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Dexterous magnetic manipulation of 
conductive non-magnetic objects

Lan N. Pham1, Griffin F. Tabor2, Ashkan Pourkand2, Jacob L. B. Aman3, Tucker Hermans2,4 & 

Jake J. Abbott1 ✉

Dexterous magnetic manipulation of ferromagnetic objects is well established, with 

three to six degrees of freedom possible depending on object geometry1. There are 

objects for which non-contact dexterous manipulation is desirable that do not 

contain an appreciable amount of ferromagnetic material but do contain electrically 

conductive material. Time-varying magnetic fields generate eddy currents in 

conductive materials2–4, with resulting forces and torques due to the interaction of the 

eddy currents with the magnetic field. This phenomenon has previously been used to 

induce drag to reduce the motion of objects as they pass through a static field5–8, or to 

apply force on an object in a single direction using a dynamic field9–11, but has not been 

used to perform the type of dexterous manipulation of conductive objects that has 

been demonstrated with ferromagnetic objects. Here we show that manipulation, 

with six degrees of freedom, of conductive objects is possible by using multiple 

rotating magnetic dipole fields. Using dimensional analysis12, combined with 

multiphysics numerical simulations and experimental verification, we characterize 

the forces and torques generated on a conductive sphere in a rotating magnetic 

dipole field. With the resulting model, we perform dexterous manipulation in 

simulations and physical experiments.

Magnetic manipulation has the benefit of being contactless, which 

is particularly attractive when there is a risk of destructive collision 

between the manipulator and target. Such is the case with space 

debris13,14, a considerable problem facing humanity owing to the Kes-

sler syndrome15. Most artificial space objects are fabricated primarily 

from aluminium16, a non-magnetic but conductive material on which 

forces and torques can be generated by inducing eddy currents. The 

most commonly proposed application of this phenomenon is detum-

bling satellites by applying a static magnetic field to a rotating target. 

There exist numerical solutions for induced forces and/or torques on 

spinning solid and thin-walled spheres in uniform and non-uniform 

magnetic fields5–7. An alternative method of detumbling satellites uses 

rotating Halbach arrays near the target10. Rotating Halbach arrays have 

also been proposed as a means of traversing the exterior of the Inter-

national Space Station (modelled as an infinite flat plate) using forces 

induced by eddy currents9. This technique is similar to that used in 

eddy-current separation of non-magnetic materials11. Methods based 

on eddy currents are distinct from those based on diamagnetism17 or 

ferrofluid environments18, neither of which are applicable to manipula-

tion of objects at a distance.

Here we show that dexterous manipulation of conductive objects 

is achievable using multiple static (in position) magnetic dipole-field 

sources capable of continuous dipole rotation about arbitrary axes. We 

demonstrate manipulation with six degrees of freedom (6-DOF manip-

ulation) in numerical microgravity simulations and 3-DOF manipula-

tion in experimental microgravity simulations. This manipulation does 

not rely on dynamic motion of the conductive object itself; rather, the 

manipulation can be performed quasistatically. Both electromag-

net and permanent-magnet devices have been developed to serve 

as field sources capable of generating continuously rotating mag-

netic dipole fields about arbitrary axes19,20. Rotating magnetic dipole 

fields have been used previously to remotely actuate ferromagnetic 

devices that transduce the resulting magnetic torque into some form 

of rotational motion, such as micromachines and magnetic capsule  

endoscopes1.

To make our problem tractable, we explicitly consider conductive 

spheres, which can serve as first-order approximations for other 

geometries. Furthermore, we characterize those spheres in three 

canonical positions relative to a rotating magnetic dipole, as depicted 

in Fig. 1. Using cylindrical coordinates, the z-axis aligns with the 

angular-velocity vector ω of the rotating dipole, with the dipole always 

orthogonal to that vector. We consider positions in the ±z axial direc-

tions and the radial direction ρ. When using a magnetic dipole-field 

source capable of dipole rotation about arbitrary axes, any given 

position can be transformed into each of these canonical positions 

through the choice of the dipole rotation axis. The magnetic dipole 

can be abstracted as a point dipole m (units A m2) at position Pm, which 

generates a magnetic field vector b (units T) at each position bP  in 

space:
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where = −P Pd b m is the relative displacement vector (units m), I is the 

identity matrix, μ0 = 4π × 10−7 N A−2 is the permeability of free space, 

and all vectors are expressed in a common frame of reference1.

We begin by characterizing the steady-state time-averaged forces 

and torques, in each of the canonical positions, as a function of the 

six independent variables enumerated in Table 1. These quantities 

collectively comprise four dimensions: N, m, s and A. The Buckingham 

Π theorem tells us that the underlying physics describing each of the 

two dependent variables, force and torque, can be characterized using 

just three dimensionless Π groups12, with Π0 expressed as a function 

of Π1 and Π2 (see Table 1 and Supplementary Information 1). The Buck-

ingham Π theorem does not tell us anything about the form of these 

equations; that requires empirical characterization.

