
Noisy binary search and its applications

Richard M. Karp∗ Robert Kleinberg†

Abstract

We study a noisy version of the classic binary search
problem of inserting an element into its proper place
within an ordered sequence by comparing it with el-
ements of the sequence. In the noisy version we can
not compare elements directly. Instead we are given a
coin corresponding to each element of the sequence, such
that as one goes through the ordered sequence the prob-
ability of observing heads when tossing the correspond-
ing coin increases. We design online algorithms which
adaptively choose a sequence of experiments, each con-
sisting of tossing a single coin, with the goal of identify-
ing the highest-numbered coin in the ordered sequence
whose heads probability is less than some specified tar-
get value. Possible applications of such algorithms in-
clude investment planning, sponsored search advertis-
ing, admission control in queueing networks, college ad-
missions, and admitting new members into an organi-
zation ranked by ability, such as a tennis ladder.

1 Introduction

1.1 Problem Statements and Main Results An
algorithm is given n biased coins labeled with the
elements of the set [n] = {1, 2, . . . , n}. Let pi denote the
probability of observing heads when tossing coin i. We
assume that p1 ≤ . . . ≤ pn, but that the algorithm does
not know the values of p1, . . . , pn, only their ordering.
For convenience we define p0 = 0, pn+1 = 1. A target
value τ in [0, 1] is specified as part of the input, but
the values of p1, p2, . . . , pn are not revealed. Instead,
the algorithm may flip any of the coins at any time and
observe the outcome of the coinflip. The algorithm’s
goal is to find a pair of consecutive coins i, i + 1 such
that the interval [pi, pi+1] contains (or nearly contains)
the specified number τ .

An instance P of size n is specified by the given
number τ and the hidden array (p1, p2, · · · , pn) of heads

∗Computer Science Division, University of Califor-

nia, Berkeley. Supported in part by NSF grant CCF-

0515259.karp@icsi.berkeley.edu
†Computer Science Division, University of California, Berke-

ley. On leave from the Department of Computer Science, Cornell

University. Supported by an NSF Mathematical Sciences Post-

doctoral Research Fellowship. rdk@cs.cornell.edu

probabilities. We consider two versions of the problem
to be solved by the algorithm. In the first version a
positive number ε is given, and the task is to identify
a coin i such that the interval [pi, pi+1] intersects the
interval [τ − ε, τ + ε]; such a coin is called a good coin.
It is required that, for every instance P , the algorithm
has probability at least 3/4 of correctly identifying a
good coin. In the second version the task is the same,
except that ε is not given, but is specified implicitly for
each instance P as mini |τ − pi|, which we denote by
ε(P).

For the first version of the problem we give an
algorithm whose expected number of coin flips on every
instance (P, ε) is O(log n

ε2). For the second version we
give an algorithm whose expected number of coin flips
on every instance P is

O

(
log n + log log(1

ε(P))

ε(P)2

)
.

Both results are optimal, since in both cases we provide
information-theoretic proofs that no algorithm can im-
prove on these bounds by more than a constant factor.

1.2 A Naive Algorithm A naive algorithm for the
first version of the problem would use binary search to
locate a good coin, by maintaining a pair of indices a, b
(initialized to 1, n) and always testing the coin midway
between a and b to compare its heads probability p
with τ . If p lies outside (1

2 − ε, 1
2 + ε), we can test

whether p > 1
2 or p < 1

2 using O(1/ε2) coin flips.
This suggests that there is an algorithm with running
time O(log(n)/ε2). Unfortunately, designing such an
algorithm is not straightforward because a test which
uses O(1/ε2) coin flips to compare p with 1

2 has a
constant probability of returning the wrong answer, and
the algorithm must perform log(n) such tests. The naive
solution to this problem is to design the algorithm so
that each of the log(n) comparisons has O(1/ log(n))
error probability, then apply the union bound to say
that the algorithm outputs the correct answer with
probability 3/4. This requires O(log log(n)/ε2) coin
flips per comparison, leading to a running time of
O(log(n) log log(n)/ε2). Our optimal result is based on a
more subtle algorithm design that eliminates the factor

881

http://crossmark.crossref.org/dialog/?doi=10.5555%2F1283383.1283478&domain=pdf&date_stamp=2007-01-07

of log log(n).

1.3 Optimal Simulations and Optimal Algo-
rithms Our algorithms are based on optimal proce-
dures for simulating a coin with large bias by successive
independent tosses of a coin with a small bias ε. In both
procedures one is given a coin with bias p, a parameter
δ > 0, and two disjoint sets A, B ⊆ [0, 1]. The goal is
to simulate a coin whose heads probability is less than
δ if p ∈ A and greater than 1 − δ if p ∈ B. In the
first simulation, we take A = [0, 1

2 − ε), B = (1
2 + ε, 1]

for some number ε > 0, and the algorithm requires
O(log(1/δ)/ε2) flips of the original coin to produce one
flip of the simulated coin. In the second simulation
lemma, we take A = [0, 1

2), B = (1
2 , 1], and the algo-

rithm requires O(log(1/δ) log log(1/ε)/ε2) flips of the
original coin to produce one flip of the simulated coin,
where ε = |p − 1

2 |. The first simulation is essentially a
restatement of the Chernoff bounds. The second simu-
lation — along with the result that its running time is
optimal within a constant factor — is new to the best
of our knowledge, and appears likely to find applica-
tions beyond the scope of the present study. We also
use a third simulation lemma which improves on naive
application of the second simulation lemma when the
algorithm must flip several different coins sequentially.

Given these simulations, our task is to design an
algorithm that finds a good coin with probability at
least 3/4 when ε ≥ 1/4, and requires only O(log n)
coin tosses. We give two algorithms for this task. The
first algorithm maintains for each coin i a weight that,
roughly speaking, represents our degree of belief in the
assertion that pi ≤ 1/2 ≤ pi+1. The weight of coin i
increases or decreases by a multiplicative factor after
each coin flip, according to whether the outcome of the
coin flip supports the assertion about coin i. We prove
that, after O(log n) coin tosses, the probability is greater
than 3/4 that either most of the coin tosses that have
occurred involve good coins, or the coin with highest
weight is good; in either case, it is easy to identify a
good coin. The second algorithm modifies the naive
binary search algorithm by allowing backtracking: if
the algorithm finds evidence that it has gone down the
wrong branch of the tree, it may backtrack to the parent
node and retry an earlier comparison.

