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Introduction 

To ask how and why a pencil point breaks is essentially to 
ask the same fundamental questions that Galileo (1638) did in 
his seminal work on the strength of materials three and a half 
centuries ago. Yet the problem of the fracture of a pencil point 
seems to have a sparse literature. In a 1979 paper, Cronquist 
observed that broken-off conical pencil points always appear 
to be virtually identical in size and shape, and he presented an 
elementary strength-of-materials analysis to explain the 
phenomenon. Cronquist's observation was discussed in a 
popular vein by Walker (1979) and was extended by Cowin 
(1983). In his note on broken pencil points Cowin takes into 
account a more general loading than did Cronquist, but while 
still working within the context of strength of materials. These 
last three references appear to be the only literature explicitly 
on the problem of predicting the size and shape of broken-off 
pencil points. The purpose of the present note is to give some 
background on the problem, to explain an aspect of the frac-
ture that remains unanswered, and to extend the analysis of 
the fracture of pencil points to a broader class of points. 

The kinds of pencil points that have heretofore been treated 
have been the truncated circular cylindrical cones of the 
hardened mixture of graphite and clay that we find in common 
wood-cased pencils and that we are all familiar with from 
school days. The geometry and notation employed by Cowin 
(1983) is shown in Fig. 1. Cronquist (1979) treated only the 
case where the force components F and R combine to give a 
force transverse to the pencil axis, noting that an equal axial 
component of force would change his result by only about ten 
percent, whereas Cowin allowed /-"and R to be completely ar-
bitrary. In both analyses, the normal stress across plane x = 
const was calculated using familiar strength of materials equa-
tions for axial and bending stresses in beams. The maximum 
value of this normal stress was found by Cronquist to occur 
where the ratio of the fracture diameter to the pencil point 
diameter at the writing tip is 3/2, and Cowin essentially con-
firmed this to be an average value under a broad range of 
loading conditions. Perhaps because the actual fracture sur-
face is slanted and makes it difficult to measure the diameter 
where a conical pencil point fractures, Walker introduced the 
ratio N of slant length to tip diameter of the broken-off point. 
In terms of the parameters defined in Fig. 1, 

N
= [OW - Q/cos a]/2 tan a (1) 

Walker collected data in a desk-top experiment and found 
reasonable agreement with a predicted value of N of approx-
imately 2.5. 

The results of Cronquist arid Cowin are consistent with our 
experience that sharper points tend to break more easily and 
closer to the point, where the cross-sectional area is small. On 
the other hand, blunt pencil points, of the kinds children seem 
to prefer, are less prone to breaking. But when they do, under 
larger forces than children would normally exert in writing, 
large pieces of the point break off to give the appropriate 
value of TV. (Mechanical pencils, which have essentially right-
cylindrical lead points, will always have their lead break off 
where it enters the metal case, of course, because the max-
imum tensile stress increases linearly with distance from the 
writing surface. Thus, turning out too long a lead from our 
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Fig. 1 Geometry of a pencil point (Cowin, 1983) 

mechanical pencils brings us the same frustrations as making 
our wood-cased pencils too sharp.) 

The characteristic of the broken-off pencil points that was 
inexplicable to Cronquist is that the fracture surface is not ex-
actly perpendicular to the pencil axis. In fact, the fracture sur-
face always slants back toward the pencil shaft as it grows 
from the edge of the pencil point closest to the writing surface. 
Cronquist believed the reason for this behavior to be beyond 
the reach of his simple analysis, and he did not pursue the 
point further. We shall show that the characteristic slant of the 
fracture surface is readily explained in the context of both 
Cronquist's and Cowin's analyses when one looks at the max-
imum principal stress in the pencil lead and not just the max-
imum axial tensile stress. 

Some Historical Background 

The problem of the resistance of a pencil point to fracture is 
essentially that of the strength of a cantilever beam loaded at 
its end, and this is precisely the problem that Galileo con-
sidered in the Second Day of his 1638 discourses on the 
strength of materials, which is generally agreed to be the work 
with which the history of the theory of elasticity and of the ra-
tional determination of the strength of materials properly be-
gins (cf Todhunter and Pearson, 1886; Timoshenko, 1953). 

