorbed and manipulated is around
the same. This is similar to the lan-
guage-independent component fault
density behavior described earlier.
Miller also described the notion of
chunking, by which a problem is sys-
tematically broken down into chunks
that fit into short-term memory during
the understanding process.

E.R. Hilgard and co-workers argue
that the short-term memory incorpo-
rates a rehearsal buffer that continu-
ously refreshes its contents.10 They
also describe the standard memory
model whereby a long-term memory
backs up the short-term memory but
acts in a fundamentally different way—
its contents are in a coded form and, to
all intents and purposes, are never lost
even though the recovery codes may
get scrambled under various condi-
tions. There is considerable psycholog-
ical and physiological evidence to sup-
port this model, such as the studies of

Alzheimer’s disease, which show it
affects only short-term memory.

THE PROPOSED MODEL

Recovery code scrambling is an
important factor in my proposed
model. The evidence suggests that
anything that fits in a short-term or
cache memory is easier to understand
and less fault-prone; pieces that are too
large overflow, involving use of the
more error-prone recovery code mech-
anism used for long-term storage.

Thus, if a programmer is working
with a component of complexity Ω, and
that component fits entirely into the
cache or short-term memory, which in
turn can be manipulated without
recourse to back-up or long-term mem-
ory, the incremental increase in bugs or
disorder dE due to an incremental
increase of complexity of dΩ is simply

dE = (1/Ω) dΩ. (1)

This resembles the argument lead-
ing to Boltzmann’s law relating entropy
to complexity, where the analogue of
equipartition of energy in a physical
system is mirrored by the apparently
equal distribution of rehearsal activity
in the short-term memory. In other
words, because no part of the cache is
favored and the cache accurately
manipulates symbols, the incremental
increase in disorder is inversely propor-
tional to the existing complexity, mak-
ing the ideal case when pieces just fit
into cache. It is assumed without loss of
generality that both E and Ω are con-
tinuously valued variables.

What happens when we encounter
complexity greater than Ω′ (the com-
plexity which will just fit into the
cache)? The increase in disorder will
correspond to the complexity in the
(now-full) cache contents, plus a con-

9 2 M A R C H / A P R I L 1 9 9 7

Tim Hopkins and I studied1 the internationally famous
NAG Fortran scientific subroutine library, comprising some
1,600 routines totalling around 250,000 executable lines. The
NAG library appeals to the software experimentalist because it
has been through 15 releases over more than 20 years, and
because it has a complete bug and maintenance history embed-
ded in machine-extractable form in each component routine’s
header. Among other things, we found that the number of
bugs in the library was well-predicted by the formula

Nbugs = µlog10 (ρ × Ω),

where µ and ρ are scalars and Ω is a measure of the complexi-
ty, in this case the static-path count.13 At the time, we were
quite happy with the notion that more complex components
had more bugs. However, we had not thought the implica-
tions through; it follows immediately from its less-than-linear
relationship that smaller components contain proportionately
more bugs than larger components.

Note that the NAG library is fundamentally different
from the other systems described below. It is a library of
reusable components, not a system in itself. The fact that it
shares the same behavior as components connected within a
system further supports the view that the behavior I describe
is a macroscopic property.

Some four years later, following a detailed analysis of a
well-measured but very different engineering project (using a
different programming language, C, in a different part of the
development life cycle), S. Davey and colleagues reported
precisely the same phenomenon: smaller components con-
tained proportionately more faults.2 In this case, however,
the complexity measure was a count of source code lines.

In a detailed analysis of an entirely different type of devel-
opment—several versions of operating systems written pri-
marily in various dialects of assembly—Karl-Heinz Moller
and D.J. Paulish3 reported the same phenomenon, again
measuring complexity in terms of LOC. However, this study
also contained some very large components whose unreliabil-
ity grew much more quickly, restoring the intuitive view.

Research by B.T. Compton and C. Withrow4 covered a
large-scale development project in Ada, a language supposed-
ly free of many of the defects of other languages. The sample
contained small as well as very large components. Like
Moller and Paulish, the authors found both that small com-
ponents were proportionately more unreliable and that unre-
liability rose disproportionately as component size grew. The
optimum size at which unreliability in faults per KLOC
(1,000 lines of source code) was a minimum.

