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ABSTRACT 

Evaluation of the integral properties of Gaussian Statistics is problematic 

because the Gaussian function is not analytically integrable. We show that the 

expected value of the greatest order statistics in Gaussian samples (the max 

distribution) can be accurately approximated by the expression 0"(0.5264'/"), 

where n is the sample size and @' is the inverse of the Gaussian cumulative 

distribution function. The expected value of the least order statistics in Gaussian 

samples (the min distribution) is correspondingly approximated by -0-'(0.5264"n). 

The standard deviation of both extreme order distributions can be approximated by 

the expression 0.5[cp"(0.8832'/") - 0"(0.2142'/~].  We also show that the 

probability density function of the extreme order distribution can be well 

approximated by gamma distributions with appropriate parameters. These 

approximations are accurate, computationally efficient, and readily implemented by 

build-in functions in many commercial mathematical software packages such as 

MATLAB, Mathematics, and Excel. 
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INTRODUCTION 
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Consider n samples x,, x,, ..., x, from a standard Gaussian distribution, 

N(0,l). The extreme order distributions are the distributions of the greatest and the 

least values among n samples from the Gaussian distribution. Let x,, = max(x,), 
1 

i = 1,2, ..., n be the greatest of the n sample values. The probability distribution of 

x,- has the density function 

PDF(x,) = n @(x,)'"-I) $(x,,J (1) 

where $(x) is the probability distribution function (PDF) and @(x) is the cumulative 

distribution function (CDF) of the standard Gaussian distribution (Bain & 

Engelhardt, 1987). The greatest order distribution PDFs of selected sample sizes 

are shown in Figure 1. 

For the least of the n samples = min(xi), i = 1,2 ,..., n, has the 
i 

probability density distribution 

- - n @(-x~,)'"-~' @(-x&,J. ( 2 )  

Extreme order distributions are widely used in fields such as biology, 

psychophysics, economics, seismology, signal processing and analysis of parallel 

distributed noisy systems. It is particularly relevant in the analysis of stochastic 

resonance phenomena, where the addition of noise can increase detectability of a 

signal derived from a nonlinear system (Bulsara et al., 1991; Bezrukov & 

Vodyanoy, 1997). However, since the Gaussian CDF @(x) cannot be expressed in 

terms of elementary functions, it is difficult to integrate @(x) analytically, and thus 

analyuc solutions to the moments of the extreme order distribution are difficult to 

find. Statisticians have made efforts to find analytical solutions to expected value 

and standard deviation of the extreme order distribution with a recurrence method 

(Jones, 1948; Ruben, 1954; Bose & Gupta, 1959; David, 1963). Although this 

method is successful for small sample sizes, it is tedious and fails for sample size n 

>= 6 (Arnold & Balakrishnan, 1989; Harter & Balaknshnan, 1996), which makes 

it of limited utility. 

The expected value and standard deviation of the extreme order distributions 

of Gaussian samples have been tabled for selective sample sizes by numerical 
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Distribution for the max of n Gaussian samples 
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FIG. 

Gaussian deviates 

1. Probability density finctions for the greatest order values of Gaussian 

samples with sample sizes n from 1 to l,aX),000 in decade steps. 

integration (Harter, 1961; Parrish, 1992a, b). Those tables are not very practical 

because they only list selected sample sizes and thus we still have no access to the 

expected value and the standard deviation of the extreme order distribution of 

arbitrary sample sizes. Moreover, the accuracy of numerical integration depends on 

the range of the independent variable and size of the bin used for integration. The 

wider the range and the smaller the bin size, the more accurate is the integration. To 

increase the range and decrease the bin size correspondingly increases the 

computation time. Thus, accurate numerical integration is quite time consuming. 

Blom (1958) suggested an expression to approximate the expected value En 
of the greatest order distribution ( m a )  numerically: 

i - a  
B, = W1( 

n - 2 a + l  
) 

However, the constant a changes continuously with the sample size n. Moreover, 

there is no simple relation between a and n. Thus, his method fails to compute the 

expected value of the max distribution with any arbitrary sample size. 
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For the parameter of the variance of the max distribution 0: Pelli (1985) 

n 2 
suggested the approximation where n is the sample size. However, as 

12 ln(n + 1) 

we will show, Pelli's approximation has limited accuracy. 

We were also disappointed that there was no good algorithm to compute and 

approximate the form of the PDFs of the extreme order distributions in the 

literature. Thus, it is impossible to calculate many statistics, such as the difference 

or probabilistic combination of two extreme order statistics of different sample 

sizes. 

