

FEATURE ARTICLE: Neuromorphic Computing

Loihi: A Neuromorphic
Manycore Processor with
On-Chip Learning

Loihi is a 60-mm2 chip fabricated in Intel’s 14-nm

process that advances the state-of-the-art modeling

of spiking neural networks in silicon. It integrates a

wide range of novel features for the field, such as

hierarchical connectivity, dendritic compartments,

synaptic delays, and, most importantly,

programmable synaptic learning rules. Running a

spiking convolutional form of the Locally Competitive

Algorithm, Loihi can solve LASSO optimization

problems with over three orders of magnitude

superior energy-delay product compared to

conventional solvers running on a CPU iso-

process/voltage/area. This provides an unambiguous

example of spike-based computation, outperforming

all known conventional solutions.

Neuroscience offers a bountiful source of inspiration for
novel hardware architectures and algorithms. Through
their complex interactions at large scales, biological neu-
rons exhibit an impressive range of behaviors and proper-
ties that we currently struggle to model with modern
analytical tools, let alone replicate with our design and
manufacturing technology. Some of the magic that we see
in the brain undoubtedly stems from exotic device and ma-
terial properties that will remain out of our fabs’ reach for

Mike Davies
Intel Labs, Intel Corporation

Narayan Srinivasa
Eta Compute

Tsung-Han Lin
Gautham Chinya
Yongqiang Cao
Sri Harsha Choday
Intel Labs, Intel Corporation

Georgios Dimou
Reduced Energy
Microsystems

Prasad Joshi
Nabil Imam
Shweta Jain
Yuyun Liao
Chit-Kwan Lin
Andrew Lines
Ruokun Liu
Deepak Mathaikutty
Steve McCoy
Arnab Paul
Jonathan Tse
Guruguhanathan
Venkataramanan
Yi-Hsin Weng
Andreas Wild
Yoonseok Yang
Hong Wang
Intel Labs, Intel Corporation

82
IEEE Micro Published by the IEEE Computer Society

0272-1732/18/$33.00 ©2018 IEEEJanuary/February 2018

 IEEE MICRO

many years to come. Yet highly simplified abstractions of neural networks are now revolutioniz-
ing computing by solving difficult and diverse machine-learning problems of great practical
value. Perhaps other less-simplified models might also yield near-term value.

Artificial neural networks (ANNs) are reasonably well served by today’s von Neumann CPU ar-
chitectures and GPU variants, especially when assisted by coprocessors optimized for streaming
matrix arithmetic. Spiking neural network (SNN) models, on the other hand, are exceedingly
poorly served by conventional architectures. Just as the value of ANNs was not fully appreciated
until the advent of sufficiently fast CPUs and GPUs, the same could be the case for spiking mod-
els—except different computing architectures will be required.

The neuromorphic-computing field of research spans a range of different neuron models and lev-
els of abstraction. Loihi (pronounced “low-EE-hee”) is motivated by a particular class of algo-
rithmic results and perspectives from our survey of computational neuroscience and recent
neuromorphic advances. We approach the field with an eye for mathematical rigor, top-down
modeling, rapid architecture iteration, and quantitative benchmarking. Our aim is to develop al-
gorithms and hardware in a principled way as much as possible.

We begin this paper with our definition of the SNN computational model and the features that
motivated Loihi’s architectural requirements. We then describe the architecture that supports
those requirements and provide an overview of the chip’s asynchronous design implementation.
We conclude with some preliminary 14-nm silicon results.

Importantly, we present a result that unambiguously demonstrates the value of spike-based com-
putation for one foundational problem. We view this as a significant result in light of ongoing
debate about the value of spikes as a computational tool in both mainstream and neuromorphic
communities. The skepticism towards spikes is well founded, but, in our research, we have
moved on from this question, given the existence of an example that potentially generalizes to a
very broad class of neural networks, namely all recurrent networks.

SPIKING NEURAL NETWORKS
We consider an SNN a model of computation with neurons as the basic processing elements.
Different from ANNs, SNNs incorporate time as an explicit dependency in their computations.
At some instant in time, one or more neurons might send out single-bit impulses, the spike, to
neighbors through directed connections known as synapses, with a potentially non-zero traveling
time. Neurons have local state variables with rules governing their evolution and timing of spike
generation. Hence, the network is a dynamical system where individual neurons interact through
spikes.

Spiking Neural Unit
A spiking neuron integrates its spike train input in some fashion, usually by low pass filter, and
fires once a state variable exceeds a threshold. Mathematically, each spike train is a sum of Dirac
delta functions σ(t) = ∑k δ(t - tk) where tk is the time of the k-th spike. We adopt a variation of the
well-known CUBA leaky-integrate-and-fire model that has two internal state variables: the syn-
aptic response current ui(t) and the membrane potential vi(t). The synaptic response current is the
sum of filtered input spike trains and a constant bias current:

() (*)()i ij
j i

u j ibu t w tα σ
≠

= + (1)

where wi,j is the synaptic weight from neuron j to i, αu(t) = τu-1 exp(-t/τu)H(t) is the synaptic filter
impulse response parameterized by the time constant τu with H(t) the unit step function, and bi is
a constant bias. The synaptic current is further integrated as the membrane potential, and the neu-
ron sends out a spike when its membrane potential passes its firing threshold θi.

1
() () () ()i i i i i

v

v t v t u t tθ σ
τ

= − + − (2)

83January/February 2018 www.computer.org/micro

 NEUROMORPHIC COMPUTING

Note that the integration is leaky, as captured by the time constant τv. vi is initialized with a value
less than θi and is reset to 0 right after a spiking event occurs.

Loihi, a fully digital architecture, approximates the above continuous time dynamics using a
fixed-size discrete time-step model. In this model, all neurons need to maintain a consistent un-
derstanding of time so their distributed dynamics can evolve in a well-defined, synchronized
manner. It is worth clarifying that these fixed-size, synchronized time steps relate to the algorith-
mic time of the computation and need not have a direct relationship to the hardware execution
time.

