INTRODUCTION

The importance of high school and university students’ personality traits for their academic performance is documented in a number of reviews and meta-analyses. Especially Conscientiousness is strongly related to performance, whereas other personality traits are less so (Almlund, Duckworth, Heckman, & Kautz, 2011; Poropat, 2009; Trapmann, Hell, Him, & Schuler, 2007; Vedel, 2014). Much less is known about whether younger children’s different personality traits are equally important for their academic progress. In a highly cited meta-analysis, Poropat (2009) found that the relationship between personality and academic performance changes fundamentally from childhood to adolescence, and existing studies show very mixed findings. This study tests one hypothesis—that the importance of Agreeableness, Emotional Stability, and Conscientiousness for academic performance changes fundamentally during school—against an alternative hypothesis suggesting that the changing relationships found in previous research are largely measurement artifacts.

Method: We used a nationwide sample of 135,389 primary and lower secondary students from Grade 4 to Grade 8. We replicated all results in a separate sample of another 127,375 students.

Results: We found that academic performance was equally strongly related to our measure of Conscientiousness at all these grade levels, and the significance of Agreeableness and Emotional Stability predominantly reflected their connections with Conscientiousness. However, age also appeared to shape the relationship between Emotional Stability and performance.

Conclusion: Amidst the replication crisis in psychology these findings demonstrate a very stable and predictable relationship between personality traits and academic performance, which may have important implications for the education of children already in primary school.
to adolescence (approximately 16 years): Agreeableness and Emotional Stability were of more or less the same importance as Conscientiousness in late childhood, but then, during adolescence, they lost almost all of their relevance while Conscientiousness remained important despite a small decrease. Understanding how personality traits relate to academic performance already in childhood is not just of theoretical interest, but also highly relevant to educators and parents that care to know which children most likely need additional support to develop their full academic potential.

There could be theoretical reasons to expect a real change in the relationship between educational requirements and children’s personality. For example, schooling may become more like a job as children get older—less focused on joyful play-based learning and more on diligent work, which requires high levels of Conscientiousness. If the early school grades are more play based, then children who are socially competent (high Agreeableness) and emotionally stable may perform well. As the educational context changes from play-based learning to more diligent work, Agreeableness and Emotional Stability may become less important, whereas Conscientiousness may retain or even increase its importance (Poropat, 2009). We refer to this as the age–trait explanation.

However, as with most other meta-analyses, Poropat’s (2009) literature review considered only one trait at a time and used different samples and study designs to estimate how the relationship between personality and academic performance changed as children became older. Accordingly, there may be methodological explanations for apparent changes in the relative importance for academic performance of the three personality traits for which we have data in this study: Agreeableness, Emotional Stability, and Conscientiousness. As discussed further below, the comparative paucity of elementary-aged samples available to Poropat (2009) highlights the possibility that these differences are measurement artifacts stemming from different samples and different measures of personality and academic performance.

One methodological explanation is that it is simply more difficult to distinguish different parts of the personality in younger children. De Pauw, Mervielde, and Van Leeuwen’s (2009) comparison of Five Factor Models to models of temperament in preschool children found six components with only partial overlap with the Five Factor Model, which suggest that in younger children a Five Factor structure has not fully emerged. Soto, John, Gosling, and Potter (2008) found that between the age of 10 and 14 respondents increasingly differentiated Agreeableness and Emotional Stability from Conscientiousness. The average inter-scale correlation dropped substantially between ages 10 and 14 for Agreeableness (approximately .37–.20) and Conscientiousness (approximately .38–.23), with a more modest improvement (approximately .38–.30) for Emotional Stability (which the authors of that study discuss using the name of the trait’s reversed form, Neuroticism). Based on the results in Soto et al. (2008), it could be that Conscientiousness is the single most important personality trait for academic performance in both childhood and adolescence, and that the apparently high correlations academic performance has with Agreeableness and Emotional Stability in late childhood may be due to difficulties in distinguishing these traits from Conscientiousness in younger children. This alternative expectation makes sense because key facets of Conscientiousness, such as self-discipline, focus, and persistence, should facilitate learning and academic progression at all educational levels. We refer to this explanation for any changing relationship across age groups or grade levels as the measurement artifact explanation.

Unfortunately, few studies have directly tested the relationship between personality traits and academic performance in young students, let alone any moderating effect of age. Even though Poropat (2009) was able to include more than 70,000 students in his meta-analysis, only eight studies (with a total of 3,196 students) examined the relationship between personality and academic performance in primary school. Furthermore, as we will show in the next section, in the years since Poropat’s meta-analysis very little additional evidence has accumulated for students in primary school. More studies that incorporate students representing a range of ages are needed, as relying on meta-analyses to address developmental issues has important limitations. Meta-analyses can, on the one hand, compensate for the limitations of individual studies in terms of insufficient data and statistical power to test moderation hypotheses such as the hypothesis that the relationship between personality and academic performance changes as students become older. On the other hand, meta-analyses are limited in the sense that they often must rely on different measurements across studies and different sample inclusion criteria in the individual studies. In other words, sampling, design, and measurement differences may be inherently confounded with age differences in the meta-analyses. These inherent differences make it difficult to distinguish heterogeneous subgroup effects from differences across measures and study samples. It is possible that the reason that Poropat (2009) found a changing relationship between personality and academic performance may be because studies of older students were based on other samples with different characteristics rather than because of a changing effect of personality.