Our goal here is to find an accurate approximation formula for the expected 

value, standard deviation and PDF of the extreme order distributions in Gaussian 

samples. To make these approximations more practical, we develop expressions 

that can be computed with the built-in functions provided by many commercial 

mathematical or spread sheet software packages such as MATLAB, Mathematics, 

or Excel. We compare our estimation of the extreme order distributions to those 

obtained with standard numerical integration. 

METHOD 

EXPECTED VALUE 

The PDF of the max distribution in eq. 1 can be rewritten as 

Thus, the CDF of the max distribution is @(x,)". At the median of the max 

distribution, x,, 
@( x,)" = 0.5 ( 5 )  

From eq. 5, the solution for the median of the max distribution is 

x, = @-1(0.5"n) (6) 

where @' is the inverse function of the Gaussian CDF, @. If the max distribution 

were symmetrical about the expected value, eq. 6 should provide a good estimation 

of the expected value. However, since the max distribution is skewed to the left, a 

correction to eq. 6 is needed. We find that the expression 
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FIG. 2. The open circles denote the expected values of the rnax distribution 

estimated by the trapezoidal numerical integration method. The smooth 

curve is the expected value estimated by the expression @'((0.5264)"'') (eq. 

7). The horizontal axis is the sample size. 

E, = @'((0.5+&)""), &=0.0264 (7) 

provides a good approximation to the expected value of the max distribution. The 

correction factor E was obtained by a bisectional searching algorithm that optimizes 

the match of eq. 7 to the expected values. We may compare the expected value 

estimated from eq. 7 and the expected value estimated from numerical integration 

with trapezoidalrule (Press et al., 1986). The result is shown in Fig. 2 where the 

numerical integration is computed over the ranges from -6 to 10 standard 

deviations of the Gaussian in steps of 0.01. In Fig. 2, the open circles denote the 

expected value estimated from numerical integration over nine orders of magnitude 

of n and the curve represents the function of eq. 7 over sample size. The continuous 

curve in Fig. 3 shows the percentage difference between the estimation of eq. 7 and 
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Percentage difference between eq. 6, eq. 7 and the numerical 
integration method for expected value of n Gaussian samples 
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FIG. 3. The percentage Merence between the expected values of the max 

distribution estimated by the trapezoidal numerical integration method and 

by eq. 6 and eq. 7. The continuous c w e  is the percentage difference 

between eq. 7 and the trapezoidal numerical integration method; the broken 

curve is the equivalent difference for eq. 6. 

the numerical integration method while the broken curve shows the percentage 

difference between the sample median (eq. 6) and the numerical method. For the 

numerical integration estimation u, and the eq. 7 approximation En, the percentage 

difference at sample size n is (En-u,)/u,x 100%. For eq. 7, the deviation is less than 

2% for sample sizes n > 5, and less than 1% when n > 10. For n < 5, eq. 6 is more 

appropriate for the approximation, the deviation being confined to 3%. We note that 

the same approach may be elaborated to any desired degree of accuracy by 

expanding e in terms of a Taylor series of the variable n. 
From eq. 2, it is clear that the expected value of the least order distribution 

(rnin) in Gaussian samples is just -1 times the expected value of the max 

distribution at the same sample size. Thus, -En provides an approximation to the 

expected value of min distribution. 
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FIG. 4. The open circles denote the standard deviation of the max distribution 

estimated by the trapezoidal numerical integration method. The continuous 

curve is the expected value estimated by eq. 8. The horizontal axis is the 

sample size. The inset shows the standard deviation estimated for small 

sample sizes by the numerical integration method (open circles), eq. 8 

(continuous curve) and Pelli's approximation (broken curve). 

STANDARD DEVIATION 

The variable of interest in applications such as signal detection is the 

standard deviation of the rnax distribution. If the max distribution were 

symmetrical, the range 0.5[Q'((0.5+a)'1")-Q,Q,'((0.5-a)"")], where a = 0.3625, 

should provide a good approximation to standard deviation. Again, since the rnax 

distribution is positively skewed, a slight modification can improve the estimate. 

We find that 

sn=0.5 [Q,-'((0.5+a+)'")-Q'((0.5-a.)'1")J (8) 
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Percentage difference between ea. 8 and the numerical 
integration method for standard deviation estimation 

FIG. 5. The percentage difference between the standard deviation of the max 

distribution estimated by the trapezoidal numerical integration method, by 

eq. 8 and by Pelli's approximation. 

