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The problem of the ‘‘self-burial’’ of radioactive waste into melting rock is solved for a spherical
container of finite thickness. The mathematical model constructed, unlike the existing ones,
takes into account the thermal losses to the solid rock and to the melt behind the container, as well
as the reverse evolution of heat upon solidification of the melt. A calculation for the
particular case of self-burial in granite shows that consideration of these factors significantly
increases the maximum permissible radius at which the container will remain in the solid state and
slows the burial rate. ©1999 American Institute of Physics.@S1063-7842~99!02211-4#
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One of the promising methods for the final disposal
radioactive waste is ‘‘self-burial.’’ Due to the evolution o
heat accompanying radioactive decay, a container with
dioactive waste melts the surrounding rock and sinks int
under the action of its own weight. The increase in t
amount of heat expended on melting the rock during
accelerated downward migration in the initial stage ensu
that the process will pass to a steady state. The problem
the steady migration of a spherical heat source was treate
Ref. 1 under the assumption that the temperature of its
face is uniform. As was shown in Ref. 2, this condition do
not correspond to reality. The temperature reaches a m
mum at the lower critical point and a maximum at the upp
diametrically opposite point. It also increases with increas
radius. Therefore, to keep a container in the solid state
radius must not exceed a maximum permissible value
which the surface temperature reaches the melting poin
the container. The dependence of the limiting radius and
corresponding maximum burial rate on the thickness
thermal conductivity of the container was investigated
Ref. 3. It was assumed in those studies that the heat flu
the direction opposite to the direction of motion can be
glected and that the heat flux in the direction of motion
completely expended on melting the medium. The reve
evolution of heat upon solidification of the melt behind t
heat source was not taken into account. The purpose o
present work is to solve the problem of the self-burial
radioactive waste in a spherical container of finite thickn
without these assumptions.

The stationary axisymmetric distributions of the tem
perature in the radioactive waste (Ti) and in the container
wall (Tc) satisfy the equations
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Their solution with allowance for the conditions of co
tinuity of the temperature and the heat flux at the inner s
face of the wall can be written in the form3
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Hence follow the expression for Stefan’s number

S~j!5
cp

h
@Tw~j!2Tm#5

4

3
n (

n50

`

CnPn~j!,

Tw~j!5Tc~R,j! ~3!

and the expression for the heat flux from the source to
surrounding medium
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Cn are arbitrary constants;r andQ are spherical coordinates
Pn(j) are Legendre polynomials;q is the heat output powe
of the radioactive waste;ki and kc are the thermal conduc
tivities of the radioactive waste and the container;cp , Tm ,
7 © 1999 American Institute of Physics



th

co

(
e

oc
a

eq
u
ur

th
th

e

he

he

n is

-

of
o be

he

1378 Tech. Phys. 44 (11), November 1999 L. Ya. Kosachevski  and L. S. Syui
and hm are the specific heat, melting point, and heat of
phase transition of the medium;Ri andR are the inner and
outer radii of the container; and their ratioz is chosen from
considerations of mechanical strength and is henceforth
sidered fixed for different values ofR.

The region of the melt in front of the heat sourcej
.0) forms a thin layer, in which flow is described by th
methods of lubrication theory. In the reference frame ass
ated with the source the velocity field and the pressure
specified by the equations2

vQ5V
y

d*
F11

3

d*
S 12

y

d*
D GsinQ,

v r52VS y

d*
D 2H S 322

y

d*
D cosQ

1
dd*

dQ F1

2
1

3

d*
S 12

y

d*
D GsinQJ ,

p5p016
hV

R E
Q

p/2 sinQ

d* 3
dQ, y5r * 21, d* 5

d

R
,

~5!

whered is the thickness of the layer,h is the viscosity co-
efficient, andV is the burial rate.

In the region of the melt behind the source (j,0) the
burial rate and pressure are assumed to be constant and
to V andp0, respectively. The tangential stresses on the s
face of the source are small compared with the press
Therefore, the drag force of the melt equals

F52pR2E
21

1

pj dj56phRVJ,

J5E
0

1

~12j2!d* 23 dj. ~6!