Computation with Spikes and Fine-Grained Parallelism
Computations in SNNs are carried out through the interacting dynamics of neuron states. An in-
structive example is the ℓ1-minimizing sparse coding problem, also known as LASSO, which we
can solve with the SNN in Figure 1(a) using the Spiking Locally Competitive Algorithm.1 The
objective of this problem is to determine a sparse set of coefficients that best represents a given
input as the linear combination of features from a feature dictionary. The coefficients can be
viewed as the activities of the spiking neurons in Figure 1(a) that are competing to form an accu-
rate representation of the data. By properly configuring the network, it can be established that as
the network dynamics evolve, the average spike rates of the neurons will converge to a fixed
point, and this fixed point is identical to the solution of the optimization problem.

Figure 1. (a) The network topology for solving LASSO. Each neuron receives the correlation bi
between the input data and a predefined feature vector as its input. The bottom figure shows the
evolution of membrane potential in a three-neuron example; the spike rates of the neurons stabilize
to fixed values. (b) An algorithmic efficiency comparison of a solution based on spiking network (S-
LCA) and a conventional optimization method (FISTA). Both algorithms are implemented on a CPU
with single thread. The y-axis is the normalized difference to the optimal objective function value.
The figures are taken from P.T.P. Tang, T.H. Lin, and M. Davies.2

Such computation exhibits completely different characteristics from conventional linear algebra-
based approaches. Figure 1(b) compares the computational efficiency of an SNN with the con-
ventional solver FISTA3 by having them both solve a sparse coding problem on a single-
threaded CPU. The SNN approach (labelled S-LCA) gives a rapid initial drop in error and ob-
tains a good approximate solution faster than FISTA. After this, the S-LCA convergence speed
significantly slows down, and FISTA instead finds a much more precise solution quicker. Hence,
an interesting efficiency-accuracy tradeoff arises that makes the SNN solution particularly attrac-
tive for applications that do not require highly precise solutions, such as a solution that is 1 per-
cent within the optimal solution.

The remarkable algorithmic efficiency of S-LCA can be attributed to its ability to exploit the
temporal ordering of spikes, a general property of the SNN computational model. In Figure 1(a),
the neuron that has the largest external input to win the competition is more likely to spike at the
earliest time, causing immediate inhibition of the other neurons. This inhibition happens with

84January/February 2018 www.computer.org/micro

 IEEE MICRO

only a single one-to-many spike communication, in contrast to the usual need for all-to-all state
exchanges with matrix arithmetic-based solutions such as FISTA and other conventional solvers.
This implies that the SNN solution is communication-efficient, and it might solve the optimiza-
tion problem with a reduced number of arithmetic operations. We point interested readers to
P.T.P. Tang, T.H. Lin, and M. Davies2 for more discussions.

Our CPU-based evaluation has yet to exploit one important advantage of SNN-based algorithms:
the inherent abundant parallelism. The dominant part of SNN computations—the evolution of
individual neuron states within a time-step—can all be computed concurrently. However, har-
nessing such speedup can be a nontrivial task, especially on a conventional CPU architecture.
The parallelizable work for each neuron only consists of a few variable updates. Given that the
parallel segment of the work can be executed very quickly, the underlying architecture must sup-
port a fine granularity of parallelism with minimal overhead in coordinating the order of compu-
tations. These observations motivate fundamental features of the Loihi architecture.

Learning with Local Information
Learning in an SNN refers to adapting the synaptic weights and, hence, varying the SNN dynam-
ics to a desired one. Similar to conventional machine learning, we wish to express learning as the
minimization of a particular loss function over many training samples. In the sparse coding case,
learning involves finding the set of synaptic weights that allows the best performing sparse rep-
resentation, expressed as minimizing the sum of all sparse coding losses. Learning in an SNN
naturally proceeds in an online manner, where training samples are sent to the network sequen-
tially.

SNN synaptic weight adaptation rules must satisfy a locality constraint: each weight can only be
accessed and modified by the destination neuron, and the rule can only use locally available in-
formation, such as the spike trains from the presynaptic (source) and postsynaptic (destination)
neurons. The locality constraint imposes a significant challenge on the design of learning algo-
rithms, as most conventional optimization procedures do not satisfy it. Although the develop-
ment of such decentralized learning algorithms is still in active research, some pioneering work
exists showing the promise of this approach. They range from the simple Oja’s rule for finding
principal components, to the Widrow-Hoff rule for supervised learning and its generalization to
exploit precise spike-timing information,4 to the more complex unsupervised sparse dictionary
learning using feedback5 and event-driven random back-propagation.6

Once a learning rule satisfies the locality constraint, the inherent parallelism offered by SNNs
will allow the adaptive network to be scaled up to large sizes in a way that can be computed effi-
ciently. If the rule also minimizes a loss function, the system will have well-defined dynamics.

To support the development of such scalable learning rules, Loihi offers a variety of local infor-
mation to a programmable synaptic learning process:

• Spike traces corresponding to filtered presynaptic and postsynaptic spike trains with
configurable time constants. In particular, a short time constant allows the learning rule
to utilize precise spike-timing information, while a long time constant captures the in-
formation in spike rates.

• Multiple spike traces for a given spike train filtered with different time constants. This
provides support for differential Hebbian learning by measuring perturbations in spike
patterns and Bienenstock-Cooper-Munro learning using triplet spike time-dependent
plasticity (STDP),7 among others.

• Two additional state variables per synapse, besides the normal weight, to provide more
flexibility for learning. For example, these can be used as synaptic tags for reinforce-
ment learning.

• Reward traces that correspond to special reward spikes carrying signed impulse values
to represent reward or punishment signals for reinforcement learning. Reward spikes
are broadcast to defined sets of synapses in the network that might connect to many dif-
ferent source and destination neurons.

85January/February 2018 www.computer.org/micro

 NEUROMORPHIC COMPUTING

Loihi is the first fully integrated digital SNN chip that supports any of the above features. Some
small-scale neuromorphic chips with analog synapse and neuron circuits have prototyped synap-
tic plasticity using spike traces, for example,8 but these prior chips have orders of magnitude
lower network capacity compared to Loihi, as well as far less programmability.

Other Computational Primitives
Loihi includes several computational primitives related to other active areas of SNN algorithmic
research:

• Stochastic noise. Uniformly distributed pseudorandom numbers might be added to a
neuron’s synaptic response current, membrane voltage, and refractory delay. This pro-
vides support for algorithms such as Neural Sampling,9 which can solve probabilistic
inference and constraint satisfaction problems using stochastic dynamics and a form of
Markov chain Monte Carlo sampling.