In sum, further evidence is needed on (a) whether Conscientiousness, Agreeableness, and Emotional Stability predict academic performance in primary school, (b) whether they are stronger predictors of academic performance in childhood than in adolescence, and (c) whether developmental changes in measurement (i.e., the degree to which Agreeableness and Emotional Stability are confounded with Conscientiousness) play a role in these relationships. Based on existing evidence it is premature to conclude that Conscientiousness is relatively less important for younger
children compared to other traits, and that it therefore deserves less attention in younger children from parents and educators. In light of the replication crisis in psychology (Klein et al., 2018; Open Science Collaboration, 2015) and Rozin’s (2009, p. 435) call for studies of fundamental psychological phenomena, “such as functional relations that apply to the real world and have generality,” what is needed in order to establish the relationship between personality and academic performance in younger children is large samples and large replication samples of students that differ in age, but are sampled in the same way and studied with the same measures across age groups (see also Funder et al., 2014).

2 | THE RELATIONSHIP BETWEEN PERSONALITY TRAITS AND ACADEMIC PERFORMANCE

The Five-Factor Model, also called “The Big Five,” is the dominant model for representing the core areas of personality. The model represents the primary areas of personality differences as encapsulated by five broad domains: Agreeableness, Conscientiousness, Emotional Stability, Extraversion, and Openness. Due to limitations in available measures, we focus in this study on the first three. Agreement relates to other people. Conscientiousness assesses aspects of personality that relate to the degree to which people are responsible and work carefully to get things done. Emotional Stability describes absence of characteristics such as anxiety and vulnerability to stress.

Whereas especially Openness also predicts academic performance, Conscientiousness often turns out to be the strongest predictor (Almlund et al., 2011; Trampmann et al., 2007; Vedel, 2014). In his meta-analysis, Poropat (2009, p. 328) estimated the correlation between Conscientiousness and academic performance to be .28 in primary school (approximately 11 years) and .21 in secondary education (approximately 16 years). Overall, Conscientiousness was at least twice as strongly correlated with academic performance as any of the other Big Five traits, and it was of equivalent magnitude as the correlation between IQ and academic performance (which had a correlation of .23). In contrast, correlations between academic performance and Agreeableness dropped from .30 in primary school to .05 in secondary school. Correlations between academic performance and Emotional Stability dropped from .20 in primary school to .01 in secondary school.

Little empirical evidence on the moderating role of age or educational level on the relationship has accumulated since the publication of Poropat's (2009) meta-analysis. 70 of those are new publications of the relationship between personality and academic performance. However, only three studies include students in primary education (about 6–12 years old), and of these only one also includes students from secondary school, which means that there is very little new basis for evaluating the age- or educational level-moderation hypothesis.

Table 1 summarizes the findings in these three studies. The largest sample was found in Zupančič, Kavčič, Slobodskaya, and Akhmetova (2016) with 1,618 students spanning from the age of 8 to 15. Neuenschwander, Cimeli, Röthlisberger, and Roebers (2013) had the youngest sample ranging from 6 to 9 years ($M = 8.1, N = 446$). Medford and McGeown (2012) included 295 students between 9 and 11 years. The studies reported far from all correlations and significance tests between the traits themselves and with academic performance. The reported correlations between academic performance and each of the traits were generally smaller than what Poropat (2009) found. Correlations with Conscientiousness ranged between .10 and .19, compared to Poropat’s .28 in primary school. Correlations with Agreeableness ranged from −.06 to .09, which is much smaller than Poropat’s .30. Correlations with Neuroticism (the reverse of Emotional Stability) ranged from −.04 to −.15, which is also smaller than Poropat’s .20. However, the correlations between the traits were relatively high, wherever reported, ranging between .31 and .44. These high inter-trait correlations could indicate that the high correlations that Poropat found for Agreeableness and Emotional Stability may be confounded by correlations with Conscientiousness.

The changing relationship between traits and academic performance may also relate to the measurement of academic performance. Many studies use teacher-based assessments such as grade point averages to measure academic performance. If teachers’ grading is influenced not only by academic performance, but also by the behavior and personality of the students, then changes in the relationship between grades and personality traits as students become older may reflect, for instance, that in primary school teachers value students that are high in Agreeableness and Emotional Stability, or at least more so than they do in secondary school, where teachers’ may put more emphasis on work habits related to Conscientiousness. This highlights a potential advantage of using objective assessments rather than teacher-based criteria such as grades when evaluating the associations between personality and academic performance across different ages: Any apparent change in these associations across ages would more clearly reflect shifts in how personality contributes to learning outcomes, as opposed to age-related changes in what traits teachers find
ANDERSEN ET AL.

At the same time, there is some reason to think the use of objective assessments would result in lower associations between personality and academic performance: Neuenschwander et al. (2013) found that both Conscientiousness and Emotional Stability had stronger correlations with grades than with standardized achievement tests (see also Chamorro-Premuzic & Furnham, 2006). Different academic performance measures thus reflect different tradeoffs: The use of objective assessments such as standardized tests may provide more straightforwardly interpretable results across ages, but these relationships could potentially be attenuated compared to teacher grades.

Similarly, the changing relationship between traits and academic performance may relate to the measurement of the traits. Larger inter-trait correlations in younger children may be due to limited capacity to accurately report about their own traits. Poropat (2014, p. 247) noted the possibility that “children’s self-ratings are affected by their academic ability, with children who are performing better at school being more able to accurately comprehend and respond to personality assessments and in turn being quicker to recognize how best to describe themselves for self-presentation purposes.” Younger children may therefore be unable to reliably respond to questions about their own personality and that may conflate different personality traits in younger children’s self-reports.

Studies concerned with this issue have sought to compare how the personality–performance relationship is affected by who is providing the personality assessment. Zupančič et al. (2016) compared mother- and self-rated personality measures. They generally found stronger correlations with the grades for mother- than self-rated personality measures. However, Poropat (2014, 2016) found in a new meta-analysis that differences between self- and other-reported personality measures varied in their correlation with academic performance between students in primary and secondary/tertiary education. Especially, self-reported Agreeableness showed a stronger correlation with academic performance in primary education than other-reported, but vice versa in secondary/tertiary education.