While Galileo incorrectly assumed a uniform tensile stress at 
the root of the beam to resist the moment of the weight sup-
ported, he did correctly predict that the strength of a uni-
formly thick beam varies as the square of its depth. Galileo 
went on to argue that the profile of a beam of constant 
strength, or a "solid of equal resistance," would have a 
parabola as its generating curve. Such an optimized beam 
would be no more or no less likely to break at one location 
than at any other along its length. However, since the need to 
sharpen continually a pencil point to such an optimal shape 
would be more trouble than it was worth, pencils and the 
shape of their points have developed independent of Galileo's 
insights about optimization of strength. 

The first "pencils" are believed to have been pieces of ac-
tual lead formed in convenient shapes. These were used to 
scribe guidelines such as engineering students used to do 
before lettering by hand their mechanical or structural draw-
ings. The modern pencil had its origins in the discovery of a 
graphite mine in Borrowdale, England, in 1565. At first, 
prismatic pieces of solid graphite were cut for use as pencils, 
and later were encased in protective wood. The wood not only 
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Fig. 2 Lead size as a function of hardness (Svensen and Street, 1962) 
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Fig. 3 Conical and wedge points (Kirby, 1925) 

kept the writer's fingers clean, but also it strengthened the 
graphite prism so that pieces smaller in cross section could be 
used in pencils. When the graphite mine at Borrowdale was 
becoming worked out, alternatives were sought to using solid 
graphite for pencils. In 1790 Nicolas Conte, a French 
mechanic, and Josef Hardmuth of Vienna, perfected a process 
that enabled a mixture of pulverized graphite and clay to be 
used in the manufacture of pencils. This made it possible not 
only to use graphite dust instead of solid graphite, but also to 
make pencils of variable hardness. Soon a variety of pencils 
with circular cylindrical leads were being offered to writers, 
artists, and engineers (Fleming and Guptill, 1936). This variety 
is desirable to this day because paper, being composed of a 
weblike mass of interlaced fibers, exerts a file action on the 
pencil point. Especially in architectural drawing, where tex-
ture is so important, the rougher the paper being drawn on, 
the harder the pencil to be used (Halse, 1960). And in 
engineering drawing, of course, the hardness of the pencil is 
often matched to the fineness of the line being drawn, with 
harder pencils being able to take and hold a sharper point as 
long as they are not pressed too hard against the writing 
surface. 

Problems of Strength 

With a variety of products often comes a variety of 
manufacturing problems, however, and the resistance of pen-
cil leads to breaking is a function of the mixture of graphite 
and clay that they contain. So different writing hardnesses of 
pencils meant that, all other things being equal, different pen-
cils would break at different writing pressures, and this would 

<*> 

Fig. 4 Equivalent loading for wedge-pointed pencil 

mean that those using the pencils would have to adjust their 
touch to the degree of the pencil in their hand. Furthermore, 
the pencil manufacturers would have to adjust their processes 
to take into account different strengths of pencil lead. One 
economical solution to the problem is to make the lead of dif-
ferent diameters in pencils of different hardnesses (and 
strengths) as discussed, e.g., by Svensen and Street (1962). 
Properly adjusting the lead diameter, a whole line of pencils 
could be marketed with essentially the same fracture strength. 
Fig. 2 shows how the lead diameters of a whole range of 
drafting pencils varies from hard to soft. 

One of the disadvantages of a conventional wood-case pen-
cil is that it must be constantly sharpened in order to produce a 
uniform line. The conical point is clearly an easy to one to 
make with a piece of sandpaper, and easier with a mechanical 
pencil sharpener. But, as we all know, and, as discussed 
above, as the analyses of Cronquist and Cowin confirm, the 
sharper we make a conical point, the easier it will break. The 
empirical evidence long ago taught draftsmen that they could 
gain advantages in strength by using another shape for their 
pencils: the wedge or chisel point. This point is illustrated in 
Fig. 3, and it too is easily formed with a sandpaper pad. Ac-
cording to Kirby (1925): "For mechanical drawing (line work) 
use a 6H pencil, sharpened to a chisel (wedge) point at one end 
and to a conical point at the other end. (See Fig. 3.) Use the 
chisel point in ruling lines, and the conical point in marking 
points, as in laying off distances." 

