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 Abstract: We exhibit a copula representation of the (r, s)-th bi variate
 order statistics from an independent sample of size n. We give conditions when

 such a representation converges weakly to a bivariate Gaussian copula. A
 recurrence relationship between the density of the order statistics is presented

 and related Fréchet bounds are given. The usefulness of those results are
 stressed through examples.

 Key words: Bivariate binomial, copula, Fréchet bounds, normal asymp-
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 1 Introduction

 Copulas are important in statistical modeling since they connect the marginal dis-
 tributions to restore the joint distribution, or as typically explained "a copula cou-
 ples a joint distribution function to its univariate margins", see e.g. Nelsen (1999,
 p. 15). The copula theory has an incredible evolution during the last decade,
 motivated by its application in probability theory, statistics, finance, insurance,
 economics, see for example Cherubini et al. (2004) and references therein. One
 important dependence structure in Statistics is the order statistics. In this paper
 we bring some contribution on the bivariate order statistic distribution based on
 copula.

 At first, let us outline several basic facts concerning bivariate copulas. A two-
 dimensional copula is a function C : [0, l]2 - ► [0, 1] such that

 (i) C(t, 0) = C(0,¿) = 0 and C(¿, 1) = C(ż, 1) = t for all t in [0, 1];
 (ii) C is 2-increasing, i.e.

 Vc([ui, u2' X [vi, v2]):= C(u2ìv2) - C{u',v2) - C(u2ìvi) + C(i¿i,í;i) > 0,

 for all i¿i, u2ì vi, v2 G [0, 1] with u' < u2 and v' <v2. Alternatively, copulas can be
 defined as follows: Let X and Y be continuous random variables with distribution
 functions F(x) = P{X < x) and G(y) = P(Y < y ), and joint distribution function
 H(x,y) = P(X < x, Y < y). For every (x,y) in [-oo,oo]2 consider the point in
 [0, l]3 with coordinates (F(x), G(y), H(x, y)). This mapping from [0, l]2 to [0,1]
 is a copula.

 Both copula definitions are connected by the following basic theorem, e.g.
 Sklar (1959), which also partially explains the gist of copulas.

 Ill
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 Sklar's Theorem Let H be a two-dimensional distribution function with marginal
 distribution functions F and G. Then there exists a copula C such that H(x,y) =
 C(F(x),G(y)). Conversely , for any distribution functions F and G and any copula
 C, the function H defined above is a two-dimensional distribution function with
 marginals F and G. Furthermore} if F and G are continuous , C is unique.

 Given a joint distribution function H with continuous marginals F and G, as
 in Sklar's Theorem, it is easy to construct the corresponding copula: G(i¿, v) =
 H(F(~1'u), G^-1^)), where F^~^ is the cadlag inverse of F, given by F^^u) =
 sup{x|F(a;) < u} (and similarly for G^"1^). Note as well that if X and Y are
 continuous random variables with distribution functions as above, then G is the
 joint distribution function for the random variables U = F(X) and V = G(Y)
 which are uniformly distributed on [0, 1], to be denoted hereon by i7(0, 1).

 It is easy to show that if H is a bivariate distribution function with marginals
 F and G, then max{F(x) + G(y) - 1,0} < H(xiy) < min{F(x)iG(y)} or, since
 H(x,y) = C(F(x)iG(y)) , max{u + v - 1,0} < C(u,v) < min{u,v}. Those
 inequalities are known as the Fréchet-Hoeffding bounds.

 There are few results in literature relating the order statistics and associated
 copulas. The random variables max(Xi Y) and mżn(X, Y) are the order statistics
 for X and Y . Then, e.g. Nelsen (1999, p. 25),

 P(max(X,y) <t) = G(F(¿),G(¿))

 and

 P(min(X , Y)<t) = F(t) + G(t) - C(F(t ), G(t)).