In sum, Poropat (2009) found that Agreeableness and Emotional Stability were correlated equally as much with academic performance in late childhood as Conscientiousness, but much less so in adolescence. This result is uncertain for several reasons. Individual studies were typically underpowered for assessing differences in the personality–performance relationship across ages, and the modest number of studies looking at younger populations exhibited consequential heterogeneity in the measurement of both personality and academic performance across these studies. Meta-analytic methods cannot easily overcome such heterogeneity with such a limited pool of primary data, pointing to the need for

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuenschwander et al. (2013)</td>
<td>8.1 approx. 6–9</td>
<td>.19</td>
<td>.99</td>
<td>446</td>
<td>.19</td>
<td>.07</td>
<td><.001</td>
<td>−.15</td>
<td>NA</td>
<td>NA</td>
<td>.47</td>
<td><.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zupančič et al. (2016)</td>
<td>11.9 8–15</td>
<td>.19</td>
<td>.19</td>
<td>1,618</td>
<td>.19</td>
<td>.04</td>
<td>NA</td>
<td>−.04</td>
<td>NA</td>
<td>NA</td>
<td>.44</td>
<td><.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medford and McGeown (2012)</td>
<td>10.6 approx. 9–11</td>
<td>.1</td>
<td>.05</td>
<td>295</td>
<td>.1</td>
<td>.06</td>
<td>NA</td>
<td>>.05</td>
<td>NA</td>
<td>NA</td>
<td>.44</td>
<td><.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1 Additional considerations: The replication crisis

The degree to which psychological research can produce replicable findings has become one of the central concerns of the field. The issue of greatest concern is, of course, the rate at which psychological findings replicate in any form and to any degree. Evidence to date on this issue is extremely dismaying, with even studies published in highly regarded journals failing to replicate as often as not (Klein et al., 2018; Open Science Collaboration, 2015). But accompanying the failure rate is equally dismaling news: Even many of the studies with replications that were ostensibly “successful” had replication effect sizes that were considerably more modest, with approximately three-quarters of the studies explored by both the Open Science Collaboration and Many Labs 2 projects showing lower effect sizes in the replication study (Klein et al., 2018; Open Science Collaboration, 2015).

Fortunately, failures to replicate are not random, as previous research has identified several features that increase a study’s likelihood of replicating. Successful replication is more likely for well-powered studies that have a relatively straightforward and easily copied design, and for studies where the effects do not appear particularly counterintuitive (Open Science Collaboration, 2015; see also Funder et al., 2014). Furthermore, studies that use correlational designs in the course of focusing specifically on the estimation of effect sizes rather than the presence or absence of statistically significant effects might be expected to replicate relatively well—and, crucially, to produce effect sizes that are replicable (Tackett et al., 2017). Next, we describe how the present study meets these criteria.

3 THE PRESENT STUDY

The two different explanations for the developing relationship between personality traits and academic performance lead to three different expectations.

First, based on the existing evidence, especially Poropat’s (2009) meta-analysis, one potential hypothesis is the age-trait explanation, which suggests that the bivariate correlations between academic performance and both Agreeableness and Emotional Stability will be smaller for older students in Grade 8 than younger students in Grade 4 because the influence of personality traits on academic abilities changes fundamentally as students become older.

A second alternative hypothesis is a methodological explanation, following from Soto and colleagues’ (2008) findings in their study of children and adolescents’ self-reported personality. The measurement artifact explanation suggests that Agreeableness and Emotional Stability are correlated more strongly with Conscientiousness in 10-year olds than in 14-year old students. If this explanation is correct, Conscientiousness should be an equally strong predictor of academic performance throughout schooling, and once controlling for Conscientiousness, correlations between academic performance and Agreeableness and Emotional stability will stay at lower, but stable levels.

Alternative methodological explanations relate to the measurement of the traits (where students’ self-reports may be influenced by their ability to accurately comprehend and respond to personality assessments). If self-report capabilities play an important role, evidence of this might be found in comparing scale reliability coefficients for different student populations, such as younger versus older students, and higher versus lower performing students.

To test and compare these explanations, we need data on first and foremost students in primary school. As mentioned, very little evidence exists on the relationship between personality and academic performance among these young students. Secondly, to study any different relationships between younger and older students and whether such relationships could partly be driven by changes in the correlations between traits themselves, we need a very large sample of students to be confident that inadequate statistical power is not the reason for any insignificant age-personality differences. Furthermore, we need data that include the full range of students in terms of academic performance in order to make sure that lack of age-personality differences are not due to range restrictions on the academic performance measure. We also need to use comparable measures of both personality and academic performance across students from late childhood to early adolescence to make sure that changes in associations are not driven by changes in measurement tools. To rule out the explanation relating to teachers’ grading of the students, we need standardized tests which are blind to the personality traits and other characteristics of the students. Finally, we would like to replicate any results on a separate sample with a separate data collection to in order to establish whether what we find may be what Rozin (2009) might call fundamental, general functional relationship between personality and educational performance already at the age of 10 and onward.

We used a large, national survey, “The Danish Wellbeing Survey” (DWS), from 2016 on more than 100,000 public school students in Denmark in Grades 4–8, that is, a sample size that exceeds the number of participants available for Poropat’s (2009) combined meta-analytic sample. Through a number of validation analyses described below, we were able to identify eight questions in this survey that measure Conscientiousness, Emotional Stability, and (somewhat less effectively) Agreeableness. Furthermore, we replicated
our analyses on a separate sample of another more than 100,000 students in a data collection 1 year later in 2017.5

We were able to connect the survey data with computer scored and population-normed measures of reading performance in Grades 4, 6, and 8 (corresponding to approximately 10, 12, and 14 years of age). The IT-based scoring of the test scores ensured that they reflected objective academic performance and not factors that confound the interpretation of academic grades such as negative teacher opinions based on classroom misbehavior. Administrative register data collected by the authorities further allowed us to merge the student data with information about their parents. This provided us with a highly reliable measure of parents’ education and immigrant status, which we use to examine rates of nonresponse to the DWS. The combined data allowed us to estimate with high precision how strongly personality traits predict academic performance for students in Grade 4–8.