The chisel point has the advantage that it keeps a more con-
stant thickness when used to draw thick lines, such as in ar-
chitectural rendering when the point is pulled along on its wide 
side, as well as to draw thin lines when the point is pulled 
along on its thin side. We shall analyze this pencil point shape 
to determine if it is indeed stronger than the conical shape 
analyzed by Cronquist and Cowin. As with their analyses, we 
shall assume the pencil point is geometrically ideal and 
without nicks or other imperfections. The propensity of a brit-
tle pencil point to break when nicked with the sharpening 
knife was cautioned against in drafting text books (e.g., 
Hoelscher and Springer, 1956) long before fracture mechanics 
became current. 

Stress Analysis of a Wedge-Pointed Pencil 

Timoshenko (1956) has shown that for a transversely loaded 
cantilever having the form of a wedge, with half angle, a, as 
shown in Fig. 4 (with Q = M = 0), the strength of materials 
beam formula can be corrected by a factor j3, where 

4 tan3
 a cos4

 a 

3 2a- sin 2a 

to give the exact elasticity solution for the maximum normal 
stress,i.e., 

My 
(CTJmax = - 0 - (3) 

(Note that since the normal stress is of the order /•"', the 
stresses would blow up at an infinitely sharp wedge-shaped 
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pencil point as soon as it touched the paper, and the point 
would be immediately broken. This is true for a conical point 
as well (cf Love, 1927).) 

For a typical sharpened pencil point, a = 6 deg, P = 0.99, 
and we see that the method of calculating the maximum nor-
mal stress <rv is not critical in establishing the location of the 
maximum normal stress. However, the exact shear stress on a 
section perpendicular to the pencil axis is given by 

P 16v2 tan3
 a cos 4 </> 

xy
 bh h

2
 2a-sin 2a K> 

where b is the (constant) width and h the (varying) thickness of 
the section of interest. Thus the shear stress differs from that 
predicted by strength of materials analysis of a beam of 
uniform section in two important aspects: (a) The maximum 
value of the shear stress occurs at the top and bottom of the 
wedge, rather than at the neutral axis; and (b) the maximum 
value of the shear stress is numerically greater than the average 
by a factor of 3/3: 

P 
V7

xy /max ^ P 
bh 

(5) 

The implications of this unbeam-like behavior of the shear 
stress means that at the top and bottom of the wedge the plane 
normal to the x axis is not a principal plane and is threfore not 
a plane of absolute maximum normal stress. 

Since both Cronquist and Cowin adopt a maximum normal 
stress failure criterion in interpreting their calculations for the 
cone, which suffer from the same inability to give a good ap-
proximation to the shear stress behavior at the cone boundary, 
their analysis cannot be expected to predict the inclination of 
the fracture plane. In fact, the actual initial fracture plane can 
be expected to be a plane perpendicular to the stress-free sur-
face of the pencil point. That plane will always have the max-
imum normal stress, and illustrations in the papers of both 
Cronquist and Walker suggest that the fractures of their pencil 
points did indeed initiate across such principal planes. 

Although beam theory is thus still sufficiently accurate to 
predict the location along the pencil axis where the normal 
stresses are maximum, we shall employ the elasticity solutions 
for a wedge loaded as shown in Fig. 4 to predict where the ab-
solute maximum normal stress will occur in a wedge point. 
The elasticity problem of a wedge loaded at its tip by the point 
loads P and Q is a generalization of MichelPs Problem, while 
the problem of a moment acting on the vertex of a wedge is 
Inglis' Problem (see Volterra and Gaines 1971), and these 
loads are statically equivalent to the loads Cowin considered 
to act on the truncated cone of Fig. 1 if we take 

R sin 8 —F cos 6 P 

Q 

M 

(6) 