 The above relations are generalized by Georges et al. (2001) as follows: Let
 (Xi, . . . , Xn ) be a set of continuous random variables with Fi(x) = P(Xi < x), i =
 1,2 , . . . , n. Denote by Cn the associated copula and let Xr:n be r-th order statistic
 (1 <r <n). Then its distribution function Fr:n(t) = P(Xr:n < t) is given by

 Fr:n(t) = £ ff) £ Cn(vlt . . . , «J (1.1)
 k=r U=r ^ '

 where ^ denotes summation over the set

 |(ui,...,un) € [0,1]" I Vi € = n-fcļ
 with í{i}(f¿) = 1 if Vi = 1, and 0 otherwise. It is not hard to see from (1.1), that

 F1:n(t) = i-ā;(s1(t)i...1sn(t)),

 where Cn is the survival copula and S^(t) = 1 - Fi(t). We also note that
 Xn:n = max(X i,...,Xn) and its distribution function is the diagonal section
 of the multivariate distribution Fn:n(t) = Gn(Fi(¿), . . . , Fn(t)).
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 We may also characterize other statistics which are relevant in reliability, life
 modeling or risk analysis. For example, one could be interested in the range
 Xn:n - X' :n or subranges Xri:n - Xr2:n for r' > r<i. However, in order to derive
 explicit formulas, we need the joint distribution of Xri:n and Xr2:n. In the case
 of independent and identically distributed random variables, Balakrishnan and
 Cohen (1991) give more friendly formulas for the density. Nelsen (2003) found the
 copula of ¿Kim and

 C',n(u, v) = v - [max{( 1 - u)™ + v* - 1, 0}]n.

 In the general case, the problem is open. One solution is then to use Monte
 Carlo methods, as suggested by Georges et al. (2001). A recent study on the
 degree of association of pairs of ordered random variables is provided Avérous et
 al (2005).

 The purpose of this paper is to shed light in terms of copula on the dependence
 structure between r-th and 5-th order statistics corresponding to n independent
 observations from {X,Y). In Section 2 we give a copula representation of the
 joint distribution function of r-th and 5-th order statistics corresponding to X
 and Y given the associated copula C, as well as the related Fréchet bounds in
 the last section. We find in Section 3 the asymptotic distribution in the case
 when r/n - » Ai and s/n - > A2 as n - > 00 such that 0 < Ai,À2 < 1 or Ai =0
 and A2 = 1, the increasing rank case in Barakat (2001). In Section 4 we show
 a recurrence relation. The usefulness of results is demonstrated with numerical

 examples.

 2 Order statistics copula

 Consider a bivariate distribution function with continuous margins and n indepen-
 dent observations from the population (X, Y). Let (Xi, Yļ), . . . , (Xni Yn ), n > 2,
 be a sample from continuous distribution with copula C and marginals F and G
 respectively. Let Xr:n and Ys:n be the order statistics of the sample, 1 < r, 5 < n.
 In this section we find the copula Cxr:n,Ya:n associated to the order statistics Xr:n
 and Ys:n as a function of C.

 Define, for each pair (x, y) G [-00, oo]2
 n n

 Rx = ^2 Iixi ^ and Rv = 5Z - y}>
 j= 1 j=i

 where /{.} is the indicator function. Therefore, Rx ~ Bin(n,p) and Ry ~
 Bin{n, q), with p - P(X <x) = F(x) and q = P(Y < y) = G(y).
 Since F(x) and G(y) are continuous the pairs {(Xi, Y"i), . . . , (Xn, Yrl)} can
 be transformed into {(Ui,Vi), . . . ,(Un,Vn)} by t/¿ = F (Xi) ~ f/(0, 1) and V¿ =
 G(Yi) ~ U( 0, 1). Therefore, p = F(x) = u and q = G(y) = v. Now, note that
 for all (u, v) € [0, l]2 for which u = F(x), v = G(y), Ru = YJj=' I{Uj ^ u} and
 Rv = ¿"=i I{Vj ^ v } we get

 P(Xr:n < X, Ya:n < y) = P(Ą, > r, R, > s) = P(Ur;n < u, V3,n < v),
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 where Ur:n and Vs:n are r-th and s-th order statistics corresponding to n indepen-
 dent observations from ([/, V).

 Since the joint distribution of (ñ^, Rv) is bivariate Binomial, we have that

 Hurln,V.:AU> V ) = P(Ur:n < U, Vs:n < v) = > r, Ry > s)

 n'e ™ ( u - ey~m ( v - e)k~m (i - u - v + ef-j-**™
 m'(j - m)l(k - m)l(n - j - k + m)' '

 J - T K - S Ttl

 where 6 = P(U <uiV<v) = C(tz, v) and m is the number of pairs (t/j, Vj ) such
 that Uj < u and Vj < v, j = 1, . . . , n, i.e., max(0,j + k - n) < m < min(j¡ k).

