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Summary. One of the major objections to the standard multiple-recapture approach to population 
estimation is the assumption of homogeneity of individual 'capture' probabilities. Modelling individual 
capture heterogeneity is complicated by the fact that it shows up as a restricted form of interac- 
tion among lists in the contingency table cross-classifying list memberships for all individuals. 
Traditional log-linear modelling approaches to capture-recapture problems are well suited to 
modelling interactions among lists but ignore the special dependence structure that individual 
heterogeneity induces. A random-effects approach, based on the Rasch model from educational 
testing and introduced in this context by Darroch and co-workers and Agresti, provides one way to 
introduce the dependence resulting from heterogeneity into the log-linear model; however, previous 
efforts to combine the Rasch-like heterogeneity terms additively with the usual log-linear interaction 
terms suggest that a more flexible approach is required. In this paper we consider both classical 
multilevel approaches and fully Bayesian hierarchical approaches to modelling individual hetero- 
geneity and list interactions. Our framework encompasses both the traditional log-linear approach 
and various elements from the full Rasch model. We compare these approaches on two examples, 
the first arising from an epidemiological study of a population of diabetics in Italy, and the second a 
study intended to assess the 'size' of the World Wide Web. We also explore extensions allowing for 
interactions between the Rasch and log-linear portions of the models in both the classical and the 
Bayesian contexts. 

Keywords: Log-linear models; Markov chain Monte Carlo methods; Multiple-recapture census; 
Quasi-symmetry; Rasch model 

1. Introduction 

Our goal in this paper is to re-examine the problem of estimating the size of a closed popula- 
tion by using multiple lists or sources, often referred to as the multiple-recapture population 
estimation problem (for example, see Bishop et al. (1975)) because of its origins for estimating 
wildlife and fish populations (for example, see Petersen (1896) and Schnabel (1938)). In effect, 
we treat our lists as having been generated by sampling multiple times from the population 
and we identify individuals or objects according to the lists in which they were included. 

We wish to estimate N, the unknown size of the population of individuals or objects of 
interest (e.g. people, fish or software errors), and we do so using the information gleaned 
from which objects were included in each of the J lists drawn from the population. We let 
i = 1, . . ., N index the objects and j = 1, .. ., J index the lists. Our basic model has N x J 
random variables Xij such that 
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Xii i, if object i appears on list j, 
- ? otherwise. 

We let pij = P(Xij = 1) and n be the number of objects that appear on at least one list. Our 
goal is to estimate the number of unobserved objects, N - n, or, equivalently, to estimate N. 
To do this, we need a model which specifies 

(a) the probabilities of appearing in the various lists, i.e. capture probabilities, 
(b) how the lists relate to one another, i.e. list dependences, and 
(c) the ways in which these capture probabilities and list dependences vary across individuals. 

The literature on capture-recapture methods is extensive and goes back many years to at 
least Petersen (1896). The earliest models for multiple-recapture methods (i.e. more than two 
lists) assumed that the various captures or lists were independent (e.g. Geiger and Werner 
(1924) and Schnabel (1938)) and that there were constant capture probabilities across indi- 
viduals, although not necessarily across captures or lists. Although many researchers expressed 
concern about the assumption of independence among lists, a general way to cope with 
this problem awaited other developments in statistics. Thus it was not until the 1970s that 
Fienberg (1972) introduced the role of log-linear models to provide for dependences among 
the lists, and Sanathanan (1972) introduced the Rasch model to provide for the dependence 
induced by heterogeneity across individuals, but for independent lists. Fienberg (1992) and 
the International Working Group for Disease Monitoring and Forecasting (1995a, b) provide 
bibliographies of special relevance to the use of these methods in human populations. 

The most tractable model that allows for differences in capture probabilities and heter- 
ogeneity among individuals is due to Rasch (1960), who derived it for scoring examination 
items in educational testing: 

log(1 Pij ) =Oj + , i= 1,. . ., N, j = 1, .. I J, (1) 

a logistic regression model with additive effects for each object i's catchability Oi and each list 
j's catch effort /j. When we set Oi = 0 in equation (1) or to any constant independent of i 
the log-odds of inclusion of object i on list j depends only on the list, and thus the model 
reduces to the traditional multiple-recapture model with independent lists. When the Oi are 
non-constant and we treat them as random effects, this model is intrinsically multilevel, with 
lists at one level and individuals at another. Additional multilevel structure may be readily 
incorporated into this model, through either 0 or ,B, depending on relevant object and list 
covariates. For example, see Johnson et al. (1998) for a Bayesian version of this extension and 
Wu et al. (1997) for a classical or missing data formulation. The Rasch model and its natural 
generalizations play central roles in our work. 

In this paper, we draw on the lessons from what were, until recently, three seemingly 
separate literatures on 

(a) log-linear models for multiple-recapture census problems, 
(b) Rasch models for individual heterogeneity and 
(c) Bayesian hierarchical model approaches. 

For us these three approaches are intimately linked and this paper explores their relation- 
ships. In the remainder of this section we review aspects of the literature on heterogeneity, 
and Bayesian approaches. In Section 2, we introduce three examples to which we later apply 
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our methodology: data simulated directly from the Rasch model, data from an epidemio- 
logical study of a population of diabetics in Italy and data from six 'Web search engines' 
intended to assess the 'size' of the World Wide Web (WWW). Then, in Section 3, we outline 
the elements of the Rasch model and its relationship with the usual log-linear models for 
population size estimation, and in Section 4 we present a fully Bayesian hierarchical approach 
to the Rasch model which relaxes a seemingly necessary linear constraint in the log-linear 
formulation and takes into account previously ignored moment inequality constraints. In 
Section 5, we apply both log-linear models with Rasch-like heterogeneity terms and our 
Bayesian hierarchical approach to the examples. We shall see that these approaches, applied 
separately, work reasonably well but seem lacking: the dependence structure in multiple- 
recapture census data is often similar to the Rasch model, with departures that reflect non- 
symmetric dependence between lists, or partial symmetry features that represent 'clumpy' 
heterogeneity of the objects being counted. 'Generalized Rasch' models that allow inter- 
actions between parameters that express heterogeneous catchability of objects, or non- 
symmetric dependences between lists, offer some hope of a more parsimonious representa- 
tion, and hence smaller standard errors of estimation for the unobserved count. In Section 6, 
we explore the relationship between generalized Rasch log-linear models and our hierarchical 
Bayes formulation of the Rasch model. 

1.1. Heterogeneity among individuals and Bayesian approaches 
As we mentioned earlier, Sanathanan (1972, 1973) provided one of the early attempts to look 
at heterogeneity in the context of capture probabilities. She was interested in scanning 
experiments in particle physics and focused on a Rasch model in which either the individual 
or the list parameters are viewed as independent draws from a parametrically specified 
common distribution. Subsequently, Burnham and Overton (1978), Chao (1987, 1989), Chao 
et al. (1992) and Pollock (1991) built on Cormack's (1966) approach, incorporating heter- 
ogeneity into multiplicative models for the Pij, e.g. pij = Oi'j. Unfortunately, this part of the 
literature provides little recognition of the special statistical features that require attention 
when the number of parameters that are included for heterogeneity increases in direct pro- 
portion to the population size N. 

Interest in the heterogeneity problem arose again in connection with discussions about the 
use of capture-recapture methods in the context of the 1990 US decennial census, and Darroch 
et al. (1993) presented a model for heterogeneity based on a log-linear representation of the 
Rasch model, which they then combined with log-linear models for dependence. Their 
approach had been anticipated in part by Cormack (1989) but without the link to the Rasch 
model framework, and then suggested separately by Agresti (1994). International Working 
Group for Disease Monitoring and Forecasting (1995a, b) provided a simple discussion of 
these approaches and their application to a problem of estimating the size of a population of 
diabetics. The introduction of the Rasch model representation for heterogeneity in this 
example, however, had apparently strange and not totally satisfactory consequences, and we 
return to their problem in Section 2 below. 

Roberts (1967) presented an early Bayesian approach to the simple capture-recapture 
problem with two lists and with constant capture probabilities. Freeman (1972) introduced a 
Bayesian approach to sequential estimation and then later (Freeman, 1973) contrasted this 
with the capture-recapture model, using constant capture probabilities in both settings. He 
also introduced the role of different loss functions. Castledine (1981) generalized this approach 
to multiple-recapture studies and derived the marginal posterior distribution of N, assuming 
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independent prior distributions Pij-pj p beta(a, b) and ir(N) oc 1 or R(N) oc 1/N (the 
Jeffreys prior). Smith (1991) found the posterior distribution of N in this case by using both 
empirical Bayes and Bayes-empirical Bayes approaches. Garthwaite et al. (1995) extended 
these results to allow for random sample sizes and explored the sensitivity of the posterior for 
N to the prior specification. Smith (1988) used a Poisson approximation to the hypergeo- 
metric distribution of marked items in the sample, and an inverse gamma prior distribution 
for N, and identified estimators under several loss functions as equivalent to the Geiger- 
Werner-Schnabel multiple-recapture estimate. 

