
Ten Lessons From Three Generations Shaped Google’s TPUv4i
Industrial Product

Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B. Jablin, George Kurian,
James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas Norrie, Nishant Patil, Sushma Prasad, Cliff Young,

Zongwei Zhou, and David Patterson, Google LLC
Abstract–Google deployed several TPU generations since
2015, teaching us lessons that changed our views: semi-
conductor technology advances unequally; compiler
compatibility trumps binary compatibility, especially for
VLIW domain-specific architectures (DSA); target total
cost of ownership vs initial cost; support multi-tenancy;
deep neural networks (DNN) grow 1.5X annually; DNN
advances evolve workloads; some inference tasks require
floating point; inference DSAs need air-cooling; apps
limit latency, not batch size; and backwards ML
compatibility helps deploy DNNs quickly. These lessons
molded TPUv4i, an inference DSA deployed since 2020.

I. Introduction to TPUs
Commercial Domain Specific Architectures (DSAs) for Deep
Neural Networks (DNNs) are well established [21]. This
paper revisits and expands on that work with a fourth
generation DSA. It shows the evolution of an architecture
family, as production experience has informed new designs
beyond the familiar issues of sluggish CPUs and a
diminishing Moore’s Law [14].

Figure 1. TPUv1 block diagram (left) vs TPUv2/v3.
Figure 1 shows the block diagrams of the three TPUs

deployed in Google datacenters starting in 2015, and Table
1 gives their key features. Let’s review the first three TPUs.

TPUv1, Google’s first DNN DSA, handles inference
(also called serving). The high-bandwidth loop (red) to the
left of Figure 1 shows the main data and computation path
that crunches DNN layers. The green Activation Storage and
Accumulators SRAM blocks buffer the blue computation
blocks of the Matrix Multiply Unit (MXU) and the
Activation Pipeline. The systolic array MXU has 64K 8-bit
integer Multiply Accumulate (MAC) units. DDR3 DRAM
feeds the loop at much lower bandwidth with model
parameters (also called weights), and TPUv1 connects to the
host CPU over PCIe for exchanging model inputs and
outputs at even lower bandwidth. The host CPU also sends
TPUv1 instructions over PCIe. Compared to contemporary
GPUs and CPUs, its performance/TDP (perf/Watt) on
production workloads was 30-80X higher [21, 22].
This paper is part of the Industry Track of ISCA 2021's program.

TPUv2 addresses the harder task of training [23, 30].
First, training parallelization is harder. Each inference is
independent, so a simple cluster of servers with DSA chips
can scale out. A training run iterates over millions of
examples, coordinating across parallel resources because it
must produce a single consistent set of weights for the
model. Second, computation is harder. Backpropagation
requires derivatives for every computation in a model. It
includes higher-precision activation functions (some of
which are transcendental), and multiplication by transposed
weight matrices. Third, training needs more memory.
Weight updates access intermediate values from forward
and back propagation, vastly upping storage requirements;
temporary storage can be 10X weight storage. Fourth, it
must be more programmable. Training algorithms and
models are continually changing, so a DSA restricted to
current best-practice algorithms during design could rapidly
become obsolete. Finally, short integers can work for
inference, but sufficiently capturing the sum of many small
weight updates during training normally needs
floating-point arithmetic.

The TPUv1 block diagram can be transformed into
TPUv2 via a sequence of changes, showing the more
general needs of training over inference. The split on-chip
SRAM made sense when buffering data between sequential
fixed-function units of TPUv1, but undivided on-chip
memory is better for training. The read-only weights for
inference allow optimizations that don’t work for training,
which writes weights. The first change is to merge
Activation Storage and the Accumulators into a single
Vector Memory (see Figure 1). In TPUv2, a more
programmable Vector Unit replaced the fixed-function
datapath of the Activation Pipeline of TPUv1 (containing
pooling and activation units). Bfloat16 is a better match to
DNNs than IEEE 754 fp16 [24], so the MXU was changed
to become the first hardware to support it, with 16K MAC
units (½ the side of the systolic array, so ¼ of the size). The
MXU was then attached to the Vector Unit as a matrix
co-processor. Read-only weights make no sense for
training—whose goal is setting them—and significant
buffer space is needed for temporary per-step variables.
DRAM backs Vector Memory so that the pair form a
compiler-controlled memory hierarchy. In-package HBM
DRAM increases bandwidth 20X over DDR3, keeping the
TPUv2 core well utilized. TPUv2 fetches its own 322-bit
VLIW instructions from a local memory, rather than the
host CPU supplying them.

1

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

978-1-6654-3333-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ISCA52012.2021.00010

2
0
2
1
 A

C
M

/I
E

E
E

 4
8
th

 A
n
n
u
al

 I
n
te

rn
at

io
n
al

 S
y
m

p
o
si

u
m

 o
n
 C

o
m

p
u
te

r
A

rc
h
it

ec
tu

re
 (

IS
C

A
)

| 9
7
8
-1

-6
6
5
4
-3

3
3
3
-4

/2
1
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

S
C

A
5
2
0
1
2
.2

0
2
1
.0

0
0
1
0

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

Feature TPUv1 TPUv2 TPUv3 TPUv4i NVIDIA T4
Peak TFLOPS / Chip 92 (8b int) 46 (bf16) 123 (bf16) 138 (bf16/8b int) 65 (ieee fp16)/130 (8b int)
First deployed (GA date) Q2 2015 Q3 2017 Q4 2018 Q1 2020 Q4 2018
DNN Target Inference only Training & Inf. Training & Inf. Inference only Inference only
Network links x Gbits/s / Chip -- 4 x 496 4 x 656 2 x 400 --
Max chips / supercomputer -- 256 1024 -- --
Chip Clock Rate (MHz) 700 700 940 1050 585 / (Turbo 1590)
Idle Power (Watts) Chip 28 53 84 55 36
TDP (Watts) Chip / System 75 / 220 280 / 460 450 / 660 175 / 275 70 / 175
Die Size (mm2) < 330 < 625 < 700 < 400 545
Transistors (B) 3 9 10 16 14
Chip Technology 28 nm 16 nm 16 nm 7 nm 12 nm
Memory size (on-/off-chip) 28MB / 8GB 32MB / 16GB 32MB / 32GB 144MB / 8GB 18MB / 16GB
Memory GB/s / Chip 34 700 900 614 320 (if ECC is disabled)
MXU Size / Core 1 256x256 1 128x128 2 128x128 4 128x128 8 8x8
Cores / Chip 1 2 2 1 40
Chips / CPUHost 4 4 4 8 8

Table 1. Key characteristics of DSAs. The underlines show changes over the prior TPU generation, from left to right. System TDP
includes power for the DSA memory system plus its share of the server host power, e.g., add host TDP/8 for 8 DSAs per host.

Training needs large scale, so another enhancement is
to add a custom chip-to-chip interconnect fabric (ICI),
enabling TPUv2 supercomputers of up to 256 chips [23].

Unlike TPUv1, TPUv2 has two TensorCores per chip.
Global wires on a chip don’t scale with shrinking feature
size (see lesson 1 below), so their relative delay increases.
Two smaller cores per chip prevent the excessive latencies
of a single large full-chip core. We stopped at two because
we believe it is easier to compile programs efficiently for
two brawny cores than for numerous wimpy cores.

TPUv3 is a “midlife kicker,” a mild redesign of TPUv2
in the same technology that has 2X the number of MXUs
and HBM capacity and increases the clock rate, memory
bandwidth, and ICI bandwidth by 1.3X. A TPUv3
supercomputer also scales up to 1024 chips. TPUv3 matches
the contemporary Volta GPU when both use 16-bit floating
point (bfloat16 vs IEEE fp16). However, Volta needs to use
IEEE fp32 when training Google production workloads,
making TPUv3 ~5X faster. Several applications scale to
1024 chips at 97%–99% of perfect linear speedup [23].

This paper introduces TPUv4i—i stands for inference—
forged by the hard-earned lessons from building and
deploying TPUs over 5 years. Section 2 (§2) distills ten of
these insights. Had we known about them in 2015, with
more time we would have designed these TPUs differently,
especially TPUv1. §3 shows how these lessons shaped
TPUv4i. To avoid repetition, §3 only lists changes from
TPUv3. §4 and §5 compare TPUv4i performance/TDP to
TPUv3 for production apps and to NVIDIA T4 for MLPerf
Inference 0.5–0.7. §6 describes 5 industry inference DSAs.
They often run afoul of the lessons, so none meet Google’s
2021 needs. A discussion and conclusion end the paper.

But first are highlights of this paper’s contributions:

● Document the unequal improvement in logic, wires,
SRAM, and DRAM from 45 nm to 7 nm—including an
update of Horowitz’s operation energy table [16] from 45
nm to 7 nm—and show how these changes led to four
systolic floating point matrix units for TPUv4i in 2020
versus one systolic integer matrix unit for TPUv1 in 2015.

● Explain the difference between designing for
performance per TCO vs per CapEx, leading to HBM and a
low TDP for TPUv4i, and show how TPUv1’s headroom led
to application scaleup after the 2017 paper [21].

