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1. Your Free Samples or FRACTRAN. 

/ 11 I' 

To play the f raction game corresponding to a given list 

of fractions and starting integer N. you repeatedly multiply the integer 

you have at any stage (init ially N) by the earliest /; in the list for which 

the answer is integral. Whenever there is no such fi t the game stops. 

(Formally, we define the sequence {Nn } by No = N, N
II 

... 1 = Ii Nil ' 

where i (1 :S; i ~ k) is the least i for which /; Nil is integral. as long as 

such an j exists.) 

T heorem 1: When PRIMEGAME: 

17 78 19 23 29 77 95 77 I II 13 15 I 55 --------------9 1 85 51 38 33 29 23 19 17 13 II 2 7 1 

is started at 2, the oilier powers of 2 that appear, namely. 

are precisely those whose indices aTe the prime numbers, in order of mag­

nitude. 
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Theorem 2: When PIGAME: 

365 .12....lJ.... 679 3159 ~ 473 638 434 J!2... ...!2... .lJ.... 
46 161 575 451 413 407 371 355 335 235 209 122 

31 41 517 111 305 23 73 61 37 19 89 41 833 53 
------------------- --
183 115 89 83 79 73 71 67 61 59 57 53 47 43 

86 13 23 67 7 1 83 475 59 41 1 89 

41 38 37 31 29 19 17 13 291 7 11 1024 97 

is started at 2n. the next power of 2 to appear is 21t(n). where for 

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

,,(n) = 3 1 4 59265358979323846 

For an arbitrary natural number n, 1t{n) is the nth digit after the 

point in the decimal expansion of the number 1t. 

Theorem 3: Define l e{n) = m if POL YGAME: 

583 629 437 82 615 37 1 1 53 43 23 341 

559 55 1 527 517 329 129 115 86 53 47 46 

41 47 29 37 37 299 47 161 527 159 ----------------
43 41 37 31 31 29 23 15 19 7 17 13 3 

when started at c22 ~. stops at 22"', and otherwise leave l e(n) undefined. 

Then every computable function appears among 10' II' 12, .. . 

2. The Catalogue. 

We remark that the "catalogue numbers" c are easily computed for 

some qu ite interesting functions. Table I and its notes give Ie for any c 

whose largest odd div isor is less than 2 10 = 1024. 
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Table 1. The Catalogue 

e All defined values of Ie 

0 none 

I n->n 
2 0->1 
4 0->2 
8 I -> 2 In this Table, 

16 2->3 n denotes an 
64 I -> 3 arbitrary 

77 n->O non-negative 

128 0->3 integer. 
133 0->0 
255 n+ l -4n+l 
256 3->4 
847 n->I 

37485 0-40,n+1-4n 

2268945 n-4n+l 
2' a-4bif2b -2°=k 

7. 112.1: n ->k 

15 . 102~'" 
7 

n-4n+k 

ex n -41t(n) 

We also have 

f2'A=fo; 

f 2'D =fl3J (k = 0) or fo (k > 0); 

f 2'E = fm (k = 0) or f 2, (k > 0) ; 
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where 

A 

B 

B' 

C 

C' 

D 

E 

is 

is 

is 

is 

is 

is 

IS 

any odd number < 1024 not visible below: 

1,3,9,13,17,27,39,45,51,81,105,115,117,135,145,153,155, 

161,169,185,195,203,205,217,221,235,243,259 ,287 ,289,315, 

329,345,351,405,435,459,465,483,507,555,585,609,615,65 1, 

663,705,729,777,861,945,975,987,1017, ... 

165,495, ... 

77,91,231,273,385,455,539,1015, ... 

847, 1001, ... 

133, 285, 399, 665, 855, ... 

255, .... 

Figure 1 gives a c for which fc(n) is the above function 1t(n) 

.517 1011s100! ill 101 16100! 30.5 10117100! 11101"100! 1110119100! 
+289 +283 +279 +273 +271 

~10130100! 1!. 101 31 100! !.!lOln lOO! 475 101 33 100! 12.10134100! 
+ 2 31 + 229 + 2 19 + 2 17 + 213 

Figure 1. The constant cn: . 
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3. A void Brand X. 