 The marginal distributions of P(Ur:n < u , V8:n < v) are

 P(Ur: n < u) = ¿ (jy (1 - u)»"' and P(Vs:n < v) = ¿ (fyvk(l - v)n~k,

 which, in fact, are Beta distributed random variables, i.e. Ur:n ~ Beta(rin - r+ 1)
 and Vs:n ~ Beta{s, n - s + 1). Let /3~*_r+1 and be the inverses of these
 Beta distributions.

 The copula associated to order statistics of the pair ( Xr:niYs:n ) is the same
 copula of the pair (Ur:ni Fs:n), see also Lemma 6 in Avérous et al. (2005), i.e.

 Cxr;n,Yě;n(w,t) - CUr;n,V.;n(w>t) - HUr;n,V.;n •

 Thus, we obtain the following statement.

 Theorem 1 Under the above notations the copula Cur:n,vs:n is given by

 r (ìli ti ; = V" n!C (ßr,l-r+l(w)> ßs^i-s+ljt))
 ur:„,v,:n' > ; = ¿_j m¡(^. _ m)¡(¿ _ m)ļ(n _ j _ ¡1 _ļ_ m)¡

 X lßr,n-r+lM " C(^_r+1 (tX,), /3"^ _s+1 (i))]^"m

 X {ß7,Ls+l(t)-C(ß-Lr+lM,ß7,l-a+l(t))ik-m
 X [1 - ß~l_r+i(w) - /?"i_s+1(ť) + C ( ß-1n-r+lM,ß7t1n-s+imn-j~k+m •

 The formula given by Theorem 1 presents a relation between the copula C
 associated to the random vector (X, Y ) and the copula of order statistics Cur:n ,va:n-
 Therefore, we can do inferences about Cur:n,va:n knowing C.

 In fact, the statement of Theorem 1 can be obtained as a consequence of Exer-
 cise 2.2.2 given in David (1981, p. 25) and relation C(u , v) = iJ(F(_1^(t¿), G^_1^(v)).

 3 Asymptotic copula
 In this section we derive from the limit distribution of the pair (Ru^Ry) the
 asymptotic copula in order to find an approximation to the joint distribution of
 ( Xr:Tli YS:n )•
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 In Barakat (2001) properties of joint distribution ( RUiRv ) are investigated,
 and as consequences, limiting distribution results are obtained for the vector
 (Xr:niYs:n) where 1 < r, s < n. For fixed r, s > 1, as n - > oo, the pair (r, s)
 is called fixed rank (or the case of extreme order statistics) . When r, s - > oo as
 n - > oo, (r, s ) is called increasing rank. One particular rate of increase of spe-
 cial interest in this work is when r/n - > Ai and s/n - > À2 as n - ► 00 such that
 0 < Ài, À2 < 1 or Ai = 0, A2 = 1. Additionally, Barakat (2001) presents nine other
 cases covering the possible asymptotic distributions of bi variate order statistics.
 We consider only the increasing rank case, but the method elaborated here can
 be applied similarly in the other cases.

 We extract the asymptotic copula, denoted by Ca, from the limiting distribu-
 tion of ( RU,RV ) and use the corresponding approximation to evaluate the joint
 distribution function of order statistics (Xr:ni Y¿;n), as follows.

 The basic result in Barakat (2001) is Theorem 2.2, which gives the conditions
 for the following convergence

 (Ru y/nu(l-u)' - nu Jnv(l-v)J Rv - nv ' " (Ru y/nu(l-u)' Jnv(l-v)J " °°
 d )

 where n - ► 00 ) means a convergence in distribution and Afp denotes the bivariate
 Normal distribution with zero mean vector and correlation coefficient given by

 y/uv(l - u)(l - v)
 The above theorem in our notation has the following form,

 Theorem 2 Let min(n - r,r) ->00 and min(n - s,s) - > 00 when n - > 00.
 Furthermore , let r/n - > Ài and s/n - > A2 as n - > 00 such that 0 < Ai, A2 < 1 or
 Ai = 0 and À2 = 1. If

 n ( T> T> ' C(ui v ) y ~ uv
 PRUÌRV = Corr(Ru n ( T> , Rv) T> ' n -> 00 p = ; y

 y/UV{ 1 - U){ 1 - V)

 for a fixed value of p such that 'p' < 1,

 r - nu s - nv
 - . = - > T' and - . - - >• T 2
 ym¿(l - 1¿) y^ra;(l - v)