• Configurable and adaptable synaptic, axon, and refractory delays. This provides sup-
port for novel forms of temporal computation such as polychronous dynamics,10 in
which subsets of neurons might synchronize over periods of varying timescales. The
number of polychronous groups far exceeds the number of stable attractors in conven-
tional attractor networks, suggesting a productive space for computational development.

• Configurable dendritic tree processing. Neurons in the SNN might be decomposed into
a tree of compartment units, with the neuron’s input synapses distributed over those
compartments. Each compartment supports the same state variables as a neuron, but
only the root of the tree (soma compartment) generates spike outputs. The compart-
ments’ state variables are combined in a configurable manner by programming different
join functions for each compartment junction.

• Neuron threshold adaptation in support of intrinsic excitability homeostasis.
• Scaling and saturation of synaptic weights in support of “permanence” levels that ex-

ceed the range of weights used during inference.

The combination of these features in one device, especially in combination with Loihi’s learning
capabilities, is novel for the field of SNN silicon implementation.

ARCHITECTURE

Chip Overview
Loihi features a manycore mesh comprising 128 neuromorphic cores, three embedded x86 pro-
cessor cores, and off-chip communication interfaces that hierarchically extend the mesh in four
planar directions to other chips. An asynchronous network-on-chip (NoC) transports all commu-
nication between cores in the form of packetized messages. The NoC supports write, read re-
quest, and read response messages for core management and x86-to-x86 messaging, spike
messages for SNN computation, and barrier messages for time synchronization between cores.
All message types may be sourced externally by a host CPU or on-chip by the x86 cores, and
these may be directed to any on-chip core. Messages may be hierarchically encapsulated for off-
chip communication over a second-level network. The mesh protocol supports scaling to 4096
on-chip cores and, through hierarchical addressing, up to 16,384 chips.

Each neuromorphic core implements 1,024 primitive spiking neural units (compartments)
grouped into sets of trees constituting neurons. The compartments, along with their fan-in and
fan-out connectivity, share configuration and state variables in ten architectural memories. Their
state variables are updated in a time-multiplexed, pipelined manner every algorithmic time-step.
When a neuron’s activation exceeds some threshold level, it generates a spike message that is
routed to a set of fan-out compartments contained in some number of destination cores.

Flexible and well-provisioned SNN connectivity features are crucial for supporting a broad range
of workloads. Some desirable networks might call for dense, all-to-all connectivity, while others
might call for sparse connectivity; some might have uniform graph degree distributions, others

86January/February 2018 www.computer.org/micro

 IEEE MICRO

power law distributions; some might require high precision synaptic weights, such as to support
learning, while others can make do with binary connections. As a rule, algorithmic performance
scales with increasing network size, measured by not only neuron counts but also neuron-to-neu-
ron fan-out degrees. We see this rule holding all the way to biological levels (1:10,000). Due to
the O(N2) scaling of connectivity state in the number of fan-outs, it becomes an enormous chal-
lenge to support networks with high connectivity using today’s integrated-circuit technology.

To address this challenge, Loihi supports a range of features to relax the sometimes-severe con-
straints that other neuromorphic designs have imposed on the programmer:

• Sparse network compression. Besides a common dense matrix connectivity model,
Loihi supports three sparse matrix compression models in which fan-out neuron indices
are computed based on index state stored with each synapse’s state variables.

• Core-to-core multicast. Any neuron may direct a single spike to any number of destina-
tion cores, as the network connectivity might require.

• Variable synaptic formats. Loihi supports any weight precision between one and nine
bits, signed or unsigned, and weight precisions may be mixed (with scale normalization)
even within a single neuron’s fan-out distribution.

• Population-based hierarchical connectivity. As a generalized weight-sharing mecha-
nism, such as to support convolutional neural network types, connectivity templates
may be defined and mapped to specific population instances during operation. This fea-
ture can reduce a network’s required connectivity resources by over an order of magni-
tude.

Loihi is the first fully integrated SNN chip that supports any of the above features. All prior
chips (for example, the previously most synaptically dense chip11) store their synapses in dense
matrix form that significantly constrains the space of networks that may be efficiently supported.

Each Loihi core includes a programmable learning engine that can evolve synaptic state varia-
bles over time as a function of historical spike activity. To support the broadest possible class of
rules, the learning engine operates on filtered spike traces. Learning rules are microcode pro-
grammable and support a rich selection of input terms and output synaptic target variables. Spe-
cific sets of these rules are associated with a learning profile bound to each synapse to be
modified. The profile is mapped by some combination of presynaptic neuron, postsynaptic neu-
ron, or class of synapse. The learning engine supports simple pairwise STDP rules and also
much more complicated rules such as triplet STDP, reinforcement learning with synaptic tag as-
signments, and complex rules that reference both rate averaged and spike-timing traces.

All logic in the chip is digital, functionally deterministic, and implemented in an asynchronous
bundled data design style. This allows spikes to be generated, routed, and consumed in an event-
driven manner with maximal activity gating during idle periods. This implementation style is
well suited for SNNs that fundamentally feature a high degree of sparseness in their activity
across both space and time.

Mesh Operation
Figure 2 shows the operation of the neuromorphic mesh as it executes an SNN model. All cores
begin at algorithmic time-step t. Each core independently iterates over its set of neuron compart-
ments, and any neurons that enter a firing state generate spike messages that the NoC distributes
to all cores that contain their synaptic fan-outs. Spike distributions for two such example neurons
n1 and n2 in cores A and B are illustrated in the second box, with additional spike distributions
from other firing neurons adding to the NoC traffic in the third box.

The NoC distributes spike (and all other) messages according to a dimension-order routing algo-
rithm. The NoC itself only supports unicast distributions. To multicast spikes, the output process
of each core iterates over a list of destination cores for a firing neuron’s fan-out distribution and
sends one spike per core. For deadlock protection reasons relating to read and chip-to-chip mes-
sage transactions, the mesh uses two independent physical router networks. For bandwidth effi-
ciency, the cores alternate sending their spike messages across the two physical networks. This is

87January/February 2018 www.computer.org/micro

 NEUROMORPHIC COMPUTING

possible because SNN computation does not depend on the spike sequence ordering within a
time-step.