George and Robert (1992) were the first to bring the modern Bayesian technology of 
Markov chain Monte Carlo (MCMC) estimation to bear on the capture-recapture problem. 
They built hierarchical Bayes structures beginning with Castledine's (1981) formulation and 
used Gibbs sampling methods, including the adaptive rejection sampling method of Gilks 
and Wild (1992), for simulating from the posterior distribution of N. Basu (1998) considered 
log-additive mixed effects models for the pij similar to the multiplicative models of Cormack 
(1966) and Pollock (1991) and gave both the catchability and the catch effort parameters 
discrete prior distributions. With this set-up Basu found complete conditional distributions 
for each parameter and hyperparameter, and implemented a Gibbs sampling scheme. 

Madigan and York (1995, 1997) pursued the route of hierarchical Bayesian models for log- 
linear dependences for the multiple-recapture problem with covariates, using the subclass of 
decomposable graphical models. Instead of estimating N on the basis of a single model, they 
used Bayesian model averaging. Although we do not pursue the model averaging approach 
in this paper, it represents a sensible way to extend our approach to account for model 
uncertainty. 

2. Three examples 

In this paper, we explore different approaches to the multiple-recapture problem by using 
three examples. The first uses simulated data linked to the Bayesian hierarchical Rasch model 
described in Section 4 later. The other two examples arise in actual problems of population 
size estimation in public health and information sciences. Preliminary analyses of the data 
in these examples, using what are demonstrably inappropriate models, lead to erroneous 
inferences (see Hay (1997)). 

2. 1. Simulated data 
Using the basic Rasch model (1), we randomly drew independent results for the presence 
of N = 2000 individuals from each of J = 6 lists. We simulated the values of the individual 
parameters Oi, for N = 2000 subjects from an N(O, 4) distribution, and their presence or 
absence from each of six lists according to list parameters : = (-1, -0.5, -0.25, 0.25, 0.5, 1). 
The result was a 2000 x 6 array of Is and Os. We summarized this information according to 
the presence or absence of individuals in the six lists, yielding the 26 cross-classification of 
Table 1. When we analyse these data we shall treat the number of individuals in no lists as if 
it were unobserved and to be estimated. 

In Table 2, we present the classical capture-recapture estimates for N for each pair of lists, 
using the Petersen estimator 

This content downloaded from 193.105.245.160 on Sat, 28 Jun 2014 09:16:33 AM
All use subject to JSTOR Terms and Conditions



Bayesian Population Size Estimation 387 

Table 1. 26-table of 2000 individuals simulated from a Rasch model 

List 1 
Yes No 

List 2 List 2 
Yes No Yes No 

List 3 List 3 List 3 List 3 
Yes No Yes No Yes No Yes No 

Yes 331 58 58 28 97 52 46 50 
Yes List 6 

No 14 6 6 7 15 10 17 37 
Yes List 5 

Yes 25 7 12 11 23 20 25 42 
No List 6 

No 4 1 1 8 8 9 16 37 
List 4 

Yes 30 12 18 12 28 37 24 55 
Yes List 6 

No 3 6 9 6 8 15 16 70 
No List 5 

Yes 3 4 4 10 10 21 26 108 
No List 6 

No 2 1 5 11 10 21 30 304 

Table 2. Traditional capture-recapture estimates for N using 
pairs of lists from Table 1 

List List 1 List 2 List 3 List 4 List S 

2 1253 
3 1254 1347 
4 1335 1416 1431 
5 1394 1457 1515 1534 
6 1472 1512 1564 1572 1623 

where n1+ is the number of objects in list 1, n+1 is the number of objects in list 2, n1l is the 
number of objects in both lists and [x] is the greatest integer contained in x. Note that all 15 
estimates of N, which assume that the lists are pairwise independent and the objects homo- 
geneous, lie below the true value of 2000, but more importantly below the observed number 
of objects in all six lists, i.e. n = 2000 - 304 = 1696. This is strong evidence regarding the 
positive dependence among the lists induced by the heterogeneity. One of the bench-marks of 
the analyses to come for these data will be the extent to which they adequately deal with this 
dependence in a parsimonious fashion. 

2.2. Multiple sources for diabetes ascertainment 
Bruno et al. (1994) used four sources to identify known cases of diabetes among the residents 
of the area of Casale Monferrato in northern Italy on October 1st, 1988: clinics, a list of all 
patients with a previous diagnosis of diabetes via clinics and/or family physicians; hospitals, a 
list of all patients discharged with a primary or secondary diagnosis of diabetes in all public 
and private hospitals in the region; prescriptions, a computerized database list of insulin and 
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Table 3. Data from prevalent cases of known diabetes mellitus for residents 
of Casale Monferrato, Italy, on October 1st, 1988, according to four sources 
of ascertainment 

Prescriptions Reimbursements Clinics 
Yes No 

Hospitals Hospitals 
Yes No Yes No 

Yes Yes 58 46 14 8 
Yes No 157 650 20 182 
No Yes 18 12 7 10 
No No 104 709 74 ? 

Table 4. Traditional capture-recapture estimates for N using pairs of 
sources from Table 3 

Clinics Hospitals Presc, iptions 

Hospitals 2351 
Prescriptions 2185 2052 
Reimbursements 2262 803 1555 

oral hypoglycemic prescriptions for 1988; reimbursements, a list of all residents of a region 
who requested a reimbursement for insulin and reagent strips. 

We reproduce the data here as Table 3. Bruno et al. (1994) described a detailed analysis 
using log-linear models, including the use of stratification to reduce heterogeneity. Their best 
estimates for N remained in the neighbourhood of 2700, which is substantially in excess of the 
total observed number of cases in Table 3, i.e. n = 2069. When we look at sources in pairs 
and compute the standard capture-recapture estimates for N as we did in the previous 
example, we obtain the results in Table 4. Three of the six pairwise estimates fall below 2069 
and the other three also lie well below the value reported by Bruno et al. (1994), which is quite 
unsatisfactory, indicative of the failure of the assumptions of independent lists and homo- 
geneous objects. Unlike our simulation example, however, we have wide variation in the 
estimates of N and we may need to cope with both heterogeneity and dependence. 

2.3. The number of pages on the World Wide Web 
Lawrence and Giles (1998) studied the coverage and recency of six major and widely available 
WWW search engines by submitting 575 queries on various scientific topics. 

These six search engines have built-in positive and negative associations with one another 
based on how they parse the queries, on how Web pages come to be in each search engine's 
database and on dependences that would be induced for example if some engines were to use 
other engines, or were to work from a common set of index pages, to develop part of the set of 
pages that match a particular query. Some of this information is proprietary with the search 
engine provider, and hence unknown to us, and therefore it cannot be directly incorporated 
into a statistical model for the multiple-recapture data. Indeed one of our central goals is 
to develop statistical models that are sufficiently flexible that they can capture dependence 
due to such hidden relations (if they exist), yet sufficiently parsimonious to produce useful 
estimates of the missing number. 
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Table 5. Multiple-list data for query 535, obtained from Lawrence and Giles (personal communication) 

Northern Light 
Yes No 

Lycos Lycos 
Yes No Yes No 

Hot Bot Hot Bot Hot Bot Hot Bot 
Yes No Yes No Yes No Yes No 

Yes 0 0 5 0 1 0 2 0 
Yes Excite 

No 1 2 5 2 0 1 5 0 
Yes Infoseek 

Yes 1 0 2 1 0 0 0 6 
No Excite 

No 4 0 14 7 1 1 7 33 
Alta Vista 

Yes 0 0 2 2 1 1 2 4 
Yes Excite 

No 0 0 5 0 1 0 11 8 
No Infoseek 

Yes 1 1 2 5 0 0 3 21 
No Excite 

No 3 2 13 35 0 2 79 ? 

Table 6. Traditional capture-recapture estimates for the total N Web pages 
matching query 535, using pairs of search engines 

Alta Vista Infoseek Hot Bot Northern Light Excite 

Infoseek 256 
Hot Bot 359 254 
Northern Light 294 274 362 
Excite 353 192 489 309 
Lycos 202 183 293 172 252 

It is also important to realize that, in principle, each of the 575 queries defines a different 
population of pages, some of which are observed in the corresponding 26 _ 1 layer of the full 
575 x (26 - 1) table. Thus, we tentatively think of query as a stratifying variable to go with 
our models. Keeping this stratification in mind, we restrict our attention for now to one layer 
of the 575 x (26 _ 1) table, corresponding to a single query, 535, listed in Table 5. Further 
analysis of these data, which is ongoing, could and should try to incorporate query as a 
multilevel stratifying variable in the models. 

