
Clay Shirky

A GROUP IS ITS OWN

WORST ENEMY
1

In the late 1980s, software went through a major transition. 

Before about 1985, the primary goal of software was making it

possible to solve a problem, by any means necessary. Do you need

to punch cards with your input data? No big deal. A typo on one

card means you have to throw it away and start over? No problem.

Humans will bend to the machines, like Charlie Chaplin in Modern

Times.

Suddenly with personal computers the bar was raised. It wasn’t

enough just to solve the problem: you had to solve it easily, in a

way that takes into account typical human frailties. The backspace

key, for example, to compensate for human frailty, not to mention

menus, icons, windows, and unlimited Undo. And we called this

usability, and it was good.

Lo and behold, when the software industry tried to hire experts

in usability, they found that it was a new field, so nobody was

doing this. There was this niche field in psychiatry called ergonom-

ics, but it was mostly focused on things from the physical world,

like finding the optimal height for a desk chair.

Eventually usability came into its own as a first-class field of

study, with self-trained practitioners and university courses, and no

software project could be considered complete without at least a

cursory glance at usability.

1. This is a lightly edited version of the keynote Clay Shirky gave on social software at

the O’Reilly Emerging Technology conference in Santa Clara on April 24, 2003. See

http://www.shirky.com/writings/group_enemy.html.



We’re about to undergo a similar transition.

As soon as the Internet happened, software stopped being

solely about computer-to-human interaction and started being

about human-to-human interaction. We had new applications

like the Web, email, instant messaging, and bulletin boards, all of

which were about humans communicating with one another

through software.

Now, suddenly, when you create software, it isn’t sufficient to

think about making it possible to communicate; you have to

think about making communication socially successful. In the age

of usability, technical design decisions had to be taken to make

software easier for a mass audience to use; in the age of social

software, design decisions must be taken to make social groups

survive and thrive and meet the goals of the group even when

they contradict the goals of the individual. A discussion group

designed by a usability expert might be optimized to make it easy

to post spam about Viagra. But in social software design it’s

pretty obvious that the goal is to make certain things harder, not

easier, and if you can make it downright impossible to post spam,

you’ve done your job. Features need to be designed to make the

group successful, not the individual.

Today, hardly anybody really studies how to design software

for human-to-human interaction. The field of social software

design is in its infancy. In fact, we’re not even at the point yet

where the software developers developing social software realize

that they need to think about the sociology and the anthropology

of the group that will be using their software, so many of them

just throw things together and allow themselves to be surprised

by the social interactions that develop around their software.

Clay Shirky has been a pioneer in this field, and his talk 

A Group Is Its Own Worst Enemy will be remembered as a water-

shed in the widespread realization that in this new era, sociology

and anthropology are just as crucial to software design as usabil-

ity was in the last. – Ed.

The Best Software Writing I184



Good morning, everybody. I want to talk this morning about social

software, and about a pattern I’ve seen over and over again in

social software that supports large and long-lived groups. In particular,

I want to talk about what I now think is one of the core challenges for

designing large-scale social software, the pattern described in the title of

this talk: “A Group Is Its Own Worst Enemy.” 

Let me offer a definition of social software, because it’s a term that’s

still fairly amorphous. My definition is quite simple: it’s software that

supports group interaction. I also want to emphasize, though that’s a

fairly simple definition, how radical social software is. The Internet sup-

ports lots of communications patterns, principally point-to-point and

two-way, one-to-many outbound, and many-to-many two-way. 

Prior to the Internet, we had lots of patterns that supported point-to-

point two-way. We had telephones; we had the telegraph. We were

familiar with technological mediation of those kinds of conversations.

Prior to the Internet, we had lots of patterns that supported one-way

broadcast of information. I could put something on television or the

radio; I could publish a newspaper. We had the printing press. So

although the Internet does good things for those ways of communicat-

ing, technological support for point-to-point and broadcast well predate

the Internet. 

Software for groups is different. Prior to the Internet, the last tech-

nology that had any real effect on the way people sat down and talked

together was the table. There was no technological mediation for group

conversations. The closest we got was the conference call, which never

really worked right—“Hello? Do I push this button now? Oh, shoot, I

just hung up.” It’s not easy to set up a conference call, but it’s very easy

to email five of your friends and say, “Hey, where are we going for

pizza?”—so ridiculously easy group forming is quite a new pattern,

something technology has never made easy before. 

We’ve had social software for 40 years at most, dated from the Plato

BBS system, and we’ve only had a decade or so of widespread availabil-

ity, so we’re just finding out what works. We’re still learning how to

make these kinds of things. 

185Clay Shirky



Now, software that supports group interaction is a fundamentally

unsatisfying definition in many ways, because it doesn’t point to a spe-

cific class of technology. If you look at email, it obviously supports social

patterns, but it can also support a broadcast pattern. If I’m a spammer,

I’m going to mail things out to a million people, but they’re not going to

be talking to one another, and I’m not going to be talking to them—

spam is email, but it isn’t social. If I’m mailing you, and you’re mailing

me back, we’re having a point-to-point conversation, but not one that

creates group dynamics. 

So sometimes email supports social patterns, and sometimes it does-

n’t. Ditto weblogs. If I’m Glenn Reynolds of Instapundit.com,2 and I’m

publishing something to a million users a month, with comments turned

off on my blog, that’s really broadcast—Glenn’s users aren’t talking

back to him, and they aren’t talking to each other. It’s obviously inter-

esting that Glenn can reach that many people as a single individual, but

the pattern is closer to MSNBC than it is to a conversation. If it’s a clus-

ter of half a dozen LiveJournal3 users, on the other hand, talking about

their lives with one another, that’s social. So weblogs are not necessarily

social, although they can support social patterns. 

While that definition—software for group interaction—cuts across

existing categories, I think it is the right one, because it recognizes the

fundamentally social nature of the problem. Groups are a runtime effect.

You cannot specify in advance what any given group will do, and so you

can’t instantiate in software everything you expect to have happen. 

Now, there’s a large body of literature saying, “We built this soft-

ware, a group came and used it, and they began to exhibit behaviors that

surprised us enormously, so we’ve gone and documented these behav-

iors.” Over and over and over again this pattern comes up. (I hear

Stewart4 laughing. The WELL is one of those places where this pattern

came up over and over again.)