Vic Basili and B.T. Perricone5 came to several important
conclusions based on their study of a large suite of Fortran
programs, the earliest study showing this phenomenon as far
as I am aware. Their most important conclusion was, once
again, that small components were proportionately more
unreliable than the larger components, a conclusion which
troubled its authors enough that they felt the need to discuss
it in depth.

Finally, how small can a system be to exhibit this phenom-
enon? Recall that the PV=RT general gas equation holds
down to very low vacuums indeed. Sitting on a train in
Tokyo, I analyzed fault data on the GNU indent program
kindly supplied by Rick Swanton. The application is only
around 2,000 lines total, but once again the defect density
curve is U-shaped with component size.

THE EVIDENCE

.

tribution proportional to the number
of times the cache memory must be
reloaded from the long-term memory.
In other words,

(2)

The factor of 1/2 matches Equation 1
when Ω = Ω′, that is, when the com-
plexity of the program is about to over-
flow the cache memory. The second
term is directly proportional to the
cache overflow effect and mimics the
scrambling of the recovery codes.

Integrating Equations 1 and 2 sug-
gests that

E = log Ω for Ω ≤ Ω′ (3)

and

(4)

The logarithmic behavior observed
for small to medium-sized components
in actual systems emerges naturally
from this argument. We can now test
whether the quadratic behavior
implied by Equation 4 also emerges
from the two earlier data sets contain-
ing components of all sizes.

The Ada data and the assembly and
macro-assembly data provide strong
empirical support for this behavior,
with about 200 to 400 lines corre-
sponding to the complexity Ω′ at which
cache memory overflows into long-
term memory. That such disparate lan-
guages can produce approximately the
same transition point from logarithmic
to quadratic behavior supports the view
that Ω is not the underlying algorith-
mic complexity but the symbolic com-
plexity of the language implementa-
tion, given that a line of Ada would be
expected to generate five or more lines
of assembly. This is directly analogous
to the observation that it is fit, rather

than the actual information content of
the cache that is relevant.9

Figure 3 plots the fault data of two
of the studies, along with a prediction
using the model given by Equations 3
and 4, assuming a cache overflow value
of Ω′ = 200 lines of code.3,4

If this behavior is shown in terms of
fault density versus size, a U-shaped
curve results.4 Plotting the data of
Figure 3 in such a way produces

Figure 4. This figure also suggests that
small Ada components are more
robust than small assembly compo-
nents but that larger components in
the two languages are comparable.
Although this is only one comparison,
I cannot resist speculating that 20
years of language sophistication may
produce better smaller components
while leaving larger components and
the fundamental U-shape unaffected.

E =

′
+

′

′1
2 2

2

2

Ω
Ω

Ω
Ω

Ω Ω for > .

dE d=

′
+

′

1
2

1
Ω

Ω
Ω

Ω.

I E E E S O FT W A R E 9 3

Nu
m

be
r o

f f
au

lts

Average size in statements

18

16

14

12

10

8

6

4

2

0
60 400 630 1,000 2,000250160100

Columbus assembly
fault data

Ada fault data

Predicted fault data

Figure 3. Ada fault data and Columbus assembly fault data plotted against the pre-
dictions of Equations 4 and 5. I used Equation 4 to predict fault growth up to around
200 LOC, at which point the cache memory is assumed to overflow according to com-
plexity level; from that point on, I used Equation 5. The quality of agreement gives
strong empirical support for the proposed model.

2,000

Fa
ul

t d
en

si
ty

Average size in statements

12

10

8

6

4

2

0
60 400 630 1,000250160100

Ada data

Assembly data

Figure 4. The data of Figure 3 plotted in terms of fault density exhibits a U-shaped
curve for both the Ada and assembly data.

.

This further supports my central thesis
that this is because the U-shaped phe-
nomenon is not linguistically related.

