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Abstract—Passive non-line-of-sight (NLOS) imaging has drawn
great attention in recent years. However, all existing methods
are in common limited to simple hidden scenes, low-quality
reconstruction, and small-scale datasets. In this paper, we propose
NLOS-OT, a novel passive NLOS imaging framework based on
manifold embedding and optimal transport, to reconstruct high-
quality complicated hidden scenes. NLOS-OT converts the high-
dimensional reconstruction task to a low-dimensional manifold
mapping through optimal transport, alleviating the ill-posedness
in passive NLOS imaging. Besides, we create the first large-scale
passive NLOS imaging dataset, NLOS-Passive, which includes 50
groups and more than 3,200,000 images. NLOS-Passive collects
target images with different distributions and their corresponding
observed projections under various conditions, which can be used
to evaluate the performance of passive NLOS imaging algorithms.
It is shown that the proposed NLOS-OT framework achieves
much better performance than the state-of-the-art methods
on NLOS-Passive. We believe that the NLOS-OT framework
together with the NLOS-Passive dataset is a big step and can
inspire many ideas towards the development of learning-based
passive NLOS imaging. Codes and dataset are publicly available
(https://github.com/ruixv/NLOS-OT).

Index Terms—Non-line-of-sight imaging, optimal transport,
autoencoder, manifold embedding.

I. INTRODUCTION

NON-LINE-OF-SIGHT (NLOS) imaging enables hidden

objects to be seen when occluded from direct view by

analyzing the scattered light on a relay wall. With the trait of

seeing hidden objects, NLOS imaging has numerous potential

applications in autonomous vehicles, robotic vision and remote
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sensing. This inherent characteristic of greatly expanding the

field of view and improving the observation capability has

made NLOS imaging arouse great attention in recent years.

Depending on whether a controllable light source is used,

NLOS imaging can be divided into active imaging [1]–[7]

and passive imaging [8]–[12]. Among them, active NLOS

imaging uses an ultrafast laser to illuminate the area on the

relay surface, and exploits a high resolution time-resolved

detector to capture the transient response of three-bounce light.

Exploiting the controllable light source, active imaging can

obtain photon responses at different moments and positions,

and reconstruct the three-dimensional hidden scene with high

quality. In this paper, we focus on passive imaging methods

without controllable light sources to complete NLOS recon-

struction using an ordinary camera, as shown in Fig. 1.

Passive NLOS imaging is an extremely challenging problem

because of uncontrollable probe illumination [10]. Specifically,

the close contribution between pixels due to isotropic diffuse

reflection makes the condition number of light transport matrix

in passive NLOS imaging very large, causing it difficult to

obtain good reconstructions from the observations. To alleviate

this problem, many methods have been proposed, including

placing a partial occluder [9], [11], using polarizers [10] and

applying deep learning [12]–[14]. Among them, deep learning-

based passive NLOS imaging [12]–[15] is attractive since the

superior representation ability of deep neural networks can

greatly improve the reconstruction resolution. However, there

are still several challenges when applying deep learning for

passive NLOS imaging. Firstly, existing methods utilize the

U-Net [16], a mature network structure that has been verified

to be effective in not very ill-posed tasks including image

segmentation and deblurring, as the basic network structure,

which is however not quite effective since the distributions

of the input and output of the passive NLOS imaging are

extremely different. Secondly, there is no large-scale dataset

for the passive NLOS imaging, due to which the advantages

of deep learning cannot be fully explored. Recent work [12]

simulates the forward propagation process based on the Phong

model [17] to produce datasets, which however cannot be used

for practical lighting conditions due to the ideal assumptions

in the model.