With that background out of the way, the rest of this talk is in three

parts. The best explanation I have found for the kinds of things that hap-

pen when groups of humans interact is psychological research that

The Best Software Writing I186

2. A popular political weblog – Ed.

3. An online journal service, similar to blog software with more of an emphasis on

community – Ed.

4. Stewart Brand, of the WELL, a very early online community that predates the Internet,

now a part of Salon.com. – Ed.



predates the Internet, so the first part is going to be about W. R. Bion’s

research, which I will talk about in a moment, research that I believe

helps explain how and why a group is its own worst enemy. 

The second part is: why now? What’s going on now that makes this

worth thinking about? I think we’re seeing a revolution in social soft-

ware in the current environment that’s really interesting. 

And third, I want to identify some things, about half a dozen things,

in fact, that I think are core to any software that supports large, long-

lived groups. 

Part One: How Is a Group Its Own
Worst Enemy? 

So, Part One. The best explanation I have found for the ways in which

this pattern establishes itself, the group is its own worst enemy, comes

from a book by W. R. Bion called Experiences in Groups, written in the

middle of the last century. 

Bion was a psychologist who was doing group therapy with groups of

neurotics. (Drawing parallels between that and the Internet is left as an

exercise for the reader.) And while he was trying to treat these patients,

he realized that they were, as a group, conspiring to defeat therapy. 

There was no overt communication or coordination. But he could see

that whenever he would try to do anything that was meant to have an

effect, the group would somehow quash it. And he was driving himself

crazy, in the colloquial sense of the term, trying to figure out whether or

not he should be looking at the situation as “Are these individuals tak-

ing action on their own, or is this a coordinated group?” 

He could never resolve the question, and so he decided that the unre-

solvability of the question was the answer. To the question “Do groups

of people behave as aggregations of individuals or as a cohesive group?”

Bion’s answer was that human groups are “hopelessly committed to

both,” which is to say hopelessly committed to individual identity and to

group membership. 

He said that humans are fundamentally individual, and also funda-

mentally social. Every one of us has a kind of rational decision-making

187Clay Shirky



mind that allows us to assess what’s going on and make decisions and

act on them. And we are all also able to enter viscerally into emotional

bonds with other groups of people who transcend the intellectual

aspects of the individual. 

In fact, Bion was so convinced that this was the right answer that the

image he put on the front cover of his book was a Necker cube, one of

those cubes that you can look at and resolve in one of two ways, but you

can never see both views of the cube at the same time. So groups can be

analyzed both as collections of individuals and as having this kind of

emotive group experience. 

Now, it’s pretty easy to see how with groups of people who have for-

mal memberships—groups that have been labeled and named like “I am

a member of such-and-such a guild in a massively multiplayer online

role-playing game”—you would have some kind of group cohesion

there. But Bion’s thesis is that this effect is much, much deeper, and kicks

in much, much sooner than many of us expect. So I want to illustrate

this with a story, and to illustrate the illustration, I’ll use a story from

your life. Because even if I don’t know you, I know that what I’m about

to describe has happened to you. 

You are at a party, and you get bored. You say “This isn’t doing it for

me anymore. I’d rather be someplace else. I’d rather be home asleep. The

people I wanted to talk to aren’t here.” For whatever reason, the party

fails to meet some threshold of interest. And then a really remarkable

thing happens: you don’t leave. You make a decision: “I don’t like this.”

If you were in a bookstore and you said, “I’m done,” you’d walk out. If

you were in a coffee shop and said, “This is boring,” you’d walk out. 

You’re sitting at a party, and you decide, “I don’t like this; I don’t

want to be here.” And then you don’t leave. That kind of social sticki-

ness is what Bion is talking about. 

And then, another really remarkable thing happens. Twenty minutes

later, one person stands up and gets their coat, and what happens?

Suddenly everyone is getting their coats on, all at the same time. Which

means that everyone had decided that the party was not for them, and

no one had done anything about it, until finally this triggering event let

the air out of the group, and everyone kind of felt okay about leaving. 

This effect is so common that it’s sometimes called the “paradox of

groups.” It’s obvious that there are no groups without members. But

The Best Software Writing I188



what’s less obvious is that there are no members without a group—

because what would you be a member of? 

So there’s this very complicated moment of a group coming together,

where enough individuals, for whatever reason, sort of agree that some-

thing worthwhile is happening, and the decision they make at that

moment is “This is good and must be protected.” And at that moment,

even if it’s subconscious, you start getting group effects. And the effects

that we’ve seen come up over and over and over again in online com-

munities.

Now, Bion decided that what he was watching with the neurotics

was the group defending itself against his attempts to make the group do

what they said they were supposed to do. This group of people was in

therapy to get better, but they were during therapy defeating the very

things that might help them get better. And after years of these observa-

tions, Bion said there are some very specific patterns that they’re

entering into in order to defeat the ostensible purpose of the group meet-

ing together. And he detailed three patterns. 

The first is sex talk, what he called, in his mid-century prose, “A

group met for pairing off.” And what that means is, the group conceives

of its purpose as the hosting of flirtatious or salacious talk or emotions

passing between pairs of members. 

Imagine going on IRC (internet relay chat, a global set of chat

rooms)—you scan the list of channel names, and you say, “I know what

they are talking about on the #hamradio channel, because I can see the

channel name.” But when you go into the group, you will also almost

invariably find that it’s about sex talk as well, usually expressed as dou-

ble entendres. The topic of sex is always in scope in live human

conversations, according to Bion. (Interestingly, it is a much less fre-

quent pattern in asynchronous communication, like mailing lists, than in

synchronous ones, like IRC.) That is one basic pattern that groups can

always devolve into, away from the sophisticated purpose and toward

one of these basic purposes. 

The second basic pattern that Bion detailed is the identification and

vilification of external enemies. This is a very common pattern. Anyone

who was around the open source movement in the mid-1990s could see

this all the time. If you cared about Linux on the desktop, there was a

big list of jobs to do. But you could always instead get a conversation

189Clay Shirky



going about Microsoft and Bill Gates. And people would start bleeding

from their ears, they would get so mad. 

The open source movement at the time seemed pretty enemy-free,

because of their mode of working: if you want to make it better, there’s

a list of things to do. Just fix it. But you could always get people wound

up on the subject of Microsoft and Bill Gates, and the foam would start

coming out of their mouths. 