 /10/d /or fixed constants T' and 7*2, then

 I Ru - nu r - nu Rv - nv ^ s - nv '

 F n / ,, ~~ ^ , - 7ļ=r n
 yyrm(l n - 1¿) ym¿(l- 1¿) ^/ra;(l / ,, - v) ^/nv(l-v)y , 7ļ=r

 where ¿5 the accumulated joint distribution function of J'fp. □
 Under the above conditions and from the fact that C(wit) = H(F~1(w ),

 G_1(£)), the asymptotic copula Ca of (RUiRv) is given by
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 and the corresponding survival copula has the form

 Using the asymptotic survival copula we can find an approximation for
 the join survival distribution of (Ru1Ry). The marginals Ru ~ Bin(n,u) and
 Rv ~ v) and under conditions of Theorem 2 we have

 HRuyRv ( r , s) « Ü° ļ 'b(ti , u, r),B(n, v, s)j

 = ®p($ 1 ( B{n , u, r)j , $_1 ^ B(n , v, s)j ^ .

 where B(n,u,r) = P{Ru > r) and B(n,v,s ) = P{Ry > s ). Since P(Ru > r) =
 P(Ur:n < u ) and P(Rv >s) = P(Vs-n < v), we get

 But Hur:n,v,.„(u,v) = H and under conditions of Theorem 2
 Hur:n ,Vs:n(uiv) can be approximated by

 HUr,n,V.,n{u^v) Ä * ^/?s,n-s+l Y
 _ Now, using the well know relation C(w, t)=w + t - l + C( 1 - w, 1 - t) where
 C(w , t) is the survival copula, we have

 HUr.n, Vernici V) ~ßr,n - 7*+l (^) + ßs,n - s+ 1 (^) l"ł~

 *p ($-1 (1 - /?r,n_r+1 (u)) , i"1 (1 - &,n_s+1 (v))) .

 Finally, using u = F(x ) and v = č?(y) and the relationship Cxr.„,y..„ =
 we obtain

 Hxr.rL,Ys:n(x,y) «/?r>n_r+1(F(x)) + /?a,n_a+i(G(y)) - 1+

 -&,n-.+1 (<?(»))))•
 (3.1)

 Remark 1. It is worth to note that the copula of ( Ur:ni Vs:n) is different than the
 copula of ( RUi Rv). In this work, we extract the asymptotic copula of ( Ru , Rv) in
 order to find an approximation for P(RU > r,Rv > s) and then by relationship
 P(Ur:n < Vs:n <v)= P(RU >r,Rv> s) we obtain the asymptotic result. □
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 Next, we give an application example to (3.1).

 Example 1 Consider the bivariate Normal distribution with zero mean, unit
 variances and correlation coefficient -0.5. Let us calculate P(Xg:io < x, Yío:io <
 y). For X = 1.5 and y = 1.8, we have F(x) = 0.93319, G(y) = 0.96406 and
 C(F(x)1G(y)) = 0.897319. The exact value of P(Xg:'o < x, Yio:io 5? y ) can be
 computed by the formula given in Theorem 1, i.e.

 ■^(-^9:10 < £, Yi0:10 - V) = <^(^9:10 < ^,^10:10 < v)

 =P(U9:1o<F(x)iV1o:io<G(y))

 =10 X C(F(x),G(y))9[G(y) -C(F(x),G(y))] +c(F(x),G(y))10
 =0.5902.

 For our data we calculate

 = C(F(x),G(v)) -F(x)G(y)
 P = jF(x)G(y)(l-G(y))(l-F(x))

 0.897319 - 0.93319 x 0.96406

 ~ >/0.93319 x 0.96406(1 - 0.93319)(1 - 0.96406)
 = -0.0504337

 and using (3.1) we obtain

 HXr..n,Y,:n(x,y) « ,10-10+1

 = ¥p(¥_1 (0.85942), ¥_1 (0.69356))
 = 0.85942 + 0.69356 - 1

 + - 0.85942), $-J(l - 0.69356))
 = 0.5922.

 As we can see, the asymptotic copula is easy to calculate and gives a good
 approximation even when a small sample size is used. □

 4 A recurrence relation

 In the univariate case, a number of recurrence relations between the densities and
 the moments of order statistics are available, e.g. Arnold and Balakrishnan (1998)
 and David (1981). We shall derive a similar result for the distribution of bivariate
 order statistics.

