
Listen to Your Key: Towards Acoustics-based
Physical Key Inference

Soundarya Ramesh
sramesh@comp.nus.edu.sg

Department of Computer Science
National University of Singapore

Harini Ramprasad
harinir@comp.nus.edu.sg

Department of Computer Science
National University of Singapore

Jun Han
junhan@comp.nus.edu.sg

Department of Computer Science
National University of Singapore

ABSTRACT

Physical locks are one of the most prevalent mechanisms for secur-

ing objects such as doors. While many of these locks are vulnerable

to lock-picking, they are still widely used as lock-picking requires

specific training with tailored instruments, and easily raises suspi-

cion. In this paper, we propose SpiKey, a novel attack that signifi-

cantly lowers the bar for an attacker as opposed to the lock-picking

attack, by requiring only the use of a smartphone microphone to in-

fer the shape of victim’s key, namely bittings (or cut depths) which

form the secret of a key. When a victim inserts his/her key into the

lock, the emitted sound is captured by the attacker’s microphone.

SpiKey leverages the time difference between audible clicks to ulti-

mately infer the bitting information, i.e., shape of the physical key.

As a proof-of-concept, we provide a simulation, based on real-world

recordings, and demonstrate a significant reduction in search space

from a pool of more than 330 thousand keys to three candidate keys

for the most frequent case.

CCS CONCEPTS

· Security and privacy→ Side-channel analysis and counter-

measures; · Hardware → Sound-based input / output.

KEYWORDS

Side-channel Attacks; Acoustic Inference; Physical Key Security

ACM Reference Format:

Soundarya Ramesh, Harini Ramprasad, and Jun Han. 2020. Listen to Your

Key: Towards Acoustics-based Physical Key Inference. In Proceedings of the

21st International Workshop on Mobile Computing Systems and Applications

(HotMobile ’20), March 3ś4, 2020, Austin, TX, USA. ACM, New York, NY,

USA, 6 pages. https://doi.org/10.1145/3376897.3377853

1 INTRODUCTION

Physical locks are the most prevalent means of securing objects

including doors and mailboxes. Among many types of locks, pin

tumbler locks are the most commonly used, with lock manufac-

turers Schlage and Yale dominating the market [6, 9, 16]. Despite

the rise in digital locks, conventional pin tumblers continue to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

HotMobile ’20, March 3ś4, 2020, Austin, TX, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7116-2/20/03. . . $15.00
https://doi.org/10.1145/3376897.3377853

Figure 1: Figure depicts SpiKey attack scenario. Attacker

records the sound of victim’s key insertion to infer the

shape, or łsecretž, of the key.

be widely deployed to secure homes and office spaces around the

world [24].

However, there are several known attacks on the pin tumbler

locks, with lock picking being one of the most widely known tech-

niques [17, 18]. This requires an attacker to insert tailored in-

struments into the lock and manipulate the internal components

(known as pins) of the locks to unlock without possession of a

key. Nonetheless, lock picking has significant limitations, which

is part of the reason why pin tumbler locks are still widely used.

For instance, lock picking requires specific training and practice,

and easily raises suspicion because it requires the attacker to insert

into the lock a pair of specialized tools which is inevitably notice-

able [2, 3]. In addition, lock picking inherently grants a single entry

upon successful picking and also leaves traces because the picking

scratches the surface of the pins [5, 22].

In light of these limitations, we pose the question ś canwe design

an attack that is robust against the aforementioned challenges?

To answer this question, we present SpiKey, a novel attack that

utilizes a smartphone microphone to capture the sound of key

insertion/withdrawal to infer the shape of the key, i.e., cut depths

(referred to as bittings) that form the łsecretž of the key, solely by

the captured acoustic signal. For example, as illustrated in Figure 1,

as a victim inserts the key into the lock, an attacker walking by the

victim uses his/her smartphone microphone to capture the sound.

However, it is extremely challenging to extract information from

the sound to infer fine-grained bitting depths which differ by 15

milli-inch (0.381 mm). To solve this challenge, SpiKey captures and

utilizes the time difference of audible clicks ś that occur when ridges

of a key (that form due to cuts of key bittings) come in contact with

the pins inside the lock ś to infer distances between the ridges given

a constant speed of key insertion. Subsequently, SpiKey leverages a

sequence of these inferred inter-ridge distances to ultimately infer

the bittings, or secret, of the key.

Because only requiring a smartphone microphone, SpiKey yields

many advantages such as enabling a layperson to launch the at-

tack, in addition to significantly reducing suspicion. Moreover, as

SpiKey infers the shape of the key, it is inherently robust against

anti-picking features in modern locks [17], and grants multiple

entries without leaving any traces. Overall, we make the following

contributions:

• We introduce a novel attack, SpiKey, to infer physical keys

with only a smartphone microphone.