Nothing causes a group to galvanize like an external enemy. So even

if someone isn’t really your enemy, identifying them as an enemy can

cause a pleasant sense of group cohesion. And groups often gravitate

toward members who are the most paranoid and make them leaders,

because those are the people who are best at identifying external ene-

mies.

The third pattern Bion identified is religious veneration—the nomi-

nation and worship of a religious icon or a set of religious tenets. The

religious pattern is, essentially, we have nominated something that’s

beyond critique. You can see this pattern on the Internet any day you

like. Go onto a Tolkien newsgroup or discussion forum, and try saying,

“You know, The Two Towers is a little dull. I mean loooong. We didn’t

need that much description about crossing the forest, because it’s pretty

much the same forest all the way.” 

Try having that discussion. On the door of the group it will say,

“This is for discussing the works of Tolkien.” Go in and try and have

that discussion. 

Now, in some places people say, “Yes, but it needed to, because it had

to convey the sense of lassitude,” or whatever. But in most places you’ll

simply be flamed to high heaven, because you’re interfering with the reli-

gious text. Groups often have some small set of core tenets, beliefs, or

interests that are beyond criticism, because they are the things that hold

the group together. Even in groups founded for fairly intellectual discus-

sion, the emotional piece comes out whenever you threaten one of these

core beliefs, because when you take on those beliefs, you are not just

offering an opinion, you are threatening group cohesion.

Bion’s patterns have shown up on the Internet, not because of the

software, but because it’s being used by humans. Bion has identified this

possibility of groups sandbagging their sophisticated goals with these

basic urges. And what he finally came to, in analyzing this tension, is

that group structure is necessary. Robert’s Rules of Order are necessary.

The Best Software Writing I190



Constitutions are necessary. Norms, rituals, laws, the whole list of ways

that we say, out of the universe of possible behaviors, we’re going to

draw a relatively small circle around the acceptable ones, all of those are

ways to keep groups from just wallowing in these patterns and never

actually getting anything done. Anyone who has been in a competitive

industry knows you can kill a two-hour meeting by mentioning what the

competition is up to, at which point everyone will stop thinking about

the hard work of actually getting anything done, and will switch to alter-

nately vilifying the competition and assuring themselves that there is no

threat.

Most importantly, Bion said the various forms of group structure we

have created over the centuries are necessary to defend the group from

itself. Group structure exists to keep a group on target, on track, on

message, on charter, to keep a group focused on its own sophisticated

goals and away from sliding into these basic patterns. Group structure

defends the group from the action of its own members. 

This is a pattern that’s shown up on the network over and over again.

In the 1970s, a BBS called Communitree launched, one of the very early

dial-up BBSs. This was launched when people didn’t own computers—

institutions owned computers. 

Communitree was founded on the principles of open access and free

dialogue. (“Communitree”—doesn’t that say “California in the ’70s”?)

And the notion was, effectively, throw off structure and new and beau-

tiful new social patterns will arise. 

And, indeed, as anyone who has put discussion software into groups

that were previously disconnected has seen, that does happen. Incredible

things happen. The early days of Echo,5 the early days of Usenet, the

early days of Lucasfilms’ Habitat (one of the original multiplayer

games), over and over again, you see all this incredible upwelling of peo-

ple who suddenly are connected in ways they weren’t before. 

But it’s not all beautiful; as time sets in, difficulties emerge. In this

case, one of the difficulties was occasioned by the fact that one of the

institutions that joined Communitree was a high school. And who, in

1978, was hanging out in the room with the computer and the modems

in it but the boys of that high school. And the boys weren’t terribly

191Clay Shirky

5. A small but prestigious online community in New York City, which also predates the

Internet, created by Stacy Horn at NYU. – Ed.



interested in sophisticated adult conversation. They were interested in

fart jokes. They were interested in salacious talk. They were interested in

running amok and posting four-letter words and nyah-nyah-nyah all

over the bulletin board. 

And the adults who had set up Communitree were horrified, because

they were being overrun by these students. The place that was founded

on open access had too much open access, too much openness. They

couldn’t defend themselves against their own users. The place that was

founded on free speech had too much freedom. They had no way of say-

ing, “No, that’s not the kind of free speech we meant.” 

But that was a requirement. In order to defend themselves against

being overrun, that was something that they needed to have that they

didn’t have, and in the end, they simply shut the site down.

Now you could ask whether or not the founders’ inability to defend

themselves from this onslaught, from being overrun, was a technical or

a social problem. Did the software not allow the problem to be solved?

Or was it the social configuration of the group that founded it, where

they simply couldn’t stomach the idea of adding censorship to protect

their system. But in a way, it doesn’t matter, because technical and social

issues are deeply intertwined. There’s no way to completely separate

them.

What matters is, a group designed this and then was unable, in the

context they’d set up, to save it from this attack from within, and that

context was partly technical and partly social. The lesson of

Communitree is that attack from within is what matters. Communitree

wasn’t shut down by people trying to crash the server or flood it from

the outside. It was shut down by people logging in and posting, which is

what the system was designed to allow. The technological patterns of

normal use and attack were so similar at the machine level, there was no

way to specify technologically what should and shouldn’t happen. Some

of the users wanted the system to continue to exist and to provide a

forum for discussion. And other of the users, the high school boys, either

didn’t care or were actively inimical. And the system provided no way

for the former group to defend itself from the latter. 

This pattern has happened over and over and over again. Someone

built the system; they assumed certain user behaviors. The users came on

and exhibited different behaviors. And the people running the system

discovered to their horror that the technological and social issues could

The Best Software Writing I192



not in fact be decoupled. This story has been written many times. It’s

actually frustrating to see how many times it’s been written, because

although there’s a wealth of documentation from the field, people start-

ing similar projects often haven’t read these accounts.

The most charitable description of this repeated pattern is “learning

from experience,” but learning from experience is the worst possible

way to learn something. Learning from experience is one up from

remembering—that’s not great. The best way to learn something is when

someone else figures it out and tells you: “Don’t go in that swamp. There

are alligators in there.” 

Learning from experience about the alligators is lousy, compared to

learning from reading, say. There hasn’t been, unfortunately, in this

arena, a lot of learning from reading. And so, the essay “Lessons from

Lucasfilms’ Habitat,”6 written in 1990, reads a lot like Rose Stone’s

description of Communitree from 1978. 