To derive functions that characterize eddy-current-induced forces 

and torques at ±z and ρ, we conducted electromagnetic finite-element-

analysis (FEA) simulations using Ansys Maxwell software across a  

range of parameters (see Fig. 2a and Supplementary Information 2). 

It is from this FEA that we determined the non-negligible force and 

torque components shown in Fig. 1. We confirmed the expected  

symmetry of the ±z configurations, in which the force acts to push  

the sphere away from the rotating dipole, and the torque acts to rotate 

the sphere in the same direction as ω. At the ρ configuration, one  

component of the force pushes the sphere away from the rotating 

dipole, another component of the force pushes the sphere in the 

i i iˆ = ˆ × ˆ
ϕ z ρ direction, and the torque acts to rotate the sphere opposite 

to ω.

When visualizing the resulting non-dimensional Π groups (see 

Fig. 2b and Supplementary Information 3), we observed that at rela-

tively far distances (Π2 > 1.5, approximately), the relationship between 

log10(Π0) and log10(Π2), for a given Π1, is accurately described by a linear 

model, with a slope of −6 for torques and −7 for forces (these values 

are analogous to what is expected from magnetic torques and forces 

imparted by a magnetic dipole on a soft-magnetic object), and with 

an intercept that is a function of Π1. The final unified model is of the  

form
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The model coefficients c1 to c4, determined through least-squares 

regression, are provided for ‘FEA’ in Supplementary Table  2 

of Supplementary Information 3. This model, although empirically 

determined, is well behaved in the sense that Π0 → 0 (that is, f → 0 or 

τ → 0) as Π1 → 0 (for example, as ω → 0 or σ → 0) or as Π2 → ∞ (for example, 

as d → ∞), as expected from first principles. At relatively close distances, 

this model underpredicts the data, making the model conservative.

Next, we experimentally verified the model described above with 

an experimental set-up comprising a cubic NdFeB permanent magnet 

rotated by a direct-current (d.c.) motor, a solid copper sphere mounted 

on a 6-DOF force-torque sensor, and a 3D-printed pegboard that enables 

the copper sphere to be placed in the three configurations of interest 

(see Fig. 2c and Supplementary Information 4). A sample of the resulting 

data with regression models is presented in Fig. 2d. Using the complete 

experimental data set, we fit the model of equation 2, with the resulting 

coefficients provided under ‘Experiments’ in Supplementary Table 2 

of Supplementary Information 3.

As we compare the experimental and FEA results across configura-

tions and force-torque components, we find good agreement in the 

overall trends. The FEA-based model tends to overpredict the experi-

mental values of Π0 by a factor of 1.5–5.5. This discrepancy could be due 

to impurities in the copper sphere or from using a cubic permanent 

magnet. However, field distortions from a cubic magnet relative to a 

point-dipole model are typically less than 5% in our region of implemen-

tation21. It has also been previously noted that Ansys Maxwell tends to 

overpredict experimental results in similar situations10. Considering 

these factors, we suggest using the experiment-based model as a lower 

bound and the FEA-based model as an upper bound for Π0. Extrapolat-

ing the model beyond the values of Π1 and Π2 considered should be 

done with caution.

We now describe a framework for using the force-torque model 

developed above to perform dexterous manipulation with 

magnetic-dipole sources surrounding the conductive object of inter-

est. This can take the form of stationary or mobile permanent magnets 

or electromagnets. Here, we focus exclusively on the case of stationary 

electromagnets, in which both m and ω can be controlled, but with 

their respective maximum values coupled due to the low-pass-filtering 

effect of induction. We treat m and the direction of ω as the control 

variables and simply use a constant angular-velocity magnitude ω. We 

assume n electromagnetic dipole-field sources, with the ith source 

located at position ieP  and having an orientation described by a rotation 

matrix wRei with respect to some world frame22. We assume a single 

conductive object located at position cP  and having an orientation 

described by wRc and a displacement vector d P P= −i ic e  with respect to 

each source.

To use the model in equation 2, we recast forces and torques in 

the forms f = Π0r
−4μ0m

2 and τ = Π0r
−3μ0m

2, respectively. Each source 

is given a model frame, described by a relative rotation matrix eiRmi, 

defined such that its z-axis is parallel to di. In the ±z configurations, 

ω is parallel or antiparallel to the model-frame z-axis, and in the 

ρ configuration ω is any vector orthogonal to the z-axis, with the 
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Fig. 1 | Induced forces and torques on a conductive sphere in three 

canonical positions relative to a rotating magnetic dipole. The dipole is 

spinning with angular velocity ω. Force and torque arrows are shown for all 

non-negligible components, with arrowheads depicting the actual directions 

corresponding to the ω shown.