For research purposes, Statistics Denmark has anonymized the data and stored them on a secured server. The Danish Data Protection Agency, Statistics Denmark and the Ministry of Education have granted access to the data for this research project.6

4 | METHOD

4.1 | Participants

The target population consisted of all students in public schools in Denmark in Grades 4, 6 and 8 in 2016 and 2017, for the main and replication studies, respectively. Response rates to the DWS were 92.5% (2016) and 92.7% (2017). Nonrespondents included 7.6% (6.4) more boys in 2016 (2017), 3.5 (2.8) percentage points more immigrants, and their parents’ education was .19 (.19) SD below those of the respondents in 2016 (2017). Their reading skills were .50 (.47) SD below the respondents in 2016 (2017). However, even though the nonrespondents were disadvantaged in several ways, the study sample represented the full range of students on all these dimensions. To illustrate this, Figure 1 shows the number of respondents and nonrespondents by reading scores. The figure shows that even in the lowest-performing group (Group 1, with reading scores more than 1.75 of a SD below the mean), the study sample included almost 5,000 students.7 So even though nonrespondents were more likely to come from this low-reading skill group, there was still a very large number of low-reading ability students that were included in the study sample.

4.2 | Data

Danish authorities collect administrative data for separate purposes (e.g., taxation). All citizens and legal residents have a personal identification number, which enabled us to merge the different data sets. The personal identification number reveals the individual’s gender, which we could use to compare boys and girls in our analyses. Permissions and monitoring pertaining to ethical and legal use of the data is obtained by registering the project with The Danish Data Protection Agency (registration no. [masked for review]), which is the independent authority that supervises compliance with the rules on protection of personal data.

4.2.1 | The Danish Wellbeing Survey

The survey was administered electronically by the schools, with each school designating one person as responsible for collecting the data (typically the school principal). Each classroom had a designated teacher responsible for conducting the survey.

![Figure 1](image-url)

FIGURE 1 Personality respondents and nonrespondents based on reading performance. Group 5 is centered around the mean level of performance (−0.25–0.25 SD). Remaining groups represent additional half-SD steps away from mean performance, except Groups 1 and 9, which run between 1.75 and 4 SD below and above the mean, respectively.
in the class. The Ministry of Education had only few formal requirements in terms of how to conduct the data collection and how to introduce the survey to the students. However, the ministry asked teachers to have all students in a classroom respond to the survey during the same lesson, and to inform them that the purpose was to improve the well-being of all students at the school. Teachers were also to tell students that their responses would not be shown to their parents, teacher, or other persons at the school, that they should respond honestly, and that they could have the questions read aloud if they had reading problems or be helped in other ways. The designated teachers had the authority to assess whether students with special needs would be incapable of responding and therefore exempted. Schools were free to use whatever software to administer the questionnaire they wanted, but should upload data according to certain standards, which included that all questionnaires should be linked to the students’ national identification number. We were therefore able to combine the survey data with data on test scores and administrative records.

The numbers of respondents in the 2016 (2017) DWS were 46,062 (46,584) in fourth grade, 48,250 (48,272) in sixth grade, and 44,234 (42,564) in eighth grade. The reduced sample size in Grade 8 compared to Grade 6 is caused both by more students shifting from public to private schools in higher grades and by lower response rates among the older students. However, we still have data on many students with high and low scores on both the reading skill test and personality measures even in Grade 8. So, range restrictions should not meaningfully attenuate the correlations we are able to estimate. We return to this issue in the discussion.

4.2.2 Validation survey

We did a separate data collection in order to validate the measures in the DWS. In the validation study, which was merged to our study samples using national identification numbers, students responded to validated Big Five instruments. The appendix presents validation analyses. Results showed that the items that were included in our measures correlated well with the relevant items from the Big Five Inventory (BFI; John & Srivastava, 1999). We performed principal component factor analyses for each of the traits separately, retaining a single factor (as indicated by scree plots) for the combined set of relevant items from the BFI and the DWS. The mean (un-rotated) factor loading for the Conscientiousness factor was .63 for the DWS items compared to .56 for the BFI items (Table A1). For Agreeableness, the mean factor loading for the survey items was lower, .47, compared to .58 for the BFI items (Table A2), whereas for Emotional Stability survey items on average loaded .68 compared to .52 for the BFI items (excluding a malfunctioning BFI item) (Table A3). Our trait measures also had satisfying levels of convergent and discriminant validity with International Personality Item Pool (IPIP; Goldberg, 1999) measures of several facets with the Big Five (Table A4). Finally, we found that the overall bivariate correlations with reading test scores when using the full BFI scales from the validation data were all within .01 of the overall results when using our DWS personality scales (Table A5; see appendix for all details).

4.2.3 Tests of academic performance

All students in public schools in Denmark were required to participate in the Danish National Tests. They were comprised of reading tests in Grades 2, 4, 6, and 8, and math tests in Grades 3 and 6. They took place toward the end of the school year, after the DWS was completed. The tests were IT-based and scored objectively by an algorithm and therefore blind to the students’ personality in the sense that test scores only depended on the students’ responses to the tasks (for a detailed description of the test system, see Nandrup & Beuchert-Pedersen, 2018).

4.3 Measures

4.3.1 Conscientiousness

We used three items from the DWS to measure Conscientiousness: “How often can you complete what you set out to do?”, “Can you concentrate during class?”, and “If interrupted during lessons, I can quickly concentrate again.” Scale reliability coefficients are adequate, especially considering the scale’s brevity ($\alpha_{2016} = .69$; $\alpha_{2017} = .70$).

4.3.2 Emotional Stability

We used three items to measure Emotional Stability: “Do you feel lonely?”, “Other students accept me as I am,” and “How often do you feel secure at school?” ($\alpha_{2016} = .71$; $\alpha_{2017} = .71$).