Equating the difference between the weight and
buoyant force to this expression for the drag, we obtain
equation

VJ5
2

9

g

h
R2~r12r!, r15rc1z3~r i2rc!, ~7!

where r i , rc , and r are the densities of the radioactiv
waste, the container material, and the medium, andg is the
acceleration of gravity.

The main contribution to the integralJ is made by a
small vicinity about the pointj51. Now setting

d* ~j!5d* ~1!2d* 8~1!~12j!

and takingd* as the integration variable, we obtain up to t
leading term

J5
1

d* ~1!@d* 8~1!#2
. ~8!

The axisymmetric distribution of the temperature in t
solid phaseTs satisfies the equation
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According to the assumption made above, this equatio
also valid for the distribution of the temperatureTf in the
melt atj,0. Its solution has the form
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whereKn1
1
2
(x) and I n1

1
2
(x) are Bessel functions of imagi

nary argument,b5VR/a, anda5k/rcp .
The density, specific heat, and thermal conductivity

the medium in the solid and liquid phases are assumed t
identical. The arbitrary constantsEn , Fn , andGn are speci-
fied by the boundary conditions

Ts~R1d,j!5Tf~R1d,j!5Tm ,

Tf~R,j!5Tc~R,j!. ~11!

Confining ourselves to the leading terms of t
asymptotic expressions of the Bessel functions
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we have
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From the boundary condition



e
o
s

th

of
o

u

th

d

i-

-
ce

rre-
of

r

s

1379Tech. Phys. 44 (11), November 1999 L. Ya. Kosachevski  and L. S. Syui
2k
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~R1d,j!56hmrVj2k

]Ts

]r
~R1d,j!, ~13!

where6hmrVj is the quantity of heat spent on melting th
medium in front of the heat source and given back up
solidification behind it, we obtain the equation of the pha
boundary atj,0

~11d* !@D1~3D21!j#1
2D

b
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12exp~2bd* !
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b

2
d* ~11j!G ,

D5
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~14!

and the expression for the heat flux from the melt into
solid phase atj.0

2k
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~R1d,j!5

kh

cpR
@~12D !bj1D~b12!#. ~15!

The distribution of the temperature in the melt in front
the heat source is found by a parametric method
boundary-layer theory. Integrating the heat conduction eq
tion
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over the thickness of the layer and taking into account
continuity equation
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we obtain the integral relation
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We approximateTf by a trinomial, which is quadratic with
respect toy and whose coefficients are defined by the con
tions ~11! and ~15!,
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The relation~16! with allowance for~5! and ~17! gives the
differential equation ford

12j2
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40
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whence it follows that up to the leading term we have

d* 5
S

bw
. ~19!

The prime sign denotes a derivative with respect toj.
Using ~8! and ~19!, we bring Eq.~7! into the form
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From ~12! and ~14! we find
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To determine the constantsCn we have the boundary cond
tion

kc

]Tc

]r
~R,j!5k

]Tf

]r
~Rj!. ~22!

In the limiting case ofb50 andd50, it follows from
~14! and ~19! that S50 andCn50, i.e., we obtain the sta
tionary solution for an immobile container with a surfa
temperatureTm . The heat flux~21! in all directions reduces
to kTm /R. According to~4! and ~22!, the radius of such a
container equals

R05S 3kTm

qz3 D 1/2

. ~23!

Thus, self-burial is possible under the conditionR.R0.
As R is increased, the exponential functions in~21! rapidly
decrease; therefore, we shall henceforth neglect the co
sponding terms. The resulting error in the determination
the burial rate is not more thanV0, i.e., the value obtained fo
R5R0. Multiplying ~22! by Pn(j) and integrating overj
from 21 to 11, we obtain the infinite system of equation
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We confine ourselves to a finite numberN of the con-
stantsCn and the firstN equations. ForN52 we have
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The parameterb is found from the equation

D02D15
D

4
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where, according to~20!,
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SinceS(1)!1, Eq.~26! reduces to a quadratic equatio
WhenR.R0, it has one positive root
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1
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~1918xG1!D, ~28!

which specifies the dependence of the burial rate on the
dius and heat output power of the heat source, as well as
physical characteristics of the medium. According to~2!, the
maximum temperature is achieved on the linej521 at the
point

r m* 524
z2

V1
C1 ; ~29!

and equals

Ti~r m* ,21!5Tm1
hn

6cp
F112

ki

kc
~12z!1

r m*

z
~r m* 12V1!G .