• We present the design of the acoustics-based physical key in-

ference attack by introducing and solving the corresponding

challenges.

• We simulate based on real-world recordings and demonstrate

significant reduction in search space from a pool of more

than 330 thousand possible keys to three candidate keys for

the most frequent cases.

2 LOCK AND KEY CONSTRUCTION

We briefly explain the construction of a pin tumbler lock and its

key, as well as how the clicking sound occurs.

Pin tumbler lock comprises a set of six top and bottom pins

(p1, ..., p6), each connected by a spring, hence moves vertically as a

key is inserted. Bottom pins vary in lengths which correspond to

the cut depths of a matching key. When such a key is inserted, the

bottom pins are correctly positioned such that the top pins align

on a shear line, allowing the key to turn, and ultimately unlocking

the lock (depicted in Figure 2(a)). Adjacent pins are separated by

an inter-pin distance (αp).

Key comprises six bitting positions. For each position (bi), the

cut or bitting depth constitutes the łsecretž. Bitting depth is a dis-

crete value ranging from 0 to bdepth (which ranges between 7-10

depending on key specifications). The bitting depths, b1b2 . . .b6,

are together referred to as keycode (e.g., 393597). Figure 2(b) illus-

trates these parameters. The increase in successive depths (on the

order of sub-millimeters) is referred to as increment (αd). Width of

each bitting position is root cut (αw) and the distance between adja-

cent bittings is bit spacing, which also equals the inter-pin distance,

αp . Cut angle (θ) is the inclination between the two inclines, origi-

nating from the bitting positions. In addition, there is a constraint

on the maximum permissible difference between adjacent bitting

depths in order to prevent the inclines from reducing the root cut

dimension, referred to as Maximum Adjacent Cut Specification, or

MACS (µ) [22]. In this paper, we refer to one of the most widely

Key shift

Before “click”

After “click”
r6

b5

0

. . .

(b)

(a)

(c)

Key Insertion

⍺p

⍺w ⍺d" 1

9

Figure 2: (a) With a correct key inserted, pins align on a

shear line and unlocks the lock; (b) depicts key construction

parameters; and (c) depicts key insertion producing click

sound as a pin slips off of a key ridge.

used key type, Schlage 6-pin C-keyway keys (bdepth = 10, µ = 7).

Hence, keycodes such as 230845 are not permitted because it has

adjacent bitting depths that are greater than µ (e.g., difference of 0

and 8 > µ = 7). While an entire key space is 106 keys, MACS along

with the bitting rules reduce it to 586, 584 [20]. We take advantage

of such reduction in key space as SpiKey ultimately needs to reduce

the key space to a subset of a small number of candidate keys.

Ridges (ri) form as the inclines (due to bitting depths) converge

(Figure 2(b)). During key insertion, SpiKey utilizes click sound that

occurs as a pin slips off the top of a ridge (Figure 2(c)). Due to the

presence of multiple ridges and pins, we obtain a series of clicks

introducing more challenges. SpiKey utilizes the clicks to ultimately

infer the distance between adjacent ridges as inter-ridge distance (di)

as all keys conform to the aforementioned construction parameters.

3 SPIKEY DESIGN

We present the design of SpiKey and illustrate the steps involved

(Figure 3). When a victim inserts a key into the door lock, an at-

tacker walking by records the sound with a smartphone micro-

phone. SpiKey detects the timing of these clicks from the sound

(Section 3.1). We then utilize the click timestamps to compute the

adjacent inter-ridge distances given a constant insertion speed

(Section 3.2). We use the computed distances to infer the relative

differences of adjacent bitting depths (Section 3.3), which SpiKey

exploits to ultimately obtain a small subset of candidate keys that

includes the victim’s keycode (Section 3.4).

3.1 Click Detection

We detect all click events from the audio recording. To provide a

better understanding, we posted a video of a corresponding spec-

trogram of key insertion recording at http://bit.ly/2JciYB6. Prior to

detecting clicks, we reduce the impact of low-frequency ambient

noise, by subjecting it to a high-pass filter, to retain only frequen-

cies above 15kHz that contains information about the clicks. Sub-

sequently, we identify the starting point of each click, or its onset,

S∆ = (s2 s3 s4 s5

b1

)

b2

b3 b4 b5
b6

Rd = (d1 d2 d3 d4 d5)

d1 d2 d3 d4 d5

Inter-Ridge Distance

Inter-Bitting Sequence

Click Time Series

Click Detection

Audio Time Series

(a) (b)

Key

Search-Space

Candidate

Keys

Search-Space Reduction (c)(d)

Raw Audio

Candidate

Keys

(Sec 3.4) (Sec 3.3)

(Sec 3.2)(Sec 3.1)

Victim’s key

(Kcandidate)

(Kpool)

Figure 3: Figure depicts steps of SpiKey design to infer vic-

tim’s key from audio recording of key insertion.

in the pre-processed signal by applying change-point detection

algorithm [12] on short time-windows around the computed peaks

to account for their millisecond granularity. It finds the least sum of

standard deviations across two regions that transition from low to

high amplitude. We construct a click time series from the obtained

click onsets (Figure 3(a)).