(7) R cos d + F sin0 

iR (tan a sin 8 + cos 8) 

- IF (tan a cos 6 - sin 8) (8) 
According to Timoshenko and Goodier (1970), the normal 

and shear stresses across surface r = const in the wedge are 
given by 

- 2 P cos <t> 2Q sin 4> 

r(2a + sin 2a) r (2a - sin 2a) 

2M sin 2 <j> 

r
2 (sin 2a - 2a cos 2a) 

M (cos 2<t> — cos 2a) 

r
2 (sin 2a —2a cos 2a) 

(9a) 

(9b) 

The shear is clearly zero where <j> = a, as the boundary condi-
tions require, so that we can find the location rmax of the max-
imum principal stress along the edge </> = a of the wedge point 
by the condition dar/dr = 0. This procedure gives 

— Direction 
of Movement 

Paper-^ ^Guide 

Fig. 5 Pencil inclined to draw a line (Svensen and Street, 1962) 

MA (a) 

P cos a (2a -s in 2a) — Q sin a (2a + sin 2a) 

where 

A(a) = 
2 sin 2a (sin2 2 a - 4 a 2 ) 

(10) 

(11) 
sin 2a — 2a cos 2a 

For the case where the pencil is simply being pushed down on 
the writing surface, so that F — 0, we have 

A (a) (tan a sin 8 + cos 6) 
(12) 

sin 8 cos a (2a - sin 2a) - cos 8 sin a (2a + sin 2a) 
For a = 6 deg, this gives a positive value of rmax/l > 2 for all 8 
< 88 deg, and this corresponds to the parameter N > 9.5. For 
the standard drawing and drafting practice of exposing 3/8 in. 
of lead before sharpening (see, e.g., Halse, 1960, or Hoelscher 
and Springer, 1956), this would mean that a wedge point 
would have to be less than 0.04 in. thick to cause the max-
imum stresses to occur outside the wood case. 

For the situation where the force F — oo relative to R, we 
can take 

P= -Fcos 8 

Q = Fsin 8 

M=SF (sin 6 - tan a cos 8) 

Inserting these values into equation (11) gives 

(13) 

(14) 

(15) 

A (a) (sin 0 - t a n a cos 8) 

cos 6 cos a (2a - sin 2a) + sin 8 sin a (2a + sin 2a) 
(16) 

For a = 6 deg, this gives rmax/l > 0 for 6 > 6 deg, and for 8 > 
30 deg, this gives rmax/( > 1.5, which corresponds to A > 2.3. 

If we assume a pencil with a wedge-shaped point is being 
used at the recommended angle of 60 deg to 75 deg, as in-
dicated in Fig. 5 (see, e.g., Svensen and Street, 1962, or 
Hoelscher and Springer, 1956), then the location of a possible 
fracture can be predicted more precisely. For 65 deg, for ex-
ample, we have 1.87 <rmm/l < 2.64, which corresponds to a 
range of sizes for broken pencil points of: 

4.1 < Awedge < 7.8 (av. = 5.95) (17) 

which compares with Cowin's 
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1.9 < Ncom < 7.0 (av.= 4.45) (18) 

Since the size of the pencil tip, characterized by Cand a, deter-
mines the thickness or weight of the line drawn with the 
sharpened pencil, it is meaningful to compare the two results 
from equations (17) and (18). On the average, we can see that 
a given pencil, when overloaded in drawing a line of given 
weight, will have larger broken pencil points, as measured by 
the parameter N, when sharpened into a wedge than the same 
pencil sharpened into a conical point. Since the larger N, the 
greater the fracture area, we can also conclude that it would 
take on the average a greater effort to break a wedge-pointed 
pencil. Hence, not only does the wedge-pointed pencil have 
the advantage that it does not have to be twirled to keep line 
weight uniform, but also it can generally withstand a heavier 
hand on the part of the draftsperson. 