As with the other two examples, we begin our analyses by considering the lists in a pairwise 
fashion and computing the traditional capture-recapture estimates for the population size, 
which we give here in Table 6. The total number of observed pages across all six search engines 
is n = 305, and only five of the 15 estimates in Table 6 exceed this value. Thus there is evidence 
from these marginal calculations suggesting that 10 of the 15 pairs of search engines are 
positively dependent; there may be some counterbalancing negative dependence among the 
remaining five pairs. In any case, it seems unlikely that a model asserting joint independence 
for all six lists will produce very satisfactory population size estimates. 
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3. The Rasch model and quasi-symmetric log-linear models 

We can think of the Rasch model, which we introduced in Section 1, as a mixed effects 
generalized linear model that allows for object heterogeneity and list heterogeneity. For 
object i, we model the probability of inclusion on list j, as in equation (1), where Oi is the 
random catchability effect for object i, which is distributed as a random variable from Fe, 
and the /j are fixed parameters representing the penetration of list j into the target popula- 
tion. The heterogeneity of capture probabilities across objects is therefore influenced by the 
distribution of 0, Fe. 

Let Xl, . . ., XJ be the variables cross-classified in 2J - 1 tables like Tables 1 and 5. Mixed 
effects models for such tables with a random individual effect 0 are a way of thinking about 
disaggregating the table according to values of 0, and then reaggregating. In the disaggregated 
table, let 

Pi(0) = P(XA = 1 Io); 

usually we assume that the lists are independent given 0, so that the probability of observing a 
count in cell k,. . . kj, given fixed 0, is 

Wk..kjO= P(XI = k1, . . ., = kjIO) = H1 PI(0)ki{ - P (0)-1kcj. (3) 
j=1 

Reaggregating into the 2J - 1 table is just integrating over 0; thus the marginal probability of 
observing a count in cell k,. . . kj is simply 

7k, .kj = P(XI = kl, . . ., = kj) = { Pj(t)kj{I - Pj(t)11-ki dFO(t). (4) 

The Rasch model specifies additive logits, log[Pj(0)/{ 1 - Pj(0)}] = 0 + /j, so 

l7k ...k =j exp {Ek(t + ?13) i ? ? dF+(t). (5) 

Integrating with respect to the distribution for 0 in equations (4) and (5) turns the Rasch 
model into a log-linear model of the form 

log(rrkl kj) = a + k, + . + kj3?K + y(k+) (6) 

where 

k+= kj, () 

ty(s) = log[E{exp(sO)IX = 01] 

(Cressie and Holland, 1983; Fienberg and Meyer, 1983; Holland, 1990; Darroch et al., 1993). 
The term -y(k+) models a specific kind of dependence in the 2J - 1 table cross-classifying the 
lists: this dependence is not due to associations between the lists, but rather it arises directly from 
aggregating across the strata indexed by 0 in the model. The value of -y(k+) is not affected by 
permutations of kl, . . ., klJ and hence we have a quasi-symmetry model (for example, see 
Bishop et al. (1975)), which we can fit to the 2J - 1 table of observed counts by using standard 
software for fitting log-linear and generalized linear models (GLMs). Unfortunately, this 
transformed version of the Rasch model ignores the moment inequalities that are implicit in 
equation (7) (for example, see Cressie and Holland (1983)), a point to which we return later. 
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For J = 3 lists, the quasi-symmetry model is equivalent (ignoring moment restrictions) to 
the constraints 

7rOI 1700 r= 7rlol 7TO10 = wro 10wrool (8) 

These constraints do not relate the probability of the unobserved cell, wrooo, to the other 
probabilities, and hence an additional assumption such as no J-way interaction is needed. 
Estimation can then be carried out using traditional methods for log-linear models, and N 
can be estimated by 

N = n ? rodd/r^even, (9) 

where Modd is a product of estimated expected cell values over all cells whose subscripts sum 
to an odd value and M6even is a product of estimated expected cell values over all cells whose 
subscripts sum to an even value (for example, see Fienberg (1972)). 

Incorporating two- and three-way interactions into a log-linear model may not be 
necessary, and so, as an alternative to the log-linear model (6), we can consider only lower 
order symmetries and simply set the higher order log-linear interaction terms equal to 0. 
Again, we can use standard log-linear model or GLM software to fit such models and then 
project the model to the missing cell by using equation (9). 

We fitted all log-linear models in this paper with the glm () function in S-PLUS (Mathsoft, 
1996). To construct the quasi-symmetry terms and to combine them with various linear 
constraints such as no highest order interaction, we used the software package intersect 
from the S archives at Carnegie Mellon's Statlib (http://lib.stat.cmu.edu) (see 
Darroch et al. (1993)). We computed interval estimates for the total number of cases N using 
the profile likelihood methods of Cormack (1992): the profile likelihood estimate of the 1 -a 
confidence set for N is defined to be {N: G2(N - n) - G2(N - n) <X(1),1-a1 where G2 is the 
model deviance and X(l),1, is the 1 - a quantile of a X(l)-distribution. Because S-PLUS's 
glm() function estimates the capture-recapture model by using a Poisson likelihood, we 
approximated the multinomial deviance G2 from the Poisson fit by 

G (u) = D(u) - log{ (n + u)n+u!a 

where D(u) is the deviance for a log-linear Poisson model fit to the 2J contingency table with 
u in the missing cell (for example, see Cormack (1992)). 

4. Hierarchical Bayes formulation of the Rasch model 

If one takes subject heterogeneity as modelled by equation (4) at all seriously, then the log- 
linear quasi-symmetry approach has two deficiencies. First, the moment constraints that are 
implicit in equations (7) are not easily incorporated into GLM fits and hence are usually ignored. 
Second, the need for and use of the 'no k-way interactions' assumption (for 2 < k < J) does 
not translate into a natural condition on the conditional capture probabilities Pj(O) or the 
catchability distribution F,?(t). 

An alternative approach is to estimate the parameters /i and any parameters of Fe(t) 
directly from the marginal likelihood (5), by maximum likelihood say, and to use the con- 
straints that are implicit in this formulation to project an estimate onto the missing cell. Coull 
and Agresti (1999) did exactly this, for example, replacing F,(t) with a discrete distribution 
motivated from Gaussian quadrature. 
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We prefer to work with a fully Bayesian hierarchical specification of the Rasch model. This 
allows us to lay out all the pieces of the model and to modify exactly those parts that need 
adjustment to reflect the dependence in the data. We can use MCMC computing method- 
ology to give essentially exact inferences for remarkably complex models in which the log- 
linear and marginal maximum likelihood approaches become unwieldy. 

4.1. Model formulation 
We begin our formulation of the basic Rasch model as a hierarchical Bayes model as follows: 

indep fP1(01) 1 
X. ., Bernoulli(pjl0i), log 1-P1(01) i j i?== N. 

j=1, .,J, (10) 
IID 

oj F6(0i), i = 1, ... ., N,I 
IID 

oi 1-- Go (0j), j = 1, . . ., J. 

Note that we only need to add prior distributions G3(.) for the /j to the development of the 
marginal-mixed effects model of equation (5). 

When N is unknown and the objects in the O ... O cell of the table are missing, we treat N as 
a parameter in the likelihood for the 2J - 1 cross-classifying the n observed objects 

l;(N,,/3; X) = ( ) r = {1? + exp(O< + o) } { 1 + exp(0 ? O } (11) 
where X is an N x K matrix, with the (i, j) element xij = 1 if object i is on list j and 0 
otherwise. We shall denote the n rows of observed data in X as X1. The remaining rows from 
n + 1 to N of X are all Os, vectors of Os. 

We assume in model (10) that the vector of list parameters, /, is independent of the vector 
(0, u2, N) and that the list parameters are distributed as / - NK(II, Tb IK). We also assume in 
model (10) that, conditionally on the variance u72 and the population size N, the catchability 
parameter vector is distributed as 0 2 NN(O, c21), and that u2 p-1 (ce, 1). 

As usual, the hyperparameters of the list vector / can be chosen to reflect any available 
prior information. For our analyses, we have chosen /3 NK(O, IOIK) because we have little 
prior information about the lists. Similarly we may fix the hyperparameters for the variance 
of the catchability parameters according to any prior knowledge that we may have solicited 
from the researcher; we have set ca = 77 = 1. Note, following the remarks after equation (1) in 
Section 1, that if the prior for ar2 concentrates mass near 0 the model will perform similarly to 
the independent list model. 