3.2 Inter-Ridge Distance Computation

We now take the click time series to infer the inter-ridge distances

(Figure 3(b)). As a lock contains six pins, it adds additional chal-

lenges. For ease of explanation, we first present our approach for

a simple but hypothetical single-pin case (i.e., a lock containing

only one pin) and defer our explanation of the actual lock with

all six pins (i.e., multiple-pin case) to Section 3.5 as our approach

generalizes.

In a single-pin case, timestamps in the click time series cor-

respond to interactions of a single pin (p1) with all ridges of a

key. Upon obtaining all the timestamps, t1 to t6, corresponding

to clicks produced by ridges, r1 to r6, respectively, we compute

a sequence of inter-ridge distance, Rd = (d1,d2,d3,d4,d5) as

(t2 − t1, t3 − t2, t4 − t3, t5 − t4, t6 − t5) · skey , where skey , or speed

of key insertion, can be computed from other parameters. We also

defer the explanation of computing skey in the multiple-pins cases

to Section 3.5.

3.3 Inter-Bitting Sequence Computation

From a sequence of inter-ridge distances, Rd , we cannot directly

compute bitting depths as there is no direct correlation between the

two. However, there exists a correlation between Rd and relative

differences of adjacent bitting depths. We define and compute inter-

bitting sum capturing bitting differences from Rd , as a step towards

identifying the candidates keys, i.e., keycode formed by multiple

bitting depths.

3.3.1 Correlation between Inter-Ridge Distances and Bitting Depth

Differences. Recall from Section 2 that the formation of a ridge is

due to inclines arising from its two adjacent bitting depths. In this

regard, we observe that the precise location of the ridge is affected

3 4

9

3 4 5

3 4
1

da

db

dc

da < db < dc

b1 b2

b3

db

db

db

3 4 5

5 4 3

8
5

2

. . .

(a) (b)

Inter-bitting Sum Si = 0

(b2 - b3)

(4 - 9) = -5

(4 - 5) = -1

(4 - 1) = 3

-5 < -1 < 3
correlates

(b2 - b1)

+(b2 - b3)

(4 - 5) + (4 - 3)

= 0

(4 - 3) + (4 - 5)

= 0

(5 - 8) + (5 - 2)

= 0

r2

r3

Figure 4: Figure depicts (a) the correlation between inter-

ridge distances, d , and bitting depth differences (bi − bi+1)

ś e.g., as the value of (b2 − b3) increases so does the distance

between ridges, r2 and r3; (b) different bitting triplets with

equal inter-ridge distance ofdb yield equal inter-bitting sum

(which is 0 in this case).

by difference in depth between these adjacent bitting positions,

which in-turn affects inter-ridge distance. To see why, consider the

bitting triplet, (b1,b2,b3), and the corresponding ridges in-between,

r2 and r3 (Figure 4(a)). Inter-ridge distance between r2 and r3 in-

creases with increase in bitting depth difference, (b2−b3). Similarly,

this distance also increases with increase in (b2 − b1). Hence, in

general, we observe that there exists a correlation between inter-

ridge distance, di and the two bitting depth differences, (bi − bi−1)

and (bi − bi+1).

Inter-bitting sum (si): For a bitting triplet (bi−1,bi ,bi+1), we

define inter-bitting sum, si , as the sum of bitting differences,

i.e., si = (bi − bi−1) + (bi − bi+1). For example, the triplet (3, 4, 9)

corresponds to an inter-bitting sum of (4−3)+ (4−9), which equals

−4. Likewise, triplets (3, 4, 5) and (3, 4, 1) yield inter-bitting sums,

0 and 4 respectively. Values of inter-bitting sum are discrete, and

constrained by the MACS, µ. For example, if µ = 7 (i.e., (bi − bi−1)

ranges from −7 to 7), inter-bitting sum is constrained to a total of

29 possible values from −14 to 14, where, a smaller si corresponds

to a shorter inter-ridge distance, di . Many bitting triplets can corre-

spond to the same inter-bitting sum (e.g., see Figure 4(b) depicting

multiple triplets for si = 0).