5 

4 -  

3 -  

where a+ = 0.3832 and a = 0.2858, gives an excellent approximation to the 

standard deviation of the max distribution. We used a two dimensional searching 

algorithm to find the values for a+ and a. that minimize the least square error 

between the standard deviation estimated from eq. 8 and from numerical 

integration. Fig. 4 compares the standard deviation estimation from numerical 

integration (open circles) and from eq. 8 (smooth curve). Fig. 5 shows the 

difference between the two estimations. For the numerical integration estimation on 

I 

i - Equation 8 1 
- - - - . - - Pelli (1985) 

1 
I 
I 

i 

and the eq. 8 approximation s,, the percentage difference at sample size n is (s,-on)/ 

\ 
2 -  1 

.................... ___--. 
'\ .-______________----------\____________________________\____________________________\____________________________ 

-2 

on x 100%. For all sample sizes up to 1,000,000, the deviation is less than 0.5 %. 

The standard deviation of the rnin distribution is the same as the standard deviation 
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of the rnax distribution. We again note that the same approximation can be 

elaborated to any desired of level accuracy by expanding a+ and a. as Taylor series. 

PROBABILITY DENSITY FUNCTION 

For a more complete characterization of the extreme order statistics, we find 

that we can approximate the PDF of the max distribution by the PDF of the Gamma 

distribution: 

where r(P) is the gamma function with argument p .  To approximate the max of n 

samples, we include the location parameter, c, given by the an empirical function, 

developed for this purpose to shift the PDF appropriately away from zero, 

c = 2.8989 * In(log,(n)) - 4.4291. (10) 
It has been shown (e.g., Bain & Engelhardt, 1987) that the expected value 

p and variance 2 of the gamma distribution with parameters c, a, and P are 

p=ap+c 

o2 = a2p (1 1) 

Thus, combining the results of eq. 7, 8, 10 & 11, the max distribution of n 

Gaussian samples can be approximated by the gamma distribution with parameters 

where En is the estimated expected value from eq. 7 and s, is the estimated standard 

deviation from eq. 8. The continuous curves in Fig. 6 show PDFs for the max 

distribution estimated by the gamma approximation and the dotted curves are PDFs 

computed by numerical integration. For the 8407 points in the 7 PDFs estimated, 

the mean square error is only 0.00033 and the Chi-square value 7.340 1 with 8400 

degree-of-freedom. Thus, thls approximation is rather accurate. 

DISCUSSION 

Our methods provide simple and efficient means of approximating the 

expected value, the standard deviation and the complete PDF of the extreme order 
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FIG. 6. Probability density functions of the max distributions of Gaussian samples 

with sample size n from 1 to 1,000,000 in decade steps. Smooth curves are 

gamma distribution approximations; dotted curves, computed through 

numerical integration. 

distributions. These methods can be implemented with the built-in inverse error 

function provided by many mathematical software packages. 

We compared our method with other numerical methods. The accuracy and 

efficiency of the numerical inte-ption method depends on the range of the 

independent variable and the size of bin for the integration. For the max distribution 

for sample sizes up to z3', we can set the range of the independent variable from -6 

to 10 with bin size 0.01 and get a reliable numerical estimate of the expected value 

and standard deviation of that disqbution with accuracy up to 4 decimal places. 

(For the min Qstribution the appropriate range should be set from -10 to 6.) 

However, this numerical integration method takes 4 times longer than our method 

to compute the first two moments. This can be a drawback of the numerical 

integration method when a lot of values and are to be estimated. 
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Blom's method provides another simple way to calculate the expected value 

(but not the variance). However, its accuracy is dependent on the value of the scalar 

a, which changes irregularly with sample size. It is recommended that a = 0.375 

would provide a good approximation for all sample sizes. At this value, however, 

the error of Blom's method is about twice as large as ours for small sample sizes 

and about the same as ours for large sample sizes. 

Pelh (1985) suggested an approximation to the second moment, the 

variance, of the max distribution. We converted his estimation of variance to the 

estimation of standard deviation (see inset of Fig. 4). The error of Pelli's estimation 

of standard deviation (see Fig. 5) is as high as 8% for small sample sizes (20% 
error for the variance) and remains 1-2% for large sample sizes (up to 4% error for 

the variance). One the other hand, our method (eq. 8) for calculating the standard 

deviation of the extreme order statistics has an enor within 0.5% of the actual value 

for n up to 1,000,000 (or, in terms of variance, within 1% for n up to 1,000,000). 
Thus, compared with the methods reported in the literature, the expressions 

in eq. 7 and 8 should provide a convenient approach to estimating both the expected 

value and the standard deviation of the extreme order distribution. Based on these 

estimates, we are able to approximate the whole PDF of the extreme order statistics 

in Gaussian samples with the gamma distribution. Thus, many computations that 

were previously impractical, such as the difference or the probabilistic combination 

of two extreme order distributions, may now conveniently be approximated. 
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