There’s a great document called “LambdaMOO Takes a New

Direction,” which is about the wizards of LambdaMOO, Pavel Curtis’s

Xerox PARC experiment in building a MUD7 world. And one day the

wizards of LambdaMOO announced, “We’ve gotten this system up and

running, and all these interesting social effects are happening.

Henceforth we wizards will only be involved in technological issues.

We’re not going to get involved in any of that social stuff.” 

And then, I think about 18 months later, the wizards come back,

extremely cranky. And they say, “What we have learned from you whin-

ing users is that we can’t do what we said we would do. We cannot

separate the technological aspects from the social aspects of running a

virtual world. 

“So we’re back, and we’re taking wizardly fiat back, and we’re going

to do things to run the system. We are effectively setting ourselves up as

a government, because this place needs a government, because without

us, everything was falling apart.” 

People who work on social software are closer in spirit to economists

and political scientists than they are to people making compilers. They

both look like programming, but when you’re dealing with groups of

people as one of your runtime phenomena, you have an incredibly

193Clay Shirky

6. See http://www.fudco.com/chip/lessons.html.

7. Multiuser Dungeon, a textual online multiplayer adventure game – Ed.



different practice. In the political realm, we would call these kinds of

crises a constitutional crisis. It’s what happens when the tension between

the individual and the group, and the rights and responsibilities of indi-

viduals and groups, gets so serious that something has to be done. 

And the worst crisis is the first crisis, because it’s not just “We need

to have some rules.” It’s also “We need to have some rules for making

some rules.” And this is what we see over and over again in large and

long-lived social software systems. Constitutions are a necessary com-

ponent of large, long-lived, heterogeneous groups. 

Geoff Cohen has a great observation about this. He said, “The like-

lihood that any unmoderated group will eventually get into a flame-war

about whether or not to have a moderator approaches one as time

increases.” As a group commits to its existence as a group, and begins to

think that the group is good or important, the chance that they will

begin to call for additional structure, in order to defend themselves from

themselves, gets very, very high. 

Part Two: Why Now? 

If these things I’m saying have happened so often before, have been

happening and been documented and we’ve got psychological literature

that predates the Internet, what’s going on now that makes this impor-

tant?

I can’t tell you precisely why, but observationally there is a revolution

in social software going on. The number of people writing tools to sup-

port or enhance group collaboration or communication is astonishing. 

The Web turned us all into size queens for six or eight years there. It

was loosely coupled, it was stateless, it scaled like crazy, and everything

became about how big you could get. “How many users does Yahoo

have? How many customers does Amazon have? How many readers

does MSNBC have?” And the answer could be “A lot!” But MSNBC,

say, could only get a lot if they didn’t have to be talking with their users,

just talking to them, and they didn’t have to figure out a way to let those

readers talk to each other. 

The Best Software Writing I194



The downside of going for size and scale above all else is that the

dense, interconnected pattern that drives group conversation and col-

laboration isn’t supportable at any large scale. Less is different—small

groups of people can engage in kinds of interaction that large groups

can’t, and during the Web years, we blew past that interesting scale of

small groups. In groups of larger than a dozen but smaller than a few

hundred, there are conversational forms that can’t be supported when

you’re talking about thousands or millions of users a single group. 

We’ve had things like mailing lists and BBSs for a long time. More

recently we’ve had IM, and we’ve had these various tools for a while.

But now, all of a sudden, a bunch of new forms are spreading. We’ve

gotten weblogs and wikis, and I think, even more importantly, we’re get-

ting platform stuff. We’re getting RSS. We’re getting shared Flash

objects. We’re getting ways to quickly build on top of some infrastruc-

ture we can take for granted, that lets us try new things very rapidly. 

I was talking to Stewart Butterfield about Flickr, the application

they’re launching here. I said, “Hey, how’s that going?” He said, “Well,

we only had the idea for it two weeks ago. So this is the launch.” When

you can go from “Hey, I’ve got an idea” to “Let’s launch this in front of

a few hundred serious geeks and see how it works,” that suggests that

there’s a platform there that is letting people do some really interesting

things really quickly. It’s not that you couldn’t have built a similar appli-

cation a couple of years ago, but the cost would have been much higher.

And when you lower costs, interesting new kinds of things happen. 

So the first answer to Why Now? is simply, “Because it’s time.” I

can’t tell you why it took as long for weblogs to happen as it did, except

to say it had absolutely nothing to do with technology. We had every bit

of technology we needed to do weblogs in 1994, the day Mosaic

launched the first forms-capable browser. Every single piece of it was

right there. Instead, we got Geocities. Why did we get Geocities and not

weblogs? We didn’t know what we were doing. 

One was a bad idea; the other turns out to be a really good idea. It

took a long time to figure out that people talking to one another, instead

of simply uploading badly scanned photos of their cats, would be the

real source of value. 

We got the weblog pattern in around ’96 with Drudge. We got

weblog platforms starting in ’98. The thing really was taking off in

195Clay Shirky



2000. By last year, it was “Omigod, this thing is going mainstream, and

it’s going to change everything.”

The vertigo moment for me was when Phil Gyford launched the

Pepys weblog, Samuel Pepys’ diaries of the 1660s turned into a weblog

form, with a new post every day from Pepys’ diary. What that said to me

was that Phil was asserting, and I now believe, that weblogs will be

around for at least 10 years, because that’s how long Pepys kept a diary.

And that was this moment of projecting into the future: this is now

infrastructure we can take for granted. 

Why was there an eight-year gap between a forms-capable browser

and the Pepys diaries? It just takes a while for people to get used to these

ideas, to understand the technical form well enough to put it to socially

novel uses. 

The other big change is that the social software people are building

now is web-native, built on the Web from the ground up. When you got

social software on the Web in the mid-1990s, a lot of it was enterprise

software with a web front-end slapped on: “This is the Giant Lotus

Dreadnought, now with New Lightweight Web Interface!” It never felt

like the Web. It felt like this hulking thing tarted up with some clickable

icons.