1.4 Applications The problems we consider are mo-
tivated by a noisy version of the the classic binary search
problem of inserting an element x into its proper place
within an ordered sequence x0, x1, x2, · · · , xn, xn+1 by
comparing x with elements of the sequence. In the
noisy version the target is 1/2, x > xi iff pi < 1/2,
and the probability of error in comparing x with xi

is min(pi, 1 − pi). Such a noisy binary search problem
might model the process of arranging matches to de-
termine the rank of a new tennis player within the es-
tablished ranking of a set of n other players; here pi is
the probability that player i wins a match against the
new player. This probabilistic model of binary search
can be contrasted with adversarial models for binary
search and related problems [2, 8, 4, 7, 9], in which
an adversary seeking to prolong the search is allowed to
give a specified number of incorrect answers. The only
previous work we have found on a probabilistic model
similar to ours is [6], which, among other models, con-
siders a special case of our model and gives a result that
is dominated by the naive algorithm mentioned above.

In other interpretations the coins represent levels
of investment, pi represents the probability of success
at the ith level of investment, and the goal is to find
the least investment yielding a probability of success
greater than or equal to τ . As one example, the levels
of investment might represent the possible placements
of ad words on a Google Web page, and one seeks the
least costly placement that would yield a desired click
rate.

In another class of applications the coins correspond
to a sequence of decreasingly stringent thresholds for
admitting students to a college, packets to an Internet
link, etc. Here pi denotes the fraction of candidates
admitted using the ith threshold, and τ is the desired
admission rate.

Finally, the coins might correspond to a decreasing
sequence of possible prices for copies of some good, in
which case the goal would be to find the highest price
that will yield a given volume of sales.

Several generalizations and extensions of the ques-
tions we consider suggest themselves. It would be nat-
ural to consider versions of the problem in which the
pi vary over time in some constrained manner, and
the goal is to track, for all t, the index i(t) such that
pi(t) < τ ≤ pi(t)+1. In the scenario of admitting appli-
cants to a college, we might assume that the desirabili-
ties of the successively arriving applicants are i.i.d. sam-
ples from am underlying distribution, that the goal is to
admit those applicants whose desirabilities are above a
given percentile of the distribution, and that each coin
flip corresponds to comparing the applicant’s desirabil-
ity with a particular threshold. In this setting, it is con-
sidered a mistake to admit a student whose desirability
is below the target percentile or reject one whose desir-
ability is above, and one could investigate the problem of
minimizing the number of mistakes incurred while prob-
ing for the best threshold. For the problem of pricing
a good, one might consider the problem of maximizing
revenue rather than achieving a given volume of sales.

882

This version of the problem is studied in [5].

2 Reduction to the Case τ = 1/2

For any target τ we can construct an experiment which,
given a coin with unknown heads probability p, accepts
the coin with probability f(p), where f(p) is a strictly
increasing linear function such that f(τ) = .5, f(1 +
ε)τ = 1/2(1 + ε′) and f(1 − ε)τ = 1/2(1 − ε′), where

ε′ = ε
2τ if τ ≥ 1/2) and ε′ = τ(1/2−τ)ε

1−τ if τ < 1/2.
This experiment assumes the availability of a fair coin,
and flips the unknown coin once and the fair coin twice
on average. The experiment is based on a well-known
construction which simulates a coin with an arbitrary
given heads probability s using, on average, two flips
of the fair coin. If τ > 1/2 the experiment flips
the unknown coin and a simulated coin with success
probability 1

2τ , and accepts the unknown coin if both
outcomes are heads. If τ < 1/2 the experiment flips
the unknown coin and a simulated coin with success
probability 1/2−τ

1−τ and accepts the unknown coin if at
least one of the two outcomes is heads. In view of this
simulation, we may assume without loss of generality
that the target is 1

2 , and this assumption is made
throughout the rest of the paper.

3 Reduction to the case ε = Θ(1)

We begin by recalling some exponential tail inequalities
from probability theory. Recall that a submartingale
is a sequence of random variables X0, X1, X2, . . . , Xn

satisfying
E [Xi+1 | X1, . . . , Xi] ≥ Xi,

for 1 ≤ i < n. The following inequality for submartin-
gales is a generalization of Azuma’s inequality; its proof
is the same as the proof of Azuma’s inequality, e.g. [1].

Lemma 3.1. Suppose X0, X1, X2, . . . , Xn is a sub-
martingale and |Xi+1 −Xi| ≤ 1 for 0 ≤ i < n. Then

Pr(Xn ≤ X0 − t) ≤ exp

(−t2

2n

)
.

Corollary 3.1. For q ∈ [0, 1] and ε > 0, suppose
y1, y2, . . . , yn are independent Bernoulli random vari-
ables, each with expected value at least q + ε. Then

Pr

(
n∑

i=1

yi ≤ qn

)
< e−ε2n/2.

Proof. Apply Azuma’s inequality to the submartingale
Xi =

∑i
j=1(yj−q−ε). (The result can also be obtained

quite easily using Chernoff’s bound.) �

Lemma 3.1. (First simulation lemma) Given
numbers p ∈ [0, 1] and δ, ε > 0, let n = d2 log(1/δ)/ε2e,

let y1, y2, . . . , yn be independent Bernoulli random
variables, each with expected value p, and let E be the
event y1 + y2 + . . . + yn > n/2. Then:

1. Pr(E) is an increasing function of p.

2. Pr(E) > 1− δ if p > 1
2 + ε.

3. Pr(E) < δ if p < 1
2 − ε.

Proof. The fact that Pr(E) is an increasing function
of p follows from an easy coupling argument. When
p > 1

2 + ε, the bound Pr(E) > 1 − δ follows from
Corollary 3.1 and the fact that ε2n/2 ≥ − log(δ). When
p < 1

2 − ε, the bound Pr(E) < δ follows from applying
Corollary 3.1 to the random variables 1−y1, . . . , 1−yn.