4.3.3 Agreeableness

Two items measured Agreeableness: “I try to understand my friends’ feelings when they are sad or upset” and “I am good at collaborating with others.” With only two items, the reliability was considerably more modest ($\alpha_{2016} = .40$; $\alpha_{2017} = .42$).

To ease interpretation, the personality measures were standardized first by standardizing each item (i.e., $M = 0$ and $SD = 1$), then calculating the average of the standardized items and finally standardizing the total score.
4.3.4 | Reading performance

The reading test assessed students’ performance in three subdomains: Decoding, language comprehension, and reading comprehension. Items used to assess decoding included tasks that asked the student to separate a sequence of letters into three meaningful words. An example of a language comprehension tasks is to identify the meaning of a single word with multiple-choice response categories. An example of reading comprehension would have asked students to read a paragraph and afterward select the appropriate description of one character in the paragraph, also using multiple-choice response categories.

The test system estimated student ability on each of the subdomains using a continuous logit scale ranging from −7 to 7. Following Nandrup and Beuchert-Pedersen (2018), we first standardized the test scores from each of the subscales (\(M = 0 \) and \(SD = 1 \)). Then, we used the mean of the three standardized measures and standardized this total score.

The sample of students with information on all measures contained 135,389 students in 2016 and 127,375 in 2017.

4.4 | Analytical procedure

We analyzed the data using Ordinary Least Square regressions. Since the dependent and explanatory variables were standardized, the regression coefficients can be interpreted as standardized beta coefficients.

5 | RESULTS

To test the age–trait explanation that the predictive power of Agreeableness and Emotional Stability declines from primary to lower secondary school grades, we compared the bivariate correlations between each of the three personality traits and academic performance for students in Grades 4, 6, and 8. Table 2 shows that the correlations of Emotional Stability with academic performance in 2016 (2017) declined by .07 (.09) from .14 (.15) to .07 (.06). (Note that because our estimates are extraordinarily precise, the 95% CIs typically include a range of .02 and are left in the tables for readability.) The changes across grades for Agreeableness and Conscientiousness were very small. Agreeableness declined in 2016 (2017) by .02 (.01) from .19 (.17) in Grade 4 to .17 (.16) in Grade 8. Conscientiousness was .29 in Grade 4 and .30 in Grades 6 and 8. In a strict sense, the age–trait explanation is supported given that the declines in both Agreeableness and Emotional Stability are statistically significant at the \(p < .05 \) level. However, these declines were much smaller than Poropat’s (2009) results, where Agreeableness dropped from .30 to .05 between primary and secondary education, and Emotional Stability dropped from .20 to .01.9

The measurement artifact explanation suggests that younger children will be less able to distinguish between their own personality traits, and that therefore the inter-trait correlations will be stronger in Grade 4 than in Grade 8. Figure 2 graphs these inter-trait correlations. We did see a decline in the correlations between Conscientiousness (C) and the other two traits, Agreeableness (A) and Emotional Stability (ES) (see panels A and B) as well as for the smaller correlation between Agreeableness and Emotional Stability (panel C). Again, the results were very similar in the original 2016 data (dashed lines) and in the 2017 replication data (solid lines). These results thereby confirm the findings by Soto and colleagues (2008), even though for Conscientiousness and Agreeableness our changes from approximately .44 to.36 were smaller than their results showing a drop from approximately .40 to.22. This may partly be because whereas the BFI was developed for adults, the DWS was developed explicitly for children and young adults.

One possible explanation for the high inter-trait correlation in younger grades may be that reading skills of younger children are lower and that they therefore are less able to accurately comprehend and respond to personality assessments.

TABLE 2	Bivariate correlations with reading skills					
Conscientiousness	.29*** [.28, .30]	.29*** [.28, .29]	.31*** [.30, .32]	.32*** [.31, .33]	.30*** [.29, .31]	.30*** [.29, .31]
Agreeableness	.19*** [.18, .19]	.17*** [.16, .18]	.20*** [.19, .20]	.20*** [.19, .21]	.17*** [.16, .18]	.16*** [.15, .18]
Emotional Stability	.14*** [.14, .15]	.15*** [.14, .16]	.11*** [.10, .12]	.10*** [.09, .11]	.07*** [.06, .08]	.06*** [.05, .07]
Observations	45,135 43,963	47,305 45,881	42,949 37,531			

Note: 95% confidence intervals in brackets.

***p < .001.
We examined this possibility by comparing scale reliability coefficients, alpha (\(\alpha\)), for students with very high and very low reading skills across the grades. We compared Groups 8 and 9 in Figure 1, that is, students with reading skills more than 1.25 SD above the mean, to Groups 1 and 2, that is, more than 1.25 SD below the mean. Figure 3 shows that for both the Conscientiousness and Agreeableness scales, reliabilities were very similar both across grades and across students with very low and very high reading skills in the 2016 data. Even though we found slightly increased differences in scale reliabilities of Emotional Stability between low and high skilled readers in fourth grade, we found almost no differences in eighth grade. The average scale reliability coefficients for Emotional Stability were .70 in fourth grade, .73 in sixth grade, and .70 again in eighth grade. This is an indication that comprehension was not a general problem for items in the DWS—and that reliability was not generally increasing between fourth and eighth grades. Figure A2 in the appendix shows very similar results in the 2017 data.