Figure 2. Mesh Operation: first box, initial idle state for time-step t (each square represents a core
in the mesh containing multiple neurons); second box, neurons n1 and n2 in cores A and B fire and
generate spike messages; third box, spikes from all other neurons firing on time-step t in cores A
and B are distributed to their destination cores; and fourth box, each core advances its algorithmic
time-step to t + 1 as it handshakes with its neighbors through barrier synchronization messages.

At the end of the time-step, a mechanism is needed to ensure that all spikes have been delivered
and that it’s safe for the cores to proceed to time-step t + 1. Rather than using a globally distrib-
uted time reference (clock) that must prepare for the worst-case chip-wide network activity, we
use a barrier synchronization mechanism, illustrated in the fourth box. As each core finishes ser-
vicing its compartments for time-step t, it exchanges barrier messages with its neighboring cores.
The barrier messages flush any spikes in flight and, in a second phase, propagate a time-step-
advance notification to all cores. As cores receive the second phase of barrier messages, they ad-
vance their time-step and proceed to update compartments for time t + 1.

As long as management activity is restricted to a specific “preemption” phase of the barrier syn-
chronization process that any embedded x86 core or off-chip host may introduce on demand, the
Loihi mesh is provably deadlock free.

Network Connectivity Architecture
In its most abstract formulation, the neural network mapped to the Loihi architecture is a directed
multigraph structure ࣡ = (N,S), where N is the set of neurons in the network and S is a set of syn-
apses (edges) connecting pairs of neurons. Each synapse s ∈ S corresponds to a 5-tuple:
(i,j,wgt,dly,tag), where i,j ∈ N identify the source and destination neurons of the synapse, and
wgt, dly, and tag are integer-valued properties of the synapse. In general, Loihi will autono-
mously modify the synaptic variables (wgt,dly,tag) according to programmed learning rules. All
other network parameters remain constant unless they are modified by x86 core intervention.

An abstract network is mapped to the mesh by assigning neurons to cores, subject to each core’s
resource constraints. Figure 3 shows an example of a simple seven-neuron network mapped to
three cores. Given a particular neuron-to-core mapping for N, each neuron’s synaptic fan-in state
(wgt, dly, and tag) must be stored in the core’s synaptic memory. These schematically corre-
spond to the synaptic spike markers in Figure 3. Each neuron’s fan-out edges are projected to a
list of core-to-core edges (yellow in the figure), and each core-to-core edge is assigned an
axon_id identifier unique to each destination core (red in the figure). The neuron’s synaptic fan-
out contained within each destination core is associated with the corresponding axon_id and or-
ganized as a list of 4-tuples (j,wgt,dly,tag) stored in the synaptic memory in some suitably com-
pressed form. When neuron i spikes, the mesh routes each axon_id to the appropriate fan-out
core, which then expands it to the corresponding synaptic list.

88January/February 2018 www.computer.org/micro

 IEEE MICRO

Figure 3. Neuron-to-neuron mesh routing model.

This connectivity architecture can support arbitrary multigraph networks subject to the cores’
resource constraints:

1. The total number of neurons assigned to any core may not exceed 1,024 (Ncx).
2. The total synaptic fan-in state mapped to any core must not exceed 128 KB (Nsyn ×

64b, subject to compression and list alignment considerations).
3. The total number of core-to-core fan-out edges mapped to any given core must not ex-

ceed 4,096 (Naxout). This corresponds to the number of output-side routing slots high-
lighted in yellow in Figure 3.

4. The total number of distribution lists, associated by axon_id, in any core must not ex-
ceed 4,096 (Naxin). This is the number of input-side axon_id routing slots highlighted in
red in Figure 3.

In practice, constraints 2 and 4 tend to be the most limiting.

To exploit structure that might exist in the network ࣡, Loihi supports a hierarchical network
model. This feature can significantly reduce the chip-wide connectivity and synaptic resources
needed to map convolutional-style networks in which a template of synaptic connections is ap-
plied to many neurons in a uniform way.

Formally, we represent the hierarchical template network as a directed multigraph ℋ = (࣮, ℰ)
where ࣮ is a set of disjoint neuron population types and ℰ defines a set of edges connecting be-
tween pairs Tsrc,Tdst ∈ ࣮. An edge E ∈ ℰ associated with the (Tsrc,Tdst) population type pair is a
set of synapses where each s ∈ E connects a neuron i ∈ Tsrc to a neuron j ∈ Tdst.

To hierarchically compress the resource mapping of the desired flat network ࣡ = (N,S), a set of
disjoint neuron populations instances ࣪ must be defined where each P ∈ ࣪ is a subset of neurons
P ⊂ N. Each population instance is associated with a population type T ∈ ࣮ from the hierarchical
template network ℋ. Neurons n ∈ N belonging to some population instance P ∈ ࣪ are said to be
population-mapped. By configuring the ℋ connectivity in hardware, the redundant connectivity
in ࣡ is implied and doesn’t consume resources, beyond what it takes to map the population-level
connectivity of ℋ as if it were a flat network.

Population-mapped neurons produce population spike messages whose axon_id fields identify
(1) the destination population Pdst, (2) the source neuron index i ∈ Psrc within the source popula-
tion, and (3) the particular edge connecting between Tsrc and Tdst when there is more than one.
One population spike must be sent per destination population rather than per destination core, as
in the flat case. This marginally higher level of spike traffic is more than offset by the savings in
network mapping resources.

89January/February 2018 www.computer.org/micro

 NEUROMORPHIC COMPUTING

Convolutional artificial neural networks (ConvNets), in which a single kernel of weights is re-
peatedly applied to different patches of input pixels, is an example class of network that greatly
benefits from hierarchy. By treating such a weight kernel as the template connectivity that is ap-
plied to the different image patches (population instances), Loihi can support a spiking form of
such networks. The S-LCA network discussed later in this article features a similar kernel-style
convolutional network topology, which additionally includes lateral inhibitory connections be-
tween the feature neurons of each population instance.