�

Lemma 3.2. (Second simulation lemma) Given a
constant δ > 0 and a coin whose heads probabil-
ity is not equal to 1

2 , there is a deterministic on-
line algorithm which performs coin flips and eventu-
ally halts, outputting a 0 or 1. The algorithm has
the following properties. If the coin flips are inde-
pendent with heads probability p = 1

2 ± ε for some
ε > 0, then the algorithm’s expected running time is
O(log(1/δ) log log(1/ε)/ε2), and the probability of the
event E = {the algorithm outputs 1} satisfies:

1. Pr(E) is an increasing function of p.

2. Pr(E) > 1− δ if p > 1
2 .

3. Pr(E) < δ if p < 1
2 .

Proof. It suffices to prove the lemma when δ = 1/4;
the result for general δ follows by standard probability
amplification techniques. We design an algorithm which
runs in phases numbered 0, 1, In phase k, the
algorithm sets γ = e−k and n = d16γ−2 ln(k+9)e and it
flips the coin n times. If the number of heads in phase
k is between

(
1−γ

2

)
n and

(
1+γ

2

)
n it continues to phase

k+1. Otherwise it stops and outputs the outcome which
was observed more frequently in phase k.

Note that if the number of observed heads in phase
k differs from its expected value by at most γn/2, then
the algorithm does not output an incorrect answer in
phase k. By Azuma’s inequality, the probability that
the number of observed heads in phase k differs from its
expected value by more than γn/2 is bounded above by

2e−γ2n/8 ≤ 2e−2 ln(k+9) =
2

(k + 9)2
.

The algorithm’s failure probability is bounded above by
1/4 because

∑∞

k=0 2/(k + 9)2 < 1/4.

883

Finally, to bound the running time of the algorithm
we again use Azuma’s inequality. Let ` = dln(1/ε)e, so
that γ ≤ ε in phase ` and afterward. In order for the
algorithm to continue running past phase k ≥ `, the
number of heads must differ from its expected value
by more than εn/2, an event which has probability
bounded above by

2e−ε2n/8 ≤ 2e−2ε2 exp(2k) ln(k+9) = 2(k + 9)−2ε2 exp(2k).

The running time of phases k ≥ ` grows exponentially
in k while the probability of reaching phase k decreases
faster than exponentially. So the expected running time
is dominated by the running time of phase `, which is
O(ε−2 log log(1/ε)). �

Proposition 3.1. Let ε0 be a constant. Suppose there
is an ε0-good algorithm for the coins problem, whose ex-
pected running time is bounded above by T (n). Then for
every ε > 0 there is an ε-good algorithm for the coins
problem whose expected running time is O(T (n)/ε2).
Moreover, there is a good algorithm for the coins prob-
lem whose expected running time, on every instance P ,
is

O

(
T (n) log log(1/ε(P))

ε(P)2

)
.

Proof. Given coins with heads probabilities p1 ≤ p2 ≤
. . . ≤ pn, let us use coin i to simulate a coin σi with some
other heads probability qi by applying the algorithm in
Lemma 3.1 with δ = 1

2 − ε0. We require O(1/ε2) flips
of coin i for each flip of the simulated coin σi. These
heads probabilities of the simulated coins, q1, . . . , qn,
satisfy q1 ≤ q2 ≤ . . . ≤ qn, and [qi, qi+1] is disjoint from
[δ, 1− δ] if [pi, pi+1] is disjoint from [12 − ε, 1

2 + ε]. The
ε0-good algorithm performs T (n) simulated coin flips in
expectation — this requires us to perform O(T (n)/ε2)
coin flips in expectation — and with probability 3/4
it outputs a pair i, i + 1 such that [qi, qi+1] intersects
[12 − ε0,

1
2 + ε0] = [δ, 1− δ]. As noted above, this implies

that [pi, pi+1] intersects [12 − ε, 1
2 + ε], as desired.

Similarly, we may use coin i to simulate a coin
τi with heads probability ri by applying the algo-
rithm in Lemma 3.2 with δ = 1

2 − ε0. We require
O(log log(1/ε(P))/ε(P)2) flips of coin i to simulate coin
τi. The probabilities r1, . . . , rn satisfy r1 ≤ . . . ≤ rn,
and [ri, ri+1] is disjoint from [δ, 1 − δ] if [pi, pi+1] does
not contain 1

2 . As above, this implies a reduction
from good algorithms to ε0-good algorithms, with a
O(log log(1/ε(P))/ε(P)2) blow-up in the running time.

�

In Sections 4 and 5 we will present algorithms with
running time T (n) = O(log n) which are ε0-good when

ε0 = 1/3. Hence, by Proposition 3.1 there is an ε-good
algorithm with running time O(log(n)/ε2) for every
ε > 0, and there is a good algorithm whose running time
on an instance P is O(log(n) log log(1/ε(P))/ε(P)2).
The running time of the good algorithm can be further
improved to

O

(
log n + log log(1/ε(P))

ε(P)2

)

using a more efficient simulation lemma which we now
present. (In applying the lemma, we define the function
A mentioned in the lemma’s statement to be the rule
that the ε0-good algorithm uses to choose which coin it
flips next.)

Lemma 3.3. (Third simulation lemma) Given a
constant δ > 0, a set of coins C = {c1, c2, . . . , cn}
with unknown heads probabilities p(ci), and a function
A : {0, 1}∗ → C for choosing the next coin to simulate
based on a history of past simulated coin flips, there is
a deterministic online algorithm which performs coin
flips and outputs a sequence of bits y1, y2, . . . at times
τ1 < τ2 < . . . such that:

1. At each time t, the algorithm flips coin
A(y1, . . . , ys), where s is such that τs < t ≤ τs+1.

2. If ε is any number satisfying |p(ci) − 1/2| ≥ ε > 0
for all ci ∈ C, then for every m the running time of
the first m simulated coin flips satisfies

E(τm) = O([m + log log(1/ε)]/ε2).

3. For each ci ∈ C, Pr(ys = 1 | A(y1, . . . , ys−1) = ci)
is an increasing function of p(ci).

4. If p(ci) > 1/2 then

Pr(ys = 1 | A(y1, . . . , ys−1) = ci) > 1− δ.

5. If p(ci) < 1/2 then

Pr(ys = 1 | A(y1, . . . , ys−1) = ci) < δ.