● Explain backwards ML compatibility, including
why inference can need floating point and how it spurred
the TPUv4i and TPUv4 designs (§3). Backwards ML
compatible training also tailors DNNs to TPUv4i (§2).

● Measure production inference applications to show
that DSAs normally run multiple DNNs concurrently,
requiring Google inference DSAs to support multi-tenancy.

● Discuss how DNN advances change the production
inference workload. The 2020 workload keeps MLP and
CNN from 2017 but adds BERT, and RNN succeeds LSTM.

● Document the growth of production DNNs in
memory size and computation by ~1.5x annually since 2016,
which encourages designing DSAs with headroom.

● Show that Google’s TCO and TDP for DNN DSAs
are strongly correlated (R = 0.99), likely due to the end of
Dennard scaling. TDP offers a good proxy for DSA TCO.

● Document that the SLO limit is P99 time for
inference applications, list typical batch sizes, and show
how large on-chip SRAM helps P99 performance.

● Explain why TPUv4i architects chose compiler
compatibility over binary compatibility for its VLIW ISA.

● Describe Google’s latest inference accelerator in
production since March 2020 and evaluate its performance/

2

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

TDP vs. TPUv3 and NVIDIA’s T4 inference GPU using
production apps and MLPerf Inference benchmarks 0.5-0.7.

Operation Picojoules per Operation
45 nm 7 nm 45 / 7

+
Int 8 0.030 0.007 4.3
Int 32 0.100 0.030 3.3
BFloat 16 -- 0.110 --
IEEE FP 16 0.400 0.160 2.5
IEEE FP 32 0.900 0.380 2.4

✕

Int 8 0.200 0.070 2.9
Int 32 3.100 1.480 2.1
BFloat 16 -- 0.210 --
IEEE FP 16 1.100 0.340 3.2
IEEE FP 32 3.700 1.310 2.8

SRAM
8 KB SRAM 10.000 7.500 1.3
32 KB SRAM 20.000 8.500 2.4
1 MB SRAM1 100.000 14.000 7.1

GeoMean1 -- -- 2.6

DRAM

Circa 45 nm Circa 7 nm
DDR3/4 13002 130020 1.0
HBM2 -- 250-4502 --
GDDR6 -- 350-4802 --

Table 2. Energy per Operation: 45 nm [16] vs 7 nm. Memory
is pJ per 64-bit access.

Figure 2. DSA gains per chip for MLPerf Training 0.5 to 0.7
over 20 months for the same compilers. The unverified TPUv3
MLPerf 0.5 scores for Mask R-CNN and Transformer are from
[23]; all other results are from [28].

2. Ten Lessons Learned Since 2015
We list the 10 most important lessons, even if depending on
their experience some readers find them unsurprising. We
note, however, that architects of recent commercial ML
accelerators ignored some of these lessons (see §6).

2 1300 pJ for DDR3/4 DRAM is only the I/O [43]. HBM2 and
GDDR6 also list only the I/O energy [26, 32, 42].

1 Horowitz’s 1 MB SRAM power is a single bank SRAM. Most
would use multiple banks, which explains the 7.1 reduction in
1MB SRAM going from 45 to 7. It is omitted from the geomean.

The first three lessons apply to any DSA, and
perhaps even to GPUs and CPUs. For typographic clarity,
the lessons are tagged with circled numbers, e.g.,②.
① Logic, wires, SRAM, & DRAM improve unequally
Horowitz’s insights on operation energy inspired many DSA
designs [16]. Table 2 updates it to 7 nm, showing an average
gain of 2.6X from 45 nm, but the change is uneven:

● SRAM access improved only 1.3X–2.4X, in part
because SRAM density is scaling slower than in the past.
Comparing 65 nm to 7 nm, SRAM capacity per mm2 is ~5X
less dense than ideal scaling would suggest [45].

● DRAM access improved 6.3X due to packaging
innovations. High Bandwidth Memory (HBM) places short
stacks of DRAM dies close to DSAs over wide buses.

● While not in Table 2, energy per unit length of wire
improved <2X [15]. Poor wire delay scaling led TPUv2/v3
to use 2 smaller cores from 1 larger core on TPUv1.

Logic improves much faster than wires and SRAM, so
logic is relatively “free.” HBM is more energy-efficient than
GDDR6 or DDR DRAM. HBM also has the lowest cost per
GB/s of bandwidth.
② Leverage prior compiler optimizations
Since the 1980s, the fortunes of a new architecture have
been bound to the quality of its compilers. Indeed, compiler
problems likely sank the Itanium’s VLIW architecture [25],
yet many DSAs rely on VLIW (see §6) including TPUs.
Architects wish for great compilers to be developed on
simulators, yet much of the progress occurs after hardware
is available since compiler writers can measure actual time
taken by code. Thus, reaching an architecture’s full potential
quickly is much easier if it can leverage prior compiler
optimizations rather than starting from scratch.

DSAs are not exceptions to this rule; they are paragons.
TPUs rely on the XLA (Accelerated Linear Algebra)
compiler, which started in 2016, and NVIDIA GPUs have
used the CUDA compiler since 2007. Figure 2 shows the
gains over 20 months from MLPerf Training benchmark
version 0.5 to 0.7. CUDA compilation improved the GPU
by 1.8X. Perhaps because it is less mature, XLA raised the
TPU by 2.2X. In contrast, C compilers improve general-
purpose code 1%–2% annually [37]. Good compilers are
critical to a DSA’s success (see §3). The XLA compiler
developed for TPUv2 was enhanced for TPUv3 and TPUv4.
Its intermediate language has changed little since TPUv2.
③ Design for performance per TCO vs per CapEx
Capital Expense (CapEx) is the price for an item [2].
Operation Expense (OpEx) is the cost of operation,
including electricity consumed and power provisioning.
Standard accounting amortizes computer CapEx over 3-5
years, so for 3 years TCO = CapEx + 3 ✕ OpEx. Google
and most companies care more about performance/TCO of
production apps (perf/TCO) than raw performance or

3

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

performance/CapEx (perf/CapEx) of benchmarks [2]. While
TCO is the main variable that Google optimizes for during3

product design, CapEx still influences some business
decisions that are outside the scope of this paper.

Our experience is that CPUs and GPUs typically aim to
maximize performance of benchmarks versus purchase price
at the time of their announcement. Since price depends on
volume and contract negotiations, some architects use
performance/mm2 as a proxy for perf/CapEx [47].

Alas, performance/mm2 can look good even if it’s bad
for perf/TCO, e.g., increasing the clock rate of the Alibaba
HanGuang 800 1.5x (0.7 GHz) costs 2.6x more power [20],
dropping counters that can help tune DNN performance, or
speeding up memory by turning off error correction (ECC
§7.B). Moreover, benchmarks are inherently backward
looking, since they don’t normally factor in growth that can
be important for perf/TCO over three years (see Table 4) ⑧.

In contrast, TPUv1’s headroom enabled app improve-
ments since publication [21]. Developers maintained SLOs
yet increased operations 3X for MLP0 and 6X for CNN1⑧.
A DSA should aim for good Perf/TCO over its full lifetime,
and not only at its birth.

Alas, TCO is confidential. Figure 3 plots TCO versus
system TDP for all 4 TPUs plus the NVIDIA T4. Power
involves everything in a rack, including a top of rack switch.
The trendline shows nearly perfectly correlation, as the
correlation coefficient R is 0.99. R is still 0.88 for 15 CPUs,
GPUs, and TPUs (§7.D). Use TDP if TCO is unavailable.

Figure 3. TCO vs system TDP for T4 and TPUv1/v2/v3/v4i. An
R2 of 0.982 means R is nearly perfect at 0.99 out of 1.00.
System TDP is capacity planning power and not average
power, since capacity is more expensive (see §7.D for details).

Two TCO factors come directly from power: the costs
of electricity used and of provisioning power—power
distribution and cooling—which is twice as much as
electricity [2]. Much of the rest is computer CapEx . Chip4

CapEx is not directly tied to power, yet the correlation
coefficient R is still 0.90. As Moore’s Law slows and

4 Datacenter space is amortized over 20 years, so its cost is low.

3 Like our TCO, [11] ignores financing, lumps capacity power with
“datacenter infrastructure”, and uses 3-year amortization.

without Dennard scaling, using more transistors and die area
to build faster processors likely raises both power and cost.

The next 3 lessons are focused on DNN DSAs.
④ Support Backwards ML Compatibility
Some DNNs have time-to-market constraints, as there can
be economic value for timeliness. This perspective led to a
principle of backwards ML compatibility. The goal is the
same for a new CPU: it should get exactly the same results,
including the same exception behavior and correlated
performance, in this case for training and serving across
TPU generations (starting with TPUv2).

Any new inference TPU would at least need to offer the
same numerics to get the same results and the same
exception behavior: bfloat16 and IEEE fp32 would be
required. If a new TPU doesn't support the same operations
or numeric types, then the compiler can’t give a backwards
ML compatibility guarantee.