Finally, we assume that the prior distribution of N is 

fN(N) o (N-) !it n<N< Nmax}. 

This form of prior ensures that the conditional posterior for N is a truncated negative binomial; 
see equation (12) below. As I increases, the prior distribution for N is more concentrated near 
the observed number n. We have chosen to use /= 1, or the Jeffreys prior fN(N) o( 1/N. 

In principle, we can use any prior on N that leads to a proper posterior distribution, but we 
have found that restricting N to have finite support on the integers, say [n, Ninax] for some 
value Nmax, is helpful in our MCMC runs. For the examples that we present below, we have 
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typically taken N,a, to be 10000. In our examples, truncating at Nmax = 10000 gives up 
essentially no posterior probability. The specification of the shape of the prior distribution on 
N is somewhat more important and we shall return to it in Section 6.4. 

4.2. Estimation by Markov chain Monte Carlo simulation 
Given N and the complete 2J-table, MCMC estimation of the posterior distributions for the 
parameters in the Rasch model is a straightforward exercise (Patz and Junker, 1999). Here we 
propose an extension to the MCMC procedure for the Rasch model for multiple-recapture 
population estimation. It is similar to the extensions of the binomial-logit model by George 
and Robert (1992), and the log-additive model by Basu (1998). 

From the model specifications in Section 4.1, we can readily deduce that the complete 
conditional posterior distribution for each 01, . . ., /3j is 

fB(j IIN, 0, X) exp(/3jx+j) fBC(0j) 

HI{1 +exp(0?i +3)} 
i=l 

where x+j = EI= xi>, and fB(-) is the normal prior density indicated above. Similarly, for J2, 
the complete conditional posterior is 

aIN,0 &-0 
- 

rQa+n, +? 022). 

Note that, given 0, u,2 is drawn independently of the data X. 
As Basu (1998) noted, a problem occurs when N is conditioned on 0 since length(0) = N 

would tell us N, and we would not have to estimate it. For this reason we follow Basu (1998) 
in computing a joint conditional posterior distribution fN,o(N, 01X1, /3, a) for (N, 0) together, 
and then breaking this apart as 

fN,O(N, OIX, /3, a) =fN(NIXl, 3, a) folN(01N, X1, 3, a) 

for the simulation: we first draw N from fN(NIXl, /3, a), and then we draw 0 from 

N 

folN(01N, X, A, o) = H fo.(0HIX, /35 a). 

The (incomplete) conditional posterior for N is 

(NT N fJ 1 
fN(NIXI, /, o) o( fN (N) H1 JH1 fo+(Oi u a) dO 

n i=nA-1 j= xp(01 ? /3k) 

oc f( f(N) P(Ol 1 5C)N-* (12) 
n 

We can determine the probability P(OI/, v), which is the probability associated with the 
unobserved cell, i.e. X = 0, analytically for some priors fo(0lo), but in most cases we must 
approximate or compute it by numerical integration. Equation (12) also shows that the infor- 
mation in the observed data to estimate N is concentrated in P(01/, v), which is completely 
determined by data-based estimates of the /j and o-. Thus we expect to find large posterior 
correlations between N and the /3j and u, and that is indeed what happens when we estimate 
the model. 
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When fN(N) X I{N>,}, I{N>,f}/N, I{N>nl}/N(N - 1), etc., N - n has a truncated negative bi- 
nomial conditional posterior. After we have simulated N, we simulate from the complete 
conditional posterior for 0: 

foIN(011/3' (, N, X) Ogexp(-0 0/2u2 + 0ixi+) 
H{II ? exp(0i +3j)} 
j=1 

for i= 1, ... ., N, where xi+ = E=I1 xi>. 
The time taken to complete a sufficiently long run for this algorithm is highly dependent on 

the data set. This is because each step of the Markov chain is O(N) and N is being estimated. 
The algorithm yielded approximately 10000 simulations per hour for the WWW data set, on a 
Hewlett Packard 9000/770 UNIX workstation. In our analyses, we took 50 000 simulations after 
a burn-in period of 10000 simulations. Long runs are necessary because the model parameters 
are highly correlated. For example, in the diabetes analysis, the posterior correlation between 
the population size N and a particular list parameter /j is around -0.81 and the correlation 
between N and u-2 is 0.82. For this reason the Markov chain is very slow to mix. 

An alternative to the Basu (1998) approach is to treat the distribution of the observed 
data P(XI IN, 3, cJ) implied by equation (11) as a different model for XI, for each different N. 
This leads to the formulation of the problem of selecting N as a model selection problem for 
X1, and the relevant MCMC technique is Green's (1995) 'reversible jump' approach for 
randomly selecting models from a well-defined model space. We have also implemented this 
approach; the results are quite similar to Basu's approach outlined above and may be 
useful for more complex models but, in the models that we have compared the approaches 
with, the Basu technique produces faster and more stable MCMC runs. Fortran programs 
implementing both the Basu and the Green approaches are available from us (contact 
masj ohns@s tat . cmu. edu). 

5. Initial analyses of the three examples 

5. 1. The simulated data 
We applied the basic log-linear models and Bayesian Rasch model to the simulated data for 
six lists that we presented earlier in Table 1. Table 7 contains various estimates for N, the size 
of the simulated population, and 95% intervals. For the classical models these are 95% 
profile-likelihood-based intervals (see Cormack (1992)), whereas for the Bayesian Rasch 
model it is a 95% equal-tailed posterior probability interval. We recall that the true total is 
N = 2000. The independence model fits the data poorly (as indicated by the value of the 
deviance), and it underestimates the true value substantially as well. All the quasi-symmetry 
log-linear models fit the data reasonably well but they also underestimate the true value. The 
quasi-symmetry model 95% confidence intervals illustrate somewhat erratic behaviour. The 
quasi-symmetry model with no second-order interaction is well behaved and has a relatively 
tight confidence interval which includes the true value. Allowing for a third-order interaction 
leads to a much lower estimate and an interval which does not include the true value. Finally 
the estimate with no fifth-order interaction is reasonable but the confidence interval explodes, 
suggesting some specification problem or a ridge in the likelihood function. See Section 6.3 
for further examples of this sort of behaviour. 

The Bayesian Rasch model yields a well-behaved posterior distribution, centred close to 
the true value with a reasonably tight 95% posterior interval. Table 8 contains the estimates 
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Table 7. Estimates of the population size for 2000 objects and six listst 

Model Degrees Deviance Point 95% inter-val 
of freedom estimate 

Independence 56 1335.44 1701 [1697, 1707] 
Quasi-symmetry with no 3-way or higher interactions 55 50.16 1974 [1913, 2046] 
Quasi-symmetry with no 4-way or higher interactions 54 42.05 1859 [1796, 1946] 
Quasi-symmetry with no 5-way or higher interactions 53 41.46 1932 [1772, 2326] 
Quasi-symmetry with no 6-way interactions 52 41.45 1904 [1697, 6536] 
Bayesian Rasch model Median 2019 [1939, 2128] 

tData simulated from a Rasch model (observed n = 1696). 

Table 8. MCMC estimated posterior mean and quantiles for the list parameters 
{A>} and prior standard deviation C on the random catchability effects {[O}, based on 
2000 objects simulated from the Rasch model, but where n = 1696t 

Mean 2.5 percentile Median 97.5 percentile Actual 

List 1 -1.03 -1.27 -1.02 -0.81 -1.00 
List 2 -0.40 -0.64 -0.40 -0.19 -0.50 
List 3 -0.29 -0.53 -0.29 -0.08 -0.25 
List 4 0.24 0.00 0.24 0.45 0.25 
List 5 0.58 0.33 0.58 0.79 0.50 
List 6 0.95 0.70 0.94 1.17 1.00 
O_ 2.10 1.90 2.10 2.32 2.00 
N 2022 1939 2019 2128 2000 

tActual parameters used in the simulation of the data are given in the rightmost column. 

of list parameters, or catch efforts, { j I and the standard deviation of the random catchability 
effects {Oi}. 

5.2. The diabetes data 
International Working Group for Disease Monitoring and Forecasting (1995a) and Biggeri 
et al. (1999) have given detailed treatments of the estimation of the log-linear and quasi- 
symmetry log-linear models for the diabetes data. Thus, in the first block of Table 9, we 
simply provide some illustrative models in the class outlined in Section 3. 

The independence model fits the data poorly, and the confidence bounds are tight and 
relatively close to the observed value of n = 2069. Both of the quasi-symmetry models, QS2 
(the Rasch quasi-symmetry model with no three-way interactions) and QS3 (with no four- 
way interactions), improve substantially on the fit of the independence model, and the QS2 
model produces an estimate of N which is reasonably close to the value of the Bayesian 
information criterion (BIC) model discussed below and has tighter intervals. But the fit of the 
QS3 model, with the second-order interactions included, seems to be 'off', producing a point 
estimate of N which is much like that of the independence model. 

