Algorithm AS 177

Expected Normal Order Statistics (Exact and Approximate)

By J. P. Royston
MRC Clinical Research Centre, Harrow HA1 3UJ, Middx, UK

[Received January 1981. Final revision July 1981]
Keywords: RANKITS; EXPECTED NORMAL SCORES; EXPECTED NORMAL ORDER STATISTICS

LaNGUAGE

Fortran 66

Description and Purpose

The algorithms $N S C O R 1$ and $N S C O R 2$ calculate the expected values of normal order statistics in exact or approximate form respectively. NSCOR2 requires little storage and is fast, and hence is suitable for implementation on small computers or certain programmable calculators (HP-67, etc). This is not recommended for NSCOR1. Expected normal order statistics are needed in the calculation of analysis of variance tests of normality, such as W (Shapiro and Wilk, 1965) and W^{\prime} (Shapiro and Francia, 1972).

In a sample of size n the expected value of the r th largest order statistic is given by

$$
\begin{equation*}
E(r, n)=\frac{n!}{(r-1)!(n-r)!} \int_{-\infty}^{\infty} x\{1-\Phi(x)\}^{r-1}\{\Phi(x)\}^{n-r} \phi(x) d x \tag{1}
\end{equation*}
$$

where $\phi(x)=1 / \sqrt{ }(2 \pi) \exp \left(-\frac{1}{2} x^{2}\right)$ and $\Phi(x)=\int_{-\infty}^{x} \phi(z) d z$.
Values of $E(r, n)$ accurate to five decimal places were obtained by Harter (1961) using numerical integration, for $n=2(1) 100(25) 250(50) 400$. Subroutine NSCOR1 uses the same technique as Harter (1961). Rewrite the integrand in (1) as

$$
I(r, n, x)=t_{0}(x) \exp \left\{\log _{e} n!-\log _{e}(n-r)!-\log _{e}(r-1)!+(r-1) t_{1}(x)+(n-r) t_{2}(x)+t_{3}(x)\right\}
$$

where

$$
t_{0}(x)=x, \quad t_{1}(x)=\log _{e}\{1-\Phi(x)\}, \quad t_{2}(x)=\log _{e} \Phi(x), \quad t_{3}=-\frac{1}{2}\left\{\log _{e}(2 \pi)+x^{2}\right\} .
$$

Values of t_{0}, t_{1}, t_{2} and t_{3} are calculated in the range $x=-9 \cdot 0(h) 9 \cdot 0$, using the auxiliary subroutine INIT, which needs to be called once only. $E(r, n)$ is obtained by summing the values of $I(r, n, x)$ and multiplying the result by h. We found $h=0.025$ sufficiently small. Values of $\Phi(x)$ must be supplied by a suitable algorithm, such as AS 66 (Hill, 1973). Log factorials are obtained from the auxiliary function $A L N F A C$, kindly supplied by Dr I. D. Hill. This is a modification of Pike and Hill's (1966) algorithm.

An approximation to $E(r, n)$ for $n=2(1) 50$ with accuracy 0.001 was given in AS 118 (Westcott, 1977). Using a different numerical method, NSCOR2 extends the range of n to 2000 and greatly improves the accuracy. Blom (1958) proposed the approximate formula

$$
E(r, n)=-\Phi^{-1}\left(\frac{r-\alpha}{n-2 \alpha+1}\right)
$$

and recommended the compromise value $\alpha=0 \cdot 375$. Harter (1961) provided values for α as functions of r and n, improving the overall accuracy to about 0.002 for $n \leqslant 400$. Defining

$$
P_{r, n}=\Phi\{-E(r, n)\} \quad \text { and } \quad Q_{r, n}=\frac{r-\varepsilon}{n+\gamma}
$$

we approximate $P_{r, n}$, the normal upper tail area corresponding to $E(r, n)$, as

$$
\tilde{P}_{r, n}=Q_{r, n}+\frac{\delta_{1}}{n} Q_{r, n}^{\lambda}+\frac{\delta_{2}}{n} Q_{r, n}^{2 \lambda}-C_{r, n} .
$$

Estimates of $\varepsilon, \gamma, \delta_{1}, \delta_{2}$ and λ were obtained for $r=1,2,3$ and $r \geqslant 4$, and λ was further approximated as $\lambda=a+b /(r+c)$ for $r \geqslant 4$. A small correction $C_{r, n}$ to $\tilde{P}_{r, n}$ was found necessary for $r \leqslant 7$ and $n \leqslant 20$, and this is supplied by the auxiliary function CORREC. The approximation to $E(r, n)$ is thus given by

$$
\tilde{E}(r, n)=-\Phi^{-1}\left(\widetilde{P}_{r, n}\right) .
$$

Values of the inverse normal probability function Φ^{-1} may be obtained from Algorithm AS 111 (Beasley and Springer, 1977).

