1528

BEHAVIORAL ACTIVITY OF CATHIP AND ITS CONSTITUENTS: 
HEPTALIC ACID AND NAPHTALACONE. JOHN W. HARLEY, 
JOHN D. LEARY, AND IVAN R. BARDY. MASSACHUSETTS 
COLLEGE OF PHARMACY. BOSTON, MA 02115

Cathip has been reported to be abused by humans, although little or no experimental data are available to account for its usage on the four experiments in this study. The results of these experiments indicate that cathip, naphtalic acid, and naphtalacone are more active than the compounds tested for behavioral and toxicologic effects. The LD50 of cathip, naphtalic acid, and naphtalacone in the rat are 1300 mg/kg, 1035 mg/kg, and 1500 mg/kg. Cathip oil (500 mg/kg), and naphtalic acid (125 mg/kg) were found to produce a 100% increase in the hyperbaral sleeping time of mice. Rats treated with 70% ethanol treatment showed a significant decrease in performance following ip injections of cathip oil (500-750 mg/kg), naphtalic acid (125-250 mg/kg), and naphtalacone (50-250 mg/kg). Rats, which were trained to avoid, developed a behavioral tolerance after they were given 750 mg/kg of cathip oil for 10 consecutive days. The results demonstrate that cathip can be behaviorally active in species other than insects and felines, and that naphtalic acid was the most active of the compounds tested.

1529

A PEPTIDE MODULATOR FOR THE STEP DOWN INDUCTOR, CATABATHEMIOPHRIN. HELEN E. GUTHMANN AND ROMAN CRUPPER. DEPT. OF BIOL. SCI. UNIV. ILL. AT CHI. CIRCLE. CHICAGO, IL 60680

Rats step off small, low platforms in 10 secs. When the floor upon which they step down (SD) is electrified, rats learn, in one trial, to remain on the platform. Catabathehomorphin (CATA) is a stable, rat oligopeptide synthesized coconitantly with SD avoidance learning (Gutman and Gronek, Psychon. Sci. 24, 107, 1971) but not synthesized by animals yoked for control purposes when CATA is bioassayed by the transfer method in which peptide is injected into naive rats or mice and their latency to SD measure is in the absence of either punishment or reward. Brains of rats reestablished on SD for 1-5 addn. days continue to contain about the same amount of CATA when recorded utilizing both the 4 and 8 day SD avoidance data. The appearance of a new oligopeptide, this peptide, when injected into recipient rodents along with effective doses of CATA, mimics the transfer effects of CATA. A peptide modulator of the dark avoidance transfer effect also has been isolated and it is not identical with the CATA modulator.