The fourth model, labelled 'BIC', involves all first-order interactions except the interaction 
between reimbursements and clinics, and was chosen on the basis of a stepwise procedure 
using the BIC (for example, see Kass and Wasserman (1995)); it provides an extremely good 
fit to the data. The results for this model are similar to those for the 'best' model reported by 
International Working Group for Disease Monitoring and Forecasting (1995b) and Bruno et 
al. (1994). 

In contrast, the saturated model produces an estimate of the total population that is twice 
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Table 9. Estimates of the number of diabetes mellitus cases in Casale Monferrato, Italy, on 
October 1st, 1988, using various methods 

Model Degrees Deviance Point 95% interval 
of freedom estimate 

Independence 10 217.48 2250 [2216, 2288] 
QS2t 9 105.64 2669 [2522, 2846] 
QS3 8 93.95 2239 [2142, 2425] 
BIC$ 5 7.62 2771 [2533, 3112] 
Saturated 5367 
Bayesian Rasch 2693? [2567, 2906] 

QS2+BIC?? 6 8.32 2752 [2531, 3060] 
QS3 + BIC* 5 2.04 4152 [2843, 7388] 

QS2 + k+ x prescriptions** 6 67.39 4367 [3111, 6893] 
QS2 + k+ x clinic 6 66.48 7796 [3793, 12068] 
QS2 + k+ x reimbursements 6 77.03 2411 [2306, 2552] 
QS2 + k+ x hospitals 6 65.86 2381 [2257, 2568] 

Bayesian k+ x prescriptions 2743? [2558, 2993] 
Bayesian k+ x reimbursements 2556? [2446, 2750] 
Bayesian k+ x clinic 2537? [2426, 2831] 
Bayesian k+ x hospitals 2845? [2664, 3210] 

tQS2 indicates the Rasch quasi-symmetry model with no three- or higher way interactions. 
Similarly QS3 indicates Rasch quasi-symmetry with no four- or higher way interactions. 
I Stepwise BIC selects independence + reimbursements:hospitals + prescriptions:reimbursements 
+ prescriptions:clinic + prescriptions:hospitals + clinic:hospitals. 
?Posterior mode. 
??Stepwise BIC starts with QS2 and adds prescriptions:reimbursements + prescriptions:clinic + 
reimbursements:hospitals. 
*Stepwise BIC starts with QS3 and adds prescriptions:reimbursements + prescriptions:clinic + 
reimbursements:hospitals. 
**k+ x prescriptions indicates one list-by-total interaction involving the prescriptions list, and 
similarly for the other k+ x list interaction models shown. 

as large as any of the simpler quasi-symmetry models. This behaviour is indicative of over- 
fitting of the saturated model to near-zero margins in the (2 4- 1) x (total captures) table of 
counts cross-classifying capture patterns among the four captures with the total number of 
captures; such fitted near-zero margins contribute to the expected values in the numerator 
and denominator of the last term in equation (9), producing severe underestimates or over- 
estimates of the number missing. 

Finally, the Bayesian Rasch model produces results that are remarkably close to those 
from the best fitting log-linear model but with a much more parsimonious model. The 
posterior 95% probability interval is in fact much tighter than the corresponding classical 
confidence interval for the best fitting log-linear model. 

5.3. The World Wide Web data 
The classical multiple-recapture independence model fits the data in our WWW example for 
query 535 quite poorly, and it projects only an additional 75 unseen Web pages, as seen in the 
first block of Table 10. The quasi-symmetry model restricted to two-way interactions, QS2, 
provides a more reasonable fit to the data, with estimates of N that are close to those from the 
BIC-based 'best' standard log-linear model, discussed below. In contrast, the quasi-symmetry 
models with higher order interactions mostly blow up again; the overfitting of near-zero 
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Table 10. Estimates of the number of Web pages of type 'query 535' using various estimation 
methods 

Model Degrees Deviance Point 95% interval 
of freedom estimate 

Independence 56 148.73 373 [350, 400] 
QS2t 55 88.61 614 [498, 778] 
QS3 54 83.33 1266 [624, 3296] 
QS4 53 82.43 508 [309, 5778] 
QS5 52 81.71 861882 [306, oo] 
BICt 46 65.62 602 [481, 793] 
Bayesian Rasch 685? [554, 1525] 

QS2+BIC?? 44 60.69 588 [468, 778] 
QS3 + BIC* 44 55.99 1370 [650, 3829] 
QS4+BIC** 43 55.09 526 [309, 6570] 
QS2+k+ x AltaVistatt 50 81.96 660 [474, 1003] 
QS2+k+ x Infoseek 50 83.29 810 [570, 1227] 
QS2+k+ x Excite 50 76.74 687 [514, 978] 
QS2 + k+ x Hot Bot 50 80.70 591 [409, 993] 
QS2 + k+ x Lycos 50 74.23 737 [558, 1021] 
QS2+k+ x Northern Light 50 81.04 739 [507, 1175] 
QS2 + k+ x Infoseek + k+ x Excite 46 68.09 857 [566, 1436] 
QS2+k+ x Excite+k+ x Lycos 46 68.35 756 [531, 1180] 
QS2+k+ x Infoseek+k+ x Lycos 46 64.36 829 [559, 1344] 
QS2+k+ x Infoseek+k+ x Hot Bot+ 42 63.14 634 [393, 1364] 

k+ x Lycos 

Bayesian k+ x Infoseek 685? [531, 996] 
Bayesian k+ x Lycos 695? [526, 1071] 
Bayesian k+ x Excite 666? [559, 1319] 

tQS2 indicates the Rasch quasi-symmetry model with no three- or higher way interactions. Similarly 
QS3 indicates Rasch quasi-symmetry with no four- or higher way interactions, etc. 
IStepwise BIC selects Alta Vista:Infoseek + Alta Vista:Hot Bot + Alta Vista:Lycos + Alta Vista: 
Northern Light + Infoseek:Excite + Infoseek:Hot Bot + Excite:Northern Light + Lycos:Northern Light. 
?Posterior mode. 
??Stepwise BIC starts with QS2 and adds Alta Vista:Infoseek + Alta Vista:Excite + Alta Vista:Hot 
Bot + Alta Vista:Northern Light + Infoseek:Lycos + Infoseek:Northern Light + Excite:Hot Bot + 
Excite:Lycos + Excite:Northern Light + Hot Bot:Lycos + Hot Bot:Northern Light. 
*Stepwise BIC starts with QS3 and adds Alta Vista:Infoseek + Alta Vista:Excite + Alta Vista:Hot 
Bot + Alta Vista:Northern Light + Infoseek:Northern Light + Excite: Hot Bot + Excite:Lycos + 
Excite:Northern Light + Hot Bot:Lycos + Hot Bot:Northern Light. 
**Stepwise BIC starts with QS4 and adds Alta Vista:Infoseek + Alta Vista:Excite + Alta Vista:Hot Bot 
+ Alta Vista:Northern Light + Infoseek:Northern Light + Excite:Hot Bot + Excite:Lycos + Excite: 
Northern Light + Hot Bot:Lycos + Hot Bot:Northern Light. 
ttk+ x Alta Vista indicates one list-by-total interaction involving the Alta Vista list, and similarly for 
the other k+ x list interaction models shown. 

margins in the (26 - 1) x (total captures) table is especially evident in the QS5 model. We 
interpret this as evidence that the likelihood function is not well behaved, and it may also 
provide diagnostic information to suggest that the positive dependence presumed by the 
underlying Rasch model is not well satisfied by the data. 

We chose the model labelled BIC in the first block of Table 10 using a stepwise procedure 
and the BIC criterion as in the diabetes example above. It includes eight first-order inter- 
action terms: 

AV:Is + AV:HB + AV:Ly + AV:NL + Is:Ex + Is:HB + Ex:NL + Ly:NL, 

where AV denotes Alta Vista, Is denotes Infoseek, HB denotes Hot Bot, Ly denotes Lycos, 
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NL denotes Northern Light and Ex denotes Excite. Not surprisingly, this model fits the data 
considerably better, although the goodness-of-fit improvement is not as striking as was the 
case in the diabetes example. What is especially interesting here is that, whereas we observe 
only 305 Web pages in total for the six search engines combined, our best estimate for the 
total population size is 602, with a fair amount of variability about this value. 