Conclusion 

The wood-case pencil is a common technological artifact 
whose size, shape, and composition have no doubt evolved 
with very little, if any, mathematical analysis. Equations flow 
from pencils, but pencils do not come of equations. Indeed, at 
one time during the nineteenth century, arguably the best pen-
cils made in America were manufactured by John Thoreau 
and Co., after a process perfected by John Thoreau's son, 
Henry David, who is remembered neither as a mathematician 
nor as an engineer (Harding, 1965). 

The use of the pencil by engineers and others, in particular 
the customary nature of the point with which drafting and 
sketching has traditionally been executed, also probably 
evolved more through trial and error and serendipity than 
through any deliberate, rational mathematical analysis. But, 
regardless of its origins and use, the pencil is as proper an ob-
ject of analysis as is the natural world and universe. By asking 
why and how a pencil point breaks in the way it does, we are 
not only led to a better understanding of the tools of stress 
analysis and their limitations, but we are also led to a fuller ap-
preciation of the wonders of technology when we analyze the 
aptness of such a manufactured product as the common 
pencil. 
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Inclusion Effects on Stress Measurement in 

Geological Materials 

A. L. Florence
11 

Introduction 

Stress measurement in geologic materials by embedded 
gauges is complicated because the gauge forms an inclusion 
with properties different from those of the surrounding 
medium. The sensing element measures the stress or pressure 
in the inclusion, which then has to be related to the far-field 
stress component we wish to measure. The analytical results 
presented here provide this relationship for elastic axisym-
metric quasi-static stress fields. 

Our analysis was motivated by a need to support our 
laboratory experiments to develop and apply miniature gauges 
for obtaining compressive stress measurements in rocks, rock 
simulants, and soils. As background, we describe briefly the 
design of the stress gauge shown in Fig. 1. It consists of a thin 
disk of elastic material (2.0 cm diameter and 0.2 cm thick) cast 
around a very thin flat foil (0.3 cm square and 0.002 cm thick) 
of piezoresistive material, such as ytterbium. The gauge is thin 
to allow the stress normal to the face to have the dominant ef-
fect on the inclusion stress field. This normal stress is the com-
ponent the gauge is trying to measure. The sensing element is a 
piezoresistive conductor with a scalar response, consisting of a 
resistance change, to applied tensorial stress and strain (Gupta 
1983, 1984). We, therefore, have to restrict the inclusion 
stress-strain state so the resistive change can be related to that 
state. Such states are generally hydrostatic or uniaxial strain 
and they are calibratable. The hydrostatic state is provided by 
a gauge of fluid-like material (low shear modulus) around the 
foil. The uniaxial strain state is provided by bonding the foil to 
a thin, relatively stiff, material, such as steel. Thus, we can 
relate the resistance change to the pressure in a fluid inclusion 
or to the inclusion stress component normal to the surface of 
the sensing foil. Our task is to relate the inclusion pressure or 
stress normal to the disk face to the medium far-field stress 
normal to the disk face. 

Our analytical approach to the elastic inclusion problem is 
first to replace the thin disk with a thin oblate spheroid having 
the same aspect ratio, so that we can employ Eshelby's theory 
of inclusions (1958) to relate the inclusion and the far-field 
stress loading. We then examine the results to obtain the ef-
fects on this relationship of the loading stress ratio, the inclu-
sion aspect ratio, and the elastic properties of the inclusion 
and medium. We assume that the very thin foil embedded in 
the inclusion has no effect on the stress distribution 
throughout most of the inclusion. In fact, the foil forms an 
additional inclusion problem. The analysis of an oblate 
spheroidal inclusion under far-field loading has been treated 
(Edwards, 1951; Shibata and Kanji Ono, 1978), but our results 
were derived in applicable form by Eshelby's method because 
we are employing the method in a more general context of 
gauge design. 

Oblate Spheroidal Inclusion 

We consider an oblate spheroidal inclusion at the origin of 
axes (xl ,x2,xi) and x3 the axis of symmetry. Let the semiaxes 
have lengths a, b, and c such that c < b = a. The applied 
stress afj is also symmetric about the x3 axis, so oft = a^2, and 
afj = 0 (/ ^ j). Application of Eshelby's method leads to the 
inclusion stress formulas 
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