Learning Engine

Baseline STDP

A number of neuromorphic chip architectures to date have incorporated the most basic form of
pairwise, nearest-neighbor STDP. Pairwise STDP is simple, event-driven, and highly amenable
to hardware implementation. For a given synapse connecting presynaptic neuron j to postsynap-
tic neuron i, an implementation needs only maintain the most recent spike times for the two neu-
rons (pre

jt and post
it). Given a spike arrival at time t, one local nonlinear computation needs to be

evaluated to update the synaptic weight:

,

, ()

(),

post
i

i j pre
j

A t t
w

A t t
−

+

 −=  −





On presynaptic spike

On postsynaptic spike
 (3)

where ℱ(x) is some approximation of e-x/τ ⋅ H(x), for constants A− < 0, A+ > 0, and τ > 0. Because
a design must already perform a lookup of weight wi,j on any presynaptic spike arrival, the first
case above matches the natural dataflow present in any neuromorphic implementation. To sup-
port this depressive half of the STDP learning rule, the handling of a presynaptic spike arrival
simply turns a read of the weight state into a read-modify-write (RMW) operation, assuming
availability of the tpost spike time.

The potentiating half of Equation 3 is the only significant challenge that pairwise STDP intro-
duces. To handle this weight update in an event-driven manner, symmetric to the depressive
case, the implementation needs to perform a backwards routing table lookup, obtaining wi,j from
the firing postsynaptic neuron i. This is at odds with the algorithmic impetus for more complex
and diverse network routing functions R : j → Y, where i ∈ Y. The more complex R becomes, the
more expensive, in general, it becomes to implement an inverse lookup R−1 efficiently in hard-
ware. Some implementations have explored creative solutions to this problem,12 but, in general,
these approaches constrain network topologies and are not scalable.

For Loihi, we adopt a less event-driven epoch-based synaptic modification architecture in the
interest of supporting arbitrarily complex R and extending the architecture to more advanced
learning rules. This architecture delays the updating of all synaptic state to the end of a periodic
learning epoch time Tepoch.

An epoch-based architecture fundamentally requires iteration over each core’s active input ax-
ons, which Loihi does sequentially. In theory, this is a disadvantage that a direct implementation
of the R−1 reverse lookup may avoid. However, in practice, any pipelined digital core implemen-
tation still requires iteration over active input axons to maintain spike timestamp or trace state.
Even the fully transposable synaptic crossbar architecture used in J.S. Seo et al.12 includes an it-
eration over all input axons per time-step for this reason.

Advancing Beyond Pairwise STDP

A number of architectural challenges arise in the pursuit of supporting more advanced learning
rules. First, the functional forms describing ∆wi,j become more complex and seemingly arbitrary.
These rules are at the frontier of algorithm research and, therefore, require a high degree of con-
figurability. Second, the rules involve multiple synaptic variables, not just weights. Finally, ad-
vanced learning rules rely on temporal correlations in spiking activity over a range of timescales,

90January/February 2018 www.computer.org/micro

 IEEE MICRO

which means more than just the most recent spike times must be maintained. These challenges
motivate the central features of Loihi’s learning architecture, described below.

Learning Rule Functional Form

On every learning epoch, a synapse will be updated whenever the appropriate pre- or post-synap-
tic conditions are satisfied. A set of microcode operations associated with the synapse determines
the functional form of one or more transformations to apply to the synapse’s state variables. The
rules are specified in sum-of-products form:

,

, ,
1 1

: ()
iP

i j

i

nN

i i j i j
i j

T

P

z z S V C
= =

= + + ∏


 (4)

where z is the transformed synaptic variable (either wgt, dly, or tag), Vi,j refers to some choice of
input variable available to the learning engine, and Ci,j and Si are microcode-specified signed
constants.

Table 1 provides a comprehensive list of product terms as encoded by a 4-bit field in each micro-
code op. The multiplications and summations of Equation 4 are computed iteratively by the
hardware and accumulated in 16-bit registers. The epoch period is globally configured per core
up to a maximum value of 63, with typical values in the 2 to 8 range. To avoid receiving more
than one spike in a given epoch, the epoch period is normally set to the minimum refractory de-
lay of all neurons in the network.

The basic pairwise STDP rule only requires two products involving four of these terms (0, 1, 3,
and 4) and two constants. The Loihi microcode format can specify this rule in a single 32-bit
word. With an encoding capacity of up to 16 32-bit words and the full range of terms in Table 1,
the learning engine provides considerable headroom for far more complex rules.

Trace Evaluation

The trace variables (x1,x2,y1,y2,y3,r1) in Table 1 refer to filtered spike trains associated with each
synapse that the learning engine modifies. The filtering function associated with each trace is
defined by two configurable quantities: an impulse amount δ added on every spike event and a
decay factor α. Given a spike arrival sequence s[t] ∈ {0,1}, an ideal trace sequence x[t] over time
is defined as follows:

x[t] = α ⋅ x[t - 1] + δ ⋅ s[t]. (5)

The Loihi hardware computes a low-precision (7-bit) approximation of this first-order filter us-
ing stochastic rounding.

By setting δ to 1 (typically with relatively small α), x[t] saturates on each spike, and its decay
measures elapsed time since the most recent spike. Such trace configurations exactly implement
the baseline STDP rules dependent only on the previously described nearest-neighbor pre/post
spike time separations. On the other hand, setting δ to a value less than 1, specifically 1 − minTα
(where Tmin is the minimum spike period), causes sufficiently closely spaced spike impulses to
accumulate over time, and x[t] reflects the average spike rate over a timescale of τ = −1/log α.

91January/February 2018 www.computer.org/micro

 NEUROMORPHIC COMPUTING

Table 1. Learning rule product terms.

DESIGN IMPLEMENTATION

Core Microarchitecture
Figure 4 shows the internal structure of the Loihi neuromorphic core. Colored blocks in this dia-
gram represent the major memories that store the connectivity, configuration, and dynamic state
of all neurons mapped to the core. The core’s total SRAM capacity is 2 Mb, including ECC
overhead. The coloring of memories and dataflow arcs illustrates the core’s four primary operat-
ing modes: input spike handling (green), neuron compartment updates (purple), output spike
generation (blue), and synaptic updates (red). Each of these modes operates independently with
minimal synchronization at a variety of frequencies, based on the state and configuration of the
core. The black structure marked UCODE represents the configurable learning engine.