Once again, the mode for the Bayesian Rasch model is close to that of the best classical log- 
linear model estimate. Clearly the data are generally not as informative for the missing count 
as we might have expected. The dramatically greater width of the credible interval for N 
(compared with that for the confidence interval from the log-linear model) hints at inad- 
equacies of this basic Rasch model. However, we have a clear standard against which to 
calibrate our search for alternative models: the basic log-linear model with a selection of first- 
order terms. A careful perusal of the fits of the other models in Table 10, discussed in Section 
6, makes clear that adding higher order terms in a standard log-linear fashion is unlikely to 
make major gains in the fitting and estimation of N. It is only through something akin to a 
generalization of the hierarchical Rasch model that we could hope to reduce the param- 
eterization and to improve the fit simultaneously. 

6. List and latent variable interactions 

6. 1. List-by-list interactions 
A comparison of the model fits and estimated totals in the first blocks of Tables 9 and 10 
suggests that a generalization of the quasi-symmetry models allowing us to free some of the 
two-way, list-by-list, interactions might help in improving the fit and the estimated totals 
from these models. Models such as 

10og(rk,...kJ) = a + k1f3 ?. . . + kjo3j + y(k+) + E E fjlj2kjlkj2, (13) 
il OJ2 

as well as those freeing higher order interactions among the lists, were first considered in 
detail by Kelderman (1984), under the name 'generalized Rasch models', whose interest in 
them was to develop hierarchically nested alternatives to the null hypothesis that the data 
follow the log-linear Rasch model of equation (6) for model fitting investigations in educa- 
tional testing. Cormack (1989) provided an independent alternative development of these 
ideas. They have also proven useful in extending the log-linear Rasch model to accommodate 
dependence in the table {nk. kj} that is Rasch like but more general than the 'exchangeable 
higher moments' structure of the Rasch model (Darroch and McCloud, 1990; Carriquiry 
and Fienberg, 1998; Biggeri et al., 1999). In particular, the list-by-list interactions allow for 
negative dependence between some pairs of lists that are excluded by the basic Rasch model's 
assertion of equal positive associations among all the lists. For example, Jannarone (1986) 
and Jannarone et al. (1990) have developed extensions of the Rasch model that are similar 
to this to model non-exchangeable dependence between examination items in educational 
testing. In Section 6.3 we explore some models of this type, using the BIC to select list-by-list 
interactions to add to the basic quasi-symmetry models. 

6.2. List-by-total interactions 
Another extension, suggested by the exploration of the log-linear Rasch model for census 
work by Darroch et al. (1993) as well as by Carriquiry and Fienberg's (1998) examination of 
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the work of Darroch and McCloud (1990), Biggeri et al. (1999) and others, is to allow a 
list x total number of captures model, along the lines of 

lOg9(rk, k,) = a + k1/ + . + kj/j + ?y(k+) + Z ''(kl, k+), (14) 

or more generally 

10g9(rk ...ki) = a + k,f31 + ?. + kj3j + ?(k(1), k (2) (15) 

where k(l) and k (2) are total numbers of captures in different subsets of the lists. This structure 
allows us to model partial quasi-symmetry (e.g. partial exchangeability if the Os are all equal) 
among the lists, which may be appropriate if the method of constructing some lists is very 
different from that of other lists (Darroch et al., 1993), so that the catchability of objects is 
quite different for different lists. 

Model (15) may be obtained as the marginal distribution of the data after integrating 0 out 
of the basic likelihood (3) in Section 3 as follows. We begin by supposing that 0 is multi- 
dimensional, i.e. 0 = (01, 02, . . *, Oq). Moreover, we suppose that different sets of lists depend 
on different Oi through the Rasch model. For example, suppose that 0 = (01, 02) and we can 
partition the lists into I lists that depend only on 01 and J - I lists that depend only on 02. 
Then, after we permute the list indices, the likelihood given 0 becomes 

I J 
Ykl ... kjJ010= 1 P(01)kji 1 - Pj(01)}lI 

I j Pj(02)kjI 1 - Pj(02)}lkJ (16) 
j=l j=I+l 

This sort of structure was employed by Darroch et al. (1993) to model the different visibility 
of people in administrative lists, compared with their visibility in US census lists and in a 
post-enumeration survey also conducted by the US Bureau of the Census. The latent variable 
formulation thus provides a behavioural motivation for models such as equation (15) that 
is different from those provided by Darroch and McCloud (1990), or Cormack (1994), for 
similar models. 

If, as would usually seem reasonable, the densityf(0l, 02) does not factor, then a derivation 
similar to that leading from equation (4) to equation (6) in Section 3 now leads us to model 
(15), where k(+) is the number of captures in the first I lists and k(+2) is the number of captures 
in the remaining lists. Models with a single list-by-total interaction, 

109g(rkl...kj) = a + kIo, + ? . . + kjfj + ? y(k+) + '(kl, k+), 

can be obtained with some algebra from equation (15), after setting I = 1 in that model. Such 
general partial quasi-symmetry terms are not usually considered in log-linear modelling of 
multiple-recapture data, and they suggest new ways to expand the basic Rasch quasi-symmetry 
log-linear model (6) to account for 'extra-Rasch' variability in the catchability random effect. 

6.3. Some illustrative fits for the examples 
We fitted these models in two ways. First we fitted log-linear models of the form (15), by 
analogy with the basic log-linear quasi-symmetry and quasi-symmetry plus list x list models. 
Second, we fitted the models directly from their Bayesian latent variable formulation using 
MCMC methods. In the case of the two-dimensional Rasch model (16) underlying the list-by- 
total interaction submodel (15), we defined 01 to underlie J - 1 lists and 02 to underlie the list 
for which we want a list-by-total interaction. The prior distribution for (01, 02) was taken to 
be independent and identically distributed N2(0, E), with E - inverse Wishart,(Eo) and v = 1 
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and Eo = I, the identity matrix. The population size N is assumed to be independent of E, the 
covariance matrix of the catchability distributions. The prior distributions on N and on the 
list parameters Oi were the same as in the unidimensional model described in expression (10). 
The MCMC development is exactly analogous to the development in Section 4, except that 
the inverse gamma complete conditional distribution for o2 is replaced by a corresponding 
inverse Wishart distribution for E. The Bayesian-MCMC fits have the advantage, as with 
the simple Rasch model, that higher order list interactions are constrained more weakly by 
various inequality restrictions analogous to those in equations (7), rather than by strict linear 
restrictions. Also as with the simple Rasch model, we shall see later that the Bayesian versions 
of list x total models often provide better estimates of total populations than do the log- 
linear versions of these models. 

6.3.1. Diabetes 
In Section 5.2 we examined the first block in Table 9 and saw that the quasi-symmetry models 
by themselves did not provide an adequate fit to the data although the quasi-symmetry with 
no second-order interactions had a reasonable estimate of N, In the second block of Table 9, 
we show what happens when we combine the QS2 and QS3 models with list-by-list inter- 
actions selected by the BIC. The QS2 plus BIC-selected interactions model produces a result 
that is essentially the same as the best log-linear model selected by using the BIC alone. The 
QS3 plus BIC-selected interactions model, although fitting the data extremely well, blows up, 
producing an estimate of the number missing that is double that of any of the simpler quasi- 
symmetry models. This behaviour, which is similar to what we observed with the more 
complex models in Sections 5.2 and 5.3, is indicative that the model overfits a near-zero 
margin of the (2 4- 1) x (total captures) table of counts cross-classifying capture patterns 
across the four lists with the total number of captures. 

We also compare models that add a single list-by-total interaction to the basic QS2 model, 
in the third panel of Table 9. These models provide substantially better fits than QS2 alone, 
for example, but they do not fit well relative to the saturated model. Moreover the point 
estimates are not particularly consistent with one another, and all the interval estimates seem 
wrong in that they do not contain the base-line BIC estimate of 2771. Adding more than one 
list-by-total term to the basic QS2 model produces marginally better fits but leads to high 
point estimates indicative of overfitting, and in some cases a loss of degrees of freedom due to 
the sparseness of the table. 

In the last block of Table 9 we have provided estimates for the Bayesian form of the 'Rasch 
plus list x total' models outlined at the end of Section 6.2, again for all four lists. It can be 
seen that the point estimates and interval estimates are much more stable and mutually 
consistent, and the corresponding interval estimates all contain the BIC point estimate of 
2771, except for the 'reimbursements x total' model, which just misses it. 

This example suggests that the Bayesian Rasch model alone does quite well, and the 
Bayesian Rasch plus list x total models do a better job of smoothing over the sparse table 
than do the corresponding log-linear Rasch plus list x total models. There seems to be little 
in the data to cause us to prefer one model over the other, but it does not matter since these 
models all give answers that are consistent with one another, and consistent with our best log- 
linear model, the base-line BIC model. 