Floating point addition is not associative, meaning the
order of operations can prevent high-level operations such
as matrix multiply or convolution from giving bit-identical
results. One can't constrain the compiler to a particular fixed
order of operations while still allowing performance
optimization. This subtle complication implies using the
same compiler that is generating code for all targets in a
similar way, since the compiler sometimes changes the order
of evaluation. Identical order means a new TPU should be
similar to prior TPUs from the compiler’s perspective.

Performance should correlate; if it trains well, it should
serve well. To deploy immediately, developers don't want a
change to a DNN that reduces training step-time to result in
poor inference latency, since it could violate the DNN SLO
⑩. Moreover, lesson ⑩ shows that backwards ML com-
patible training can pre-tune DNNs to the serving hardware.
⑤ Inference DSAs need air cooling for global scale
The 75W TPUv1 and 280W TPUv2 were air cooled, but the
450W TPUv3 uses liquid cooling. Liquid cooling requires5

placing TPUs in several adjacent racks to amortize the
cooling infrastructure. That placement restriction is not a
problem for training supercomputers, which already consist
of several adjacent racks. Moreover, the downsides to
limiting training to a few datacenters that have more space
are small, since widespread deployment is unnecessary.

Not so for user-facing inference, as low user latency
requires a worldwide footprint. Some strategic datacenters
are already packed, so finding room for several adjacent
racks is hard. To ease deployment, inference DSAs should
be air-cooled.
⑥ Some inference apps need floating point arithmetic
Quantization for DNNs aims to retain inference-time model
quality using integers, even though all training is done in

5 Some are air cooled for inference, but most are liquid cooled.

4

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

floating point. Quantized arithmetic grants area and power
savings, but it can trade those for reduced quality, delayed
deployment, and some apps don’t work well when quantized
(see Figure 4 and NMT from MLPerf Inference 0.5 in §4).

TPUv1 required quantization—since it supported only
integer arithmetic—which proved a problem for some
datacenter applications. Early in TPUv1 development,
application developers said a 1% drop in quality was
acceptable, but they changed their minds by the time the
hardware arrived, perhaps because DNN overall quality
improved so that 1% added to a 40% error was relatively
small but 1% added to a 12% error was relatively large.

This change meant it could take months of extra
development to restore the quality score using integers that
experts achieved in floating point during training. For
example, the quality for the top scores for the ImageNet
competition improved <1% from 2019 to 2020 [18].

This lesson teaches that DSAs may offer quantization,
but unlike TPUv1, they should not require it. (Also, see
§7.H about quantization aware training.)

Of the DNNs in Table 3, only RNN0 was quantized, and
the primary benefit was halving the memory footprint. From
MLPerf, 3D-Unet and DLRM have been post-training
quantized to 8-bits with accuracy loss <0.1% versus FP32,
and the accuracy loss is <1% for BERT.

Figure 4. Quantization error for segmentation [40]. The left
image identifies the outline of objects in the right photo. The
Int8 outline is fuzzy around the girl’s head, so it includes
bystanders, and it doesn’t isolate the arm of the person in red
on the right. The unreliable outline crops the photo incorrectly.

The final 4 lessons are about the DNN apps
themselves, which one would like to know before designing
hardware to run them—whether it is a DSA, GPU, or CPU.
⑦ Production inference normally needs multi-tenancy
Like CPUs, DSAs should support multi-tenancy. Sharing
can lower costs and reduce latency if applications use many
models. For example, translation DNNs need many
language pairs and speech DNNs must handle several
dialects. Multi-tenancy also supports multiple batch sizes to
balance throughput and latency [38]. Another reason is
simply good software engineering practices. Examples
include trying new features on a fraction of customers, or
slowly deploying a new release to reduce the chances of

problematic software updates. Table 3 shows >80% of our
production inference workload needs multi-tenancy.

Application developers demand fast switching time
between models (e.g., <100 us), which cannot be met by
loading weights from the CPU host over the PCIe bus (>10
ms), so DSAs need local memory. To keep all weights in
on-chip SRAM, we’d need to load >90 MB (e.g, MLP1) in
<100 us, or an external memory bandwidth of 900 GB/s,
faster than current inference chips (§6). Moreover, Table 4
predicts that DNNs will likely grow. Multi-tenancy suggests
fast DRAM for DSAs, since all weights can’t fit in SRAM.

Alas, DNN DSA designers often ignore multi-tenancy.
Indeed, multi-tenancy is not mentioned in the TPUv1 paper
[21]. (It was lucky that the smallest available DDR3 DRAM
held 8GB, allowing TPUv1 software to add multi-tenancy.)

Name
Avg.
Size
(MB)

Max
Size
(MB)

Multi-
tenancy?

Avg. Number of
Programs

(StdDev), Range

% Use
2016/
2020

MLP0 580 2500 Yes 27 (±17), 1-93 61%-25%MLP1 90 N.A. Yes 5 (±0.3), 1-5
CNN0 60 454 No 1 5%-18%CNN1 120 680 Yes 6 (±10), 1-34
RNN0 1300 1300 Yes 13 (±3), 1-29 0%-29%RNN1 120 400 No 1
BERT0 3000 3000 Yes 9 (±2), 1-14 0%-28%BERT1 90 N.A. Yes 5 (±0.3), 1-5
Table 3. The 2020 average and maximum size includes
multi-tenancy. Next is the number of DNNs sharing the DSA.
Last is Google inference workload mix in July 2016 [21] vs
February 2020 showing % of the inference workload per DNN,
weighted by the TCO of the TPUv1/v2/v3 system. MLP1 is
RankBrain [3]; CNN0 is AlphaZero [41]; CNN1 is an internal
model for image classification; BERT1 is DeepRank [33].
MLPerf will likely soon add a multi-tenancy requirement.

Model Annual Memory Increase Annual FLOPS Increase
CNN1 0.97 1.46
MLP1 1.26 1.26
CNN0 1.63 1.63
MLP0 2.16 2.16

Table 4. Annual increase in production applications of 2016.
⑧ DNNs grow ~1.5x/year in memory and compute
Unlike benchmarks, programmers continuously improve
production applications, which usually increases memory
size and computation requirements. Table 4 tracks the
average annual increase in memory size and computation
for the four original production inference apps that still run
on TPUv1/v2/v3. At a ~1.5x annual increase, our production
DNNs grow as fast as Moore’s Law, like early PC software.
This rate suggests architects should provide headroom so
that DSAs can remain useful over their full lifetimes.

5

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

⑨ DNN workloads evolve with DNN breakthroughs
Table 3 has the DNNs that are ~100% of Google’s inference
2020 workload. MLP and CNN from 2016 remain popular,
although some apps switched from MLPs to BERT DNNs
(28%), which explains the MLP drop (65% to 25%). BERT
appeared in 2018, yet it’s already 28% of the workload. To
improve quality, a transformer encoder plus LSTM decoder
(RNN0) and a Wave RNN (RNN1) replaced LSTMs (29%).
This lesson teaches the importance of programmability and
flexibility for inference DSAs to track DNN progress.
⑩ Inference SLO limit is P99 latency, not batch size
[21, 35] list latency time limits for serving models for
production apps. However, recent DSA papers have
redefined the latency limit in terms of batch size, often set at
1. Table 5 shows the P99 time SLO for production apps and
the MLPerf Inference 0.5 benchmarks (§7.E). It also shows
the largest batch size of recent TPUs that meet the SLO.
Clearly, datacenter applications limit latency, not batch size.
Future DSAs should take advantage of larger batch sizes.

Our production workloads compared to MLPerf
average ~9X larger batch sizes despite ~7X stricter latency
constraints. Backwards ML compatibility gives performance
portability from training to inference ④, so Google’s
internal models are pre-tuned. By contrast, the MLPerf
inference models were trained on GPUs, and so are less
well-tuned for TPUs.

Production MLPerf 0.7
DNN ms batch DNN ms batch DNN ms batch
MLP0 7 200 RNN0 60 8 Resnet50 15 16
MLP1 20 168 RNN1 10 32 SSD 100 4
CNN0 10 8 BERT0 5 128 GNMT 250 16
CNN1 32 32 BERT1 10 64
Table 5. Latency limit in ms and batch size picked for TPUv4i.

3. How the 10 Lessons Shaped TPUv4i’s Design
Given the importance of leveraging prior compiler
optimizations ② and backwards ML compatibility④—plus
the benefits of reusing earlier hardware designs—TPUv4i
was going to follow TPUv3: 1 or 2 brawny cores per chip, a
large systolic MXU array and vector unit per core,
compiler-controlled vector memory, and compiler-controlled
DMA access to HBM. To avoid repetition and to leave room
for insights, this paper concentrates on the differences from
TPUv3; those interested in more details should see [23, 30].

After TPUv3, we reconsidered our strategy of building
a single chip that is optimized for training yet also used for
inference. Given that design resources are limited, it was
hard to design TPUv3+ and TPUv1+ concurrently. NVIDIA
also releases training and inference chips sequentially; for
example, P4 came six months after the Pascal P100 GPU
and T4 followed Volta by one year. Even so, we could likely

deliver better fleet-wide perf/TCO if we could afford to
design both inference- and training-optimized chips.