 Let us define the events

 A. - {C/j*- l;n- 1 ^ Ur:n- lì Vs:n- 1 ^
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 B - {t/, - l:n- 1 ^ U <i Ur:n-liVs-l:n-l ^ ^ < Vs:n- l}
 and

 D = {Ur:n ^ t¿ < t/r+l:nj ^s:n ^

 for U)V £ [0, 1]. Then

 P(A) = P(Ur- i:n_i < U, F^n-I < v) - P{Ur:n-i < U , V;:Tl_i < ü),

 P(¿?) = P(Ur-i:n-i < U , Vi-lm-l < v) - P(i7r_i:n_i < U, Vs:n-1 < v)
 - P(Ur:n-i < U , l^_i:n_i < v) + P(Ur:n- 1 < ÎX, K:n-1 < v)

 and

 P(D) = P(Ur:n < U, Vs:n < v) - P(Ur+i:n < U, Vs:n < v).

 Theorem 3 Under the above notations the following relationship holds

 nP(B)C{u,v) = rP(D) + nP(A)u (4.1)

 for 2 < r, 5 < n - 1, n > 2.

 Proof. Consider a sample of size n for which the event D occurs. Partition this
 sample randomly into two subsamples, one of size (n - 1) and one with size 1.
 Consider the event

 E = {the observation singled out has {/-value < u}.

 Then we have P(D fl E) = P(D)P(E'D) = rP^ . Denote by Ai and Bi the
 events

 n _ ( the event A occurs for the sample size n - 1 Ì
 ' and the observation singled out has ¡7-value < u J

 and

 {the event and U-v the B alue occurs observation < u for and the V-value singled sample out < size v has n - 1 J ļ
 and the observation singled out has > .

 U-v alue < u and V-value < v J

 Clearly, Qu and Qy are disjoint, and the event D fi E can occur if and only if
 either Qu or Qy occurs. Hence,

 P(D D E) = P(Qu) + P(Qv) = = uP(A ) + P(U<u,V< v)P(B).

 Prom Sklar's Theorem we have

 P(Ur:n < U,V3:n < V ) = Cur:niVa:ri (/?r,n-r+l (u) i ßs,n-s+l (^)) = Cur:n,Va:n(wit)i
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 where u = /?~*_r+1(w) and v = are the inverses of Beta{r,n - r + 1)
 and Beta(s , n - s + 1) distributions, respectively.

 Then,

 P(A) = P(Ur-l:n-l < U, V;;n_i < v) - P(Ur:n- 1 < U, Vs;n-i < V )
 = CUr-Un-l,V.,n-l(W^) - CUr-.n-uV.-.n-AW,ť)l

 P(B ) = P(Ur- 1:„_1 < U, Vs-':n-l < v) - P(Ur-':n-i < U, Va-.n-l < v)
 - P(Ur:n-l < U, Vg-l:«-! < v) + P(Ur:n-l < «, Vs:n_i < V )
 - CUr-ln-l.V.-Un-AV't) - CUr..n-l,V.-l-.„-A™,t)
 - CuT.-1;n.uVt:n-1(w,t) + Cur^y.^fat),

 P(D) = P(Ur:n<u,Vs:n<v)-P(Ur+1:n<u,Va:n<v)
 = Cur..„y.;n(w,t) - CUr+1:ny.;n(™,t)>

 and

 P(U <u,V<v) = C(u,v) = C(^_r+1H,/3"i_s+1(i)).
 Combining the last five relations we obtain

 = í?(§-«-r+iW
 i.e. (4.1). □

 Remark 2 For convenience, let us substitute

 Cr,a:n(w,*) = CUrìnìVèìn (/?r,n-r+l (w), ß3in-s+l (v)) = P{Ur:n < Vs:n < v)

 and introduce the difference notations Ai and A2 defined as

 Cr+l,s:n(^j ^r,s:n(^?

 A2 Cr,s:n(^,^) ^r,s+l:n(^> ^r,s:n(^)^)
 and

 ^l,2Cr,s:n(^}^) = Aj [A2Cr)S:n(w^, t)].

 Then, note that

 P(j4) = -AiCr_i,s;n_i(^,i), P(£>) = -AiCria:n(íí;,í)

 and P(P) = Ai^Cr- i,s- i;n- i(w, ¿)* Thus, the relation (3) can be rewritten as
 v

 ~^l^r,s:n(^}¿) = ^AiCr_iłS:n_1 (t£J, ť) C{w, t) Aj^Cy- l,s- l:n(^» t).