To summarize, if a system is de-
composed into pieces much smaller
than the short-term memory cache,
the cache is used inefficiently because
the interface of such a component
with its neighbors is not “rehearsed”
explicitly into the cache in the same
way, and the resulting components
tend to exhibit higher defect densities.
If components exceed the cache size,
they are less comprehensible because
the recovery codes connecting com-
prehension with long-term memory
break down. Only those components
that match the cache size well use it
effectively, thereby producing the
lowest fault densities.

IMPLICATIONS FOR
SOFTWARE DEVELOPMENT

This model may help explain two
other things I’ve observed about soft-
ware development. First, individual
programmer performance varies wide-
ly. Suppose that one of the manifesta-
tions of this is the known 7 ± 2 varia-
tion in the “size” of short-term memo-
ry. This would cause the changeover
point between logarithmic and quadrat-
ic behavior to vary by as much as 80
percent (5–9) in a typical programmer
population; in other words, quadratic
behavior would start much earlier with
some programmers than with others.
Simple modeling suggests this could
lead to variation by a factor of 2 to 3 in

the reliability of components produced
by different programmers. Anecdotal
evidence suggests that the real differ-
ence may be rather more than this, so
other factors such as education may
also be an issue. This hypothesis could
be tested by experiment. You could, for
example compare defect densities in
small components, which are less likely
to be seriously affected.

The second observation is the effec-
tiveness of inspection. In manual code
inspection, multiple independent
short-term memories are used to “exe-
cute” the code statically. In other
words, a code inspection is like a static
N-version experiment. Even allowing
for the known nonindependence of
such experiments, a considerable
improvement still accrues, which may
explain why manual inspection is often
reported as effective. The model repre-
sented here suggests that manual
inspection would be most effective on
components that fit into cache. Manual
code inspections of components well
into the quadratic zone are unlikely to
improve things much, because an
inspector is unlikely to understand
what’s going on. Again, this hypothesis
could be tested by experiment.

A SIMPLE SYSTEM
BEHAVIOR MODEL

So far, I have described and mod-
eled only component defect densities
that were measured in the above case
histories. However, to conjecture
about system behavior as a whole, we

must build a speculative model based
on a simple component-size distribu-
tion to predict the likely number of
system faults. Although the model is
very basic, the implications of simple
logarithmic behavior for small to
medium-sized components are quite
profound. To set the scene, consider
the following simplified argument for
the design of a new system.

Suppose that a particular functional-
ity requires 1,000 “lines” to implement,
where a “line” is some measure of com-
plexity. The immediate implication of
the earlier discussion is that, to be reli-
able, we should implement it as five
200-line components (each fitting in
cache) rather than as 50 20-line compo-
nents. The former would lead to per-
haps 5 log10(200) = 25 bugs while the
latter would lead to 50 × log10(20) = 150
bugs. This apparently inescapable but
unpleasant conclusion runs completely
counter to conventional wisdom.
However, the intuitive viewpoint might
be restored through some combination
of the following mitigating factors:

♦ Splitting the system into small
components might reduce the number
of lines needed, via reuse. However,
the reduction in size would have to be
dramatic: in the above example, an 80
percent reduction in size might be nec-
essary. In practice, values considerably
less than this have been reported.11

♦ The additional unreliability
caused by splitting up the system might
be due to simple interface inconsisten-
cies. The Basili–Perricone study con-
sidered this a possible explanation, as
did Moller–Paulish. However, it was
not a factor in the Hatton–Hopkins
study, since the internally reusable
components in the NAG library (large-
ly externally used reusable compo-
nents) had high interface consistency.
Furthermore, it is unlikely to explain
the Compton–Withrow data because
Ada mandates interface consistency in
language implementations. (This may
be responsible for the difference in
small components in Figure 4.)

9 4 M A R C H / A P R I L 1 9 9 7

M
ax

im
um

 n
um

be
r o

f f
au

lts
 p

er
 li

ne

Average component size (lines)

0.4

0.3

0.2

0.1

0
0 5 10 15 20

Figure 5. Graph of Equation 12 showing the maximum faults per line (E/L). The
x axis is the average component size in lines, L/N.