A final question therefore is whether Conscientiousness stands out as the single most important trait for predicting reading scores across all grades from fourth to eighth when
controlling for the other traits in a multivariate model; and whether it maintains its relationship with reading test scores across this time span. Table 3 shows that this was, indeed, the case. In Grade 4, the beta coefficients were .25 (95% CI [.24, .26]) in both years. In Grade 8, the beta coefficients were .29 (95% CI [.28, .30]) in the original 2016 data and .30 (95% CI [.29, .31]) in the 2017 replication data. Comparing these results to Table 2, the correlations between Conscientiousness and reading scores were only to a very limited extent affected by including the other two variables in the model, and most in Grade 4, as proposed by the measurement artifact explanation. In Grades 6 and 8, in both 2016 and 2017, the coefficients ranged between .29 and .30 when controlling for the other traits (Table 3) and between .30 and .32 when not controlling (Table 2). In Grade 4, the coefficients changed from .29 when not controlling (in both 2016 and 2017; Table 2) to .25 when controlling (in both years; Table 3).

In contrast, the coefficients for Agreeableness were more than halved when controlling for Conscientiousness, and did not decline between Grades 4, 6, and 8. In 2016 (2017) the correlation was .07 (.05) in Grade 4 and .08 (.08 and .07) in Grade 6 and 8. These results generally support the notion that the importance of Agreeableness did not drop dramatically between primary and lower secondary school (as found in Poropat, 2009), but rather that when controlling for Conscientiousness, Agreeableness stayed at the same steady, lower level, at approximately .07.

The coefficients of Emotional Stability became even closer to zero once controlling for Conscientiousness and Agreeableness. However, in contrast to Agreeableness, they showed the same declining trend from Grades 4 to 8 as we saw in the bivariate correlations in Table 2. This is illustrated in Figure 4. The green lines depict the correlation between Emotional Stability and academic performance. The dashed lines show the bivariate correlations from Table 2, the full lines show the regression coefficients from Table 3. Comparing the dashed and the full green lines, we see that controlling for Conscientiousness and Agreeableness reduced the correlations between academic performance and Emotional Stability by approximately .13 in each grade, but the negative trend from Grades 4 to 8 was the same. That is, the connection between Emotional Stability and academic performance truly does seem to shift during adolescence. Perhaps counterintuitively, Emotional Stability ended being negatively connected with reading scores in Grade 8, once Conscientiousness and Agreeableness were controlled for, with standardized coefficients of −.05 (−.06) in 2016 (2017). Although it can be tempting to ignore small coefficients, the fact that these associations were measured so precisely and replicated so closely in 2017 (95% CI [−.06, −.04] in 2016 and [−.07, −.05]) supports paying them more attention. Specifically, our results suggest there are small but detectable changes in the link between Emotional Stability and academic performance (beta coefficients becoming .06 and .09 more negative between fourth and eighth grades in 2016 and 2017, respectively), and that rather than facilitating academic performance, Emotional Stability may in fact produce a modest impairment among older students.

Figure 4 also makes it clear that there were no differences in Grade 8 between the bivariate and the partial correlation between Conscientiousness (blue lines) and reading scores, whereas this difference between the bivariate and the multivariate correlations continued to be large for Agreeableness (red lines) and Emotional Stability (green lines). This supports the interpretation that as students become older and more adept at distinguishing their personality traits, Conscientiousness remains the most important predictor of reading scores and is largely unaffected by the students’ other personality traits.

To make sure the results were not driven by large differences between boys and girls, we ran supplementary analyses that included gender as a control variable for the multivariate analyses in Table 3. They showed that the results for Conscientiousness were virtually unaffected by controlling

Table 3

<table>
<thead>
<tr>
<th></th>
<th>Grade 4</th>
<th>Grade 6</th>
<th>Grade 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) 2016 2017</td>
<td>(3) 2016 2017</td>
<td>(5) 2016 2017</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>.25*** [.24, .26]</td>
<td>.29*** [.28, .30]</td>
<td>.29*** [.28, .30]</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>.07*** [.06, .08]</td>
<td>.08*** [.07, .09]</td>
<td>.08*** [.07, .09]</td>
</tr>
<tr>
<td>Emotional Stability</td>
<td>.01*** [.00, .02]</td>
<td>−.03*** [−.03, −.02]</td>
<td>−.05*** [−.06, −.04]</td>
</tr>
<tr>
<td>Observations</td>
<td>45,135 43,963</td>
<td>47,305 45,881</td>
<td>42,949 37,531</td>
</tr>
</tbody>
</table>

Note: 95% confidence intervals in brackets.

***p < .001; **p < .01.
for gender. The coefficients for Agreeableness were a bit lower when also controlling for gender (.04 instead of .07 in Grade 4). Emotional Stability was slightly more positively related to reading when also controlling for gender. Instead of changing from .01 to −.05 between Grades 4 and 8, it changed from .03 to −.03, but the trend was similar.

6 | DISCUSSION

Our analyses have shown consistently that of the three traits studied here, Conscientiousness was by far the most important predictor for educational performance, even among the younger ages that prior meta-analytic work had indicated would be comparably affected by Agreeableness and Emotional Stability (Poropat, 2009). Furthermore, Conscientiousness is as strong a predictor of academic performance in primary school (fourth grade) as it is in lower secondary (eighth grade). Since few studies have examined the relationship between Conscientiousness and academic performance in younger populations, this is an important result showing that already from the age of 10, Conscientiousness is a strong predictor for reading.

The age–trait explanation predicts a decline in the link between Agreeableness and test scores in the later grades, and our results did exhibit such a decline. However, this difference was incredibly small, and it disappeared when controlling for Conscientiousness. Instead, we found—as expected from the measurement artifact explanation—that the inter-trait correlation between Conscientiousness and Agreeableness dropped from Grades 4 to 8. We found no evidence that this was driven by younger students’ lack of ability to comprehend and respond to the items, as scale reliability coefficients remained stable for students with both low and high reading skills across grades. Instead, the decreased inter-trait correlations could reflect students becoming better at knowing themselves and distinguishing between different aspects of their behavior and personality as they become older. Whatever the explanation, our multiple regression results suggested that much of the apparent effect of Agreeableness on academic performance appeared attributable to its overlap with Conscientiousness.