Works that develop the theory of effective computation are often writ­

ten by authors whose interests are more logical than computational, and so 

they seldom give elegant treatments of the essentially computational parts 

of this theory. Any effective enumeration of the computable functions is 

probably complicated enough to spread over a chapter, and we might read 

that "of course Ihe explicit computation of Ihe index number for any func­

tion of interest is totally impracticable." Many of Ihese defects stem from 

a bad choice of the underlying computational model. 

Here we take the view that it is precisely because the particular com­

putational model has no great logical interest that it should be carefu lly 

chosen. The logical points will be all Ihe more clear when Ihey don't 

have to be disentangled by the reader from a clumsy program written in an 

awkward language, and we can then "sell" the theory to a wider audience 

by giving simple and striking examples explicitly. (It is for associated 

reasons that we use the easily comprehended tenn "computable function" 

as a synonym for the usual "partial recursive function.") 

4. Only FRACTRAN Has These Star Qualities. 

FRACTRAN is a simple theoretical programming language for arith­

metic that has none of the defects described above. 

• Makes workday really easy! 

FRACTRAN needs no complicated programming manual - its entire 

syntax can be learned in 10 seconds, and programs for quite complicated 

and interesting functions can be written almost at once. 

• Gets those functions really clean! 

The entire configuration of a FRACTRAN machine at any instant is 

held as a single integer - there are no messy "tapes" or olher foreign con­

cepts to be understood by the fledgling programmer. 
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17 

91 

• Matches any machine on the markel! 

Your old machines (Turing, etc.) can quite easily be made to simulate 

arbitrary FRACfRAN programs, and it is usually even easier to write a 

FRACfRAN program to simulate other machines. 

• Astoundingly simple universal program! 

By making a FRACfRAN program that simulates an arbitrary other 

FRACTRAN program, we have obtained the simple universal FRAC­

TRAN program described in Theorem 3. 

5. Your PRIMEGAME Guarantee! 

In some ways, it is a pity to remove some of the mystery from our 

programs such as PRIMEGAME. However, it is well said [2] that " A 

mathematician is a conjurer who gives away his secrets," so we' ll now 

prove Theorem 1. 

To help in Figure 2, we have labe led the fractions: 

B C D E F G H I J K L M N 

78 19 23 29 77 95 77 1 11 13 15 1 55 
85 51 38 33 29 23 19 17 13 11 2 7 

and we note that AB = 2x3 7 5 
EF= - DG = -

5 x 7 ' 3 • 2 . 

We let n and d be numbers with 0 < d < n and write 

n = qd + r (0 ~ r < d) . Figure 2 illustrates the action of PR[ME­

GAME on the number 5" 7d13. We see that this leads to 5" 7d
-

1 13 or 

5"+1 7" 13 according as d does or does not divide n. Moreover, the 

only case when a power of 2 arises is as the number 2" 7d- 1 when d = 1. 
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Figure 2. The action of PRIMEGAME.

It follows that when the gameis started at 5" 7”! 13, it tests all
numbers from n-1 down to 1 until it first finds a divisor of n, and then

continues with n increased by 1. In the process,it passes through a power
of 2” of 2 only whenthe largest divisor of n that is less than n is d=1,

orin other words, only when is prime.

-10-

sit 7d 13 

~ (AB)d J 

2d 3d 5"" 11 

~ (EF)d K 

2d 5 .... 7d 13 

~ (AB)d J 

22d 3d 5n-U 11 

~ (EF)d K 

22d 5n-2d 7d 13 

~ (AB), J 

~ (EF)d K 

2qd S' 7d 13 

~ (AB), A 

21t 3' 7d-r-l 17 

r>% 'x=O 
2lt 3,-17d-r-1 19 

~ (DG)" H 

3r-1 511 7d-, 11 

~ (EF)~I K 

511 7d-l 13 

21t 7d-l 

~L"Md-IN 
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~ (EF)" K 

Sn+l 7" 13 

Figure 2. The action of PRIMEGAME. 