However, as we do not know the bitting depth, we use the cor-

relation of the inter-ridge distances, di , and the bitting differences

to compute si , or sum of bitting differences. Specifically, si is re-

lated to di as: si = (di − αp) · (
2 cot(θ/2)

αd
). Due to the consistency in

key-cutting parameters (bit spacing (αp), cut angle (θ), and depth

increment (αd)), we can compute inter-bitting sum, si , directly from

the inter-ridge distance, di , that later caters to inferring candidate

bitting depths.

3.3.2 Computing Inter-Bitting Sequence. We compute a sequence

of si values, from the inter-ridge distances, di , in Rd . As an inter-

bitting sum, si , constrains the value of its corresponding bitting

triplet, a sequence of such sums constrains all triplets in a key,

thereby significantly reducing the set of candidate keys. We define

such a sequence as inter-bitting sequence, S∆. Figure 3(c) depicts

S∆ = {s2, s3, s4, s5}, where each si correlates with bitting triplets

(b1,b2,b3), (b2,b3,b4), (b3,b4,b5) and (b4,b5,b6), respectively.

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

tαp
<latexit sha1_base64="Kn10QkTR7FGRng+0d1vryomcsdk=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcB52VsW2LC3d9md05AL/8PGQmNs/S92/hsXuELBl0zy8t5MZuaFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ITVcCsWbKFDyTqI5jULJ2+H4Zua3H7k2Ilb3OEm4H9GhEgPBKFrpoYJB1qMyGdEgmVaCUtmtunOQVeLlpAw5GkHpq9ePWRpxhUxSY7qem6CfUY2CST4t9lLDE8rGdMi7lioaceNn86un5NwqfTKItS2FZK7+nshoZMwkCm1nRHFklr2Z+J/XTXFw5WdCJSlyxRaLBqkkGJNZBKQvNGcoJ5ZQpoW9lbAR1ZShDapoQ/CWX14lrVrVc6veXa1cv87jKMApnMEFeHAJdbiFBjSBgYZneIU358l5cd6dj0XrmpPPnMAfOJ8/LZSSSA==</latexit><latexit sha1_base64="Kn10QkTR7FGRng+0d1vryomcsdk=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcB52VsW2LC3d9md05AL/8PGQmNs/S92/hsXuELBl0zy8t5MZuaFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ITVcCsWbKFDyTqI5jULJ2+H4Zua3H7k2Ilb3OEm4H9GhEgPBKFrpoYJB1qMyGdEgmVaCUtmtunOQVeLlpAw5GkHpq9ePWRpxhUxSY7qem6CfUY2CST4t9lLDE8rGdMi7lioaceNn86un5NwqfTKItS2FZK7+nshoZMwkCm1nRHFklr2Z+J/XTXFw5WdCJSlyxRaLBqkkGJNZBKQvNGcoJ5ZQpoW9lbAR1ZShDapoQ/CWX14lrVrVc6veXa1cv87jKMApnMEFeHAJdbiFBjSBgYZneIU358l5cd6dj0XrmpPPnMAfOJ8/LZSSSA==</latexit><latexit sha1_base64="Kn10QkTR7FGRng+0d1vryomcsdk=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcB52VsW2LC3d9md05AL/8PGQmNs/S92/hsXuELBl0zy8t5MZuaFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ITVcCsWbKFDyTqI5jULJ2+H4Zua3H7k2Ilb3OEm4H9GhEgPBKFrpoYJB1qMyGdEgmVaCUtmtunOQVeLlpAw5GkHpq9ePWRpxhUxSY7qem6CfUY2CST4t9lLDE8rGdMi7lioaceNn86un5NwqfTKItS2FZK7+nshoZMwkCm1nRHFklr2Z+J/XTXFw5WdCJSlyxRaLBqkkGJNZBKQvNGcoJ5ZQpoW9lbAR1ZShDapoQ/CWX14lrVrVc6veXa1cv87jKMApnMEFeHAJdbiFBjSBgYZneIU358l5cd6dj0XrmpPPnMAfOJ8/LZSSSA==</latexit>