Proof. [Sketch] Intuitively, we need to learn the value of
ε in a sequence of phases as in Lemma 3.2, but once we
have learned ε we should remember its value and not
try to re-learn it each time we simulate a new coin flip.
This allows us to pay the cost of O(log log(1/ε)/ε2) only
once (in expectation) rather than m times.

As above, it suffices to prove the lemma when
δ = 1/4. The algorithm is a modification of the one
given in Lemma 3.2. It sets a sequence of state vari-
ables α0, α1, . . ., where αs may be interpreted as the
algorithm’s estimate of ln(1/ε) when it commences
simulating the s-th coin flip. Let α0 = τ0 = 0.

884

Between time τs and τs+1, the algorithm flips coin
ci = A(y1, . . . , ys); this sequence of coin flips is di-
vided into phases numbered 0, 1, . . . In phase k it sets
γ = e−αs−k and n = d16γ−2 ln(k + 9)e and it performs
n flips of coin ci. If the number of heads in phase k is be-
tween

(
1−γ

2

)
n and

(
1+γ

2

)
n then it continues to phase

k + 1. Otherwise it sets ys = 0 or ys = 1 according
to whether tails or heads was observed more frequently
among the coin flips in phase k. Finally, it sets τs+1

equal to the current time and it sets αs+1 = αs + k− 1.
Every property except property (2) in the statement

of the lemma is proved using a straightforward modifi-
cation of the corresponding argument from Lemma 3.2.
The proof of (2) depends on a delicate analysis of the
stochastic process (αs)s≥0 and is deferred to the full
version of the paper. �

4 A multiplicative weights algorithm

In this section we set ε0 = 1
3 and present an ε0-good

algorithm with running time O(log n).
The algorithm maintains an array

W = (w(0), w(1), · · · , w(n)) of positive numbers
summing to 1; w(i) can be thought of as a weight asso-
ciated with the interval (pi, pi+1]. Initially, w(i) = 1

n+1
for all i. In the analysis of the algorithm, we will write
wt(i) to denote the value of w(i) at the end of step t of
the algorithm.

At each step t the algorithm identifies i(t), the

largest index i such that
∑i

j=0 w(i) < .5. It then
chooses an index j(t) uniformly at random from the
2-element set {i(t), i(t)+1}, tosses coin j(t) and updates
the array W as follows:

Let q =
∑j(t)−1

i=0 w(i). If coin j(t) comes up “heads”
then

1. for i < j(t), w(i)← 3w(i)
2+q ;

2. for i ≥ j(t),w(i) ← 2w(i)
2+q .

If coin j(t) comes up “tails” then

1. for i ≥ j(t), w(i)← 3w(i)
3−q ;

2. for i < j(t),w(i) ← 2w(i)
3−q .

The intuition for this update rule is that wt(i) is
analogous to a Bayesian posterior probability (after t
trials) that the interval (pi, pi+1] contains 1/2, starting
from a uniform prior. The multiplicative update rule
given above is analogous to updating this posterior
distribution according to Bayes’ law.

The algorithm continues for T (n) steps, where
T (n) = d200 ln(.51(n + 1))e. Let u = arg maxi wT (n)(i).
and let v be the median element of the multiset

{i(1), i(2), · · · , i(T (n))}. We prove below that, with
probability at least 1 − exp(−2), at least one of the
following statements holds:

1. pu < 1/2 ≤ pu+1

2. index v is 1
4 -good.

The final stage of the algorithm is to flip coins v and
v + 1 each dln ln ne times. Let hv and hv+1 be the
frequencies of heads for coins v and v+1 respectively. If
[hv, hv+1] ∩ [5/24, 19/24] 6= φ then declare that index v
is 1

3 -good, else declare that index u is 1
3 -good. We shall

prove that the declaration is correct with probability at
least 3/4.

Let i∗ be the unique index such that pi∗ < 1/2 ≤
pi∗+1 Let Z(t) = ln(wt+1(i

∗))− ln(wt(i
∗)).

Lemma 4.1. Let R(t) denote the sequence of outcomes
of the first t − 1 coin flips of the algorithm. If i(t) is
a 1

4 -good index then E(Z(t)|R(t)) ≥ 1
2 ln(24

25). If i(t) is
not a 1

4 -good index then E(Z(t)|R(t)) ≥ 1
4 ln(864

625).The
first of these constants is greater than −.0204 and the
second is greater than .0404.

Proof. Without loss of generality we may assume that
i(t) + 1 ≤ i∗, since the case i(t) + 1 > i∗ is a mirror
image of this case and can be analyzed similarly. Let
j(t) be the index drawn from {i(t), i(t) + 1} at step t.
Conditional upon this choice E[Z(t)] = pj(t) ln(2

2+q) +

(1 − pj(t)) ln(3
3−q). For any q this is a monotone

nonincreasing function of pj . Also, when j(t) = i(t)+1,
q ≥ 1/2. In all cases pj(t) ≤ 1/2, and if i(t) is not a
1
4 -good index then pj(t) ≤ 1/4. Using these facts and
elementary calculus the result follows. �

Lemma 4.2. Let T = T (n). With probability at least
1− exp(−2), at least one of the following holds:
(i) The number of steps in which i(t) is a 1

4 -good index
is greater than T/2, and the median element of the
multiset {i(1), i(2), · · · , i(T)} is a 1

4 -good index.
(ii) wT (i∗) ≥ .51.

Proof. We make the following observations.
(1) wT (n)(i

∗) ≥ .51 if and only if

T (n)∑

t=1

Z(t) ≥ ln(.51(n + 1)).

(2) Define Xt =
∑t

k=1 Z(k)−E[Z(k)|R(k)]. Since {Xt}
is a martingale with differences bounded by ln(3/2),
Azuma’s Inequality yields that

Pr[X(T) ≤ −2 ln2(3/2)
√

T] ≤ exp(−2).

885

(3) Let G denote the number of steps in which i(t) is a
1
4 -good index. If G > T/2, then it is immediate that the
median element of the multiset {i(1), i(2), · · · , i(T)} is
a 1

4 -good index, so we are in case (i).
(4) If G ≤ T/2, then E[Z(t)|R(t)] is at least .0404
for at least half of the indices 1, 2, · · · , T (n) and it
is at least −.0204 for the remaining indices. Thus∑T

t=1 E [Z(t)|R(t)] ≥ .01T and hence

T∑

t=1

Z(t) ≥ .01T + XT .