.

♦ The overall maintenance cost
might be reduced by modularization,
even though the corrective component
would cost more. However, some stud-
ies12 report that around 50 percent of
all maintenance is corrective, so again
this explanation may not be valid.
Whatever this contribution might be,
this issue has particular relevance for
safety-critical systems, where reliability
would generally be much more impor-
tant than ease of change. Thus, even
this very simple model has profound
implications, as we shall now see.

Start by defining the overall com-
plexity Ω of a software system consisting
of N small to medium components, each
of implementation complexity Ωi, by

(5)

Here, the function f(Ωi) is an unknown
that depends on the combined com-
plexity of the individual components.
The product has been used because
the logarithmic behavior of the com-
ponent fault density falls out nicely. In
general, for components of small to
medium size, we’ll assume that the
first term on the right-hand side dom-
inates the second term.

Taking the logarithm of Equation 5
gives us

(6)

where Et is the total number of faults.
Now for small to medium components,
using the assumption that

(7)

Equation 6 becomes

(8)

The reason for this rather con-
trived model is that Equation 8 nicely
embodies the logarithmic behavior of
Equation 3 as well as the important
observation by Basili and Perricone
that most of the faults in a real system
(89 percent in their case) affect only a
single component, and therefore the
total number of system faults was
approximately the sum of the compo-
nent faults, neglecting the second term
in Equation 8. This model has precise-
ly such behavior, in that the total
number of system faults can be
approximated by

(9).

Based on this model I will make some
comparisons with real systems and a
few further predictions.

First, assume that a system with E
total faults is made up of N compo-
nents of equal size with a total number
of lines L, and that the number of lines
in each component is used as a mea-
sure of its complexity. Although not
essential, I will further assume that E is
an asymptotic value for a stable system
in the sense discussed earlier. Then
from Equation 9,

E = N log (L/N). (10)

Equation 11 yields

(11)

where ELOC is the number of system
faults per line of code. From this, EKLOC

(the number of system faults per 1,000
lines of code, as conventionally used) is
given simply by

EKLOC = 1,000 ELOC. (12)

Let’s take a closer look at Equations 11
and 12.

Comparing systems with different average
component sizes. The first property of
Equation 11 to note is that it has a
maximum, as shown in Figure 5. The
maximum occurs for very small objects
of a few lines only. The implication of
this is that OO may make things less
reliable in terms of total system faults
unless the objects are very small
indeed. This prediction may, however,
be an artifact only and will have to be
tested by experiment, because the case
histories reported earlier provide no
data in this region and thus the approx-
imation used in going from Equation 8
to 9 may be invalid. Overall system
reliability can be expected to improve
inexorably as average component size
increases. This argument will break
down for component sizes beyond
200–400 lines, as discussed earlier,
where individual component logarith-
mic behavior breaks down and qua-
dratic behavior, observed in the sys-
tems studied here, takes hold.

Total system complexity. The argument
that led up to Equation 9 suggests that
total system complexity can be modeled
approximately as the product of the

E
E
L

N
L

L
NLOC ≡ = log ,

Et

i
i

N

i
i

N

=

= =
= =

∏ ∑
log

log log

Ω

Ω Ω
1 1

Et i
i

N
i

i
i

N= = +
()

=

=

∏ ∫
∏

log log .Ω Ω
Ω

Ω1

1

Ω

Ω

i

i
i

N

()
<<∫

∏
=1

1,

Et

i

i

i
i

N
i

N

=

= +
()

∫
∏

∏
=

=

log

log

Ω

Ω
Ω

Ω
1

1

1

Ω Ω Ω= + ()∫∏

=
i i

i

N

1

.

I E E E S O FT W A R E 9 5

Macroscopic fault
behavior may
exist in software
systems, so there
may be limits on
the fault density
we can achieve.