In this paper, we are committed to addressing the above

challenges. Particularly, we propose a network architecture

based on the optimal transport (OT) theory [18], NLOS-

OT, for the passive NLOS imaging to resolve the unbalance

distribution challenge between the input and output. The

proposed NLOS-OT first obtains the latent code for the target
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Fig. 1. Passive NLOS Imaging. (a) Experimental setup, where the LCD screen displays target images, the corresponding light projects onto the relay wall,
and the camera captures the projection image on the wall. (b) Projection image on the relay wall captured by the camera. (c) Reconstructed image by the
proposed NLOS-OT. (d) Target image displayed on the LCD screen.

image through an autoencoder, and then maps the projection

image to the latent code through another encoder by the

optimal transport. It is worth noting that the OT, in theory,

has the capability to map a projection image with limited

information to the latent space of the target image. In addition,

we create the first large-scale dataset, NLOS-Passive, for

passive NLOS imaging utilizing a common LCD and a mobile

phone camera. The NLOS-Passive includes 50 groups 1 and

more than 3,200,000 projection images, where the projections

of the MNIST [19], public face data [20], animation face

data [21], [22], and STL-10 [23] on different relay walls are

captured. NLOS-Passvie contains data under different optical

transport conditions, such as brightness, camera angle, hidden

object position, etc. Thus, NLOS-Passive can be used to not

only study the performance of different algorithms, but also

compare the performances of a specific algorithm in different

optical conditions. We believe that the NLOS-OT framework

together with the NLOS-Passive dataset is a big step and

can inspire many ideas towards the development of learning-

based passive NLOS imaging. Our primary contributions are

summarized as follows:

1) We propose a novel framework named NLOS-OT, for

the challenging passive NLOS imaging. The NLOS-

OT enables passive NLOS imaging in complex scenes

through manifold embedding and optimal transport.

Through experiments, we have demonstrated that

NLOS-OT performs significantly better than existed end-

to-end training framework.

2) We verify through experiments that the diffuse projec-

tion image, even captured by cell phone camera, under

unknown partial occlusion contains enough information

about the hidden scene. When using widely distributed

data with unknown occlusion for training, NLOS-OT

can complete the test on a completely different dataset,

which shows that NLOS-OT has strong generalization

1Each ”group” refers to the data of the same dataset collected under
the same optical conditions (such as distance, angle, illumination, reflective
surface). The size of the group depends on the size of the image dataset. For
example, it is 70,000 for MNIST.

and further demonstrates the feasibility of passive NLOS

imaging tasks.

3) We build NLOS-Passive, a large-scale passive NLOS

dataset containing more than 50 groups of data and

3,200,000 samples. NLOS-Passive includes data of d-

ifferent hidden scenes collected under different light

transport conditions, which can be used to evaluate the

performance of passive NLOS imaging algorithms. To

the best of our knowledge, NLOS-Passive is the first

public large-scale passive NLOS dataset.

The remainder of this work is organized as follows. Sec-

tion II presents related works on NLOS imaging, optimal

transport, generative models and optical eavesdropping. Sec-

tion III describes our proposed NLOS-OT model in detail.

The experimental setups and results are provided in Sec. IV.

Finally, discussions and conclusions are drawn in Sec. V and

Sec. VI respectively.

II. RELATED WORKS

In this section, we introduce the related works on passive

NLOS imaging, generative models, OT theory, and optical

eavesdropping respectively.

A. Passive Non-line-of-sight imaging

Depending on whether there is a controllable external light

source, NLOS imaging has active methods and passive meth-

ods. Here, we focus on passive NLOS imaging.

Without a controllable light source, the passive methods

collect mostly intensity information and depend on incoherent

ambient light for illumination [24] or directly reconstruct the

two-dimensional image displayed on a screen, which has also

received much attention in recent years. Torralba and Freeman

observed for the first time that the surrounding environment

can be used as an “accidental” camera to recover hidden

objects [25]. Passive methods usually have a much lower cost

and faster data collection speed than active methods. However,

since passive NLOS imaging only collects the intensity of

reflected light, which lacks information such as time and phase
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in active methods, most existing works [9], [12] only focused

perform 2D reconstruction or localization while a few recent

works can estimate both hidden shape and depth with partial

occluder [26], [27]. Specifically, for passive reconstruction

tasks, intensity information is the most commonly utilized in-

formation [9]–[11], [13], [26]. In such a case, two-dimensional

reconstruction can be completed, such as the computational

periscopy [9] and computational mirrors [13]. Besides, by

introducing depth information into the forward model, the

distance of a simple scene can be roughly estimated with

partial occlusion [26], [27]. If the goal is localization, all

we need is to get the distance between several target points

and the relay wall. Because several target points can reflect

or emit coherent light independently and move over time,

coherence-based information (such as spatial coherence [8],

optical ToF [28]) and space-time information [29] can be

exploited to complete passive sensing and localization.