(5) Let Z̃ = .01T − 2 ln2(3/2)
√

T . We have

Pr

(G ≤ T/2) ∧

T (n)∑

t=1

Z(t) < Z̃

 ≤ exp(−2).

(6)

Pr

(G > T/2) ∨

T (n)∑

t=1

Z(t) ≥ Z̃

 ≥ 1− exp(−2).

(7) For T = d200 ln(.51(n+1))e and all sufficiently large

n, Z̃ = .01T − 2 ln2(3/2)
√

T ≥ ln(.51(n + 1)).
(8) For T = d200 ln(.51(n+1))e and all sufficiently large
n, Pr((G > T/2) ∨ (wT (i∗) ≥ .51)) ≥ 1− exp(−2). �

Theorem 4.1. With probability at least 3/4, the algo-
rithm correctly declares a 1

3 -good index.

Proof. Since
∑

i wT (n)(i) = 1, there can be at most one
index i such that wT (n)(i) > 1/2. By the preceding
lemma, with probability at least 1 − exp(−2), at least
one of the following two indices is 1

4 -good upon termina-
tion of the main loop of the algorithm: v, the median of
the multiset of indices {i(1), i(2), · · · , i(T (n))}; and u,
argmaxi(wT (n)(i)). Moreover, by application of a Cher-
noff bound, the probability that [hv , hv+1]∩[5/24, 19/24]
will be nonempty if [v, v+1] is not 1

3 -good tends to zero
as n → ∞. Hence the algorithm correctly declares a
good index with probability at least 1− exp(−2)− o(1).

�

5 A binary search algorithm with backtracking

This section describes a second ε0-good algorithm with
running time O(log(n)), when ε0 = 1

3 . The algorithm
bears a close resemblance to the naive binary search
algorithm which was briefly described in Section 1.2,
except that the binary search considered here allows
backtracking : if the algorithm finds evidence that it

has gone down the wrong branch of the tree, it may
backtrack to the parent node and retry an earlier
comparison.

Let T be an infinite rooted binary tree each of
whose nodes is labeled with a pair of indices from
{0,1,. . . ,n+1}. The labeling is defined recursively as
follows. First, the root vertex is labeled with (0, n + 1).
Then, for every vertex v with label (a, b), let m =
b(a+ b)/2c and label the left child L(v) with (a, m) and
the right child R(v) with (m, b). For future reference,
we will denote the parent of a node v by P (v). (When
v is the root, we adopt the convention that P (v) = v.)

The algorithm takes a random walk ν(0), ν(1), . . . in
T, starting at the root. In round t, when the algorithm
is at node ν(t) whose label is (a, b) and whose children
are labeled (a, m) and (m, b), the algorithm operates as
follows. First, it flips coin a twice and coin b twice. If
both a-flips come up heads or both b-flips come up tails,
then it moves to the parent node ν(t + 1) = P (ν(t)).
Otherwise, it flips coin m and moves to the left child
ν(t + 1) = L(ν(t)) if it flips heads, or to the right
child ν(t + 1) = R(ν(t)) if it flips tails. Finally, with
probability 1/ ln(n), at the end of round t the algorithm
performs a special “termination test” to decide if it
should halt before progressing to round t + 1, because
either coin a or coin b is ε0-good. The termination test
works as follows. Let k = d300 ln(n)e. The algorithm
performs k flips of coin a and k flips of coin b, noting the
number of heads ha, hb, respectively. If 1

4 ≤ ha/k ≤ 3
4

then it halts and outputs a. If 1
4 ≤ hb/k ≤ 3

4 then it
halts and outputs b. If b = a + 1 and ha/k < 1

2 < hb/k
then it halts and outputs a. Otherwise it proceeds to
round t + 1.

Lemma 5.1. For all t, the probability that the algorithm
halts and outputs a coin which is not ε0-good at time t
is less than 4/n.

Proof. Suppose the algorithm performs a termination
test at time t. Conditional on this event, we will prove
that the probability of halting at time t and outputting
a coin which is not ε0-good is less than 4/n. By Azuma’s
inequality, the probability that |ha/k − pa| > 1

12 is
bounded above by 2 exp(−k/288) < 2/n. Similarly the
probability that |hb/k − pb| > 1

12 is bounded above
by 2/n. So assume now that |ha/k − pa| ≤ 1

12 and
|hb/k − pb| ≤ 1

12 . If the algorithm decides to halt at
time t, then one of the following cases applies:

1. ha/k ∈ [14 , 3
4] and the algorithm outputs a. In this

case pa ∈ [16 , 5
6] and a is ε0-good.

2. hb/k ∈ [14 , 3
4] and the algorithm outputs b. In this

case pb ∈ [16 , 5
6] and b is ε0-good.

886

3. b = a + 1 and 1
2 ∈ [ha/k, hb/k], and the algorithm

outputs a. In this case [12 − 1
12 , 1

2 + 1
12] intersects

[pa, pb] and a is ε0-good.

We have shown that the algorithm outputs a coin which
is ε0-good unless one of |ha/k−pa|, |hb/k−pb| is greater
than 1/12, an event with probability less than 4/n. �

For the remainder of the analysis, define a node of
T to be promising if its label (a, b) satisfies at least one
of the following:

1. pa ∈ [14 , 3
4].

2. pb ∈ [14 , 3
4].

3. b = a + 1 and 1
2 ∈ [pa, pb].

Otherwise we say the node is bad. The set of promising
nodes in T will be denoted by W .

Lemma 5.2. Conditional on the event ν(t) ∈ W ,
the probability that the algorithm halts at time t is
Ω(1/ ln(n)).

Proof. The statement of the lemma is tantamount to
saying that if a termination test is performed at time
t and ν(t) is promising, then there is a constant prob-
ability that the algorithm terminates. There are three
cases (depending on which of the three criteria for a
promising node are satisfied by ν(t)) and in each case
the lemma follows from the fact that each of the follow-
ing events has constant probability and the first two are
independent of the second two: (A) ha/k ∈ [pa− 1

4 , pa];
(B) ha/k ∈ [pa, pa + 1

4]; (C) hb/k ∈ [pb − 1
4 , pb]; (D)

hb/k ∈ [pb, pb + 1
4]. �

Lemma 5.3. Let d(u, W) denote the distance from a
node u ∈ T to the closest node of W . Conditional on
the event ν(t) 6∈W , the probability that d(ν(t+1), W) =
d(ν(t), W) − 1 is at least 9/16.