The values annotated by each memory indicate its number of logical addresses, which corre-
spond to the core’s major resource constraints. The number of input and output axons (Naxin and
Naxout), the synaptic memory size (Nsyn), and the total number of neuron compartments (Ncx) im-
pose network connectivity constraints, as described earlier. The parameter Nsdelay indicates the
minimum number of synaptic delay units supported, eight in Loihi. Larger synaptic delay values,

Encoding Term (Ti,j) Bits Description

0 x0 +C 5b (U) Presynaptic spike count

1 x1 +C 7b (U) 1st presynaptic trace

2 x2 +C 7b (U) 2nd presynaptic trace

3 y0 +C 5b (U) Postsynaptic spike count

4 y1 +C 7b (U) 1st postsynaptic trace

5 y2 +C 7b (U) 2nd postsynaptic trace

6 y3 +C 7b (U) 3rd postsynaptic trace

7 r0 +C 1b (U) Reward spike

8 r1 +C 8b (S) Reward trace

9 wgt+C 9b (S) Synaptic weight

10 dly+C 6b (U) Synaptic delay

11 tag+C 9b (S) Synaptic tag

12 sgn(wgt+C) 1b (S) Sign of case 9 (±1)

13 sgn(dly+C) 1b (S) Sign of case 10 (±1)

14 sgn(tag+C) 1b (S) Sign of case 11 (±1)

15 C 8b (S) Constant term. (Variant 1)

15 Sm · 2 eS 4b (S) Scaling term. 4b mantissa, 4b exponent. (Variant 2)

92January/February 2018 www.computer.org/micro

 IEEE MICRO

up to 62, may be supported when fewer neuron compartments are needed by a particular mapped
network.

Figure 4. Core Top-Level Microarchitecture. The SYNAPSE unit processes all incoming spikes and
reads out the associated synaptic weights from the memory. The DENDRITE unit updates the state
variables u and v of all neurons in the core. The AXON unit generates spike messages for all fan-
out cores of each firing neuron. The LEARNING unit updates synaptic weights using the
programmed learning rules at epoch boundaries.

Varying degrees of parallelism and serialization are applied to sections of the core’s pipeline to
balance the throughput bottlenecks that typical workloads will encounter. Dataflow drawn with
finely dotted arrows in Figure 4 indicate parts of the design where single events are expanded
into a potentially large number of dependent events. In these areas, we generally parallelize the
hardware.

For example, synapses are extracted from SYNAPSE_MEM’s 64-bit words with up to four-way
parallelism, depending on the synaptic encoding format, and that parallelism is extended to
DENDRITE_ACCUM and throughout the synaptic modification pipeline in the learning engine.
Conversely, the presynaptic trace state is stored together with SYNAPSE_MEM pointer entries
in the SYNAPSE_MAP memory, which then may result in multiple serial accesses per ingress
spike. This balances pipeline throughputs for ingress learning-enabled axons when their synaptic
fan-out factor within the core is on the order of 10:1 while maintaining the best possible area ef-
ficiency.

RMW memory accesses, shown as loops around the relevant memories in Figure 4, are funda-
mental to the neuromorphic computational model and unusually pervasive compared to many
other microarchitecture domains. Such loops can introduce significant design challenges, partic-
ularly for performance. We manage this challenge with an asynchronous design pattern that en-
capsulates and distributes the memory’s state over a collection of single-ported SRAM banks.
The encapsulation wrapper presents a simple dual-ported interface to the environment logic and
avoids severely stalling the pipeline except for statistically rare address conflicts.

Asynchronous Design Methodology
Biological neural networks are fundamentally asynchronous, as reflected by the absence of an
explicit synchronization assumption in the continuous time SNN model given in the Spiking
Neural Networks section. Accordingly, asynchronous design methods have long been seen as the
appropriate tool for prototyping SNNs in silicon, and most published chips to date use this meth-
odology. Loihi is no different, and, in fact, the asynchronous design methodology developed for
Loihi is the most advanced of its kind.

For rapid neuromorphic design prototyping, we extended and improved on an earlier asynchro-
nous design methodology used to develop several generations of commercial Ethernet switches.
In this methodology, designs are entered according to a top-down decomposition process using

93January/February 2018 www.computer.org/micro

 NEUROMORPHIC COMPUTING

the CAST and CSP languages. Modules in each level of design hierarchy communicate over
message-passing channels that are later mapped to a circuit-level implementation, which, in this
case, is a bundled data implementation comprising a data payload with request and acknowledge
handshaking signals that mediate the propagation of data tokens through the system. Figure 5
shows a template pipeline example. Each pipeline stage has at least one pulse generator, such as
the one shown in Figure 6, that implements the two-phase handshake and latch sequencing.

Fine-grain flow control is an important property of asynchronous design that offers several bene-
fits for neuromorphic applications. First, because the activity in SNNs is highly sparse in both
space and time, the activity gating that comes automatically with asynchronous flow control
eliminates the power that would often be wasted by a continuously running clock. Second, local
flow control allows different modules in the same design to run at their natural microarchitec-
tural frequencies. This properly complements the need for spiking neuron processes to run at a
variety of timescales dependent on workload and can significantly simplify back-end timing clo-
sure. Finally, asynchronous techniques can reduce or eliminate timing margin. In Loihi, the
mesh-level barrier synchronization mechanism is the best example of asynchronous handshaking
providing a globally significant performance advantage by eliminating needless mesh-wide idle
time.

Figure 5: Bundled data pipeline stage.

Figure 6. Bundled data pulse generator circuit.

Given a hierarchical design decomposition written in CSP, a pipeline synthesis tool converts the
CSP module descriptions to Verilog representations that are compatible with standard EDA
tools. The initial Verilog representation supports logic synthesis to both synchronous and asyn-
chronous implementations with full functional equivalence, providing support for synchronous
FPGA emulation of the design.

The asynchronous back-end layout flow uses standard tools with an almost fully standard cell
library. Here, the asynchronous methodology simplifies the layout closure problem. At every
level of layout hierarchy, all timing constraints apply only to neighboring, physically proximate

94January/February 2018 www.computer.org/micro

 IEEE MICRO

pipeline stages. This greatly facilitates convergent timing closure, especially at the chip level.
For example, the Loihi mesh assembles by physical abutment without needing any unique clock
distribution layout or timing analysis for different mesh dimensions or core types. (See Figure 7.)

Figure 7. Loihi chip plot.

RESULTS

Silicon Realization
Loihi was fabbed in Intel’s 14-nm FinFET process. The chip instantiates a total of 2.07 billion
transistors and 33 MB of SRAM over its 128 neuromorphic cores and three x86 cores, with a die
area of 60 mm2. The device is functional over a supply voltage range of 0.50 V to 1.25 V. Table
2 provides a selection of energy and performance measurements from pre-silicon SDF and
SPICE simulations, consistent with early post-silicon characterization.