The “2 birds with 1 stone” moment came when we
realized we could get two chips from a single design by
having a single-core chip for inference (like TPUv1) and a
dual-core chip for training (like TPUv3), as long as both
chips used the same core, scaled versions of the same
uncore, and were developed by the same team in a unified
codebase. We could further improve TCO ③ of the
inference chip by reducing interchip communication
bandwidth and MXU logic layout density, which lowered
power consumption and maximum power density and
enabled air cooling ⑤. Thus, Google deployed the single
core TPUv4i for inference and the dual core TPUv4, which
scales to 4096 chips, for training. Google previewed TPUv4
as part of the MLPerf Training 0.7 in July 2020, where it
was 2.7X faster than TPUv3 [1] and matched the
performance of the NVIDIA Ampere GPU [28].

Compiler compatibility, not binary compatibility.
Given that TPUv2 and TPUv3 shared a 322-bit VLIW
instruction bundle length, conventional architecture wisdom
would be for TPUv4i and TPUv4 to try to maintain
backwards binary compatibility. We chose to be compiler
compatible instead of binary compatible for a few reasons:

● The original argument for VLIW was enabling
more hardware resources over time by recompiling the apps
with the compiler controlling the new instruction level
parallelism, which binary compatibility restricts [8].

● Many engineers built Itanium compilers, including
some in the XLA team, where they learned the drawbacks
of binary compatibility for a VLIW compiler and hardware.

● The XLA compiler accepts JAX and PyTorch as
well as TensorFlow, so TPUs could rely on one compiler
versus having an interface that works for many compilers.

● TPU software is maintained and distributed in
source code rather than in binary code.

XLA divides the compiling task into producing High-
Level Operations (HLO) that are machine independent and
Low-Level Operations (LLO) that are machine dependent.
Optimizations at the HLO level apply to all platforms. If a
new TPU restricts the needed compiler changes to LLOs,
e.g., wider VLIW, it maintains compiler compatibility. Like
NVIDIA GPU/CUDA, TPU/XLA illustrates hardware/
software co-design in a commercial setting (see §7.G).

Increased on-chip SRAM storage with common
memory (CMEM). The first concern of a DSA after its
compiler is the memory system [5]. Limiting memory costs
may improve perf/CapEx but could hurt perf/TCO ③.
Despite aiming at inference, multi-tenancy ⑦, the rapid
growth of DNNs ⑧, and the superior energy efficiency of
HBM ① led to TPUv4i to keep using HBM like TPUv3.

Nevertheless, SRAM is 20x more energy efficient than
DRAM (Table 2) and there are large data structures that

6

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

don’t fit in Vector Memory (§5). Figures 5 and 6 show the
new 128 MB Common Memory (CMEM) of TPUv4i. This
expanded memory hierarchy reduces the number of accesses
to the slowest and least energy efficient memory (see §5).

We picked 128MB as the knee of the curve between
good performance and a reasonable chip size, as the
amortized chip cost is a significant fraction of TCO ③.
Figure 6 shows that the resulting CMEM is 28% of the die
area. Since TPUv4i is aimed at inference, its die size is
closer to TPUv1’s die size than to TPUv3’s size (Table 1).

Figure 5. TPUv4i chip block diagram. Architectural memories
are HBM, Common Memory (CMEM), Vector Memory
(VMEM), Scalar Memory (SMEM), and Instruction Memory
(IMEM). The data path is the Matrix Multiply Unit (MXU),
Vector Processing Unit (VPU), Cross-Lane Unit (XLU), and
TensorCore Sequencer (TCS). The uncore (everything not in
blue) includes the On-Chip Interconnect (OCI), ICI Router
(ICR), ICI Link Stack (LST), HBM Controller (HBMC),
Unified Host Interface (UHI), and Chip Manager (MGR).

Figure 6. TPUv4i chip floorplan. The die is <400 mm2 (see
Table 1). CMEM is 28% of the area. OCI blocks are stretched
to fill space in the abutted floorplan because the die dimensions
and overall layout are dominated by the TensorCore, CMEM,
and SerDes locations. The TensorCore and CMEM block
arrangements are derived from the TPUv4 floorplan.

Four-dimensional tensor DMA. Memory system
architecture is critical to any DNN accelerator and should
be designed to maximize performance of common-case
workloads while being flexible enough for future models⑧,
⑨ [5]. TPUv4i contains tensor DMA engines that are
distributed throughout the chip’s uncore to mitigate the
impact of interconnect latency and wire scaling challenges
①. The tensor DMA engines function as coprocessors that
fully decode and execute TensorCore DMA instructions.
Feedback from the XLA team on the usability and
performance of the TPUv2/v3’s two-dimensional
(single-strided) DMAs [30] motivated the development of a
new four-dimensional (triple-strided) tensor DMA
architecture for TPUv4i ②. It is compiler-compatible (but
not binary-compatible) with past TPU chips.

The new 4D tensor DMA design supports arbitrary
steps-per-stride and positive/negative stride distances in
each dimension. The inner vector is the TPUv4i memory
system’s native 512B word size, which matches the
128-lane 32-bit vector unit inherited from TPUv2/v3 [30]
and also facilitates efficient HBM access and interconnect
design, as described below. The striding parameters are
independently programmable for the source-side and
destination-side of the DMA. This feature offloads work
from the TensorCore by enabling in-memory 512B-granular
4D tensor copies, reshapes, scatters, gathers, and memsets
that can be used for transfers between any pair of
architectural memories on the same chip as well as across
different chips. The chip-side of any host DMA similarly
supports 4D operations. We can emulate more than four
dimensions using multiple separate DMAs, thereby reducing
ISA encoding space and DMA complexity and cost.

Software is sensitive to DMA bandwidth, with latency
being a secondary concern as long as the compiler is able to
issue large DMAs or keep enough small DMAs in flight.
The DMA bandwidth is designed to be independent of the
chosen striding parameters because predictable performance
is a key goal for effective compiler optimizations②.

To maximize predictable performance and simplify
hardware and software, TPUv4i unifies the DMA
architecture across local (on-chip), remote (chip-to-chip),
and host (host-to-chip and chip-to-host) transfers to simplify
scaling of applications from a single chip to a complete
system. It retains the essence of the TPUv2/v3 relaxed
DMA ordering model that is built around explicit
software-based synchronization [30]. Unrolled DMA reads
and writes are completely unordered both within a DMA
and across DMAs. All on-chip memories can each be
concurrently accessed using DMAs as well as loads/stores,
while off-chip HBM can only be accessed using DMAs. If
there are concurrent overlapping address patterns between
DMAs and/or load/store instructions, explicit core-DMA
synchronization must be used to avoid memory-level

7

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

hazards. TPUv4i has support for synchronizing partial
completion progress of DMAs with the TensorCore to help
hide DMA ramp-up and ramp-down latency in case it
becomes useful for future compiler optimizations ②, larger
DNNs ⑨, and/or tighter workload latency constraints⑩.

Custom on-chip interconnect (OCI). Rapidly growing
and evolving DNN workloads ⑧, ⑨ have driven the TPU
uncore towards greater flexibility each generation. Each
component of past TPUs designs were connected
point-to-point (Figure 1). As memory bandwidth increases
and the number of components grows, a point-to-point
approach becomes too expensive, requiring significant
routing resources and die area. It also requires up-front
choices about which communication patterns to support. For
example, in TPUv3, a TensorCore can only access half of
HBM as a local memory [30]: it must go through the ICI to
access the other half of HBM. This split imposes limits on
how software can use the chip in the future ⑧.

In TPUv4i, we added a shared On-Chip Interconnect
(OCI) that connects all components on the die and we can
scale its topology based on the components that are present.
OCI was particularly important with the addition of CMEM;
the choice of how to allocate and transfer data between
HBM, CMEM, and VMEM continues to evolve ⑧.

We designed for much wider datapaths compared with a
typical SoC—512B native access size instead of 64B cache
lines. HBM bandwidth per core also increased by 1.3X over
TPUv3 (and we expect similarly significant increases in the
future). To handle this scale, we were inspired by NUMA
memory systems—take advantage of spatial locality of
accesses to minimize latency and bisection bandwidth—but
rather than putting the NUMA boundary between cores, we
put it between parts inside the same core. While the entire
512B memory word is accessible to any component, the
larger high-bandwidth memories (HBM, CMEM, and
VMEM) are each physically partitioned into four
128B-wide groups to optimize HBM accesses. The
corresponding group for each memory is connected to a
segment of the OCI with minimal overlap to other groups,
effectively creating four non-overlapping networks with
each serving 153 GB/s of HBM bandwidth rather than a
single network serving all 614 GB/s. This grouping provides
locality that reduces latency and wiring resources, and
simplifies interconnect arbitration. This four-way split is
essential, as wiring resources don’t scale as well as logic ①.