Proof. Let (a, b) be the label of ν(t). If ν(t) 6∈ W then
one of the following cases applies.

1. [pa, pb] ⊆ [0, 1
4] ∪ [34 , 1].

2. pa < 1
4 and pb > 3

4 and b− a > 1.

In case (1), either pa > 3
4 or pb < 1

4 ; assume the former
without loss of generality. The probability that both
of the algorithm’s a-flips in round t come up heads
is at least 9/16; if so, then ν(t + 1) is the parent of
ν(t) and this is closer to W because no descendant of
ν(t) belongs to W . In case (2), let E denote the event
ν(t + 1) 6= P (ν(t)). This is equivalent to the event that
at least one of the a-flips is tails and at least one of the b-
flips is heads; these two events are independent and each

has probability at least 15/16. So Pr(E) ≥ (15/16)2. Let
m = b(a + b)/2c. If pm ∈ [14 , 3

4] then both children of
ν(t) are in W and we are done: with probability at least
(15/16)2 = 0.87..., event E occurs and the distance to
W decreases from 1 to 0. If pm 6∈ [14 , 3

4] then assume
without loss of generality that pm < 1

4 . This implies
that all of W is contained in the right subtree of ν(t),
so to finish we must prove that

Pr(ν(t + 1) = R(ν(t))) ≥ 9/16.

Conditional on E , the algorithm will choose ν(t + 1) =
R(ν(t)) as long as one toss of coin m produces tails.
By our assumption that pm < 1

4 , we see that this event
has conditional probability at least 3

4 , so the probability
that ν(t + 1) = R(ν(t)) is at least (3/4) Pr(E), which is
bounded below by (3/4) · (15/16)2 > 9/16. �

Proposition 5.1. The algorithm is ε0-good and its
expected running time is O(log n).

Proof. We will prove that the expected running time is
O(log n). The fact that the algorithm is ε0-good will
follow immediately using Lemma 5.1. Note that each
round of the algorithm has constant expected running
time, since it requires at most 5 coin flips followed
possibly by a termination test whose running time is
O(log n), but the termination test is only executed with
probability O(1/ logn). So it suffices to prove that the
expected number of rounds is O(log n). We will do this
using a potential function argument.

Let Yt = d(ν(t), W), let Zt = #{s < t | ν(s) ∈ W},
and let

Φt = dlog2(n)e+ Zt − Yt −
1

8
(t− Zt).

We have Φ0 = dlog2(n)e − d(ν(0), W) ≥ 0, and we
claim that {Φt} is a submartingale. If ν(t) ∈ W , then
Zt+1 = Zt+1 so Φt+1 ≥ Φt. If ν(t) 6∈W then Zt+1 = Zt

while Lemma 5.3 implies E(Yt+1 | Yt, ν(t)) ≤ Yt − 1/8,
which confirms that E(Φt+1 | Φt, ν(t)) ≥ Φt.

If the algorithm does not terminate before round
t > 160(1 + log2(n)), then either Zt > t/10 or

Φt < log2(n) + 1 +
9

8
Zt −

1

8
t < −t/160.

Lemma 5.2 ensures that Pr(Zt > t/10) < (1− δ)t/ ln(n)

for some constant δ > 0, while Azuma’s inequality for
submartingales implies that Pr(Φt < t/160) < (1− δ′)t

for some other constant δ′ > 0. It follows that for
t > 160(1 + log2(n)), the probability of the algorithm
running for more than t rounds decays exponentially
in t/ log(n). Hence the expected number of rounds is
O(log n). �

887

6 Information-theoretic lower bounds

In this section we prove lower bounds which establish
that the running times of the algorithms in this paper
are optimal up to constant factors. We begin by
recalling some facts about Kullback-Leibler divergence.
See [3] for a more thorough introduction to these
techniques.

Definition 6.1. Let Ω be a finite set with two proba-
bility measures p, q. Their Kullback-Leibler divergence,
or KL-divergence, is the sum

KL(p; q) =
∑

x∈Ω

p(x) ln

(
p(x)

q(x)

)
,

with the convention that p(x) ln(p(x)/q(x)) is inter-
preted to be 0 when p(x) = 0 and +∞ when p(x) > 0 and
q(x) = 0. If Y is a random variable defined on Ω and
taking values in some set Γ, the conditional Kullback-
Leibler divergence of p and q given Y is the sum

KL(p; q | Y) =
∑

x∈Ω

p(x) ln

(
p(x | Y = Y (x))

q(x | Y = Y (x))

)
,

where terms containing log(0) or log(∞) are handled
according to the same convention as above.

The following lemma summarizes some standard
facts about KL-divergence; for proofs, see [3].

Lemma 6.1. Let p, q be two probability measures on a
measure space (Ω,F) and let Y be a random variable
defined on Ω and taking values in some finite set Γ.
Define a pair of probability measures pY , qY on Γ by
specifying that pY (y) = p(Y = y), qY (y) = q(Y = y) for
each y ∈ Γ. Then

KL(p; q) = KL(p; q | Y) + KL(pY ; qY),

and KL(p; q | Y) is non-negative.

The KL-divergence of two distributions can be
thought of as a measure of their statistical distinguisha-
bility. We will need three lemmas concerning KL-
divergence. The first lemma asserts that a sequence
of n experiments can not be very good at distinguishing
two possible distributions if none of the individual ex-
periments is good at distinguishing them. The second
one shows that if the KL-divergence of p and q is small,
then an event which is reasonably likely under distri-
bution p can not be too unlikely under distribution q.
The third lemma estimates the KL-divergence of distri-
butions which are very close to the uniform distribution
on {0, 1}.

Lemma 6.2. Suppose Ω0, Ω1, . . . , Ωn is a sequence of
finite probability spaces, and suppose we are given two
probability measures pi, qi on Ωi (0 ≤ i ≤ n) and
random variables Yi : Ωi → Ωi−1 such that pi−1 =
(pi)Yi

, qi−1 = (qi)Yi
for i = 1, 2, . . . , n. If p0 = q0 and

KL(pi; qi | Yi) < δ for all i, then KL(pn; qn) < δn.