A weblog is web-native. It’s the Web all the way in. A wiki is a web-

native way of hosting collaboration. It’s lightweight, it’s loosely coupled,

it’s easy to extend, it’s easy to break down. And it’s not just the surface,

like “Oh, you can just do things in a form.” It assumes HTTP is trans-

port. It assumes markup in the coding. RSS is a web-native way of doing

syndication. So we’re taking all of these tools and we’re extending them

in a way that lets us build new things really quickly. 

The third thing that’s happening now to accelerate social software is

that, in David Weinberger’s felicitous phrase, we have a “Small Pieces

Loosely Joined” way of making software. It’s really worth looking into

what Joi Ito is doing with the Emergent Democracy movement, even if

you’re not interested in the themes of emerging democracy. This started

because a conversation was going on, and Ito said, “I am frustrated. I’m

sitting here in Japan, and I know all of these people are having these con-

versations in real time with one another. I want to have a group

conversation, too. I’ll start a conference call. 

“But since conference calls are so lousy on their own, I’m going to

bring up a chat window at the same time.” And then, in the first

The Best Software Writing I196



meeting, I think it was Pete Kaminski who said, “Well, I’ve also opened

up a wiki, and here’s the URL.” And he posts the URL of the wiki in the

chat window. And people on the call also start annotating things in the

wiki, adding bookmarks in the chat channel, and so on. The meeting is

going on in three separate modes at the same time, two in real time (the

phone and the chat) and one annotated (the wiki). 

You know how conference calls usually are: either one or two people

dominate it, or everyone’s walking over each other, interrupting and cut-

ting each other off. It’s very difficult to coordinate speakers in a

conference call because people can’t see one another, which makes it

hard to manage the interrupt logic. In Joi’s conference call, the interrupt

logic got moved to the chat room. People would type “Hand,” and the

moderator of the conference call will then type, “You’re speaking next,”

in the chat. So the conference call flowed incredibly smoothly, because

the chat provided a kind of control channel for the speaking. 

Meanwhile, in the chat, people are annotating what people are say-

ing. “Oh, that reminds me of So-and-so’s work.” Or “You should look

at this URL. . . you should look at that ISBN number.” In a conference

call, to read out a URL, you have to spell it out—“No, no, no, it’s w w

w dot net dash. . .” In a chat window, you get it and you can click on it

right there. You can say, in the conference call or the chat: “Go over to

the wiki and look at this.” 

This is a broadband, multimedia conference call, but it isn’t imple-

mented as a single giant thing. It’s just three little pieces of software, laid

next to each other and held together with a little bit of social glue. This

is an incredibly powerful pattern. It’s different from “Let’s take the

Lotus juggernaut and add a web front-end.” 

And the fourth and final driving the current revolution in social soft-

ware is ubiquity. The Web has been growing for a long, long time. In the

beginning, just a few people had web access, and then lots of people had

web access, and then most people had web access. But something differ-

ent is happening now. In many situations, all people have access to the

network. And “all” is a different kind of amount than “most.” “All” lets

you start taking things for granted. 

Now, the Internet isn’t everywhere in the world. It isn’t even every-

where in the developed world. But for some groups of people—students,

people in high-tech offices, knowledge workers—everyone they work

with is online. Everyone they’re friends with is online. Everyone in their

family is online. 

197Clay Shirky



This pattern of ubiquity lets you start taking this for granted. Bill Joy

once said, “My method is to look at something that seems like a good

idea and assume it’s true.” We’re starting to see software that simply

assumes that all offline groups will have an online component, no mat-

ter what. It is now possible for every grouping, from a Girl Scout troop

on up, to have an online component, and for it to be lightweight and

easy to manage. And that’s a different kind of thing than the old pattern

of “online community.” I have this Venn diagram image of two hula

hoops, where my real life is off to the left, and my online life is off to the

right, and I’m the only thing in common between the two; people in my

offline world are different than people in my online world. And for most

of the last 30 years, the Net has been like that—you had different friends

online than offline. If the hula hoops are swung together, though, so that

everyone who’s offline is also online, that’s a different kind of pattern. In

a world of ubiquitous Net access, the split between offline and online is

not between different groups, but between different modes of interacting

in one group.

There’s a second kind of ubiquity, which is the kind we’re enjoying

here at the conference, thanks to the Wifi network at the conference. If

you assume whenever a group of people are gathered together that they

can be both face to face and online at the same time, you can start to do

different kinds of things than if real versus virtual communications are

treated as separate cases. I don’t run a real-world meeting now without

either having a chat room or a wiki up and running. Three weeks ago I

ran a meeting for the Library of Congress. We had a wiki, set up by

Socialtext, and used it during the meeting to capture a large and very

dense amount of technical information on long-term digital preserva-

tion.

It really quickly becomes an assumption that a group can do things

like “Oh, I took my PowerPoint slides, I showed them, and then I

dumped them into the wiki. So now you can get at them.” It becomes a

sort of shared repository for group memory. This is new. These kinds of

ubiquity, both “everyone is online,” and “everyone who’s in a room can

be online together at the same time,” are leading to new patterns. 

The Best Software Writing I198



Part Three: What Can We Take
for Granted? 

If these assumptions are right—first that a group is its own worst enemy,

and second, we’re seeing this explosion of social software—what should

we do? Can we say anything with any certainty about building social

software, at least for large and long-lived groups? 

I think we can. A little over 10 years ago, I quit my day job, because

Usenet was so interesting. I thought at the time, “This is really going to

be big.” And I actually wrote a book called Voices from the Net, about

Net culture at the time, Usenet, the Well, Echo, IRC, and so forth. It was

published in April of ’95, just as that world was being washed away by

the Web. But it was my original interest, so I’ve been looking at this

problem in one way or another for 10 years, and I’ve been looking at it

pretty hard for a year and a half or so. 

So there’s this question: “What is required to make a large, long-lived

online group successful?” I think I can now answer with some confi-

dence: “It depends.” (I’m hoping to flesh that answer out a little bit in

the next 10 years.)

But I can at least say some of the things it depends on. The Calvinists

had a doctrine of natural grace and supernatural grace. Natural grace

was, “You have to do all the right things in the world to get to heaven. . .”

and supernatural grace was, “. . .and God has to anoint you.” And you

never knew if you had supernatural grace or not. This was their way of

getting around the fact that the book of Revelation put an upper limit on

the number of people who were going to heaven. 