Time

Time

Time

(a) Original Time Series

(b) Shifted Time Series

(c) Single-pin Time Series Tsingle

* ClickA: p1 contacts r1 ClickB : p2 contacts r1

ClickA ClickB

tαp
<latexit sha1_base64="Kn10QkTR7FGRng+0d1vryomcsdk=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcB52VsW2LC3d9md05AL/8PGQmNs/S92/hsXuELBl0zy8t5MZuaFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ITVcCsWbKFDyTqI5jULJ2+H4Zua3H7k2Ilb3OEm4H9GhEgPBKFrpoYJB1qMyGdEgmVaCUtmtunOQVeLlpAw5GkHpq9ePWRpxhUxSY7qem6CfUY2CST4t9lLDE8rGdMi7lioaceNn86un5NwqfTKItS2FZK7+nshoZMwkCm1nRHFklr2Z+J/XTXFw5WdCJSlyxRaLBqkkGJNZBKQvNGcoJ5ZQpoW9lbAR1ZShDapoQ/CWX14lrVrVc6veXa1cv87jKMApnMEFeHAJdbiFBjSBgYZneIU358l5cd6dj0XrmpPPnMAfOJ8/LZSSSA==</latexit><latexit sha1_base64="Kn10QkTR7FGRng+0d1vryomcsdk=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcB52VsW2LC3d9md05AL/8PGQmNs/S92/hsXuELBl0zy8t5MZuaFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ITVcCsWbKFDyTqI5jULJ2+H4Zua3H7k2Ilb3OEm4H9GhEgPBKFrpoYJB1qMyGdEgmVaCUtmtunOQVeLlpAw5GkHpq9ePWRpxhUxSY7qem6CfUY2CST4t9lLDE8rGdMi7lioaceNn86un5NwqfTKItS2FZK7+nshoZMwkCm1nRHFklr2Z+J/XTXFw5WdCJSlyxRaLBqkkGJNZBKQvNGcoJ5ZQpoW9lbAR1ZShDapoQ/CWX14lrVrVc6veXa1cv87jKMApnMEFeHAJdbiFBjSBgYZneIU358l5cd6dj0XrmpPPnMAfOJ8/LZSSSA==</latexit><latexit sha1_base64="Kn10QkTR7FGRng+0d1vryomcsdk=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5I5GS6KNJSbykcB52VsW2LC3d9md05AL/8PGQmNs/S92/hsXuELBl0zy8t5MZuaFiRQGXffbWVvf2NzaLuwUd/f2Dw5LR8ctE6ea8SaLZaw7ITVcCsWbKFDyTqI5jULJ2+H4Zua3H7k2Ilb3OEm4H9GhEgPBKFrpoYJB1qMyGdEgmVaCUtmtunOQVeLlpAw5GkHpq9ePWRpxhUxSY7qem6CfUY2CST4t9lLDE8rGdMi7lioaceNn86un5NwqfTKItS2FZK7+nshoZMwkCm1nRHFklr2Z+J/XTXFw5WdCJSlyxRaLBqkkGJNZBKQvNGcoJ5ZQpoW9lbAR1ZShDapoQ/CWX14lrVrVc6veXa1cv87jKMApnMEFeHAJdbiFBjSBgYZneIU358l5cd6dj0XrmpPPnMAfOJ8/LZSSSA==</latexit>

Shifted by

Figure 5: Figure depicts (a) a total of 21 clicks from six pins

(e.g., p1 with six ridges, ..., p6 with one ridge); (b) a shift of

the original time series by a constant time offset, tαp ; and (c)

subtracting (b) from (a) to reduce the problem to a simple

single-pin case.

3.4 Key Search Space Reduction

Taking this inter-bitting sequence, S∆, we search for a subset of

candidate keys (Figure 3(d)). As each inter-bitting sum, si , is a

function of three adjacent bitting depths, by knowing the depths

of first two bitting positions, we can deterministically obtain all

other depths. For example, let S∆ = (4,−6, 4, 2), and let us choose

(b1,b2) = (4, 6). Then as s2 = (b2 − b1) + (b2 − b3), we obtain

b3 = 2b2 − b1 − s2 = 2 · 6 − 4 − 4 = 4. As we know, (b2,b3), we

can use their values, along with s3, to obtain b4. By finding all

remaining depths in this manner, we obtain the keycode 464886.

However, we do not know the depths of the first two bitting po-

sitions. Hence, we compute all possible values for b1 and b2, and

iteratively compute all remaining depths, based on S∆. We further

discard all candidate keys that have invalid bitting depths (i.e., that

do not satisfy the constraints of key specification such as MACS

and bitting rules [20]), to finally yield a small subset of candidate

keys.

3.5 Handling Multiple-Pin Case

Recall that aforementioned examples were for a simplified but

hypothetical single-pin case (i.e., a lock which contains only one

pin). We now explain how we solve the case for an actual 6-pin

lock (i.e., multiple-pin case).

3.5.1 Translating To A Single-Pin Case. As ridges are not equally

spaced in the key, clicks due to different pins may occur at slightly

different times. This results in an array of clicks, as depicted in

Figure 5(a). More specifically, there are a total of 21 clicks because

p1 comes in contact with all six ridges (r1, ..., r6) to yield six clicks,

while p2 comes in contact with first five ridges to yield five clicks,

and so on. In essence, the click time-series in the multiple-pin

case, is equivalent to several single-pin click time-series interleaved,

where each pin yields a similar but temporally offset click time-

series. This offset which arises due to distance between two adjacent

pins, is equal to the time taken by a ridge to move between the

At t
check

1

At t
check

2

* ClickA: p1 contacts r1 ClickC : p1 contacts r2ClickB : p2 contacts r1

t
1
t
check

1

Time

t
1
t
check

1

Time

ClickA

t
2
t
3 t

check
2

ORt
2

ClickB

ClickC

OR

ClickC

ClickB

t
3

ClickA

Figure 6: To identify the correct inter-pin time interval, tαp ,

we consider checkpoints tcheck1 and tcheck2 , to obtain times-

tamps of clicks. By tcheck1 , ClickA occurs (i.e., p1 contacts r1).