Proof. The proof is by induction on n, the base case
n = 1 being trivial. For the induction step, Lemma 6.1
implies

KL(pn; qn) = K(pn; qn | Yn) + KL(pn−1; qn−1)

< δ + KL(pn−1; qn−1),

and the right side is less than δn by the induction
hypothesis. �

Lemma 6.3. Let Ω be a probability space with two
probability measures p, q and an event E such that
p(E) ≥ 1/3 and q(E) < 1/3. Then

KL(p; q) ≥ 1

3
ln

(
1

3q(E)

)
− 1

e
.

Proof. Let Γ = {0, 1} and let Y be the indicator ran-
dom variable of the event E . Let a, b be the probabil-
ities of event E under the measures p, q, respectively.
Lemma 6.1 implies that

KL(p; q) ≥ KL(pY ; qY)

= a ln
(a

b

)
+ (1− a) ln

(
1− a

1− b

)

≥ 1

3
ln

(
1

3b

)
+ (1− a) ln(1− a)

≥ 1

3
ln

(
1

3b

)
− 1

e
.

�

Lemma 6.4. If 0 < ε < 1/2 and p, q, r are the distribu-
tions on {0, 1} defined by

p(1) =
1 + ε

2
q(1) =

1

2
r(1) =

1− ε

2

p(0) =
1− ε

2
q(0) =

1

2
r(0) =

1 + ε

2

then KL(p; q) < 2ε2 and KL(p; r) < 4ε2.

Proof.

KL(p; q) =
1 + ε

2
ln(1 + ε) +

1− ε

2
ln(1− ε)

=
1

2
ln(1− ε2) +

ε

2
ln

(
1 +

2ε

1− ε

)

<
ε

2

(
2ε

1− ε

)
< 2ε2.

888

KL(p; r) =
1 + ε

2
ln

(
1 + ε

1− ε

)
+

1− ε

2
ln

(
1− ε

1 + ε

)

=
1

2
ln(1) +

ε

2
ln

((
1 + ε

1− ε

)2
)

= ε ln

(
1 +

2ε

1− ε

)

< 4ε2.

�

Theorem 6.1. There does not exist an ε-good algo-
rithm for the n-coins problem whose expected running
time on every input is o(log(n)/ε2).

Proof. Suppose we are given an ε-good algorithm f .
Let T be its running time, let m = 4E[T], and let
g be the algorithm which runs f until either f halts
(in which case g halts with the same output) or f
performs more than m coin flips (in which case g halts
and outputs 1 instead of performing the (m+1)-th coin
flip). By Markov’s inequality, Pr(T > m) < 1/4, hence
Pr(g 6= f) < 1/4. Recalling that f outputs an ε-good
coin with probability at least 3/4, we find that g outputs
an ε-good coin with probability greater than 1/2.

Define n different input instances P1, P2, . . . , Pn

by specifying that in input instance Pi, the heads
probability of coin j is 1

2−2ε for j ≤ i and 1
2 +2ε for j >

i. These input instances define probability measures qj
i

on {0, 1}j, for 1 ≤ i ≤ n, 0 ≤ j ≤ m; the measure qj
i is

defined as the distribution of the outcomes of the first j
coin tosses observed when running algorithm g using the
coins specified by input instance Pi. Let Ei ⊆ {0, 1}m
denote the event that g outputs i. Recalling that g
always outputs an ε-good coin with probability greater
than 1/2, and that coin i is the only ε-good coin
in instance Pi, we find that qm

i (Ei) > 1/2 for every

i. Now define qj
0 to be the uniform distribution on

{0, 1}j, for j = 0, 1, . . . , m. If we let Ωj = {0, 1}j for
j = 0, 1, . . . , m, and we let Yj : Ωj → Ωj−1 be the
function which omits the last element in a sequence of j
coin-toss outcomes, then Lemma 6.4 implies that for all
i, KL(qj

i ; q
j
0 | Yj) < 32ε2 and Lemma 6.2 then implies

that KL(qm
i ; qm

0) < 32ε2m. However the events Ei are
disjoint, so at least one of them satisfies qm

0 (Ei) ≤ 1
n .

Recalling that qm
i (Ei) > 1/2, we may apply Lemma 6.3

to conclude that KL(qm
i ; qm

0) ≥ 1
3 ln(n/3)− 1/e. Hence

32ε2m > 1
3 ln(n/3) − 1/e. Recalling that m = 4E[T],

where T is the running time of the original algorithm
f , we see that the algorithm’s expected running time is
Ω(log(n)/ε2). �

Theorem 6.2. There does not exist a good algorithm
for the n-coins problem whose expected running time

on every instance P is o(log log(1/ε(P))/ε(P)2), even
when n = 1, i.e. the problem of detecting whether
p < 1/2 or p > 1/2 given a coin with unknown bias
p.

Proof. As in the proof of Theorem 6.1, we define dis-
joint events, each with a corresponding input instance.
Each of these input instances defines a probability dis-
tribution on coin-flip outcomes; under this distribution
the corresponding event holds with probability greater
than 1/2. Using a KL-divergence argument this implies
a lower bound on the algorithm’s running time. Unlike
the proof of Theorem 6.1, which used a family of n dis-
joint events (distinguished by the algorithm’s output),
in this proof we will need an infinite family of disjoint
events, distinguished by the algorithm’s output as well
as its running time.

Define a sequence of small real numbers εk and large
integers Tk by specifying that ε1 = 1/3 and using the
recursion:

Tk =

⌈
1

200ε2
k

ln ln

(
1

εk

)⌉

1

2000ε2
k+1

= Tk.

Define input instances Pi,k for 1 ≤ i ≤ n, k ≥ 1 by
specifying that in instance Pi,k , the heads probability
of coin j is 1

2 − 2εk for j ≤ i and 1
2 + 2εk for j > i.