Social software is like that. You can find the same piece of code run-

ning in many, many environments. And sometimes it works and

sometimes it doesn’t. So there is something supernatural about groups,

where having good software alone isn’t enough, because the social

behavior of groups is a runtime experience. 

199Clay Shirky



The normal experience of social software is failure. If you go into

Yahoo groups and you map out the subscriptions, it is, unsurprisingly, a

power law. There’s a small number of highly populated groups, a mod-

erate number of moderately populated groups, and this long, flat tail of

failure. And the failure is inevitably more than 50% of the total mailing

lists in any category. So it’s not like a cake recipe. There’s nothing you

can do to make it come out right every time. 

There are, however, I think, about half a dozen things that are

broadly true of all the groups I’ve looked at and all the online constitu-

tions I’ve read for software that supports large and long-lived groups.

And I’d break that list in half. I’d say, if you are going to create a piece

of social software designed to support large groups, you have to accept

three things, and design for four things. 

Three Things to Accept 

1.) Of the things you have to accept, the first is that you cannot com-

pletely separate technical and social issues. There are two attractive

patterns for thinking about the intersection of social and technological

issues. One says, “We’ll handle technology over here, we’ll do social

issues there. We’ll have separate mailing lists with separate discussion

groups, or we’ll have one track here and one track there.” This doesn’t

work; you can’t separate the two. It’s never been stated more clearly

than in the pair of documents called “LambdaMOO Takes a New

Direction” that I referred to earlier. I can do no better than to point you

to those documents. 

This may seem obvious, but it’s one of those patterns that gets end-

lessly repeated. I recently was on a social software discussion list, and

someone said, “Hey everybody, I know! Let’s set up a second mailing list

for just discussing the technical issues.” The LambdaMOO docs were

written in the early ’90s, here it is 2003, and people still want to believe

that the technology has some kind of clean edge that separates from the

behavior of the mere users. And of course what happened when the sec-

ond technical mailing list was created? Nothing. Nothing happened. No

one moved the conversations away from the first list; no one could fork

the conversation between social and technical issues, because the con-

versation can’t be forked.

The Best Software Writing I200



There’s another way of thinking about tech and social dynamics

that’s very, very attractive—anybody who looks at this stuff has the

same epiphany: “Omigod, the software is determining what people do!”

And that is true, up to a point. But you cannot completely program

social issues either—different mailing lists run on the same software but

have different cultures; both Slashdot and Plastic.com run on the same

software platform, but they have very different cultures too. 

You can’t separate technological effects from social ones, and you

can’t specify all social issues in technology. The group is going to assert

its existence independently of the software somehow, and you’re going

to get a mix of social and technological effects. 

The group is real. It will exhibit emergent effects. It can’t be ignored,

and it can’t be programmed, which means you have an ongoing issue.

And the best pattern, or at least the pattern that’s worked the most

often, is to put into the hands of the group itself the responsibility for

defining what value is, and defending that value, rather than trying to

describe everything in the software up front. 

2.) The second thing you have to accept: members are different from

users. A pattern will arise in which there is some group of users that

cares more than average about the integrity and success of the group as

a whole. And that becomes your core group, Art Kleiner’s phrase for

“the group within the group that matters most.” 

The core group on Communitree was undifferentiated from the

group of random users that came in. They were separate in their own

minds, because they knew what they wanted to do, but they couldn’t

defend themselves against the other users. But in all successful online

communities that I’ve looked at, a core group arises that cares about the

community as a whole—not just their part of it—and that gardens effec-

tively and takes care of the social environment by encouraging good

behavior and discouraging bad behavior. 

Now, if the software does not always allow the core group to express

itself, it will invent new ways of doing so. On alt.folklore.urban, the

Usenet discussion group about urban folklore, a group of people hung

out together and, over time, got to be friends. Enough of these AFU reg-

ulars were also Silicon Valley dwellers that they decided to get together

for a real-world barbecue, and to coordinate that, they set up a separate

mailing list, which they called the Old Hats list.

201Clay Shirky



After the barbecue, though, the mailing list stayed up, and member-

ship was extended to other AFU readers, but only selectively, only to

those members who’d been around AFU long enough to get to know

everyone—the average reader of AFU didn’t even know the mailing list

existed. Old Hats became a place for meta-discussion, discussion about

AFU, and the members of Old Hats began to coordinate efforts formally

if they were going to troll someone or flame someone or ignore someone

in alt.folklore.urban itself.

Then, as Usenet kept growing, many newcomers arrived and seemed

to like the environment, because it was well run. In order to defend

themselves from the scaling issues that come from of adding a lot of new

members to the Old Hats list, they said, “We’re starting a second list,

called the Young Hats.” 

So AFU ended up with this three-tier system, not dissimilar to the

tiers of anonymous cowards, logged-in users, and people with high

karma on Slashdot. But because Usenet didn’t let the AFU core group do

it in the software, they brought in other pieces of software, these mailing

lists, that they needed to build the structure. So you don’t get the pro-

gram users—in any healthy group, the members in good standing will

find one another and be recognized by one another. 

3.) The third thing you need to accept: the core group has rights that

trump individual rights in some situations. This pulls against the liber-

tarian view that’s quite common on the network, and it absolutely pulls

against the one-person/one-vote notion. But you can see examples of

how bad an idea voting is when citizenship is the same as ability to log

in.

In the early ’90s, a proposal went out to create a Usenet newsgroup

for discussing Tibetan culture, to be called soc.culture.tibet. And it

was voted down, in large part because a number of Chinese students

who had Internet access voted it down, on the logic that Tibet wasn’t a

country; it was a region of China. And in their view, since Tibet wasn’t

a country, there oughtn’t be any place to discuss its culture, because that

was oxymoronic. 

Now, everyone could see that this was the wrong answer. The people

who wanted a place to discuss Tibetan culture should have it. That was

the core group. But because the one-person/one-vote model on Usenet

said, “Anyone who’s on Usenet gets to vote on any group,” sufficiently

contentious groups could simply be voted away. 

The Best Software Writing I202



Imagine today if, in the United States, Internet users had to be polled

before any discussion group opposed to the war in Iraq could be created,

or French users had to be polled before any pro-war group could be cre-

ated. The people who want to have those discussions are the people who

matter, and absolute citizenship, with the idea that if you can log in, you

are a citizen, can actually be a harmful pattern, because it allows the

tyranny of the majority. The core group needs ways to defend itself so

that it can keep the larger group concentrated on its sophisticated goals

and away from its basic instincts. 