The parsimony of the Bayesian Rasch and Rasch plus list x total models is attractive. In 
addition, we can examine and compare posterior information on the catchability effects 0 in 
these models. In the simple unidimensional Bayesian Rasch model for example, the posterior 
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mode for the variance of 0 is approximately 1.24, with an equal-tailed 95% credible interval 
running from 1.04 to 1.45. When 0 = (01, 02) iS two dimensional, the variance of 01 (the catch- 
ability parameter underlying J - 1 lists) increases slightly to the range 1.38-1.51 (depending on 
the particular model), with interval estimates that are similar to those of the unidimensional 
case. The posterior mode for the variance of 02 (the catchability parameter underlying the list 
in the list-by-total interaction) ranges from approximately 3.39 to 11.36 (depending on the 
model), with 95% intervals ranging from a lower bound of approximately 1.95 to 4.09 to an 
upper bound of approximately 20.06 to 34.16 (again depending on the model). The correla- 
tion between 01 and 02 has a posterior mode ranging from 0.64 to 0.75, with 95% intervals 
bounded below by about 0.4. Clearly not much information is available to identify the 
distribution of 02 separately in the model, but including 02 does provide the model with a little 
more freedom to fit the observed table of counts, while still smoothing over sparse margins in 
the (2 4- 1) x (total captures) table. 

6.3.2. World Wide Web 
We now compare our earlier analyses of the WWW data from Section 5.3, in the first block of 
Table 10, with models in the second block of Table 10 that also contain list-by-list and list- 
by-total interactions. What is clear from a perusal of Table 10 is that the log-linear models 
are very unstable when any interactions higher than first order (two-way interactions) are 
included in the model. However, all the two-way interaction models perform similarly, 
suggesting a population total estimate of approximately 600 with a confidence interval that 
runs from approximately 500 to 800. 

The middle block in Table 10 also shows some QS2 models with two or even three list-by- 
total terms included. We see some moderate increase in the point estimates and in the range 
of the interval estimates, as can be expected when more of the positive dependence in the lists 
is modelled, but these results are broadly supportive of our general impression about the 
point and interval estimates for the population total garnered from the two-way interaction 
models above. 

Comparing the three Bayesian Rasch plus list x total models included in the last block of 
Table 10 with the simple Bayesian Rasch model from the first block of Table 10 shows that 
the right list-by-total interaction helps the interval estimate to settle down to something 
reasonable, but there is little hint to guide us in selecting the list-by-total interaction that we 
want. Again, sparseness in the table seems to be the culprit. With 305 observations spread 
across six lists there is an average of fewer than five observations per cell, and in fact there are 
many empty cells in the table. This produces severe non-smoothness in the 26 _ 1 table -let 
alone the (26 - 1) x (total captures) table and higher order models tend to track this non- 
smoothness; they are consequently misled in their estimation of dependence in the table. The 
hierarchical Bayesian model fits moments of all orders, restricted by the inequalities displayed 
in equations (7), and it may be that unless further natural restrictions are placed on these 
interactions the Baysian model will be similarly confused by the relatively sparse table for 
query 535. 

In the simple unidimensional Bayesian Rasch model, the posterior mode for the variance 
of 0 is approximately 1.65, with an equal-tailed 95% credible interval running approximately 
from 1.20 to 2.23. The posterior mode of the variance for 01 (the catchability parameter for 
J - 1 lists in the two-dimensional model) increases to the range 1.97-2.75 (depending on the 
model) and for 02 ranges from 6.15 to 12.35, with correspondingly wide 95% intervals. The 
posterior mode of the correlation between 01 and 02 ranges from 0.63 to 0.88, with 95% 
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intervals bounded below by approximately 0.39. In the Web data therefore, there was little 
difference between the simple Bayesian Rasch model and the two-dimensional models under- 
lying the Baysian Rasch plus list x total models. This explains the similarity in the point 
estimates among the various Bayesian Rasch models listed at the end of Table 10. 

6.4. Sensitivity of inferences to prior specifications 
In the Bayesian Rasch models that we have explored, the posterior 95% intervals for the 
population size N are not greatly affected by reasonable variations in prior choices. The 
effects are generally larger for the WWW problem than for the diabetes problem, so we focus 
our discussion on that problem. 

For example, in the simple Bayesian Rasch model for the WWW problem, changing the 
prior distribution on N from a truncated uniform, ir(N) oc 1, to a truncated Jeffreys prior, 
7r(N) oc 1/N, keeping the u2-prior fixed at F-1(1, 1), changes the 95% posterior interval from 
[569, 1662] to [554, 1525]. These changes are not large relative to the sizes of the estimates 
involved; increasing the truncation point Nmax above 10000 also did not have a substantial 
effect on the posterior distribution for N. However, as the prior distribution on u2 concen- 
trates near 0, the estimate for N decreases towards the independent lists estimate, as expected. 
For example, keeping the truncated Jeffreys prior for N and changing the prior on u2 from 
F-1(1, 1) to J-1(5, 0.05) reduces the interval estimate to [464, 961]. 

The prior distribution that we chose for the ij, 3j - N(O, 100), accommodates the range of 
values that main effects and interactions parameters typically attain in fitted log-linear or 
logistic models. When we relaxed the 3-priors to be improper uniform priors, we saw about a 
50% increase in the posterior mode for N, with a corresponding change in the upper end 
point of the posterior 95% confidence interval. Such a relaxation, however, allows parameter 
values that we do not believe are realistic for such models; restricting the 3-priors to be near 
N(O, 100) leads to much smaller changes in the estimate of N. 

As we mentioned earlier, the diabetes problem seems to be less sensitive to these changes; 
there were virtually no changes in the posterior credible interval estimates for N under similar 
modifications of the priors on N and u2, and when the priors on the Os were relaxed to be 
uniform the 95% posterior credible interval for N changed only from [2567, 2906] to [2547, 
2921]. 

7. Discussion 

In this paper, we have reviewed and extended the by now long history of statistical modelling 
of multiple-recapture or multiple-list census data for estimating population totals. When there 
is heterogeneity in the lists' penetration into the target population of objects to be counted, as 
well as heterogeneity in the catchability of individual objects, modelling is inherently multi- 
level: there is a level of fixed effects for lists and a level of random effects for objects. We have 
argued that the Rasch model, borrowed from the educational testing literature, provides a 
natural starting place for modelling the multilevel structure. We may also incorporate addi- 
tional multilevel structure into the Rasch model based on observed object or list covariates. 

Only recently have we begun to understand how to modify the Rasch model to accom- 
modate list-by-list dependence and/or list-by-total interactions. We can incorporate these 
interactions directly into the likelihood that relates capture history to the random catchability 
effect which we view as a latent variable, or we may interpret them as a kind of stratification 
of the latent variable into multidimensional components by particular captures or lists. Biggeri 
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et al. (1999) have also tried to interpret list-by-total interactions as manifestations of a 
stratification of the latent variable by one or more captures, and this remains an interesting 
and active area of research. We have shown here how to convert these models into extensions 
of the log-linear quasi-symmetry model associated with the Rasch model, and we have 
suggested that frequentist analyses of these models using relatively standard GLM programs 
provide a useful first approximation to a fully Bayesian approach. 

When the basic log-linear quasi-symmetry model holds, we have illustrated that the fully 
Bayesian hierarchical formulation of the Rasch model provides at least as good a population 
total estimate, and does so more parsimoniously (exploiting a few hyperprior parameters 
rather than a full set of quasi-symmetry terms in the log-linear model). An important open 
question in comparing these two approaches is understanding the interplay between the 
Bayes model's relaxation of the no highest order interaction assumption that is needed in the 
log-linear model to project an estimate onto the missing cell count in the 2J - 1 table cross- 
classifying list membership for all objects, and the Bayes model's imposition of moment 
constraints on the quasi-symmetry terms in the log-linear model that are usually not imposed 
in frequentist GLM fits of the model. 

When the basic log-linear quasi-symmetry model does not hold, adding list-by-list or list- 
by-total interactions, as outlined in the previous section, can greatly improve the log-linear 
model fit and the population total estimates based on the log-linear models. These are 
naturally seen as log-linear manifestations of an underlying hierarchical Bayes model, and we 
demonstrated how to derive them as such. These models lent some additional flexibility to the 
Bayesian analyses of our examples and produced somewhat more stable estimates than the 
basic Bayesian Rasch model did. 

Acknowledgements 

This work was supported in part by grants REC-9720374 and DMS-9705032 from the 
National Science Foundation to Carnegie Mellon University. We are indebted to Steve 
Lawrence and Lee Giles for providing us with unpublished data for analysis. Alan Agresti, 
S. Basu, Annibale Biggeri, Richard Cormack, Jon Forster, Ed George, David R. Jones and 
Steve Lawrence all provided helpful input of various sorts as we were working on different 
parts of the paper, and the Editors and reviewers made valuable suggestions for revisions. 