Emotional Stability, by contrast, displayed a more clearly changing relationship with academic performance as students aged. Students with high Emotional Stability tended to perform better in the reading tests in all grades, but less so in eighth grade. However, a substantial part of this relationship was because these students also tended to report that they had higher Conscientiousness. Once Conscientiousness was controlled for, students in eighth grade with high levels of Emotional Stability actually performed slightly worse on the test. This was a surprising finding, but it could very well be that, aside from the low Conscientiousness that tends to accompany low Emotional Stability, being a little concerned about school performance may contribute positively to performance for older students.

The results have important implications for future research on children and young adults. Especially three findings stand out: First, the early, stable and continuing importance of Conscientiousness for academic performance contradicts previous findings of declining and more modest associations in other studies of primary school students. Second, the reduced importance of Agreeableness and Emotional Stability once Conscientiousness is controlled for shows that when studies analyze correlations between single personality traits...
and academic outcomes, the apparent effects are likely to be inflated due to covariance among different personality traits—especially covariation with Conscientiousness. Third, the small but negative relationship between Emotional Stability and academic performance is intriguing and warrants further studies of the psychological mechanisms that could be driving this result.

Before we discuss the limitations of the study, we note some of the features that make this study stand out compared to existing studies. First, since all public school students in the country were required to participate in both the survey measuring their personality traits and in the test measuring their reading performance, we had little self-selection into the sample and very broad range or variation in the measured traits and performance. Second, our first study had a very large sample size of more than 125,000 students—much more than the total participants in many previous meta-analyses—which gave us statistical power to estimate the relationship between personality traits and educational performance very precisely. Third, the precise estimates replicated closely in a separate sample of another more than 125,000 students. Fourth, because the reading tests are measured by a computer system, our academic performance measure is not biased by influences such as the teacher’s attitudes toward the student in ways that might occur for studies using teachers’ assessments (e.g., grade point average).

6.1 Limitations and future directions

Despite the frequent use of brief measures of personality, the measures used in the present study have limitations that require careful consideration. While our measures appear to reflect core aspects of their respective traits, use of longer batteries may capture more variation in the traits as well as a wider range of each trait’s content. Agreeableness requires particular attention, as the scale is not only the briefest of the measures used here but both of its items had comparatively modest loadings in the factor analysis together with other Agreeableness items from the Big Five Inventory. Even if the low-scale reliability score of approximately .40 is partly influenced by the low number of items, all results based on the DWS Agreeableness measure should be interpreted with caution. At the same time, the highly similar results across two samples suggest the concern for DWS Agreeableness results should not be to the measure being particularly noisy but instead to how precisely it assesses Agreeableness as represented in other Big Five measures. Because Agreeableness is represented in consequentially diverse ways across Big Five measures (cf. Hilbig, Moshagen, & Zettler, 2016), future research on the trait should consider using multiple Big Five inventories. Rather than equally representing diverse components of Agreeableness, correlations with different IPIP facets (reported in the Appendix) indicate that Altruism represents a particular focus of the DWS Agreeableness measure.

The IPIP facet profile of our Conscientiousness measure is also instructive (see Appendix). Correlations between our Conscientiousness measures and different facets of the trait show that our measure is most highly related to Self-efficacy (r = .59), Self-discipline (.56), Achievement striving (.40), and Derrberry and Reed’s (2002) Concentration measure (.47), with considerably lesser associations with Dutifulness (.23), Orderliness (.16), and Cautiousness (.08). A measure with this facet profile could be expected to show comparatively strong correlations with educational performance (Chamorro-Premuzic & Furnham, 2004). The fact that two of the three Conscientiousness items (as well as two of three Emotional Stability items) refer to the school context could also inflate the correlations between these measures and test scores. These potential contributors to increased associations with outcomes are presumably offset to some degree by attenuations due to imperfect reliability that is inherent to abbreviated measures such as those from the DWS. Supplementary analyses using the Big Five Inventory data collected (Ns = 292–312), however, suggest that these various potential biases may have canceled each other out, as the correlations between academic performance and BFI scores from our validation survey were all within .01 of the result observed using the DWS measures (see Appendix). This rather stunning degree of similarity in results between the two measures is likely somewhat of a fluke, because Big Five measures are expected to exhibit larger divergences in their relationships with outcomes across scales (e.g., Hilbig et al., 2016); still, it does speak against the possibility that the DWS measures markedly overstate the relationship between personality and academic performance.

Another limitation of the present study is that it lacks assessments of Openness and Extraversion. Future work should address these limitations by measuring all the Big Five personality traits with full instruments. However, since Conscientiousness has been found to be the most important personality trait for educational achievement in previous research (Almlund et al., 2011; Poropat, 2009; Trapmann et al., 2007; Vedel, 2014), and Conscientiousness tends to be highly independent of Openness (the second best Big Five predictor of academic performance; Soto & John, 2017), this is not expected to change the findings substantially.

As mentioned, the sample size falls between Grades 6 and 8, which relates partly to a lower response rate among older students and partly to some students leaving the public school system for private schools in older grades. There are still about 40,000 students in Grade 8 alone, so there should be little cause for concern that range restriction could limit the estimated relationships between personality traits and educational performance. Furthermore, if the relationships between the individual traits and reading scores are the same for all students (what may be thought of as homogeneous treatment effects of the traits), a biased sample would not bias the estimate of this relationship. Only if the personality traits had
different importance for different subgroups of students, and if some of these subgroups are underrepresented in our sample, would the estimates be biased. We explored one major subgroup of interest—gender—and found no evidence that the results meaningfully differed between groups. Yet, future research should examine whether personality traits measured in sixth grade predict students’ non-response in eighth grade, and whether personality traits predict a shift from public to private school. Besides the methodological interest in these questions, they would be of substantial interest for research in the different kinds of consequences of young adolescence’ personality traits.