 The last formula can be used to compute recursively the value of the joint density
 of order statistics. □
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 5 Fréchet bounds

 The inclusion-exclusion formula states that if Ai, . . . , An are n events, and if the
 probability of occurrence of at least r of them is denoted by P(r;n), then

 P(r;n) = ¿ (-1)™-
 m=r ^ '

 where

 W(m)= £ P0T=1^),
 l<ii<...<im<n

 see e.g. Feller (1968). If one defines Ai = {Xi < #}, i = 1, . . . ,n, then for the
 corresponding order statistics Xr:n we have

 P(Xr:n < x) = £ (^j) E P^T= Ä ^ *»' i5"1)
 To find the joint distribution function P(Xr:n < x , Ys:n < y) of order statistics

 from dependent random variables X and Y , one is led to consider an extension of
 (5.1) for the case of K > 2 (finite) classes of events.

 Let A', . . . , An and B', . . . , Bn be two classes of events. For integers r and s,
 1 < r,s < n define

 P[r, 5; n ] = P{ex actly r A^s and exactly 5 ¿V s occur}

 and

 P(r, 5; ri) = P{ at least r Ai s and at least 5 s occur}.
 Let

 W(r,s) = J2p(nrj=1Aijn¡=1Bj¡)

 where ^ denotes summation over the indices 1 < i' < • • • < ir < n; 1 < j' <
 • • • < i a < n- It is known, see Fréchet (1943), that

 i>[r,s;n]= £ E ("D' t=r+s i+j=t WW

 Then,

 J>(r,.; n) = (* ~ 1) (jlJWj).
 a=r ß=s i=r j-s

 Thus, the following bivariate forms of Bonferroni inequalities for any non-negative
 integer k > 0 are given by

 r+s+2/c+l r+s+2fc

 E E 9(iJ,t)<P(r,s;n)< ^ Ę (5-2)
 í=r-fs t=r+s i+j=t
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 where = (- l)i_(r+^(*l1)(^l1)VF(2, j), see Meyer (1969). For 2 k > n-
 r - s the two bounds coincide, hence yielding an equality.

 Our aim is to evaluate Curxnya:n(w,t) using (5.2) by making the function
 W(i,j) more specific. Consider the events Ai = {Ui < /?~*_r+1(ii;)} and i =
 {Vi < ßjn-a+i(t)} for C/i, Vi ~ C/(0, 1), 2 = 1,..., n, arranged in an 2 x n matrix.

 Then P(r,s-,n) = P(Ur:n < ß~n-r+i(w)>vs-n < ß7,n-s+i(t)) = CUr:niV.:n{w,t).
 The elements taken from different rows are independent and each element in any
 given column has the same probability. Then, W(i,j) = where in
 the summation the contribution terms T(2,j; d ) consist of max(i + j - n) <d<
 mm(î,j) pairs AíDBí and the remaining pairs being taken from different columns,
 i.e.

 Tii.r.d) = Q

 see e.g. Galambos (1975). While the formula for the bounds in (5.2) may seem
 complicated, its actual computation is quite simple and fast. We first build a table
 for binomial coefficients and for the exponents of C(ß~^_r+ i(w),/?~¿_s+i(í)),
 ßr,n-r+i(w) an^ ß7,n-s+i(t) occurring in (5.3) for given values of n,i,j and d.
 The method of calculation is the same whatever the sample size and the Invariate
 distribution are.

 Let us substitute k = 0 in (5.2). Then, the simplest Fréchet bounds are given
 by

 W(r,s) -rW(r + l,s) -sW(r,s + 1) < CUr:n,v,;n(w ,t) < iy(r,s).

 Example 1 (continued) For the data of Example 1 we computed by taking
 w = 0.8594, t = 0.6936 the exact value Cx/9.l0)vi0;10 («>,<) = 0.5902. Following the
 above described procedure we obtain the following inequalities:

 k = 0 : 0.5902 < Ct/9¡10,vi0!l0(<M) < 3.6361;

 k = 1 : 0.5902 < C%:10lv10ll0(ti;,t) < 0.5902

 and no further correction was obtained by increasing k in (5.2). Now, for r = 2
 and s = 3 by choosing w - 0.1405798, t - 0.9980501 the exact value is

 CU2:lo,V3:lo(Wlt) =0.1398483.