It follows that when the game is started at Sit 711
-

1 13, it tests all 

numbers from n- l down to 1 until it first finds a divisor of n, and then 

continues with n increased by 1. In the process, it passes through a power 

of 21t of 2 only when the largest divisor of n that is less than n is d = 1 , 

or in other words, only when n is prime. 
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6. FRACTRAN - Your Free Introductory Offer. 

A FRACTRAN program may have any number of lines, and a typical 

line might have the fonn 

line 13: ~ ~ 7, ; ~ 14 . 

At this line, the machine replaces the current working integer N by 

~ N, if this is again an integer, and goes to line 7. If ~ N is not an 

. t b 4 N · h ld to eger, ut 5" IS, we s au instead replace N by ; N, and go to line 

14. If neither ~ N nor ; N is integral, we should stop at line 13. 

More generally, a FRACfRAN program line has the fonn 

line 
P2 Pk 
- ~ n2' ... , - -7 nk . 
q2 qk 

The action of the machine at this line is to replace N by Pi N for the 
q, 

least i (1:5 i :5 k) for which this is integral, and then go to line n1 ; or, 

if no PiN is integral, to stop at line n. 
q, 

and serves as an unconditional stop order.) 

(A line with k = 0 is pennitted 

A FRACTRAN program that has just n lines is called a 

FRACTRAN-n program. We introduce the convention that a line that 

cannot be jumped to counts as a ~ -line. (Sensible programs will contain 

at most one ~ -line, the initial line.) 

We write 

[ !:..'.. P2 Pk J 
q1 q2 qk 

for the FRACfRAN-l program 
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Py _ -
— oe Ow... , SO 1.
n n CK

Weshall see that every FRACTRANprogram can be simulated by a

FRACTRAN-1 program whichstarts at a suitable multiple of the original

starting number. With a FRACTRAN-14 program, we can make this

multiple be 1.

The FRACTRAN-1+. program

" 1 i
line 0: —— 91, ~ 9 1,...,> 1

ro Q, Q;

tine 1:24.51, 2 41,...,28 31
N NR CK

is symbolized by

PoP Fi Pie, Pky
Q, Q Gn hb %

Note that the FRACTRAN-14 program

mMipih oo: il

started at N, simulates the FRACTRAN-1 program

(if: fl
started at mN .

Weshall usually suppose tacitly that our FRACTRANprograms are

only applied to working numbers N whose prime divisors appear among

the factors of the numerators and denominatorsof the fractions mentioned.

=12-

line 1 
P2 Pk 

1, - ~l, ... , - --> 
q2 qk 

We shall see that every FRACTRAN program can be simulated by a 

FRACTRAN-l program which starts at a suitable multiple of the original 

I 
starting number. With a FRACTRAN-l- program, we can make this 

2 

multiple be 1. 

The FRACfRAN-l ~ program 

line 

line I 

is symbolized by 

P, 
- ~l, ... 
Q, 

Note that the FRACTRAN-l ~ program 

mlfll, ... It 1 

p . 

- ' --> 1 , Q
j 

started at N. simulates the FRACTRAN-l program 

If, I, ... Itl 
started at mN . 

We shall usually suppose tacitly that our FRACTRAN programs are 

only applied to working numbers N whose prime divisors appear among 

the factors of the numerators and denominators of the fractions mentioned. 
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7. Beginners' Guide to FR ACTRAN Programming. 

It's good practice to write FRACfRAN programs as flowcharts, with 

a node for each program line and arrows between these nodes marked 

with the appropriate fractions. We use the different styles of arrowhead 

>f » f t> f 

for the options with decreasing priorities from a given node, and if several 

options with fractions f, g, h at a node have adjacent priorities, we often 

amalgamate them into a single arrow: 

The different primes that arise in the numerators and denominators of 

the various fractions may be regarded as storage registers, and in a state in 

which the current working integer is 

N = 2a 3b 5c 7d ... , 

we say that 

register 2 holds a, Of r2 = a 

register 3 holds b, Of r3 = b 

register 5 holds C, Of rs = c 

register 7 holds d, Of r7 = d 

etc. 