In this paper, we mainly focus on 2D reconstruction in

passive NLOS scenes, i.e., passive NLOS imaging as shown

in Fig. 1. As described in Section I, the existing methods

usually include physical-based methods (i.e., placing partial

occlusion [9], [11], using polarizers [10] or exploiting optical

memory effect [30]) and deep learning-based methods [12]–

[15]. However, physical-based methods can only complete

the rough reconstruction of simple scenes, while the methods

based on deep learning have challenge on generalization

ability and the reconstruction performance greatly depends

on the similarity between the training set and the test set.

Therefore, it is meaningful to develop a new passive NLOS

imaging model that can not only achieve extremely high-

quality reconstruction on specific datasets, but also have great

generalization capabilities on large-scale datasets, which are

the features of the proposed NLOS-OT.

B. Optimal transport and generative models

1) Optimal transport: Optimal transport(OT) theory studies

the transmission problem of different distributions and has

been successfully used in domain adaptation [31], image

processing and other fields [32]. From a geometric view, OT

can measure the distribution difference between two manifolds

embedded in a high-dimensional space, which is similar to

“earth mover’s distance” (EMD) [33] used in WGAN [34].

Aude et al. used the stochastic gradient descent method to

solve the OT problem [35], while Lei et al. applied OT to

deep learning through convex optimization [36]. For extremely

challenging image restoration tasks, using OT to map the input

to the latent code of target space can effectively exploit the

information in the input image [37], [38]. Nevertheless, to the

best of our knowledge, there is no research on applying OT

to passive NLOS imaging tasks.

2) Generative models: Numerous generative models have

been successfully applied to image restoration tasks in recent

years. Encoder-Decoder based models(AEs) [16], [39]–[42]

and Generative Adversarial Networks (GANs) [34], [43]–[47]

are two of the most dominant approaches since they can

generate high-quality and realistic results. However, due to

limited model interpretation, injected noise, and element-wise

noise, AE-based models often produce blurry images [40]. On

the other hand, GAN is difficult to train and prone to mode

collapse/mixture problems since the transport map is discon-

tinuous while DNNs can only represent continuous maps [48].

In this paper, different from AEs and GANs, NLOS-OT first

obtains the latent code through manifold embedding and then

employs optimal transport to map the input data space to the

latent space. The reduction of dimensionality makes passive

NLOS problem more practical.

C. Optical eavesdropping

Techniques for utilizing optical compromising emanations

to obtain user privacy have a rich history [49]–[53]. In these

tasks, the eavesdroppers used sensors near the user’s display

screen to monitor the information on the screen. As an

early work, M. Kuhn [49] exploited photosensor to spy CRT

(cathode-ray tube) computer monitors. Due to the raster scan

of CRTs, time-resolved sensors can separate different pixel-

s, and then complete pixel-level reconstruction. For NLOS

scenes, because the response time of the diffuse reflection is

short enough, [49] has completed the reconstruction of the

CRTs screen reflected by a diffuse wall. However, for flat-

panel displays (FPDs, e.g., LCD monitors and plasma screens),

it is tough to resolve temporal information, which greatly

increases the difficulty of NLOS reconstruction [49], [50]. [51]

and [52] used a relay surface with specular material (such

as eyeballs) and a high-power telescope to complete NLOS

eavesdropping. It can be seen that most optical eavesdropping

works essentially avoid the diffuse reflection on the wall –

[49], [50] exploited the raster scan of CRTs, and [51], [52]

adopted specular reflective materials to replace the diffuse

wall. On the contrary, our work aims to recover the hidden

scenes displayed on an ordinary FPD and reflected by a diffuse

wall, which is a typical problem statement in passive NLOS

imaging [9], [10], [12], [13], [54]. As a price, compared with

optical eavesdropping, the existing passive NLOS imaging

detection distance is very short, which makes it difficult to

use in snooping scenes despite its vast potential.

III. OUR APPROACH

Here, we propose NLOS-OT, a novel framework designed

for passive NLOS tasks. In this section, we introduce our

settings and explain the motivations of NLOS-OT, then discuss

our network and loss function.