The present study’s use of cross-sectional data might be seen as limiting the ability to infer that these are truly developmental changes within the individual rather than cohort effects. However, the very precise replication of results in a sample 1 year younger might be taken to imply that the differences between students in Grades 4, 6, and 8 are more likely to reflect developmental than cohort effects. Nevertheless, future studies may also collect longitudinal data to study changing relationships within individual children as they become older. This lack of longitudinal data is a limitation of the present study that we share with the two existing studies on the age–trait relationship from childhood to adolescence.

Data limitations meant that this study only examined the relationship of personality traits with reading scores. Future research should examine whether the same relationships exist for other school subjects. Conscientiousness may also be helpful for learning math and science, since strong work habits can be helpful for studying any subject. Similarly, a small negative effect of Emotional Stability could also be expected for performance in various subjects, not just reading.

Finally, even though this study used a nationwide sample of students, all of those students are from the same Scandinavian country. Another question for future research would therefore be whether the results found in Denmark would replicate in other countries. The Big Five personality model has proven to be adequate across a broad range of countries and cultures (John & Srivastava, 1999) and recently also in a validation study from Denmark (Vedel et al., 2019), so the relationship between traits and educational performance is expected to be consistent across countries, but that needs to be examined.

CONCLUSION

In 2009, the same year that Poropat (2009) published his seminal meta-analysis of the relationship between personality and academic performance, Rozin (2009, p. 435) argued that the “discovery of fundamental phenomena, such as functional relations that apply to the real world and have generality, should have a higher priority in psychology. Such findings have been the basis for theoretical advances in other natural sciences.” Within the domain of personality and education, Poropat’s main finding of the supreme importance of Conscientiousness for educational performance in older students has largely been confirmed in subsequent research. However, the more specific results from late childhood through adolescence showing unstable relationships between educational performance with Agreeableness and Emotional Stability have not been clearly replicated afterward, highlighting the need for further study.

A pair of extremely large samples were used in this study to demonstrate highly replicable relationships between personality and academic performance, where Conscientiousness in particular showed substantial and stable connections to test scores throughout the age ranges studied. Conscientiousness accounted for much of the apparent relationship between test scores and both Agreeableness and Emotional Stability. While Agreeableness mirrored Conscientiousness in exhibiting stable connections to test scores throughout development, Emotional Stability lost its positive association with test scores as children aged.

Despite limitations in the available data to measure especially Agreeableness, finding such stable functional relations makes it all the more relevant in future work to study to what extent the development of these traits can be supported through targeted interventions in primary and secondary school. That could potentially be very helpful for children from family environments with little parental support.

Acknowledgments

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Preparation of this manuscript was supported by The Ministry of Education, Denmark, according to contract dated October 2015. The authors thank Søren Nielsen for valuable research assistance.

Conflict of Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

ORCID

Simon Calmar Andersen https://orcid.org/0000-0001-5274-6953
Miriam Gensowski https://orcid.org/0000-0003-4512-6224
Steven G. Ludeke https://orcid.org/0000-0002-5899-893X

Endnotes

1The numerical values presented here are inexact as they are derived by examining Figure 4 in Soto et al. (2008).
We use items from an assessment that was not designed with the Big Five constructs in mind. In validation work conducted prior to analyses for the present study, we found, however, that we could use the available items to create meaningful measures of Conscientiousness, Emotional Stability, and Agreeableness, though not Extraversion and Openness. See further discussion in Method section.

Out of the 482 studies citing Poropat (2009), only 2 directly tested the age–trait hypothesis. However, they did not include primary school students. Results for the age–trait hypothesis were mixed and inconsistent (Caprara, Vecchione, Alessandri, Gerbino, & Barbaranelli, 2011; Zhang & Ziegler, 2016).

Studies of intelligence also support the notion that the measurement of academic performance matters—though, interestingly, in a way that exhibits results opposite those for personality: Intelligence seems more able to predict academic performance when that performance is measured objectively (e.g., Deary, Strand, Smith, & Fernandes, 2007) rather than when using teacher grades (Poropat, 2009).

Students in Grades 1–3 respond to a shorter survey. The validity and reliability of self-reported personality measures for children younger than about 10 years are questionable (Borgers, De Leeuw & Hox, 2000; De Leeuw, 2011) and some of the items used here were not completed by the younger children, so we did not use these data in this study. The survey was introduced in 2015, but reflecting challenges in the roll-out of the survey response rates were lower in the first year, so we use the 2016 and 2017 data instead. Further, since students complete the reading performance tests every other year, students taking the exams in 2015 will (unless they have graduated or switched out of public schools) also be represented in the 2017 sample, whereas the 2016 and 2017 samples consist of different students.

Researchers seeking to reproduce and extend these results with this data should apply with Statistics Denmark for access. Statistical code to reproduce all results will be provided to researchers through the Statistics Denmark system.

The figure shows the 2016 data set. Distribution and number of respondents and nonrespondents within each group is very similar in the 2017 data set; see Appendix Figure A1.

In 2018, a math test was added to the program for Grade 8, but data for this are not yet available.

The average correlation between Conscientiousness and test scores across grades was .29 (Table A5), which is much stronger than what Poropat (2009) found in his meta-analysis across all ages ($r = .19$ unadjusted and .22 when correcting for scale reliability), even though Poropat’s studies predominantly used GPAs, which may be more influenced by student behavior in the classroom than IT-scored tests. The average correlations across grades between test scores and both Agreeableness and Emotional Stability was more similar to those reported by Poropat: .19 (vs. .18 by Poropat) for Agreeableness, and .11 for both studies concerning Emotional Stability.

REFERENCES

ANDERSEN ET AL.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Andersen SC, Gensowski M, Ludeke SG, John OP. A stable relationship between personality and academic performance from childhood through adolescence. An original study and replication in hundred-thousand-person samples. *Journal of Personality*. 2020;00:1–15.

https://doi.org/10.1111/jopy.12538