By tcheck2 , both ClickB and ClickC occurs (i.e., p2 contacts r1,

and p1 contacts r2). However, the order in which these two

clicks occur is unknown.

two, which we refer to as inter-pin time interval, tαp (Figure 5(a)).

To simplify the problem, we first create a shifted version of the

original click time-series that occurs tαp after it (Figure 5(b)). All

clicks (excluding clicks due to p1) in the original time series, have

clicks that coincide (i.e., occur at the same time) in the shifted

time-series. On eliminating all coinciding clicks in the original

time-series, we retain clicks only corresponding to p1, and hence

obtain a single-pin time series. We notate this retained time-series

as Tsinдle (Figure 5(c)).

3.5.2 Computing Inter-Pin Time Interval (tαp). To create the afore-

mentioned shifted time-series as depicted in Figure 5(b), however,

we need the inter-pin time interval, tαp . Time interval between first

click of p1 (with r1) and first click of p2 (also with r1) equals tαp .

We compute tαp , by obtaining the timestamps of both these clicks.

Correspondingly, the click time-series yields a set of timestamps

{t1, t2, . . . , t21}. In order to obtain the click timestamps, we con-

sider two time checkpoints, tcheck1 and tcheck2 , which indicate the

time at which p1 and p2 both rest on the first bitting position, b1,

respectively (Figure 6). By checkpoint tcheck1 , the only completed

click isClickA (first click of p1) at t1. By checkpoint tcheck2 , the ad-

ditional completed clicks areClickB (p2 contacts r1), andClickC (p1
contacts r2), although their order of occurrence is unknown. Owing

to this uncertainty, the timestamp corresponding toClickB is either

t2 or t3 (and vice versa forClickC). Hence, resulting two candidates

for tαp are (t2 − t1) and (t3 − t1). Subsequently, we obtain both their

respective single-pin click time-series, Tsinдle , and choose the one

with six timestamps, to identify the correct tαp value.

3.5.3 Computing Speed of Key Insertion (skey). Recall from Sec-

tion 3.2 that we also need to compute the speed of key insertion,

skey , to compute the inter-ridge distance. We compute skey =

αp/tαp , as we now know both of these values.

Figure 7: Histogram depicts number of elements in

Kcandidate obtained for all 330, 424 keys in Kpool .

3.5.4 Overlap Filter. For some keys, upon translating the multiple-

pin case to a single-pin case as described above, they may result

in less than six timestamps in the translated Tsinдle , rendering

the aforementioned methods insufficient. This is because clicks of

multiple pins coincide, or overlap, when distance between ridges

happens to be a multiple of inter-pin spacing, αp . To solve this

problem, SpiKey implements an Overlap Filter after the Click De-

tection module, by checking if the total number of clicks equals to

21. SpiKey proceeds with the attack if the detected clicks pass this

filter. We further discuss the implications of this filter in Section 5.

3.6 Handling Missing Ridges

Thus far, we utilize the clicks of ridges to reduce the search space

in inferring the victim’s key. However, there are a small proportion

of keys, in which certain ridges are absent. This happens when

the inclines arising from two adjacent bitting positions, converge

beyond the key blade height (i.e., maximum height allowed within

a key) and create a łplateauž. In such cases, key insertion and with-

drawal result in clicks at different ends of the plateau respectively

(as clicks only occur when a key pin falls off an elevated position).

We solve this problem by taking an average of inter-ridge distances

obtained in insertion and withdrawal cases.

4 FEASIBILITY STUDY

We now present our feasibility study and its results.

4.1 Simulation Setup and Implementation

We perform our analysis on Schlage 6-Pin C-keyway [15]. We define

Kpool as the set of all keys that are vulnerable to our attack, and

Kcandidate as the small subset of keys that is output by SpiKey,

which guarantees to contain the correct victim key.Kpool = 330, 424

keys as SpiKey filters overlaps (Section 3.5.4). For all keys in Kpool ,

we model their real shape (i.e., identify bitting depths and ridges),

based on key specifications, and obtain inter-ridge distances from

0.0310 − 0.2814 inches. As clicks occur from real-world acoustic

signals as depicted in Figure 3(a), we simulate such click time-

series for all possible victim keys in the pool, and obtain their

corresponding set of candidate keys,Kcandidate . We set the speed

of key insertion/withdrawal, skey to be 1 inch/s in all cases.