Arithmetic improvements. Another big decision is the
arithmetic unit. The danger of requiring quantization⑥ and
the importance of backwards ML compatibility ④ meant
retaining bfloat16 and fp32 from TPUv3 despite aiming at
inference. As we also wanted applications quantized for
TPUv1 to port easily to TPUv4i, TPUv4i also supports int8.

Our XLA colleagues suggested that they could handle
twice as many MXUs in TPUv4i as they did for TPUv3②.

Logic improved the most in the more advanced technology
node, ①, so we could afford more MXUs. Equally
important, the new CMEM could feed them (§5 and §7.A).

The VLIW instruction needed extra fields to handle the
four MXUs and the CMEM scratchpad memory, which were
easy to add given no need for binary compatibility. The
TPUv4i instruction is 25% wider than TPUv3.

We also wanted to reduce the latency through the
systolic array of the MXU while minimizing area and
power. Rather than sequentially adding each floating-point
multiplication result to the previous partial sum with a series
of 128 two-input adders, TPUv4i first sums groups of four
multiplication results together, and then adds them to the
previous partial sum with a series of 32 two-input adders.
This optimized addition cuts the critical path through the
systolic array to ¼ the latency of the baseline approach.

Once we decided to adopt a four-input sum, we
recognized the opportunity to optimize that component by
building a custom four-input floating point adder that
eliminates the rounding and normalization logic for the
intermediate results. Although the new results are not
numerically equivalent, eliminating rounding steps increases
accuracy over the old summation logic. Fortunately, the
differences from a four- versus two-input adder are small
enough to not affect ML results meaningfully ④.
Moreover, the four-input adder saved 40% area and 25%
power relative to a series of 128 two-input adders. It also
reduced overall MXU peak power by 12%, which directly
impacts the TDP and cooling system design ⑤ because the
MXUs are the most power-dense components of the chip.

Clock Rate and TDP. Air cooling for inference⑤ and
reducing TCO ③ led to a clock rate of 1.05 GHz and chip
TDP of 175W, once again closer to TPUv1 (75W) than to
TPUv3 (450W).

ICI scaling. To provide headroom for future DNN
growth ⑧, TPUv4i has 2 ICI links so that the 4 chips per
board can access nearby chip memory quickly (Figure 7) via
model partitioning [7]. (TPUv3 uses 4 ICI links.) Apps may
use it as the software stack matures and as DNNs grow⑧.

Figure 7. TPUv4i board with 4 chips that are connected by ICI.

Workload analysis features. Building upon lessons
from TPUv1 [21], TPUv4i includes extensive tracing and
performance counter hardware features, particularly in the
uncore. They are used by the software stack to measure and

8

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

analyze system-level bottlenecks in user workloads and
guide continuous compiler-level and application-level
optimizations (Figure 2). These features increase design
time and area, but are worthwhile because we aim for Perf/
TCO, not Perf/CapEx ③. The features enable significant
system-level performance improvements and boost
developer productivity over the lifetime of the product as
DNN workloads grow and evolve (see Table 4) ⑦, ⑧,⑨.

Figure 8. Performance (top) and performance/system Watt ③
for production apps ⑨ relative to TPUv2 for the other TPUs.

4. TPUv4i Performance Analysis
Figure 8 compares performance and perf/TDP of TPUs
relative to TPUv2 for the production inference apps ⑨.
TPUv3 and TPUv4i are both ~1.9X faster, with TPUv1
0.7X TPUv2. The larger, hotter TPUv2/v3 dies have two
cores while the smaller cooler TPUv4i has one, making
TPUv4i a win in perf/TCO ③ and for deployment ⑤.

Thus, TPUv4i shines for perf/TDP at 2.3X vs TPUv3.
2.3X is a combination of 1.1X FLOPS (123T vs 138T),
4.5X SRAM capacity (32 vs 144MB), 0.7X DRAM
bandwidth (900 vs 614 GB/s), 0.4X TDP (175 vs 450W),
and microarchitectural changes such as 2X MXU count per
core to improve utilization. The technology upgrade (16 to
7nm) improves energy efficiency and transistor density to
enable bigger FLOPS and SRAM. Among these perf/TDP
factors, CMEM gained ~1.5X (Figure 11), 7nm contributed
~1.3X, and others contributed the remaining ~1.2X.

The “accelerator wall” paper [9] predicts perf/TDP
across DSA generations from the log of the increase in
transistors from new semiconductor nodes. Yet TPUv4i
delivers 2.3X the TPUv3 perf/TDP using 1.6X the
transistors.

Figure 9 compares performance and perf/(system)TDP
of TPUv3 and TPUv4i relative to the NVIDIA T4 (see §6)
using the MLPerf Inference 0.5–0.7 benchmarks. (§7.C
discusses comparing it to A100.) MLPerf has two datacenter

scenarios: Server has to meet a P99 latency constraint ⑩
(Table 5), and Offline that batch processes inference tasks
without an SLO. The T4 used int8 on ResNet and SSD but
used fp16 on NMT, since NVIDIA couldn’t get int8 to work
for this DNN ⑥. NVIDIA’s latest MLPerf Inference code
for T4 was run in Google datacenters. (§7.B explains why
T4 MLPerf Inference speed slows in Google datacenters.)

TPUs ran all the benchmarks using bf16, yet TPUv4i
averages 1.3–1.6X as fast as T4. TPUv4i falls to 0.9–1.0X
for perf/TDP ③, although NMT is 1.3X perf/TDP as both
DSAs compute in floating point. We also measured
performance per average power instead of TDP. TPUv4i
was 1.6-2.0X T4 for NMT, 1.0X for ResNet50, and
0.5-0.6X for SSD, with a geomean of 1.0X. SSD depends on
NonMax Suppression, which involves many gathers and
other slow operations of high memory intensity. GPU’s
coalescing memory likely runs faster than in TPU’s HBM.

Backwards ML compatibility makes TPUv4i good for
Google even if its int8 perf/TDP isn’t much larger than T4.

Figure 9. Performance (top) and performance/system TDP ③
relative to T4 for TPUv3/v4i in our datacenter (§7.B). Note that
the T4 uses int8 for ResNet and SSD and fp16 for NMT. The
TPUs use bf16 for all three to maintain backwards ML
compatibility ④ with TPUv3/v4. MLPerf Inference 0.7 omits
NMT, so we use MLPerf Inference 0.5 code for it and 0.7 code
for ResNet and SSD in Figures 9, 10, and 13. (These results are
unofficial, as they have not been verified by MLPerf.)

5. Performance In More Depth: CMEM
Figure 10 shows the benefit of adding CMEM to TPUv4i,
using the MLPerf Inference 0.5–0.7 benchmarks. The
average benefit for offline is only 1.1X but 1.3X for server,
as the relationship between latency and the latency-limited
server performance is nonlinear at some utilization points.

9

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

To understand CMEM’s impact on the production
applications ⑨, Figure 11 compares the performance of
doubling the HBM bandwidth with CMEM disabled to the
standard HBM bandwidth with CMEM enabled. Compiler
flags disabled CMEM and running on TPUv4 with one core
disabled doubled HBM bandwidth for one core.

Figure 10. Unverified MLPerf Inference impact of turning on
CMEM vs no CMEM.

Figure 11. Performance of 2X HBM bandwidth with no
CMEM relative to CMEM with standard HBM bandwidth.

Figure 12. Roofline model showing apps without CMEM (low
point) vs with CMEM (high point). Operational intensity (OI)
here is operations divided by memory accesses to HBM or to
CMEM. If OI were relative to HBM only, CMEM would
increase OI and move the points to the right as well as up.

For 5 of the 8 applications, the speedups over TPUv4i
without CMEM are similar, both in the range of 1.1 to 1.4X.
Our interpretation is that the main benefit of CMEM is the
much higher memory bandwidth for these 5 applications;
adding CMEM is cheaper, lower power, and easier than

doubling HBM bandwidth. For 3 apps the CMEM gain is
even higher at 1.7 –2.2X, providing much greater benefits.

The roofline model [46] in Figure 12 helps explain
what is going on. It divides applications into compute-bound
or memory-bound, using operational intensity to determine
where an application is relative to its roofline. The
ridgepoint is the operational intensity (FLOPS per byte of
memory accessed) that is at the dividing line between
memory-bound and compute-bound. While the roofline
model normally is checking to see if an application is
compute-bound or DRAM-bound, it can be used recursively
to see if it is CMEM-bound. The CMEM read bandwidth is
2000 GB/s, its write bandwidth is 1000 GB/s, and unlike
HBM it can read and write simultaneously. Figure 12 shows
the traditional DRAM roofline (HBM) along with the higher
rooflines for CMEM read and CMEM write for the eight
production applications. The vertical points show the
performance gain per app with CMEM on vs. CMEM off.

BERT1 1.71X. Its HBM footprint is 93 MB, so it could
fit in CMEM. However, XLA allocates all parameters in
HBM to reduce context switch time and then prefetches into
CMEM (§7.F), so it only saves 58% of HBM traffic. The
operational intensity goes from 106 without CMEM to 124
with CMEM, still below the HBM ridgepoint of 301.