References 
Agresti, A. (1994) Simple capture-recapture models permitting unequal catchability and variable sampling effort. 

Biometrics, 50, 494-500. 
Basu, S. (1998) Bayesian estimation of the number of undetected errors when both reviewers and errors are heter- 

ogeneous. In Frontiers in Reliability Analysis (eds A. P. Basu, S. K. Basu and S. Mukhopadhyay), pp. 19-36. 
Singapore: World Scientific. 

Biggeri, A., Stanghellini, E., Merletti, M. and Marchi, M. (1999) Latent class models for varying catchability and 
correlation among sources in capture-recapture estimation of the size of a human population. Statist. Appl., to be 
published. 

Bishop, Y. M. M., Fienberg, S. E. and Holland, P. (1975) Discrete Multivariate Analysis. Theory and Practice. 
Cambridge: Massachusetts Institute of Technology Press. 

Bruno, G., Laporte, R., Merletti, E., Biggeri, A., McCarty, D. and Pagano, C. (1994) National diabetes programs: 
application of capture-recapture to "count" diabetes. Diab. Care, 17, 548-556. 

Burnham, K. P. and Overton, W. S. (1978) Estimation of the size of a closed population when capture probabilities 
vary among animals. Biometrika, 65, 625-633. 

Carriquiry, A. and Fienberg, S. E. (1998) Encyclopedia of Biostatistics, vol. 5, pp. 3724-3730. New York: Wiley. 
Castledine, B. J. (1981) A bayesian analysis of multiple-recapture sampling for a closed population. Biometrika, 67, 

197-210. 

This content downloaded from 193.105.245.160 on Sat, 28 Jun 2014 09:16:33 AM
All use subject to JSTOR Terms and Conditions



404 S. E. Fienberg, M. S. Johnson and B. W. Junker 

Chao, A. (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 43, 
783-791. 

(1989) Estimating population size for sparse data in capture-recapture experiments. Biometrics, 45, 427-438. 
Chao, A., Lee, S.-M. and Jeng, S.-L. (1992) Estimating population size for capture-recapture data when capture 

probabilities vary by time and individual animal. Biometrics, 48, 201-216. 
Cormack, R. M. (1966) A test for equal catchability. Biometrics, 22, 330-342. 

(1989) Log-linear models for capture-recapture. Biometrics, 45, 395-413. 
(1992) Interval estimates for mark-recapture studies of closed populations. Biometrics, 48, 567-576. 
(1994) Statistics in Ecology and Environmental Monitoring, pp. 19-32. Dunedin: University of Otago Press. 

Coull, B. A. and Agresti, A. (1999) The use of mixed logit models to reflect heterogeneity in capture-recapture 
studies. Biometrics, 55, 294-301. 

Cressie, N. and Holland, P. W. (1983) Characterizing the manifest probabilities of latent trait models. Psychometrika, 
48, 129-141. 

Darroch, J. N., Fienberg, S. E., Glonek, G. F. V. and Junker, B. W. (1993) A three-sample multiple-recapture 
approach to census population estimation with heterogeneous catchability. J. Am. Statist. Ass., 88, 1137-1148. 

Darroch, J. N. and McCloud, P. I. (1990) Separating two sources of dependence in repeated influenza outbreaks. 
Biometrika, 77, 237-243. 

Fienberg, S. E. (1972) Multiple-recapture census for closed populations and incomplete contingency tables. 
Biometrika, 59, 591-603. 

(1992) Bibliography on capture-recapture modelling with application to census undercount adjustment. Surv. 
Methodol., 18, 143-154. 

Fienberg, S. E. and Meyer, M. M. (1983) Loglinear models and categorical data analysis with psychometric and 
econometric applications. J. Econometr., 22, 191-214. 

Freeman, P. R. (1972) Sequential estimation of the size of a population. Biometrika, 59, 9-18. 
(1973) A numerical comparison between sequential tagging and sequential recapture. Biometrika, 60, 499-508. 

Garthwaite, P. H., Yu, K. and Hope, P. B. (1995) Bayesian analysis of a multiple-recapture model. Commnns Statist. 
Theory Meth., 24, 2229-2247. 

Geiger, H. and Werner, A. (1924) Die Zahl der Ion Radium Ausgesandsena-teilchen. Z. Phys., 21, 187-201. 
George, E. I. and Robert, C. P. (1992) Capture-recapture estimation via gibbs sampling. Biometrika, 79, 677-683. 
Gilks, W. R. and Wild, P. (1992) Adaptive rejection sampling for Gibbs sampling. Appl. Statist., 41, 337-348. 
Green, P. J. (1995) Reversible jump markov chain monte carlo computation and bayesian model determination. 

Biometrika, 82, 711-732. 
Hay, G. (1997) The selection from multiple data sources in epidemiological capture-recapture studies. Statistician, 

46, 515-520. 
Holland, P. W. (1990) On the sampling theory foundations of item response theory models. Psychometrika, 55, 

577-601. 
International Working Group for Disease Monitoring and Forecasting (1995a) Mark-recapture and multiple-record 

systems: I, History and theoretical development. Am. J. Epidem., 142, 1047-1058. 
(1995b) Mark-recapture and multiple-record systems: II, Applications in human diseases. Am. J. Epidem., 

142, 1059-1068. 
Jannarone, R. J. (1986) Conjunctive item response theory kernels. Psychometrika, 51, 357-373. 
Jannarone, R. J., Yu, K. F. and Laughlin, J. E. (1990) Easy bayes estimation for rasch-type models. Psychometrika, 

55, 449-460. 
Johnson, M. S., Cohen, W. M. and Junker, B. W. (1998) Measuring appropriability in research and development 

with item response models. Technical Report 690. Department of Statistics, Carnegie Mellon University, 
Pittsburgh. (Available from http: / /www. stat. cmu. edu/www/cmu-stats/tr/.) 

Kass, R. E. and Wasserman, L. (1995) A reference bayesian test for nested hypotheses and its relationship to the 
schwarz criterion. J. Am. Statist. Ass., 98, 928-934. 

Kelderman, H. (1984) Loglinear rasch model tests. Psychometrika, 49, 223-245. 
Lawrence, S. and Giles, C. L. (1998) Searching the world wide web. Science, 280, 98-100. 
Madigan, D. and York, J. (1995) Bayesian graphical models for discrete data. Int. Statist. Rev., 63, 215-232. 

(1997) Bayesian methods for estimating the size of a closed population. Biometrika, 84, 19-31. 
Mathsoft (1996) S-plus Version 3.4 Release 1 for HP 9000 Series. Seattle: Mathsoft. 
Patz, R. J. and Junker, B. W. (1999) A straightforward approach to markov chain monte carlo methods for item 

response models. J. Educ. Behav. Statist., 24, 146-177. 
Petersen, C. J. G. (1896) The yearly immigration of young plaice into the limfjord from the german sea. Rep. Dan. 

Biol. Stn Min. Fish., 6, 1-48. 
Pollock, K. H. (1991) Modeling capture, recapture, and removal statistics for estimation of demographic parameters 

for fish and wildlife populations: past, present, and future. J. Am. Statist. Ass., 86, 225-238. 
Rasch, G. (1960) Probabilistic Models for Some Intelligence and Attainment Tests. Chicago: University of Chicago 

Press. 
Roberts, H. V. (1967) Informative stopping rules and inferences about population size. J. Am. Statist. Ass., 62, 

763-775. 

This content downloaded from 193.105.245.160 on Sat, 28 Jun 2014 09:16:33 AM
All use subject to JSTOR Terms and Conditions



Bayesian Population Size Estimation 405 

Sanathanan, L. (1972) Models and methods in visual scanning experiments. Technometrics, 14, 813-830. 
(1973) A comparison of some models in visual scanning experiments. Technometrics, 15, 67-78. 

Schnabel, Z. (1938) The estimation of the total fish population of a lake. Am. Math. Mnthly, 45, 348-352. 
Smith, P. J. (1988) Bayesian methods for multiple capture-recapture surveys. Biometrics, 44, 1177-1189. 

(1991) Bayesian analyses for a multiple capture-recapture model. Biometrika, 78, 399-407. 
Wu, M. L., Adams, R. J. and Wilson, M. R. (1997) Conquest. Generalized Item Response Modeling Software. 

Camberwell: Australian Council on Educational Research. 

This content downloaded from 193.105.245.160 on Sat, 28 Jun 2014 09:16:33 AM
All use subject to JSTOR Terms and Conditions