4.2 Preliminary Results

As a first step towards feasibility study, we evaluate SpiKey based

on the number of elements in the set of candidate keys,Kcandidate ,

which are reduced from Kpool . Figure 7 depicts a histogram of the

number of elements inKcandidate for all keys inKpool . Given the

click time-series of all 330, 424 keys as separate input to SpiKey,

we are able to provide for each input a subset of candidate keys,

where the number of elements range from 1 − 15. This means that,

on average, SpiKey is able to provide 5.10 candidate keys guaran-

teeing inclusion of the correct victim key from a total of 330, 424

keys, with 3 candidate keys being the most frequent case. This his-

togram demonstrates the impact of SpiKey as we further observe

that SpiKey guarantees reducing more than 94% of keys (313, 780

keys) to less than 10 candidate keys.

5 DISCUSSION

We now present relevant discussion points of SpiKey.

Impact of SpiKey: We demonstrate the impact of SpiKey as

it generalizes to different types (i.e., make and model) of keys as

long as insertions yield clicks and the keys conform to particular

specifications, even though we only analyzed on a single type,

namely Schlage 6-pin C-keyway. Furthermore, we also demonstrate

the impact of SpiKey despite reduced number of vulnerable keys.

Recall from Section 3.5.4 that SpiKey only proceedswith the attack if

multiple-pins do not create any overlapped clicks, thereby reducing

the total number of vulnerable keys to 56.3% (330, 424 of 586, 584

keys), which makes more than half of all possible keys vulnerable.

Real-World Considerations: An attacker needs to consider

the following to deploy SpiKey. First, we assume that the attacker

has the knowledge of the type of lock and key by examining the

exterior of the lock. Second, we assume that the speed does not

vary from start to end of a key insertion (or withdrawal) in order to

correctly infer the inter-ridge distances. This assumption may not

always hold in real-world, hence, we plan to explore the possibility

of combining information across multiple insertions.

Extending Attack Model: As another part of future work, we

may extend the threat model to construct more powerful attacks.

We may exploit other approaches of collecting click sounds such as

installingmalware on a victim’s smartphone or smartwatch, or from

door sensors that contain microphones [7, 21] to obtain a recording

with higher signal-to-noise ratio. We may also exploit long distance

microphones to reduce suspicion [1, 19]. Furthermore, we may

increase the scalability of SpiKey by installing one microphone in

an office corridor and collect recordings for multiple doors.

6 RELATED WORK

Various attacks on physical lock systems have been proposed in

the past [4, 8, 13, 14]. A popular attack on pin tumbler locks is lock

picking, where the bottom pins are raised up to the shear line using

a pair of specialized tools, called pick and tension wrench, which

are inserted into the keyway [17, 18]. Another subcategory of lock

picking is lock bumping, which makes use of tools such as bump key

and a hammer, to separate the top and bottom pins at the shear line,

for a split second [23, 25]. SpiKey is inherently robust against many

of the drawbacks of lock picking and bumping, because SpiKey only

involves passively recording the sound of victim’s key insertion.

Hence, SpiKey enables a layperson to launch the attack without

requiring any special expertise nor tools other than a smartphone,

hence significantly reducing suspicion. SpiKey is inherently robust

against anti-picking lock features [17, 22] that are equipped with

many of the modern locks because SpiKey simply infers the key

without exploiting the lock. Furthermore, upon a successful SpiKey

attack, one can create or 3D print the key to grant him/herself multi-

ple entries without leaving any traces of the attack [5]. Researchers

recently proposed to infer keycode directly from an image of the

key [10, 11, 13]. While an image-based attack can be stealthy [13],

the attacker’s success is dependent on factors such as image clarity

and angle of view. However, SpiKey may complement image-based

key-inference attacks, as we make use of victim’s key insertion, an

inevitable part of the unlocking mechanism.

7 CONCLUSION

We present SpiKey, a novel attack that infers the keycode or łsecretž

of a physical key by utilizing only a smartphone microphone to

capture the time difference between inherent click sounds produced

when the victim inserts the key into the lock. SpiKey inherently

provides many advantages over lock picking attacks, including low-

ering attacker effort to enable a layperson to launch an attack with-

out raising suspicion. We evaluate SpiKey with a proof-of-concept

simulation, based on real-world acoustic data, and demonstrate that

SpiKey can reduce the search space from a pool of more than 330

thousand keys to just three candidate keys for the most frequent

case.