Table 1 | Induced force and torque, and the six independent 
parameters that affect them

Parameter Units Π group

Force induced on sphere f N Π0 = fr4µ−1m−2

Torque induced on sphere τ N m Π0 = τr3µ−1m−2

Sphere electrical conductivity σ N−1 m−2 s A2 Π1 = σµωr2

Distance from dipole to sphere d m Π2 = dr−1

Sphere radius r m

Dipole strength m A m2

Frequency of dipole rotation ω s−1 (Hz)

Environment magnetic permeability µ N A−2



Nature | Vol 598 | 21 October 2021 | 441

ambiguity expressed as a rotation about the z-axis by some γ using a 

rotation matrix Rotz(γ). Each source then has three discrete actions 

(a ∈ {1, 2, 3}, respectively) that can be performed on the conductive 

object, where each action is a specific force-torque wrench with a 

controllable magnitude:
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where wRmi = wRei
eiRmi and the tilde operator (~) indicates the respective 

force-torque value when m = 1.

With n sources, there are 3n possible actions, with m and γ as the 

control variables in general. Analogous to magnetic manipulation 

of soft-magnetic objects, superposition does not apply here, so we 

implement these actions one at a time, for a brief duration of time. To 

get as close as possible to the desired wrench, we solve the following 

constrained optimization problem:
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where the Q-norm enables relative weighting between force and torque 

(that is, relative penalties on position error versus orientation error). 

We efficiently find the optimal inputs using a parallelized, gradient-

based solver.

We first validated our manipulation framework in a numerical  

simulation of microgravity in which six dipole-field sources surround 

and dexterously manipulate a copper sphere (see Supplementary 

Information 6). We performed 3-DOF position control, with and with-

out 3-DOF orientation control (see Fig. 3a–d). Experimental valida-

tion was then performed using Omnimagnets19, which are designed 

to serve as approximate dipole-field sources, each comprising three 

co-located and mutually orthogonal electromagnets. A copper sphere 

floated in a raft in a container of water above four Omnimagnets (see 

Fig. 3e and Supplementary Information 7), serving as an Earth-based 

microgravity simulator with 3-DOF mobility in a horizontal plane. We 

performed 2-DOF position control, with and without 1-DOF orientation 

control (see Fig. 3f, g).

With our proposed method, 6-DOF manipulation of conductive 

non-magnetic spheres is achievable. In contrast, 6-DOF manipula-

tion of ferromagnetic objects is only possible for complex geom-

etries23, with 5-DOF typical of most simple geometries and only 

3-DOF achievable for soft-magnetic spheres1. The forces and tor-

ques generated using the proposed method are likely to be orders 

of magnitude smaller than those generated using ferromagnetism 

with comparable parameters, as indicated by the relatively slow 

manipulation demonstrations of Fig. 3, but they enable manipulation 

of objects that ferromagnetic methods do not (further discussion 

in Supplementary Information 8).

Manipulation with six DOF of ferromagnetic objects can be accom-

plished using eight static electromagnets24,25, or eight permanent 

magnets at fixed positions with each having the ability to rotate 

about an axis orthogonal to its dipole axis26. Our numerical simula-

tions showed that six rotating-dipole sources is sufficient for 6-DOF 

manipulation of conductive spheres; however, this number should 

not be assumed to be necessary. Since all wrenches have a repulsive 

force component, when manipulating an unconstrained object, the 

sources must surround the object to some degree. Analysing the 

manipulability of different numbers and arrangements of sources is 

left as an open problem.

In terms of modelling, thus far we have only considered solid 

spheres. A natural next step would be to consider hollow spheres and 

other simple geometric objects (such as cuboids or cylinders), which 

is likely to require more complicated models. It is unclear whether 

the best approach will be to explicitly model these objects or whether 

the sphere model can be used in conjunction with learning-based 

approaches for control. Although we have shown that a simplified 

approach using canonical positions and actuating one dipole-field 

source at a time is sufficient to perform dexterous manipulation, 
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Fig. 2 | Typical numerical and experimental results for force-torque 

characterization. For clarity, only a subset of the data for a single component 

τzz is shown. a, Rendering of FEA simulation. b, FEA data with unified regression 

model. c, Top view of experimental set-up. d, Experimental data with unified 

regression model. Unified FEA regression model with new FEA data not 

included in the training set.
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it is probably suboptimal. A general wrench model for arbitrary 

sphere positions relative to the rotating dipole, and understand-

ing the nonlinear nature of superposition, are both left as open  

problems.
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