.

original component complexities:

(13)

Changing an existing system. For an
existing system of L lines and N compo-
nents, differentiating Equation 11 gives

(14)

and

(15)

This leads to three possibilities for
improving the reliability of an existing
system, that is, for reducing E:

1. (∂E/∂L) > 0, keeping N constant
and L decreasing. This corresponds
simply to reducing the total number of
lines for the same number of compo-
nents. This is essentially the mecha-
nism of reuse.

2. (∂E/∂N) > 0, keeping L constant
and N decreasing. This corresponds to
reducing the number of components
for the same number of lines. This
simply increases the trend to large
monolithic components.

3. (∂E/∂N) < 0, keeping L constant

and N increasing. This case holds only
for components that are very small
already. It suggests that a trend to
small components via OO, for exam-
ple, will improve overall system relia-
bility only if existing components are
already very small.

We can estimate the benefit of
change by studying Figure 5. Systems
with small components around the
maximum of that curve should benefit
the most, either by making them
smaller still or by making them larger,
because the gradient of improvement
is steepest nearest the maximum. On
the other hand, in a system with rela-
tively large components on average,
little benefit will accrue by making
them yet larger, as the curve is much
flatter here.

ompelling empirical evidence
from disparate sources implies

that in any software system, larger
components are proportionately more
reliable than smaller components. This
contradicts conventional wisdom, as
evidenced by the number of authors
who were surprised at their own results
(including myself!).

Given that this behavior spans mul-
tiple languages, mature and immature
systems, and non–tightly coupled sys-
tems (such as the NAG library) and
tightly coupled systems (operating sys-
tems), this may well be the first quanti-
tative indication that macroscopic fault
behavior exists in software systems and
thus there may be limits on the fault
density we can achieve. It also raises
the possibility that we can predict cer-
tain software system properties from
basic, static parameters like compo-
nent-size distribution.

The observed qualitative behavior
of the systems discussed here was
closely predicted by the U-shaped
model of component fault density as a
function of size. However, further
work is needed to quantify complexity
in this sense. Using very simple com-

ponent size distributions, my model
predicts the following:

♦ Some of the case histories cited
suggest a maximum fault density (for
very small components) as well as a
minimum fault density (for rather
large components). This offers very
tentative evidence that OO may deliv-
er increased reliability, but only if the
components are very small, on the
order of one or two lines. There is as
yet no evidence to support or disprove
this conjecture, although defect densi-
ties for functional languages may shed
light on this.

♦ Multiplying the complexity of
each component is a reasonable
measure of overall system complexi-
ty, provided the components are not
too large.

♦ Only substantial reuse within the
same system will likely improve relia-
bility. Modest reuse within a system is
likely to make it worse.

♦ When changing an existing sys-
tem, the direction of increasing relia-
bility depends on the existing average
component size.

♦ The most reliable systems may be
those with component sizes grouped
around the 200- to 400-line mark.
Bigger and smaller average component
sizes appear to degrade reliability.

Further experiments and analysis
will be necessary to support or dis-
prove these conjectures. But there is
nothing conjectural about the fact that
published reliability studies are in seri-
ous conflict with the conventional wis-
dom. In terms of reliability, the struc-
tural decomposition of systems into
small, easily manageable components
does not make a better system, even if
they become easier to change, which
has not been proven. This has serious
implications for high-integrity soft-
ware development. The apparent exis-
tence of a tradeoff between change-
ability and reliability must be studied
further. It may be that this phenome-
non pervades other areas of human
creativity as well.

∂
∂
E
L

L
N

=

−log .1

∂
∂
E
L

N
L

=

Ω Ω=

=
∏ i

i

N

1

.

9 6 M A R C H / A P R I L 1 9 9 7

C

We may be able
to predict some
software system
properties from
basic, static
parameters like
component-size
distribution.

◆

.

ACKNOWLEDGMENTS
I thank my colleagues at Programming Research Ltd. for numerous discussions on this

topic, Tom Anderson for stimulating discussions about models for fault behavior, and
Norman Fenton for bringing to my attention some of the above case histories, which were
instrumental in building the argument. Unknown reviewers made several important sugges-
tions for improvement, as did Tony Hoare who read an early version of these arguments
and contributed significantly. Finally, I thank the authors of the published data, without
whose efforts no systematic progress can be made.