These input instances define probability measures qj
i,k

on {0, 1}j, for 1 ≤ i ≤ n, 0 ≤ j <∞; the measure qj
i,k is

defined as the distribution of the outcomes of the first
j coin tosses observed when running algorithm f using
the coins specified by input instance Pi,k (If there is a
sequence of j′ < j outcomes which causes the algorithm
to halt after j′ coin tosses, we define the probability
measure on {0, 1}j by stipulating that all continuations
of this sequence of j′ outcomes are equally likely.) Let
Ei,k ⊆ {0, 1}Tk denote the event that algorithm f halts
and outputs i at a time Tf satisfying Tk−1 < Tf ≤ Tk.
By abuse of notation, for j > Tk we will also use Ei,k to
refer to the event in {0, 1}j consisting of all sequences
whose first Tk elements constitute an element of Ei,k.

As before, we also define a “reference measure” qj
0,k

which is the uniform distribution on {0, 1}j. (Note that
this measure doesn’t depend on k; the double subscript
“0, k” is purely a notational convenience.) Combining
Lemma 6.2 with Lemma 6.4 we obtain the bound

KL(qj
i,k; qj

i′,k) < 64ε2
kj

for 0 ≤ i, i′ ≤ n and 0 ≤ j, k < ∞. This implies, using
Lemma 6.3, that if E is any event in {0, 1}j such that

889

qj
i,k(E) ≥ 1/2 then for 0 ≤ i′ ≤ n we have

(6.1) qj
i′,k(E) >

1

3
exp(−192ε2

kj − 3/e).

Assume we have a good algorithm f whose running
time is o(log log(1/ε)/ε2). Increasing the running time of
f by a constant factor if necessary, we can assume that
for every non-degenerate input instance, the probability
that f outputs a good coin is at least 0.9; we summarize
this property by saying that f is very good. (A good
algorithm can always be transformed into a very good
algorithm as follows. Run the algorithm seven times.
If at least four of the seven runs give the same answer
i ∈ [n], then output i; otherwise output an arbitrary
answer.) Since εk < ε(Pi,k) and Tk = Θ(log log(εk)/ε2

k),
we may assume that for all sufficiently large k (say,
for k > k0) the probability that f runs past time Tk

on instance Pi,k is less than 0.01. In the notation
introduced above, this is expressed as:

qTk

i,k(Tf > Tk) < 0.01.

Above, we defined Ei,k to be the event that f halts and
outputs i at a time Tf satisfying Tk−1 < Tf ≤ Tk. We
may also define E−i,k to be the event that f halts and
outputs i at a time Tf satisfying Tf ≤ Tk−1. The fact
that f is a very good algorithm implies that

qTk

i,k(Ei,k) + qTk

i,k(E−i,k) + qTk

i,k(Tf > Tk) ≥ 0.9,

and above we stipulated that the third term on the left
side is at most 0.01. Note that E−i,k depends only on the

outcomes of the first Tk−1 coin tosses, so qTk

i,k(E−i,k) =

q
Tk−1

i,k (E−i,k). If this probability is at least 1/3, then (6.1)

implies that for every i′ 6= i, q
Tk−1

i′,k (E−i,k) > 0.1. (Here

we are using the fact that ε2
kTk−1 = 1/2000 and that

1
3 exp(192/2000 − 3/e) > 0.1.) This contradicts the
fact that on input instance Pi′,k, the probability that f
outputs an answer other than i′ is less than 0.1. Hence
qTk

i,k(E−i,k) < 1/3, and qTk

i,k(Ei,k) > 0.9− 0.01− 1/3 > 1/2.
Now that we have established that Ei,k has proba-

bility at least 1/2 when the input instance is Pi,k, we
can use (6.1) once again to prove a lower bound on the
probability of Ei,k under the “reference measure” qTk

0,k :

qTk

0,k(Ei,k) >
1

3
exp(−96ε2

kTk − 3/e)

>
1

3e2
exp

(
−1

2
ln ln

(
1

εk

))

=
1

3e2
√

ln(1/εk)
.

From the recursion defining εk we find that

ln(1/εk+1) < ln(1/εk) +
1

2
ln ln ln(1/εk) +

1

2
ln(10),

which implies that ln(1/εk) = O(k ln ln(k)).
Consequently the sum

∑∞

k=k0
(3e2

√
ln(1/εk))−1

diverges. If we take K large enough that∑K
k=k0

(3e2
√

ln(1/εk))−1 > 1, we obtain a contra-
diction because for any i, the events {Ei,k | k0 ≤ k ≤ K}
are disjoint subsets of {0, 1}TK whose combined
probability, under the measure qTK

0,K , exceeds 1. �

Theorem 6.1 demonstrates that the ε-good algo-
rithms presented above are optimal up to a constant fac-
tor. The combination of Theorems 6.1 and 6.2 demon-
strates that the good algorithms presented above are
also optimal up to a constant factor.

References

[1] Noga Alon, Joel H. Spencer, and Paul Erdős. The
Probabilistic Method. Wiley-Interscience Series in Dis-
crete Mathematics and Optimization. John Wiley and
Sons, Inc., New York, 1992.

[2] J. Aslam and A. Dhagat. Searching in the presence
of linearly bounded errors. In Proc. ACM Symposium
on the Theory of Computing (STOC), pages 486–493,
1991.

[3] Thomas M. Cover and Joy A. Thomas. Elements of
Information Theory. John Wiley and Sons, Inc., New
York, 1991.

[4] A. Dhagat, P. Gacs, and P. Winkler. On playing
”twenty questions” with a liar. In Proc. ACM Sym-
posium on Discrete Algorithms (SODA), pages 16–22,
1992.

[5] Robert Kleinberg and Tom Leighton. The value of
knowing a demand curve: Bounds on regret for posted-
price auctions. In Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS), pages
594–605, 2003.

[6] A. Pelc. Searching with known error probability.
Theoretical Computer Science, 63:185–202, 1989.

[7] R.L. Rivest, A.R. Meyer, D.J. Kleitman, K. Winkl-
mann, and J. Spencer. Coping with errors in binary
search procedures. Journal of Computer and System
Sciences, 20:396–404, 1980.

[8] R.S. Borgstrom snd S.R. Kosaraju. Comparison-
based search in the prsence of errors. In Proc. ACM
Symposium on the Theory of Computing (STOC),
pages 130–136, 1993.

[9] J. Spencer. Ulam’s searching game with a fixed number
of lies. Theoretical Computer Science, 95:307–321,
1992.

890