The working set causes the large speedup of 1.71.
BERT1 includes a Gather op for embedding. It does
indexed memory access from a large buffer (~63MiB), and
this random access pattern causes poor HBM performance.
As CMEM is larger than 63MiB, the input table is placed in
CMEM, which has a much higher random access
bandwidth. As a result, the Gather op is significantly faster
(~15x), yielding an overall 1.71x model performance gain.

BERT0 1.85X. Its HBM footprint is 189 MB, larger
than CMEM. Prefetching works well with CMEM, saving
50% of HBM traffic. The large speedup is again explained
by the embedding table (~98MiB) for the Gather op, which
accounts for > 30% of step time without CMEM. When the
table is in CMEM, the Gather op runs ~13x faster.

RNN1 2.22X. Its HBM footprint is 254 MB, larger than
CMEM. Nevertheless, CMEM filters out an impressive 98%
of HBM traffic. This model runs many iterations of GRU
layers, and as intermediate tensors are placed in CMEM, it
can avoid costly HBM traffic. As this filtered traffic goes to
CMEM, the model is now CMEM-bound.

CMEM size. Figure 13 explores the impact of a smaller
CMEM than 128 MB on the apps and the MLPerf server
benchmarks. The app average performance is 69% at 0MB,
82% at 16MB, 90% at 72MB, and 98% at 112MB. For
MLPerf, it is 76% at 0 MB, 87% at 16MB, 97% at 72MB,
and 100% at 112MB. Reducing CMEM 10%–20% might
have little impact on current DNNs, but given our perf/TCO
orientation ③ and the growth of DNNs ⑧, we won’t know
for sure for a few years if CMEM was too large.

10

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

Figure 13. Percent of 128 MB speed as CMEM varies 0–128
MB for the apps and MLPerf Inference 0.5-0.7 server code.

perf/TDP
vs T4

TDP
(W)

Cores GHz MiB Type
SRAM DRAM

T4 1.00 70 40 0.6 20 GDDR6
Goya 0.46 200 8 2.1 ≈32 DDR4
Nervana 0.69 100 24 1.1 60 LPDDR4
Zebra 0.25 225 -- -- 54 DDR4
HanGuang 2.17 280 4 0.7 192 none
Table 6. Five DSAs that ran the MLPerf Inference 0.5 (Goya,
Nervana, HanGuang) or 0.7 (T4, Zebra) server scenarios. Goya
ran only SSD, and the last three ran only ResNet. Performance
is relative to T4 for MLPerf Inference 0.5. TDP in this table is
per chip rather than per system, since the latter was
unavailable. All have 16–32GB of DRAM except HanGuang,
which has none. All results are from [29].

Figure 14. T4 and TPUv4 running unverified MLPerf
Inference benchmarks 0.5/0.7 at Google with memory ECC off
and on. NVIDIA’s MLPerf score is 100% for T4 and 100% for
TPUv4i is unverified MLPerf in our datacenter. For the 1
minute case, the T4 was idle initially. It then ran MLPerf with
ECC off and on for 1 minute at the fastest clock rate. (T4 offers
inline ECC, which uses memory bandwidth.) For the 10 minute
case, the machines are not idle beforehand. TPUv4i’s speed is
unchanged whether ECC is on or off or how long it runs.

This reminds us of the Activation Storage in TPUv1
(Figure 1). Our initial buffer allocation scheme used most of
its 24 MB. We eventually used an integer linear
programming solver to effectively triple memory space. The
large memory allowed our relatively weak initial compiler
to satisfy the apps in TPUv1’s early years. This example
demonstrates the interplay of compiler quality ② and

perf/TCO ③, as architects want good perf/TCO for a DSA’s
entire lifetime, including its early years.

Now that we’ve explained TPUv4i and its perf/TDP,
let’s see how other commercial inference DSAs measure up.

6. Related Work
Table 6 shows all five entries for datacenter inference chips
for the MLPerf Inference 0.5 and 0.7 server benchmarks.

The T4 [31] is a low power inference chip containing
40 symmetric multiprocessors and a relatively fast GDDR6
DRAM at 320 GB/second (if ECC is off). Its standard clock
rate is 0.6 GHz, with a Turbo mode at 1.6 Ghz. It supports
floating point and integer numerics. The primary omission
that prevents backwards ML compatibility ④ with TPUv3
used for training is the lack of bf16 support in T4. This
paper compares TPUv4i to it in §4, since of these five chips,
T4 comes the closest to meeting Google’s needs.

Habana Goya [10,12] is a moderate power inference
chip with 8 VLIW SIMD vector cores running at 1.5 GHz
attached to a relatively slow DDR4 memory. Its perf/TDP is
half of T4 for the SSD benchmark. It has int8 and fp32 but
omits bfloat16. Given no backwards ML compatibility when
training with TPUs ④ and lessons ⑦ and ⑧ about the
importance of multi-tenancy and how fast DNNs grow,
Goya would not be a good choice for Google’s datacenters.

The Intel Nervana NNP-I 1000 (Spring Hill) is a low
power inference chip with 12 VLIW vector cores (with 4K
int8/fp16 MACs each) running at 1.1 GHz [4, 17, 44]. They
use a relatively slow LPDDR4 memory. Its perf/TDP is
0.7X of T4 for the single ResNet50 benchmark. Like the
Goya, it omits bfloat16 and has relatively slow DRAM
memory, so we would again worry about backwards ML
compatibility ④ plus multi-tenancy ⑦ and DNN growth⑧
for the NNP-I.

Zebra is a soft core that runs on the Xilinx Alveo FPGA
[36]. It offers moderate power at 0.7 GHz [27] with the
relatively slow DDR4 DRAM. Its perf/TDP is 4X worse
than T4 for ResNet. It has the same deployment concerns
for Google as Goya, whose perf/TDP is ~2X higher, plus
Zebra is designed exclusively for CNNs ⑨.

Finally, Alibaba HanGuang 800 [20] is a 4-core chip
with moderate to high power at 0.7 Ghz. Each core has a
Tensor Engine, a Pooling Engine, and a Memory Engine,
and it executes CISC-like instructions. Not only is its
perf/TDP 2.2X better than T4 for ResNet50, its
unnormalized performance is ~9X faster. It also has 192 MB
of SRAM, 3.2X larger than the next closest. While the lack
of bfloat16 would be an issue ④, the Achilles Heel of the
HanGuang 800 is that it has no DRAM whatsoever. [20]
mentions the use of a PCIe switch to gang multiple chips
together to increase capacity, but using 16 chips to match
the multi-tenancy ⑦ sizes of Table 3 would be expensive,
and it’s unclear how to support DNNs rapid growth⑧.

11

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

7. Discussion
We start with benchmarks and measurements.

A. Utilization of peak FLOPS versus roofline
Table 7 shows the average fraction of peak FLOPS/s for

four TPUs. One reason is that we increased the number of
MXUs over time, as that was a good way to leverage the
new technology node ①. Despite 4 MXUs per core in
TPUv4i, the MXUs occupy only 11% of the die (Figure 6).6

A more useful metric than fraction of peak FLOPS is
fraction of roofline, limited by memory bandwidth or
FLOPS/s depending on the DNN arithmetic intensity. Table
7 shows it generally increasing over time. Without CMEM,
TPUv4i FLOPS/s would drop to 22% and roofline to 67%.
TPU TPUv1 TPUv2 TPUv3 TPUv4i

MXUs/Chip
1

256 x256
2

128x128
4

128x128
4

128x128
MXUs % Die Area 24% 8% 11% 11%
FLOPS/s Utilization 20% 51% 38% 33%
HBM Roofline Util. 20% 66% 63% 99%
Table 7. Average utilization of peak performance and of
roofline for our eight production applications.
B. Turbo mode and Perf/CapEx versus Perf/TCO

[39] warns that the cooling system is critical to T4
performance, as the clock can slow when temperature rises,
since Turbo mode has a 2.6X faster clock. MLPerf Inference
runs are required to last at least one minute, which is near
the time it takes to heat up a chip and its heatsink fully ③.

Our experiments found that an idle T4 at the lowest
clock rate ran at 35℃ (see [13]). If we run MLPerf at 1.6
GHz, the temperature rises to 75℃ in 30 seconds.
Thereafter the chip stays at 75℃ with the clock speed
varying between 0.9 and 1.3 GHz. Others found different
variations in temperature [19], presumably due to running
programs with different operational intensity than MLPerf.

Given our datacenter environment plus our need for
ECC—optional for MLPerf Inference 0.5 and 0.7—Figure
14 shows the impact of running MLPerf Inference 0.5/0.7
for 10 minutes with ECC enabled: T4 performance drops
19%–26% below its MLPerf Inference 0.5/0.7 level. With
ECC on, TPUv4i starts at ~37℃ and rises only ~5℃ over 10
minutes. Google purposely provisions enough power and
cooling in datacenters to keep TPUv4i latency constant and
includes extra memory for ECC so that it can always be on.
C. Benchmarking TPUv4i and T4 versus NVIDIA A100

§4 compares TPUv4i to T4, but some asked if the paper
should use the A100 instead. Our experience with TPUv3
was that a large, power hungry, expensive chip was a
mismatch to inference ③, so the paper uses T4. The A100

6 The TPU ASIC die area is only a small fraction of the total die
area in the package. Four 8Hi HBM stacks in TPUv3 total 3456
mm2, which swamps the TPU ASIC area (<700 mm2 in Table 1.)