REFERENCES
1. L. Hatton and T.R. Hopkins, “Experiences with Flint, a Software Metrication Tool for Fortran 77,”

Symp. Software Tools, CSM, Durham, UK, 1989.
2. S. Davey et al., “Metrics Collection in Code and Unit Test as Part of Continuous Quality

Improvement,” J. Software Testing, Verification and Reliability, Vol. 3, 1993, pp. 125-148.
3. K.-H. Moller and D.J. Paulish, “An Empirical Investigation of Software Fault Distribution,” CSR

’93, Chapman-Hall, Amsterdam, 1993.
4. B.T. Compton and C. Withrow, “Prediction and Control of Ada Software Defects,” J. Systems

Software, Vol. 12, 1990, pp. 199-207.
5. V.R. Basili and B.T. Perricone, “Software Errors and Complexity: An Empirical Investigation,”

Comm. ACM, Vol. 1, 1984, pp. 42-52.
6. V.Y. Shen et al., “Identifying Error-Prone Software—An Empirical Study,” IEEE Trans. Software

Eng., Vol. SE-11, No. 4, 1985, pp. 317-323.
7. B. Kitchenham and P. Mellor, “Data Collection and Analysis,” in Software Metrics: A Rigorous

Approach, N.E. Fenton, ed., Chapman-Hall, London, 1991, pp. 89-110.
8. J.D. Musa, A. Iannino, and K. Okumuto, Software Reliability: Measurement, Prediction, Application,

McGraw-Hill, New York, 1987.
9. G.A. Miller, “The Magical Number 7 Plus or Minus Two: Some Limits on Our Capacity for

Processing Information,” Psychological Rev., Vol. 63, 1957, pp. 81-97.
10. E.R. Hilgard, R.C. Atkinson, and R.L. Atkinson, Introduction to Psychology, 5th ed., Harcourt Brace

Jovanovich, New York, 1971, p. 640.
11. W.B. Frakes and C.J. Fox, “Sixteen Questions on Software Re-use,” Comm. ACM, Vol. 38, No. 6,

1995, pp. 75-87.
12. R.S. Arnold, On the Generation and Use of Quantitative Criteria for Assessing Software Maintenance

Quality, Univ. of Maryland microfiche, College Park, Md., 1983.
13. L. Hatton, Safer C: Developing for High-Integrity and Safety-Critical Systems, McGraw-Hill, New

York, 1995.

Address questions about this article to Hatton at
Oakwood Computing, Oakwood, 11, Carlton Road,
New Malden, Surrey, KT3 3AJ, UK; phone/fax, +44
181-336-1151; e-mail, lesh@oakcomp.cemon.co.uk.

Les Hatton is a managing
partner at Oakwood
Computing. Formerly he
was director of research
for Programming Research
Ltd. where the work for
this article was done. As a
geophysicist he was award-
ed the European Conrad
Schlumberger award in
1987, but now specializes

in software safety. He is the author of Safer C:
Software Development in High-Integrity and Safety-
Critical Systems (McGraw-Hill, 1995) and is cur-
rently working on a new book entitled Software
Failure: the Avoidable and the Unavoidable.

Hatton received a BA and MA from King’s
College, Cambridge, and a PhD from Manchester,
all in mathematics.

Order from the Online Catalog
http://computer.org/cspress/catalog/cs-96.htm

using the convenient shopping cart

1996 CD-ROM: Catalog # SW07700 — $119.95
1996 & 1995 CD-ROM: Catalog #SW07701 — $179.95

We’ve done it again.

All 114 issues from 1996 on 1 CD-ROM
Read the articles you missed. Find published descriptions of

new products. Search for references or articles relevant to your
research or current projects. Computer Society ’96 is a fully

searchable SGML-based CD-ROM containing all 16 magazines
and transactions published by your society in 1996.

Special Member Price: $119.95

Here’s your second chance:
Buy both Computer Society ’95 & ’96 for only $179.95

.