Loihi includes a total of 16 MB of synaptic memory. With its densest 1-bit synapse format, this
provides a total of 2.1 million unique synaptic variables per mm2, over three times higher than
TrueNorth, the previously most dense SNN chip.11 This does not consider Loihi’s hierarchical
network support that can significantly boost its effective synaptic density. On the other hand,
Loihi’s maximum neuron density of 2,184 per mm2 is marginally worse than TrueNorth’s. Pro-
cess normalized, this represents a 2× reduction in the design’s neuron density, which may be in-
terpreted as the cost of Loihi’s greatly expanded feature set, an intentional design choice.

95January/February 2018 www.computer.org/micro

 NEUROMORPHIC COMPUTING

Table 2. Loihi pre-silicon performance and energy measurements.

Measured parameter Value at 0.75 V

Cross-sectional spike bandwidth per tile 3.44 Gspike/s

Within-tile spike energy 1.7 pJ

Within-tile spike latency 2.1 ns

Energy per tile hop (E-W / N-S) 3.0 pJ / 4.0 pJ

Latency per tile hop (E-W / N-S) 4.1 ns / 6.5 ns

Energy per synaptic spike op (min) 23.6 pJ

Time per synaptic spike op (max) 3.5 ns

Energy per synaptic update (pairwise STDP) 120 pJ

Time per synaptic update (pairwise STDP) 6.1 ns

Energy per neuron update (active / inactive) 81 pJ / 52 pJ

Time per neuron update (active / inactive) 8.4 ns / 5.3 ns

Mesh-wide barrier sync time (1-32 tiles) 113-465 ns

Algorithmic Results
On an earlier iteration of the Loihi architecture, we quantitatively assessed the efficiency of
Spiking LCA to solve LASSO, as described in the Computation with Spikes and Fine-Grained
Parallelism section. We used a 1.67-GHz Atom CPU running both LARS and FISTA3 numerical
solvers as a reference architecture for benchmarking. These solvers are among the best known
for this problem. Both chips were fabbed in 14-nm technology, were evaluated at a 0.75-V sup-
ply voltage, and required similar active silicon areas (5 mm2).

The largest problem we evaluated is a convolutional sparse coding problem on a 52×52 image
with a 224-atom dictionary, a patch size of 8×8, and a patch stride of 4 pixels. Loihi’s hierar-
chical connectivity provided a factor of 18 compression in synaptic resources for this network.
We solved the sparse coding problem to a solution within 1 percent of the optimal solution. Fig-
ure 8 compares the original and the reconstructed image using the computed sparse coefficients.

Figure 8. Image reconstruction from the sparse coefficients computed using the Loihi predecessor.

Table 3 shows the comparison in computational efficiency between these two architectures, as
measured by EDP. (Results are expressed as improvement ratios Atom/Loihi. The Atom num-
bers are chosen using the more efficient solver between LARS and FISTA.) It is not surprising to
see that the conventional LARS solver can handle problems of small sizes and very sparse solu-
tions quite efficiently. On the other hand, the conventional solvers do not scale well for the large

96January/February 2018 www.computer.org/micro

 IEEE MICRO

problem, and the Loihi predecessor achieves the target objective value with over 5,000 times
lower EDP.

Table 3. Comparison of solving ℓ1 minimization on Loihi and Atom.

Loihi’s flexible learning engine allows one to explore and experiment with various learning
methods. We have developed and validated the following networks in pre-silicon FPGA emula-
tion with all learning taking place on chip:

• A single-layer classifier using a supervised variant of STDP, similar to F. Ponulak and
A. Kasinski, 4 as the learning method. This network, when trained with local-intensity-
change-based temporally spike-coded image samples, can achieve 96 percent accuracy
on the MNIST dataset using ten neurons, in line with a reference ANN of the same
structure.

• Solving the shortest path problem of a weighted graph. Vertices and edges are repre-
sented as neurons and synapses, respectively. The algorithm is based on the effects of
STDP on a propagating wave-front of spikes.13

• Solving a one-dimensional, non-Markovian sequential decision-making problem. The
network learns the decision-making policy in response to delayed reward and punish-
ment feedback similar to R.V. Florian.14

The algorithmic development and characterization of Loihi is just beginning. These proof-of-
concept examples use only a fraction of the resources and features available in the chip. With
Loihi now in hand, our focus turns to scaling and further evaluating these networks.

CONCLUSION
Loihi is Intel’s fifth and most complex fabricated chip in a family of devices that explore differ-
ent points in the neuromorphic design space spanning architectural variations, circuit methodolo-
gies, and process technology. In some respects, its flexibility might go too far, while in others,
not far enough. Further optimizations of the architecture and implementation are planned. The
pursuit of commercially viable neuromorphic architectures and algorithms might well end at de-
sign points far from what we have described in this paper, but we hope Loihi provides a step in
the right direction. We offer it as a vehicle for collaborative exploration with the broader re-
search community.

SIDEBAR: PROJECT DESCRIPTION
At the time of development, Loihi chip development and algorithms research were performed in
Intel’s Microarchitecture Research Lab headed by Hong Wang, Intel Fellow. Mike Davies led
silicon development. Narayan Srinivasa led algorithms research and architectural modeling.
Tsung-Han Lin is a lead researcher on sparse coding and related learning algorithms. Gautham
Chinya led validation and SDK development. Georgios Dimou, Prasad Joshi, Andrew Lines, Ru-
okun Liu, Steven McCoy, Jonathan Tse, and Yi-Hsin Weng developed Loihi’s asynchronous ar-
chitecture, design flow, and design components. Sri Harsha Choday contributed to asynchronous

Number of Unknowns 400 1,700 32,256

Number of non-zeros in solutions ≈10 ≈30 ≈420

Energy 2.58x 8.08x 48.74x

Delay 0.27x 2.76x 118.18x

EDP 0.7x 22.33x 5760x

97January/February 2018 www.computer.org/micro

 NEUROMORPHIC COMPUTING

circuit validation. Yongqiang Cao, Nabil Imam, Arnab Paul, and Andreas Wild contributed to
Loihi’s algorithms, feature set, and modeling. Shweta Jain, Chit-Kwan Lin, Deepak Mathaikutty,
Guruguhanathan Venkataramanan, and Yoonseok Yang prototyped proof-of-concept networks
and software to demonstrate the chip’s learning capabilities and validate its functionality, and
also provided synchronous and FPGA design development support. Yuyun Liao, a silicon imple-
mentation manager, helped validate all aspects of the final Loihi layout implementation. Going
forward, Mike Davies leads all ongoing neuromorphic research in Intel Labs as head of its Neu-
romorphic Computing Lab. Any inquiries should be directed to him.