A. Problem setup

As shown in Fig. 1 (a), the objective of passive NLOS imag-

ing is to recover the target image, i.e., the hidden object, by

processing the projection image, i.e., the observed information,

on the diffuse reflection wall. Assuming that each pixel on

the target image is an independent point light source, then the

corresponding measured projection on the wall can be written

as

I (py ) =
Z Z

pf 2 F
A(pf ; py )I (pf )dpf + nb+ d(py ) (1)
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Fig. 2. Inspired by [48], NLOS-OT separates the manifold embedding and optimal transport of generative models. It first obtains the latent code from the
target image space, and then completes the mapping from the projection image space to the latent space. The training phase is divided into two steps. The
first step is to train the autoencoder composed of E1 and D 1 , and the second step is to train E2 to get the optimal transport with fixed E1 and D 1 .

where I (py ) is the light intensity on the pixel py of the

detected projection area, and I (pf ) is the intensity on the pixel

pf of the hidden source display area. Besides, A(pf ; py ) is the

optical transport from the point light source pf to area py on

the relay wall. F represents all pixels on the entire screen,

which is a rectangular area with two spatial dimensions,

corresponding to the two integrals in Eq. 1. nb+ d(py ) is the

noise at the pixel py , generated by the background (b) light

and the detector (d) itself. The model can be discretized as

y = Af + nb + d (2)

where f 2 RH f W f is the vectorized scene intensities and

H f � Wf is the resolution of the display. y 2 RH y W y is

the vectorized observation, and H y � Wy is the resolution

of the measured projection image. A 2 RH y W y � H f W f is

the light transport matrix. nb + d 2 RH y W y represents the

vectorized noise. Considering that the optical transport matrix

A is determined by the bidirectional reflectance distribution

function (BRDF) of the wall � , the range between the hidden

object and the wall r , the position of the camera c, A can be

denoted as A (�; r; c ). Hence, Eq. 2 can be rewritten as

y = A (�; r; c )f + nb + d (3)

We further use the matrix form to represent the scene

intensities and observation, where T�;r;c;n is the corresponding

transformation from the target image f to the projection image

y. Please note that the T � 1
�;r;c;n here is not equivalent to the

inverse of A � 1, but a comprehensive consideration of A � 1 ,

noise n and data distribution. Thus, the passive NLOS imaging

problem can be written as

f = T � 1
�;r;c;n (y) (4)

where the mapping T � 1
�;r;c;n is the reconstruction process that

the proposed NLOS-OT aims to do.

Due to the large condition number of the optical transport

matrix A , the passive NLOS reconstruction is very chal-

lenging. Existing methods alleviated this problem by exploit-

ing the additional obstacles [9] and polarizers [10]. In this

paper, we resolve this problem by utilizing the OT theory

and exploiting the deep image prior with an autoencoder.

For specific datasets, such as MNIST, NLOS-OT can obtain

sharp and high-quality reconstruction results by learning data

distribution, inverse transport process, and noise distribution;

for widely distributed datasets, such as STL-10, NLOS-OT

mainly learns inverse light transport to obtain a good result

with solid generalization ability. Besides, NLOS-OT does not

need to assume prior knowledge of A , e.g., the BRDF of the

wall.

B. Network architecture of NLOS-OT model

1) Motivation of NLOS-OT network: Existing data-driven

passive NLOS imaging methods [12]–[14] mainly use the U-

Net [16], which however do not consider the characteristic

of NLOS imaging task where the distribution of the input and

output are very unbalanced. Such methods can only reconstruct

simple scenes and will result in fuzzy artifacts on the complex

scene as illustrated in our experimental results. Moreover, if

changing the U-Net to the conditional GAN, mode collapse is

prone to occur.

The main reason for the above problems is that the existing

network structure cannot efficiently map the limited features in

the projection image y to the target space. Particularly, existing

methods have completed this task in the image space, which

has too many modes to achieve good results. On the contrary,

we hope to complete this task in the embedded latent space

using OT. Hence, the proposed NLOS-OT framework consists

of two steps: obtaining the latent code of the target image

through an autoencoder in step 1; and mapping the projection

image to the latent space through the OT theory in step 2.
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