The Wikipedia (the group-created online encyclopedia) has a similar

system today, with a “volunteer fire department,” a group of people

who care to an unusual degree about the success of the Wikipedia. And

since they have enough leverage (because of the way wikis work, they

can always roll back graffiti and so forth), that thing has stayed up

despite repeated attacks. So leveraging the core group is a really power-

ful system. 

And because of the difficulty in maintaining a focus on sophisticated

goals, all groups of any integrity have a constitution. There is always an

informal piece of the Constitution, and there is sometimes a formal piece

as well, an explicit and publicly examinable piece. At the very least, the

formal part is what’s instantiated in code—“the software works this

way.” The informal part is the sense of “how we do it around here.”

And no matter how it is substantiated in code or written in charter,

whatever, there will always be an informal part as well. You can’t sepa-

rate the two. 

Now, when I say these are three things you have to accept, I mean

you have to accept them, because if you don’t accept them up front,

they’ll happen to you anyway. And then you’ll end up writing one of

those documents that says, “Oh, we launched this and we tried it, and

then the users came along and did all these weird things. And now we’re

documenting it so future ages won’t make this mistake”—even though

you didn’t read the thing that was written in 1978. 

Four Things to Design For 

In addition to the things you have to accept, the forced moves, I also

believe there are a handful of things designers of group software need to

design for:

203Clay Shirky



1.) The first thing you would design for is handles the user can invest

in. Now, I say “handles” because I don’t want to say “identity”; identity

has recently become one of those ideas where, when you pull on the lit-

tle thread you want, this big bag of stuff comes along with it. Identity is

such a hot-button issue now, but for the lightweight stuff required for

social software, it’s really just a handle that matters. 

It’s pretty widely understood that anonymity doesn’t work well in

group settings, because “who said what when” is the minimum require-

ment for having a conversation. What’s less well understood is that

weak pseudonymity doesn’t work well, either, because I need to associ-

ate who’s saying something to me now with previous conversations. 

The world’s best reputation management system is right here, in the

brain. And actually, it’s right here, in the back, in the emotional part of

the brain. Almost all the work being done on reputation systems today

is either trivial or useless or both, because in most human situations, rep-

utations aren’t easy to make explicit. eBay has done us all an enormous

disservice, because eBay works in noniterated atomic transactions,

which are the opposite of social situations. eBay’s reputation system

works incredibly well, because it starts with a simple transaction (“How

much money for how many Smurfs?”) and turns that into a metric that’s

equally linear. That doesn’t work well in social situations, where karma,

a.k.a. nonreciprocal altruism, is a much subtler and more diffuse thing

than eBay’s reputation is.

Reputation is also not generalizable or portable. There are people

who will cheat on their spouse but not at cards, and vice versa, and both,

and neither. Reputation in one situation is not necessarily directly

portable to another.

If you want a good reputation system, just let me remember who you

are. And if you do me a favor, I’ll remember it. And I won’t store it in the

front of my brain; I’ll store it here, in the back. I’ll just get a good feel-

ing next time I get email from you; I won’t even remember why. And if

you do me a disservice and I get email from you, my temples will start to

throb, and I won’t even remember why. If you give users a way of

remembering one another, reputation will happen, and that requires

nothing more than simple and somewhat persistent handles. 

Users have to be able to identify themselves and there has to be a

penalty for switching handles. The penalty for switching doesn’t have to

be total. But if I change my handle on the system, I have to lose some

The Best Software Writing I204



kind of reputation or some kind of context. This keeps the system func-

tioning.

Of course, this pulls against the sense that we’ve had since the early

psychological writings about the Internet. “Oh, on the Internet we’re all

going to be changing identities and genders like we change our socks.”

But this sense of completely fluid identity is disrupted by things like the

Kaycee Nicole story.

The story is baroque, but the basic outline is simple: a woman in

Kansas was living online in an alternate persona, a high school student

named Kaycee Nicole, and then, because the invented high school stu-

dent’s friends got so emotionally involved, the woman decided to kill her

persona off, and so she began reporting, in the persona of Kaycee

Nicole, that she had contracted a fatal disease. 

So here’s this attractive young woman everyone has befriended and

now she’s dying, and what happens? Everyone wants to fly to meet her

before she goes. So then woman sort of panicked and Kaycee Nicole

vanished. And a bunch of places on the Internet, particularly the

MetaFilter community, started to smell a rat. And dozens of those peo-

ple spent hundreds of hours trying to find out what was going on—it

was sort of a distributed detective movement—and they eventually

uncovered the hoax by putting all the various pieces together from

Nicole’s various posts.

Now a number of people point to this and say, “See, I told you about

how fluid identity is online!” But that’s not the lesson of the Kaycee

Nicole story; the important lesson is this: changing your identity is really

weird. And when the community understands that you’ve been doing it

and you’re faking, that is seen as a huge and violent transgression. And

they will expend an astonishing amount of energy to find you and pun-

ish you. So identity is much less slippery than the early literature would

lead us to believe, because although the technology makes fluid identity

easy, social life demands some degree of fixity. And all you need is a sys-

tem with some sort of persistent handle, and users will invest them with

all the trappings of identity and even the layers above that like reputa-

tion.

2.) Second, you have to design a way for there to be members in good

standing, some way in which good works get recognized. The minimal

way is, posts appear with identity. You can do more sophisticated things

like having formal karma or listing “member since” dates or noting who

is a Pro user who helps fund the system.

205Clay Shirky



I’m on the fence about whether or not this is a design worth accept-

ing, because in a way I think members in good standing will rise. But

more and more of the systems I’m seeing launching these days are hav-

ing some kind of additional accretion so you can tell how much

involvement members have with the system. 

There’s an interesting pattern I’m seeing among the music-sharing

group that operates between Tokyo and Hong Kong. They operate on a

mailing list, which they set up for themselves. But when they’re trading

music, what they’re doing is, they’re FedExing one another 180-gig

hard-drives. So they’re sending each other .wav files and not MP3s, and

they’re sending them in bulk. 