826 mm2 chip has 54B transistors and uses 400 Watts, so its
TDP is 5.7X higher than T4. MLPerf 0.7 inference shows
A100 runs ResNet50 server 4.7X–5.7X faster than T4 and
SSD server is 6.0X–7.0X faster. The perf/TDP of A100 is
within ±20% of T4. As T4 is more like TPUv4i, it is the best
current candidate to compare to (see §6).
D. Correlation of TCO and TDP

Figure 3 shows R is 0.99 for the 5 DNN DSAs when
comparing TCO versus system TDP in Google datacenters.
R is still 0.88 (R2 = 0.78) for 15 chips of CPUs, GPUs, and
TPUs across several generations. By definition, a
correlation coefficient R ranges from -1.00 to +1.00. If R =
1.00, statisticians say the correlation is perfectly linear.
There is a strong linear correlation if R is >0.4, moderate
between 0.2 and 0.4, and <0.2 is weak. Turning R into R2

shows the percent that explains the variability of the
dependent variable. An R2 of 0.98 means TDP explains 98%
of the variability of TCO for the five DSAs and an R2 of
0.78 explains 78% of TCO variability for all 15 processors.

As it is close to how companies decide what to build or
buy, we hope future DSA papers will report perf/system
TDP over a chip’s lifetime.
E. Power Savings vs TCO and P99 Latency

Trying to maximize average perf/TDP, such as
temporarily running faster, can lead to worse tail latencies
[6]. TPUs omit techniques like Turbo mode and caches that
surely help P50 latency but probably not P99 latency. Most
OpEx cost is for provisioning power and not for electricity
use [2], so saving power already provisioned for doesn’t
improve TCO as much as one might hope.

The last three topics are about TPUv4i software.
F. Multi-tenancy and on chip SRAM

The XLA compiler allocates weights in DRAM and
prefetches them into CMEM for execution to reduce the
context switching time for multi-tenancy ⑦; if weights are
allocated to CMEM, they must be reloaded before the task
can continue. The software stack must also reload CMEM
for apps that don’t prefetch. BERT1 would take about ~150
microseconds—93MB ÷ 614GB/s—to load the weights
from HBM, which is on the borderline of acceptability.
G. Compiler vs. Binary Compatibility in GPUs and TPUs

Most CPUs require backwards binary compatibility
(§3), a problem for VLIW DSAs (§6). TPUs don’t. The
nearest software approach to TPUv4i is NVIDIA’s PTX
virtual instruction set. NVIDIA promises PTX compatibility
across GPU generations, so some tools and programmers
use PTX instead of CUDA.

XLA’s Low-Level Operations (LLO) are the closest
analogy to PTX (see §3). Only a few programmers write in
LLO, as there is no guarantee that LLO code will work for
future TPUs and most TPU developers can get good
performance without having to resort to LLO coding.

12

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

H. Quantization Aware Training
The quantization downsides in ⑥ are for post-training

quantization. Another approach is quantization aware
training [34], which uses integers during training, allowing
the switch to serving without a separate quantization step.
Basically, the developer gets backwards ML compatibility
while using integer data types.

The challenge is motivating the use of quantization
aware training. Some developers might like the better
memory footprint or performance for DSAs whose integer
arithmetic is faster than floating point. The issue may come
down to how much harder training is in integers versus
floating point and for how many applications does it work.

8. Conclusion
Once Google developed and deployed its first

generation inference TPU in datacenters [21], Google’s
creative ML application developers and economic realities
caused us to change the inference and training system
roadmaps. Faced with widespread adoption across Google’s
products, an explosion in the number of ML application
developers, and needs for high developer velocity enabling
automated roll out of new models multiple times per day, we
changed Google’s roadmap plans.

In the process, we learned ten lessons about DSAs and
DNNs in general and about DNN DSAs specifically that
shaped the design of TPUv4i:
① Logic improves more quickly than wires and SRAM
⇒ TPUv4i has 4 MXUs per core vs 2 for TPUv3 and 1 for
TPUv1/v2.
② Leverage existing compiler optimizations
⇒ TPUv4i evolved from TPUv3 instead of being a brand
new ISA.
③ Design for perf/TCO instead of perf/CapEx
⇒ TDP is low, CMEM/HBM are fast, and the die is not big.
④ Backwards ML compatibility enables rapid deployment
of trained DNNs
⇒TPUv4i supports bf16 and avoids arithmetic problems by
looking like TPUv3 from the XLA compiler’s perspective.
⑤ Inference DSAs need air cooling for global scale
⇒ Its design and 1.0 GHz clock lowers its TDP to 175W.
⑥ Some inference apps need floating point arithmetic
⇒ It supports bf16 and int8, so quantization is optional.
⑦ Production inference normally needs multi-tenancy
⇒ TPUv4i’s HBM capacity can support multiple tenants.
⑧ DNNs grow ~1.5x annually in memory and compute
⇒ To support DNN growth, TPUv4i has 4 MXUs, fast on-
and off-chip memory, and ICI to link 4 adjacent TPUs.
⑨ DNN workloads evolve with DNN breakthroughs
⇒ Its programmability and software stack help pace DNNs.
⑩ The inference SLO is P99 latency, not batch size
⇒ Backwards ML compatible training tailors DNNs to
TPUv4i, yielding batch sizes of 8–128 that raise throughput
and meet SLOs. Applications do not restrict batch size.

Dennard scaling is finished, so TCO is becoming even
more strongly correlated with power dissipation. Google’s
TCO and system TDP have a correlation coefficient R of
0.99 for 5 DNN DSAs and 0.88 for a collection of 15 CPUs,
GPUs, and TPUs. This paper also updated Horowitz's
influential energy operation table [16] to a modern
technology with current models of SRAM and DRAM.

With recent processes, logic is still becoming denser
and faster, yet SRAM is scaling very weakly ①—5 nm
SRAM looks to be only 13% denser than 7 nm [45]—so the
energy cost of memory accesses dominates perf/TDP even
more ③. Hence, contrary to the ML developer community’s
convention of trying to minimize FLOPS—which leads to
memory-access-intensive DNNs—in a datacenter context,
reduced-precision FLOPS can be relatively free in
comparison to memory references.

With Moore's Law diminishing and Dennard scaling
dead, hardware/software/DNN co-design is the best chance
for DNN DSAs to keep vaulting accelerator walls [9, 14].

Acknowledgment
The authors built or analyzed the systems that involved
major contributions from many others. Thanks go to the
hardware and software teams for making TPUs possible.7

We also thank David Culler, Jeff Dean, Urs Hölzle,
Christos Kozyrakis, Hank Levy, Alex Ramirez, Partha
Ranganathan, and Sophia Shao for feedback on this paper.

7 The people on these teams include Gaurav Agrawal, Catherine
Ahlschlager, Ahmet Akyildiz, Ashby Armistead, Sandeep Bhatia,
Rich Bonderson, Oliver Bowen, Roger Carpenter, Andrew Casper,
Clifford Chao, Dehao Chen, Chiachen Chou, William Chwee,
Xiangyu Dong, Houle Gan, Rakesh Gautam, Peter Gavin, Arnd
Geis, Ben Gelb, Russ Gibbons, Sandeep Giri, Vinayak Gokhale,
Pareesa Golnari, Rajendra Gottipati, Nils Graef, Jesse Guss,
Benjamin Gwin, David Haskell, Blake Hechtman, Matthew
Hedlund, Jian Ho, Doug Hogberg, Jerry Huang, Michael Hsu,
Adam Hutchin, Mike Hutton, Berkin Ilbeyi, Srikrishna Iyer, Arpith
Jacob, Indira Jayaram, Chetan Kale, Pankaj Kanwar, Srinidhi
Kestur, Teju Khubchandani, Woon-Seong Kwon, Namhoon Kim,
Andy Koch, Alan Kulawik, Poorna Kumar, Alice Kuo, Steve Lacy,
Joshua Lang, Chester Li, Avinash Lingamneni, Derek Lockhart,
Stephen Longfield, Fong Lou, Tao Liu, Kyle Lucke, Adriana
Maggiore, David Majnemer, Seth Merriman, Rolf Mueller, David
Munday, Mandar Munishwar, Hithesh Murthy, Lifeng Nai,
Spoorthy Nanjaiah, Andrew Noonan, Alexander Nguyen, Vinh
Nguyen, Tayo Oguntebi, Virag Parekh, Jose Baiocchi Paredes,
Sang-Keun Park, Tejas Parikh, Omkar Pathak, Ram Babu
Penugonda, Andy Phelps, Vaishali Raghuraman, Guru Rajamani,
Andrew Ranck, Paul Rodman, Bjarke Roune, Ohad Russo, Amit
Sabne, Amir Salek, Kirk Sanders, Julian Schrittwieser, Chris
Severn, Boone Severson, Hamid Shojaei, Jaideep Singh, Tej Soni,
Jaswanth Sreeram, Dan Steinberg, Jim Stichnot, Qian Sun,
Mercedes Tan, Hua Tang, Horia Toma, Alex Thomson, Ani Udipi,
Dimitris Vardoulakis, Sandeep Venishetti, Jack Webber, Monica
Wong-Chan, Hsin-Jung Yang, Mingyao Yang, Xiaoming Yu, Lu
Yuan, Sara Zebian, Feini Zhang, and Ce Zheng.