 Using the Fréchet bounds we obtain the following inequalities:

 k = 3 : 0.1255057 < Cu2:Wtv3..10{w, t ) < 0.3034248;

 k = 4 : 0.1398175 < CU2:10y3:10(w,t) < 0.1406579;

 k = 5 : 0.1398482 < Cu2..10,v: i,10K<) < 0.1398491;

 k = 6 : 0.1398483 < CU2:10tv3.10(w, t) < 0.1398483
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 and no further correction was obtained by increasing k in (5.2). □

 The general multivariate form of inequalities (5.2) is given by Meyer (1969).
 While the bivariate distribution for each pair of the components may be reason-
 able, the vector behaviour in higher dimensions may be either unknown, or may
 be such that the computation of these distribution poses difficulty.

 Acknowledgements
 The first author thanks for a financial support from CNPq Grant 141503/02-5.
 The second author is partially supported by FAPESP, Grant 03/10105-2 and PRO-
 BRAL (CAPES/DAAD), Grant 171-04. The third author was partially supported
 by Projeto Temático FAPESP, number 99/10611-8.

 (Received December , 2004- Accepted April, 2005.)

 References

 Arnold, B. and Balakrishnan, N. (1989). Relations , Bounds and Approximations
 for Order Statistics. New York: Springer Verlag.

 Avérous, J., Genest, C. and Kochar, S. (2005). On the dependence structure of
 order statistics. To appear in Journal of Multivariate Analysis , available at
 http: / / www.mat.ulaval.ca/ pages / genest / .

 Balakrishnan, N. and Cohen, A. C. (1991). Order Statistics and Inference. San
 Diego: Academic Press.

 Barakat, H. (2001). The asymptotic distribution theory of bivariate order statis-
 tics. Ann. Inst. Stat. Math., 53, 487-497.

 Cherubini, U., Luciano, E. and Vecchiato, W. (2004). Copula Methods in Fi-
 nance. Chichester: Wiley Finance.

 David, H. (1981). Order Statistics , 2.ed. edition. New York: John Wiley and
 Sons.

 Feller, W. (1968). An Introduction to Probability Theory and Its Applications ,
 Volume I, 3.ed. edition. New York: John Wiley and Sons.

 Fréchet, M. (1943). Les Probabilitiés Associées à um System d' Événements
 Compatibles et Dépendantes. Exposés d' Analyse Geral , 942. Paris: Her-
 mann.

 Galambos, J. (1975). Order statistics of sample from multivariate distributions.
 Journal of the American Statistical Association , TO, 674-680.

This content downloaded from 128.95.155.147 on Tue, 24 Dec 2019 00:15:13 UTC
All use subject to https://about.jstor.org/terms



 Copula associated to order statistics 123

 Georges, P., Lamy, A-G., Nicolas, G., Quibel, G. and Roncalli, T. (2001). Multi-
 variate survival modeling: a unified approach with copulas. Crédit Lyonnais
 (Working paper).
 Available at http://gro.creditlyonnais.fr/content/rd/home_copulas. htm.

 Meyer, R. (1969). A note on a "multivariate" form of Bonferroni's inequalities.
 The Annals of Mathematical Statistics , 40, 692-693.

 Nelsen, R. (1999). An Introduction to Copulas. New York: Springer.

 Nelsen, R. (2003). Properties and applications of copulas: a brief survey. In
 Proceedings of the First Brazilian Conference on Statistical Modeling in In-
 surance and Finance , Dhaene, J., Kolev, N. and Morettin, P. A. (eds), São
 Paulo: University Press USP, 10-28.

 Sklar, A. (1959). Fonctions de répartition á n dimensions et leurs marges. Pubi
 Inst. Statist. Univ. Paris , 8, 229-231.

 Ulisses U. dos Anjos, Nikolai Kolev and Nelson I. Tanaka
 Department of Statistics
 University of São Paulo
 Cx. Postal 66.281, 05311-970, São Paulo, SP, Brazil
 E-mails: anjos@ime.usp.br, nkolev@ime.usp.br and nitanaka@ime.usp.br

This content downloaded from 128.95.155.147 on Tue, 24 Dec 2019 00:15:13 UTC
All use subject to https://about.jstor.org/terms