8 ACKNOWLEDGEMENTS

This research was partially supported by a grant from Singapore

Ministry of Education Academic Research Fund Tier 1 (R-252-000-

A26-133).

REFERENCES
[1] Ampflab. 2019. Microphone Long Range Audio Surveillance. http://ampflab.com.

[2] Matt Blaze. 2016. Notes on Picking Pin Tumbler Locks. https://www.mattblaze.
org/papers/notes/picking/.

[3] Ryan Brown. 2019. Why criminals don’t pick locks. https://www.
art-of-lockpicking.com/criminals-dont-pick-locks/.

[4] Ben Burgess, Eric Wustrow, and J Alex Halderman. 2015. Replication prohibited:
attacking restricted keyways with 3D-printing. In 9th USENIX Workshop on
Offensive Technologies (WOOT’15).

[5] Datagram. 2009. Lockpicking Forensics. https://
www.blackhat.com/presentations/bh-usa-09/DATAGRAM/
BHUSA09-Datagram-LockpickForensics-PAPER.pdf.

[6] Adam Clark Estes. 2015. The History and Future of Locks and Keys. https:
//gizmodo.com/the-history-and-future-of-locks-and-keys-1735694812.

[7] Google. 2019. Nest Support. https://support.google.com/googlenest/answer/
9250972?hl=en-CA.

[8] HITBSecConf. 2017. A Guide to Key Impressioning At-
tacks. https://conference.hitb.org/hitbsecconf2017ams/sessions/
most-impressive-a-guide-to-key-impressioning-attacks/.

[9] IBISWorld. 2019. Door Lock & Lockset Manufacturing Industry in the
US - Market Research Report. https://www.ibisworld.com/united-states/
market-research-reports/door-lock-lockset-manufacturing-industry/.

[10] KeyMe. 2019. KeyMe Homepage. https://www.key.me.
[11] Keys4Classics. 2019. Keys Cut to Code. http://www.keys4classics.com/info/cut_

notes.html.
[12] Marc Lavielle. 2005. Using penalized contrasts for the change-point problem.

Signal processing 85, 8 (2005), 1501ś1510.
[13] Benjamin Laxton, Kai Wang, and Stefan Savage. 2008. Reconsidering physical

key secrecy: Teleduplication via optical decoding. In Proceedings of the 15th ACM
conference on computer and communications security. ACM, 469ś478.

[14] Anindya Maiti, Ryan Heard, Mohd Sabra, and Murtuza Jadliwala. 2018. To-
wards Inferring Mechanical Lock Combinations using Wrist-Wearables as a
Side-Channel. In Proceedings of the 11th ACM WiSec.

[15] LSA Michigan. 2019. Schlage Bitting Specifications. https://www.lsamichigan.
org/Tech/SCHLAGE_KeySpecs.pdf.

[16] CBS News. 2018. Yale Locks. https://www.cbsnews.com/news/
almanac-yale-locks/.

[17] Deviant Ollam. 2008. Lockpicking and Physical Security. https:
//www.blackhat.com/presentations/bh-europe-08/Deviant_Ollam/Whitepaper/
bh-eu-08-deviant_ollam-WP.pdf.

[18] Deviant Ollam. 2012. Practical lock picking: a physical penetration tester’s training
guide. Elsevier.

[19] Klover Products. 2019. Sound Shark. https://kloverproducts.com/sound-shark/.
[20] Graham Pulford. 2007. High-security mechanical locks: an encyclopedic reference.

Butterworth-Heinemann.
[21] TechCrunch. 2018. LookOut SmartDoor Viewer. https://tcrn.ch/2PakE1C.
[22] M.W. Tobias. 2000. LOCKS, SAFES, AND SECURITY: An International Police

Reference Two Volumes. Vol. 1. Charles C Thomas Publisher.
[23] M.W. Tobias. 2007. Opening Locks in Ten Seconds or Less. https://conference.hitb.

org/hitbsecconf2007dubai/materials/D1%20-%20Marc%20Weber%20Tobias%
20-%20The%20Insecurity%20of%20Mechanical%20Locks.pdf.

[24] Karim H. Vellani. 2019. Strategic security management: a risk assessment guide
for decision makers. CRC Press.

[25] Barry Wels and Rop Gonggrijp. 2005. Bumping Locks. http://toool.nl/images/7/
75/Bumping.pdf.

	Abstract
	1 Introduction
	2 Lock and Key Construction
	3 SpiKey Design
	3.1 Click Detection
	3.2 Inter-Ridge Distance Computation
	3.3 Inter-Bitting Sequence Computation
	3.4 Key Search Space Reduction
	3.5 Handling Multiple-Pin Case
	3.6 Handling Missing Ridges

	4 Feasibility Study
	4.1 Simulation Setup and Implementation
	4.2 Preliminary Results

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