Now, you can imagine that such a system might be a target for organ-

izations that would frown on this activity. So when you join that group,

your username is appended with the username of the person who is your

sponsor. You can’t get in without your name being linked to someone

else. You can see immediately the reputational effects going on there,

just from linking two handles. 

So in that system, you become a member in good standing when your

sponsor link goes away and you’re there on your own report. If, on the

other hand, you defect, not only are you booted, but your sponsor is

booted. There are lots and lots of lightweight ways to accept and work

with the idea of member in good standing. 

3.) Three, you need some barriers to participation, however small.

This is one of the things that killed Usenet, because there was almost no

barrier to posting, leading to both generic system failures like spam, and

also specific failures, like constant misogynist attacks in any group

related to feminism, or racist attacks in any group related to African-

Americans. You have to have some cost to either join or participate, if

not at the lowest level, then at higher levels. There needs to be some kind

of segmentation of capabilities. 

Now, the segmentation can be total—you’re in or you’re out, as with

the music group I just listed. Or it can be partial—anyone can read

Slashdot, anonymous cowards can post, non-anonymous cowards can

post with a higher rating. But to moderate, you really have to have been

around for a while. It has to be hard to do at least some things on the

system for some users, or the core group will not have the tools that they

need to defend themselves. 

The Best Software Writing I206



Now, this pulls against the cardinal programming virtue of ease of

use, but ease of use is the wrong goal for social software. Ease of use is

the wrong way to look at the situation, because you’ve got the Necker

cube flipped in the wrong direction, toward the individual, when in fact,

the user of a piece of social software is the group. 

The groups’ goals sometimes differ from those of the individual

members, and the user of social software is the group, so ease of use

should be for the group. If the ease of use is only calculated from the

user’s point of view, it will be difficult to defend the group from the

“group is its own worst enemy” style attacks from within. 

I think we’ve all been to meetings where everyone had a really good

time, everyone was telling jokes and laughing, and it was a great meet-

ing, except we got nothing done. Everyone was amusing themselves so

much that the group’s goal was defeated by the individual interventions.

4.) Finally, you have to find a way to spare the group from scale.

Scale alone kills conversations, because conversations require dense

two-way conversations. In conversational contexts, Metcalfe’s Law—

the number of connections grows with the square of the number of

nodes—is a drag. Since the number of potential two-way conversations

in a group grows so much faster than the size of the group itself, the den-

sity of conversation falls off very fast as the system scales up even a little

bit. You have to have some way to let users hang onto the “less is more”

pattern, in order to keep associated with one another. 

This is an “inverse value to scale” issue. Think about your Rolodex:

a thousand contacts, maybe 150 people you can call friends, 30 people

you can call close friends, two or three people you’d donate a kidney to.

The value is inverse to the size of the group. And you have to find some

way to protect the group within the context of those effects. 

Sometimes you can do soft forking. LiveJournal does the best soft

forking of any software I’ve ever seen, where the concepts of “you” and

“your group” are pretty much intertwined. The average size of a

LiveJournal group is about a dozen people. And the median size is

around five. 

But each user is a little bit connected to other such clusters, through

their friends, and so while the clusters are real, they’re not completely

bounded—there’s a soft overlap, which means that although most users

participate in small groups, most of the half-million LiveJournal users

are connected to one another through some short chain. 

207Clay Shirky



Some pieces of social software, like IRC channels and mailing lists,

are self-moderating with scale, because as the signal-to-noise ratio gets

worse, people start to drop off, until it gets better, so people join, and so

it gets worse. You get these sorts of oscillating patterns, but the overall

system is self-correcting. 

And then my favorite pattern is from MetaFilter, which is: when we

start seeing effects of scale, we shut off the new user page. “Someone

mentions us in the press and how great we are? ’Bye!” That’s a way of

raising the bar; that’s creating a threshold of participation. And anyone

who bookmarks that page and says, “You know, I really want to be in

there; maybe I’ll go back later,” that’s the kind of user MeFi wants to

have.

You have to find some way to protect your own users from scale.

This doesn’t mean the scale of the whole system can’t grow. But you

can’t try to make the system large by taking individual conversations

and blowing them up like a balloon; human interaction, many-to-many

interaction, doesn’t blow up like a balloon. It either dissipates, or turns

into broadcast, or collapses. So plan for dealing with scale in advance,

because it’s going to happen anyway. 

Conclusion

Now, those four things are of course necessary but not sufficient condi-

tions. I propose them more as a platform for building the interesting

differences off. There are lots and lots and lots of other effects that make

different bits of software interesting enough that you would want to

keep more than one kind of pattern around. But those are commonali-

ties I’m seeing across a range of social software for large and long-lived

groups.

In addition, you can do all sorts of things with explicit clustering,

whether it’s guilds in massively multiplayer games, or communities on

LiveJournal or what have you. You can do things with conversational

artifacts, where the group participation leaves behind some record.

Right now, the Wikipedia is the most interesting conversational artifact

The Best Software Writing I208



I know of, where product is a result of process. Rather than “We’re

specifically going to get together and create this presentation,” it’s just

“What’s left is a record of what we said.” 

There are all these things, and of course they differ platform to plat-

form. But there is, I believe, this common core of things that will happen

whether you plan for them or not, and things you should plan for, that I

think are invariant across large communal software. 

Writing social software is hard. And, as I said, the act of writing

social software is more like the work of an economist or a political sci-

entist. And the act of hosting social software, the relationship of

someone who hosts it is more like a relationship of landlords to tenants

than owners to boxes in a warehouse. 

The people using your software, even if you own it and pay for it,

have rights and will behave as if they have rights. And if you abrogate

those rights, you’ll hear about it very quickly. 

That’s part of the problem that the John Hegel theory of commu-

nity—“community leads to content, which leads to commerce”—never

worked. Because lo and behold, no matter who came onto the Clairol

chat boards, they sometimes wanted to talk about things that weren’t

Clairol products. 

“But we paid for this! This is the Clairol site!” say the sponsors.

Doesn’t matter. The users are there for one another. They may be there

on hardware and software paid for by you, but the users are there for

one another. 

The patterns here, I am suggesting, both the things to accept and the

things to design for, are givens. Assume that addressing these issues is a

forced move in the social platform, and then you can start going out and

building on top of that the interesting stuff that I think is going to be the

real result of this period of experimentation with social software. 

Thank you very much. 

209Clay Shirky