13

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

9. References
[1] Google breaks AI performance records in MLPerf with world’s

fastest training supercomputer.
[2] Barroso, L.A., Hölzle, U. and Ranganathan, P., 2018. The

datacenter as a computer: Designing warehouse-scale machines.
Synthesis Lectures on Computer Architecture, 13.

[3] Clark, J. October 26, 2015, Google Turning Its Lucrative Web
Search Over to AI Machines. Bloomberg Technology.

[4] Cutress, I. Intel 10nm Spring Hill NNP-I Inference Chip, Hot
Chips 31, August 20, 2019.

[5] Dally, W.J., Turakhia, Y. and Han, S., 2020. Domain-specific
hardware accelerators. Communications of the ACM, 63(7), 48-57.

[6] Dean, J. and Barroso, L.A., 2013. The tail at scale.
Communications of the ACM, 56(2), pp.74-80.

[7] Dey, S., Mukherjee, A. and Pal, A., 2019, November. Embedded
Deep Inference in Practice: Case for Model Partitioning. In
Proceedings of the 1st Workshop on Machine Learning on Edge in
Sensor Systems (pp. 25-30).

[8] Fisher, J.A., Faraboschi, P. and Young, C., 2005. Embedded
computing: a VLIW approach to architecture, compilers and tools.
Elsevier.

[9] Fuchs, A. and Wentzlaff, D., 2019, February. The accelerator wall:
Limits of chip specialization. In 2019 IEEE Int'l Symp. on High
Performance Computer Architecture, pp. 1-14.

[10] Goya, Goya Inference Platform White Paper, Nov. 2020.
[11] Grot, B., Hardy, D., Lotfi-Kamran, P., Falsafi, B., Nicopoulos, C.

and Sazeides, Y., 2012. Optimizing data-center TCO with scale-out
processors. IEEE Micro.

[12] Gwennap, L. Habana Wins Cigar for AI Inference, Microprocessor
Report, February 18, 2019.
www.linleygroup.com/mpr/article.php?id=12103

[13] Harmon, W., NVIDIA Tesla T4 AI Inferencing GPU Benchmarks
and Review, October 2, 2019,

[14] Hennessy, J.L. and Patterson, D.A., 2019. A new golden age for
computer architecture. Communications of the ACM, 62(2), 48-60.

[15] Ho, R., Mai, K.W. and Horowitz, M.A., 2001. The future of wires.
Proceedings of the IEEE, 89(4), pp.490-504.

[16] Horowitz, M., 2014. Computing's energy problem (and what we
can do about it). In 2014 IEEE Int'l Solid-State Circuits
Conference Digest of Technical Papers (ISSCC) (pp. 10-14).

[17] Hruska, J., Intel Details Its Nervana Inference and Training AI
Cards, August 2019.

[18] Imagenet, 2020.
[19] Jia, Z., Maggioni, M., Smith, J. and Scarpazza, D.P., 2019.

Dissecting the NVIDIA Turing T4 GPU via microbenchmarking.
arXiv preprint arXiv:1903.07486.

[20] Jiao, Y., Han, L. and Long, X., 2020, August. Hanguang 800
NPU–The Ultimate AI Inference Solution for Data Centers. In
2020 IEEE Hot Chips 32 Symp. (pp. 1-29).

[21] Jouppi, N.P., Young, C., Patil, N., Patterson, D., et al, 2017, June.
In-datacenter performance analysis of a Tensor Processing Unit. In
Computer Architecture (ISCA), 2017 ACM/IEEE 44th Annual Int'l
Symp. on (pp. 1-12).

[22] Jouppi, N.P., Young, C., Patil, N. and Patterson, D., 2018. A
domain-specific architecture for deep neural networks.
Communications of the ACM, 61(9), pp.50-59.

[23] Jouppi, N.P., Yoon, D.H., Kurian, G., Li, S., Patil, N., Laudon, J.,
Young, C. and Patterson, D., 2020. A domain-specific
supercomputer for training deep neural networks. Communications
of the ACM, 63(7), pp.67-78.

[24] Kalamkar, D., Mudigere, D., Mellempudi, N., Das, D., Banerjee,
K., Avancha, S., Vooturi, D.T., Jammalamadaka, N., Huang, J.,
Yuen, H. and Yang, J., 2019. A study of bfloat16 for deep learning
training. arXiv preprint arXiv:1905.12322.

[25] Knuth, D.E. and Binstock, A., 2008. Interview with Donald Knuth.
Web page at www.informit.com/articles/article.aspx.

[26] Micron, TN-ED-03: GDDR6: The Next-Generation Graphics
DRAM.

[[27] Mipsology , MLPerf Inference 0.7 details.
[28] MLPerf, MLPerf Training v0.7 Results, July 29, 2020,

mlperf.org/training-results-0-7.
[29] MLPerf is a trademark of MLCommons.org. All results 1/8/2021.

All results 1/8/2021. Figure 2: Train-05-4,
Train-0.5-20,Train-0.5-21; Table 6: Inf-0.5-25, Inf-0.5-21,
Inf-0.5-33, Inf-0.7-119, Inf-0.5-31.

[30] Norrie, T., Patil, N., Yoon, D.H., Kurian, G., Li, S., Laudon, J.,
Young, C., Jouppi, N. and Patterson, D., 2021. The Design Process
for Google's Training Chips: TPUv2 and TPUv3. IEEE Micro,
41:2, 56-63.

[31] NVIDIA, NVIDIA T4 70W Low Profile PCIe GPU Accelerator,
PB-09256-001_v05, April 2020.

[32] O’Connor, M., Chatterjee, N., Lee, D., Wilson, J., Agrawal, A.,
Keckler, S.W. and Dally, W.J., 2017, October. Fine-grained
DRAM: energy-efficient DRAM for extreme bandwidth systems.
In 2017 50th Annual IEEE/ACM Int'l Symp. on Microarchitecture.

[33] Pang, L., Lan, Y., Guo, J., Xu, J., Xu, J. and Cheng, X., 2017,
November. Deeprank: A new deep architecture for relevance
ranking in information retrieval. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management.

[34] Park, E., Yoo, S. and Vajda, P., 2018. Value-aware quantization for
training and inference of neural networks. In Proceedings of the
European Conference on Computer Vision (ECCV) (pp. 580-595).

[35] Park, J., et al, 2018. Deep learning inference in facebook data
centers: Characterization, performance optimizations and hardware
implications. arXiv preprint arXiv:1811.09886.

[36] Patel, B., and Larzul, L., Deep Learning Inferencing with
Mipsology using Xilinx ALVEO™ on Dell EMC Infrastructure,
November 5, 2019.

[37] Patterson, D., Bennett, J., Embench™: A Modern Benchmark for
Embedded Computing (in preparation).

[38] Romero, F., Li, Q., Yadwadkar, N.J. and Kozyrakis, C., 2019.
INFaaS: A Model-less Inference Serving System. arXiv preprint
arXiv:1905.13348.

[39] Schmuelling, G., NVIDIA MLPerf Inference System Under Test
(SUT) performance tuning guide,

[[40] Shih, Y., Lai, W.S. and Liang, C.K., 2019. Distortion-free
wide-angle portraits on camera phones. ACM Transactions on
Graphics, 38(4), pp.1-12.

[[41] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A. and Chen,
Y., 2017. Mastering the game of Go without human knowledge.
Nature, 550(7676), pp.344-359.

[42] Smith, R., Micron Spills on GDDR6X, August 20, 2020,
Anandtech.com/

[43] Stojanović, V., 2012, Designing VLSI Interconnects with
Monolithically Integrated Silicon-Photonics,

[44] Wechsler, O., Behar, M. and Daga, B., 2019. Spring Hill (NNP-I
1000) Intel’s data center inference chip. In 2019 IEEE Hot Chips
31 Symp. (pp. 1-12).

[[45] Technology Node, en.wikichip.org/wiki/technology_node
[[46] Williams, S., Waterman, A. and Patterson, D., 2009. Roofline: an

insightful visual performance model for multicore architectures.
Communications of the ACM, 52(4), pp.65-76.

[[47] Zimmer, B., April 20, 2020 “Problems Facing Analog and In
-Memory Computing,” presentation at UC Berkeley.

14

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 06,2021 at 20:20:03 UTC from IEEE Xplore. Restrictions apply.