FRACfRAN program lines are then regarded as instructions to 

change the contents of these registers by various small amounts , subject to 

the overriding requirement that no register may ever contain a negative 

number. Thus the line 

line 

either replaces '2 by 

Of replaces '2 by 

or SlOpS 

2 
13'---+7 . 3 ' 

r2 + 1 , " 
r2 + 2 , " 
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- --+ 14 
5 

by r3 - I 

by rs - I 

( if r3 > 0) 

( if " > 0 ) 

( if r3 = rs = 0 ). 



In our figures, urunarked arrows are used when the associated frac· 

tions are 1. A tiny incoming arrow to a node indicates that that node will 

be used as a starting node; a tiny outgoing arrow marks a node that may 

be used as a stopping node. A few simple examples should convince the 

reader the FRACTRAN really does have universal computing power. 

(Readers familiar with Minsky 's register machines will see that FRAC­

TRAN can trivially simulate them.) 

The program 

is a destructive adder: when started with T2 = a, T3 = b, it stops with 

T2 = a + b, T3 = O . We can make it less destructive by using register 5 as 

working space: the program 

when started with T2 = a, "3 = b, T5 = O. stops with T2 = a + b . 

T3 = b, TS = O. 

By repeated addition, we can perfonn muJtiplication: the program 

3 

S 

started with T2 = a . "3 = b. TS = O. T7 = C , stops with T2 = a + be , 

T3 = b , TS = T7 = O. We add an order ~ ("clear 3") at the 

starting/finishing node and Connulate the result as an official FRACfRAN 

program: 
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line 1 
I 

· - -+ 2 · 7 • 

line 2' 10 -+ 2 . 3 • 

I 
- .... 1 
3 

I 
- .... 3 
I 

line 3 . 1. -+ 3 1. -+ 1 
· 5 'I . 

When started at line 1 with N = 3b 7c, it stops at line I, with N = 2bc. 

The program obtained by preceding this one by a new 

line 0 . 2.!. -+ 0 .1 -+ 1 
. 2 • I ' 

, 
when started at line 0 with N = 2n

, stops at line 1 with N = 2n 
• 

8. How to Use the FRACTRAN-l Model. 

You can use a FRACTRAN-l machine to simulate arbitrary FRAC­

TRAN programs. You must first clear the given program of loops, in a 

way we explain later, and then label its lines (nodes) with prime numbers 

P, Q, R, . . . larger than any of the primes appearing in the numerators 

and denominators of any of its fractions. The FRACfRAN-l program 

simulates 

by the fractions 

line P . .!!. -+ Q . b • 
c 
- .... R d • 

!!Q cR eS 

bP dP fP 

e 
f .... S •... 

in that order. If the FRACTRAN-O program when started with N in state 

P stops with M at line Q , the simulating FRACfRAN-I program when 

started a PN stops at QM . 

Manu!aclUrer's note. Our guarantee is invalid If you use your 

FRACTRAN·} machine in this way to simulate a FRACTRAN program 

that has loops at several nodes. Such loops may be eliminated by splitting 

nodes into two. 
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The third of our examples 

7 

becomes 17 

10 3 
"3 ""5 

3 
T 

when each of the two nodes with a loop is split in this way, and the new 

nodes are labeled with the primes 11, 13, 17, 19, 23. Accordingly, it is 

simulated by the FRACTRAN-l program 

[11 170 ..!2. 1l 69 .!!. J. 
77 39 13 17 95 19 

If started with N = 2a 3b 7c 11, this program stops with 

N = 2a+bc 3b 11. (The factors of 11 here correspond to the starting and 

stopping states of the simulated machine.) 

We note that it is permissible to label one of the states with the 

number 1, rather than a large prime number. The fractions corresponding 

to transitions from this state should be placed (in their proper order) at the 

end of the FRACTRAN-l program. If this is done. loops, provided they 

have lower priority than any other transition, are pennitted at node 1. Thus 

the FRACfRAN-l program 
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