REFERENCES
1. S. Shapero et al., “Optimal sparse approximation with integrate and fire neurons,”

International journal of neural systems, vol. 24, no. 5, 2014, p. 1440001.
2. P.T.P. Tang, T.-H. Lin, and M. Davies, “Sparse coding by spiking neural networks:

Convergence theory and computational results,” arXiv, 2017.
3. A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear

inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, 2009, pp. 183–
202.

4. F. Ponulak and A. Kasinski, “Supervised learning in spiking neural networks with
ReSuMe: sequence learning, classification, and spike shifting,” Neural Computation,
vol. 22, no. 2, 2010, pp. 467–510.

5. T.-H. Lin, “Local Information with Feedback Perturbation Suffices for Dictionary
Learning in Neural Circuits,” arXiv, 2017.

6. E. Neftci et al., “Event-Driven Random Back-Propagation: Enabling Neuromorphic
Deep Learning Machines,” Frontiers in neuroscience, vol. 11, 2017, p. 324.

7. J. Gjorgjieva et al., “A triplet spike-timing dependent plasticity model generalizes the
Bienenstock Cooper Munro rule to higher-order spatiotemporal correlations,”
Proceedings of the National Academy of Sciences, vol. 108, no. 48, 2011, pp. 19383–
19388.

8. N. Qiao et al., “A reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128 K synapses,” Frontiers in Neuroscience, vol. 9, 2015,
p. 141.

9. L. Buesing et al., “Neural dynamics as sampling: a model for stochastic computation in
recurrent networks of spiking neurons,” PLoS computational biology, vol. 7, no. 11,
2011, p. e1002211.

10. E.M. Izhikevich, “Polychronization: Computation with Spikes,” Neural Computation,
vol. 18, no. 2, 2006, pp. 245–282.

11. P.A. Merolla et al., “A million spiking-neuron integrated circuit with a scalable
communication network and interface,” Science, vol. 345, no. 6197, 2014, pp. 668–
673.

12. J.S. Seo et al., “A 45nm CMOS neuromorphic chip with a scalable architecture for
learning in networks of spiking neurons,” IEEE Custom Integrated Circuits
Conference (CICC), 2011, pp. 1–4.

13. F. Ponulak and J.J. Hopfield, “Rapid, parallel path planning by propagating wavefronts
of spiking neural activity,” Frontiers in Computational Neuroscience, vol. 7, 2013, p.
98.

14. R.V. Florian, “Reinforcement learning through modulation of spike-timing-dependent
synaptic plasticity,” Neural Computation, vol. 19, no. 6, 2007, pp. 1468–1502.

ABOUT THE AUTHORS
Mike Davies is director of Intel’s Neuromorphic Computing Lab. Contact him at mike.da-
vies@intel.com.

Narayan Srinivasa is CTO of Eta Compute. Contact him at physynapse@gmail.com.

98January/February 2018 www.computer.org/micro

 IEEE MICRO

Tsung-Han Lin is a researcher in Intel’s Microarchitecture Research Lab. Contact him at
tsung-han.lin@intel.com.

Gautham Chinya is a researcher and principal engineer in Intel’s Microarchitecture Re-
search Lab. Contact him at gautham.n.chinya@intel.com.

Yongqiang Cao is a researcher in Intel’s Microarchitecture Research Lab. Contact him at
yongqiang.cao@intel.com.

Sri Harsha Choday is a researcher in Intel’s Microarchitecture Research Lab. Contact him
at sri.harsha.choday@intel.com.

Georgios Dimou is chief architect at Reduced Energy Microsystems. Contact him at geor-
gios.d.dimou@gmail.com.

Prasad Joshi is a researcher in Intel’s Neuromorphic Computing Lab. Contact him at pra-
sad.joshi@intel.com.

Nabil Imam is a researcher in Intel’s Neuromorphic Computing Lab. Contact him at na-
bil.imam@intel.com.

Shweta Jain is a researcher in Intel’s Microarchitecture Research Lab. Contact her at
shweta.jain@intel.com.

Yuyun Liao is a silicon engineering manager in Intel Labs. Contact him at yuyun.liao@in-
tel.com.

Chit-Kwan Lin is a researcher in Intel’s Microarchitecture Research Lab. Contact him at
chit-kwan.lin@intel.com.

Andrew Lines is a researcher and principal engineer in Intel’s Neuromorphic Computing
Lab. Contact him at andrew.lines@intel.com.

Ruokun Liu is a researcher in Intel’s Neuromorphic Computing Lab. Contact him at
harry.liu@intel.com.

Deepak Mathaikutty is a researcher in Intel’s Microarchitecture Research Lab. Contact
him at deepak.a.mathaikutty@intel.com.

Steven McCoy is a researcher in Intel’s Neuromorphic Computing Lab. Contact him at ste-
ven.mccoy@intel.com.

Arnab Paul is a researcher in Intel’s Microarchitecture Research Lab. Contact him at
arnab.paul@intel.com.

Jonathan Tse is a researcher in Intel’s Neuromorphic Computing Lab. Contact him at
jon.tse@intel.com.

Guruguhanathan Venkataramanan is a researcher in Intel’s Microarchitecture Research
Lab. Contact him at guruguhanathan.venkataramanan@intel.com.

Yi-Hsin Weng is a researcher in Intel’s Neuromorphic Computing Lab. Contact her at yi-
hsin.weng@intel.com.

Andreas Wild is a researcher in Intel’s Neuromorphic Computing Lab. Contact him at an-
dreas.wild@intel.com.

Yoonseok Yang is a researcher in Intel’s Neuromorphic Computing Lab. Contact him at
yoonseok.yang@intel.com.

Hong Wang is an Intel Fellow and director of Intel’s Microarchitecture Research Lab. Con-
tact him at hong.wang@intel.com.

99January/February 2018 www.computer.org/micro