~30!

The container has its highest temperature at the upper cri
point on the inner surface of the wall:

Tc~Ri ,21!5Tm1
4

3

hn

cp
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4kc
~12z!1S 11

z

V1
DC0G .

~31!

Equating it to the melting point of the containerT* , we
find the maximum permissible value ofn:

n* 5
3

G H S 11
z

V1
D @876D1~2771161D !b* #

2S* ~4451464xG1!J ,

FIG. 1. Physical model of the geometry of the problem.
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G5180xzS 11
z
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ki

kc
~4451464xG1!~12z!,

S* 5
cp

h
~T* 2Tm!. ~32!

Substituting it into~26!, we obtain a quadratic equatio
for the corresponding valueb5b* . According to the defi-
nitions of these parameters, the maximum radius and bu
rate are found using the formulas

R* 5
1

z S hki

cpq
n* D 1/2

, V* 5
a

R*
b* . ~33!

WhenN.2, the problem requires a numerical solutio
Let us consider the case of the self-burial of radioact

waste housed in a container composed of the hi
temperature ceramic NbC in granite whenq5130 000
W/m3. We take the following values for the physical co
stants ~in SI units!:4 r52700, cp51301, k53.013, hm

5585 800, Tm51200 °C, h510; rc57820, kc544, T*
53480 °C;r i57800, ki536.

For z50.9 we obtain R* 51.221 m, V* 5376.28
m/year, S(1)50.85531024, S8(1)520.684, d* (1)
50.35931025, andd* (21)54.012.

At the point j50 the expressions~14! and ~19! give
fairly close values:d* (20)50.092 andd* (10)50.099. At

FIG. 2. Thickness of the melt zone atj.0.

FIG. 3. Plot of the dependence of the burial rate on the container radiu
z50.9.
ial

.
e
-

j51 the container is in direct contact with the solid mediu
and has a temperature exceeding its melting point
0.14 °C. The maximum temperature within the container
the point r m* 50.639, j521 equals 3540.96 °C. The me
zone and the computational model of flow are shown in F
1. In Fig. 2 curve1 corresponds to the boundary of the me
zone in the regionj.0 defined by Eq.~18!, and curve2
corresponds to the approximate formula~19!. In the range
0.5,j<1 they essentially coincide. The maximum diffe
ence between them atj50 amounts to 0.019. Since the mo
tion of the container depends mainly on the conditions in
vicinity of j51, the accuracy of formula~19! is fully satis-
factory. Formula ~6! with allowance for ~19! gives J
5139.043106, and the value obtained from the approxima
formula~8! is 0.05% higher. According to~23!, R050.338 m
corresponds to a zero burial rate. Figure 3 shows a plo
V(R) specified by formula~28!. For the radiusR0 it gives
V0568.39 m/year, which represents the maximum er
caused by neglect of the exponential term in~21!. As z is
increased from 0.5 to 1, the radiusR* decreases from 2.683
to 1.025 m, andV* increases roughly according to a line
law from 150.08 to 429.94 m/year~Fig. 4!. A comparison
with the results in Ref. 2 forz51 shows that consideratio
of the heat flux and the reverse evolution of heat upon
lidification of the melt atj,0 increasesR* by 0.298 m and
diminishesV* by 44 m/year. The melt zone behind the co
tainer becomes 1.5 times longer.

The results obtained depend weakly on the choice of
value ofN. For example, forN510 the values ofR* andV*
increase by 1.53% and 0.51%, respectively, and forN
5100 they increase by 1.62% and 0.56%.
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FIG. 4. Plots of the dependence of the maximum radius and burial rate oz.