Note that both NSCOR1 and NSCOR2 generate the [$n / 2$] largest rankits; the (symmetrical) smallest rankits are obtained via

$$
E(n-r+1, n)=-E(r, n), \quad r=1, \ldots,[n / 2]
$$

with $E([n / 2]+1, n)=0$ if n is odd.
Structure
SUBROUTINE NSCOR1 (S, N, N2, WORK, IFAULT)
Formal parameters

S	Real array (N2)	output: contains N2 largest rankits
N	Integer	input: sample size
$N 2$	Integer	input: largest integer less than or equal to $\frac{1}{2} N$
WORK	Real array $(4,721)$	input: working array, values set by INIT
IFAULT	Integer	output: fault indicator, equal to

3 if $N 2 \neq N / 2$
2 if $N>2000$
1 if $N \leqslant 1$
0 otherwise

SUBROUTINE INIT (WORK)

Formal parameters

WORK Real array $(4,721)$ output: working array required by NSCOR1
The user must call INIT once before the first call of NSCOR1.
REAL FUNCTION ALNFAC (J) calculates natural \log of factorial J; it is called from within NSCOR1.
SUBROUTINE NSCOR2 (S, N, N2, IFAULT)

Formal parameters

Identical to NSCOR1, except that a working array $(W O R K)$ is not required.
REAL FUNCTION CORREC (I, N) is called from within NSCOR2.

Failure indications

The fault condition $\operatorname{IFAULT}=2$, occurring if $N>2000$, still permits the calculation of rankits, but the results cannot be guaranteed to be as accurate as for lower values of N. No calculations are carried out when $I F A U L T=1$ or 3 .

Auxiliary algorithms

REAL FUNCTION ALNORM (X, UPPER) calculates the upper or lower tail area under the normal distribution at X, e.g. Algorithm AS 66 (Hill, 1973).

REAL FUNCTION PPND (P) calculates the normal equivalent deviate corresponding to P, e.g. Algorithm AS 111 (Beasley and Springer, 1977).

Restrictions

NSCOR 1 and NSCOR2 have been validated up to $N=2000$, but NSCOR 2 is probably accurate for much larger N. The accuracy of $N S C O R 1$ for $N>2000$ may be improved by reducing the constant h (and increasing NSTEP).

Precision

The algorithms were developed on a 48-bit machine (ICL 1903A). NSCOR1 requires DOU BLE PRECISION on machines of word-length 36 bits or fewer. The following changes should be made to construct a double precision version:

1. INIT, NSCOR1 and $A L N F A C$: change REAL variables and arrays to DOUBLE PRECISION, E exponents to D in DATA statements, and ALOG and EXP to DLOG and $D E X P$ respectively.
2. ALNFAC becomes a DOUBLE PRECISION FUNCTION.

Time and Accuracy

NSCOR2 ran about 30 times faster than NSCOR1 on the ICL 1903A. The execution time is directly proportional to N for both subroutines.

NSCOR1 in DOU BLE PRECISION is accurate to at least seven decimal places on a 36-bit machine; NSCOR2 is accurate to $0 \cdot 0001$, and usually to five or six decimal places.

References

Beasley, J. D. and Springer, S. G. (1977). Algorithm AS 111. The percentage points of the normal distribution. Appl. Statist., 26, 118-121.
Harter, H. L. (1961). Expected values of normal order statistics. Biometrika, 48, 151-165.
Hill, I. D. (1973). Algorithm AS 66. The normal integral. Appl. Statist., 22, 424-427.
Pike, M. C. and Hill, I. D. (1966). Algorithm 291. Logarithm of the gamma function. Commun. Ass. Comput. Mach., 9, 684.

Shapiro, S. S. and Francia, R. S. (1972). An approximate analysis of variance test for normality. J. Amer. Statist. Ass., 67, 215-216.
Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality. Biometrika, 52, 591-611.
Westcott, B. (1977). Algorithm AS 118. Approximate rankits. Appl. Statist., 26, 362-364.

```
SUBROUTINE NSCOR1(S, N, N2, WORK, IFAULT)
    ALGORITHM AS 177 APPL. STATIST. (1982) VOL.31, NO.2
    EXACT CALCULATION OF NORMAL SCORES
REAL S(N2), WORK(4, 721)
REAL ZERO, ONE, C1, D, C, SCOR, AI1, ANI, AN, H, ALNFAC
DATA ONE /1.OEO/, ZERO /O.OEO/, H/O.O25EO/,NSTEP/721/
IFAULT = 3
IF (N2 .NE.N / 2) RETURN
IFAULT = 1
IF (N .LE. 1) RETURN
IFAULT = O
IF (N .GT. 2000) IFAULT = 2
AN = N
    CALCULATE NATURAL LOG OF FACTORIAL(N)
C1 = ALNFAC(N)
D = C1 - ALOG(AN)
    ACCUMULATE ORDINATES FOR CALCULATION OF INTEGRAL FOR RANKITS
DO 20 I = 1, N2
I1 = I - 1
NI = N - I
AI1 = I1
ANI = NI
C = C1-D
SCOR = ZERO
DO 10 J = 1, NSTEP
```

C
C
C

```
    10SCOR=SCOR + EXP(WORK(2,J) + AI1 * WORK(3,J) + ANI * WORK(4, J)
    * + C) * WORK(1, J)
        S(I) = SCOR * H
        D = D + ALOG((AI1 + ONE) / ANI)
20 CONTINUE
        RETURN
    END
    SUBROUTINE INIT(WORK)
            ALGORITHM AS 177.1 APPL. STATIST. (1982) VOL.31, NO.2
    REAL WORK(4, 721)
    REAL XSTART, H, PI2, HALF, XX, ALNORM
    DATA XSTART/-9.OEO/, H /O.025EO/, PI2 /-0.918938533EO/,
    * HALF /O.5EO/, NSTEP /721/
    XX = XSTART
        SET UP ARRAYS FOR CALCULATION OF INTEGRAL
    DO 10 I = 1, NSTEP
    WORK(1, I) = XX
    WORK(2,I) = PI2 - XX * XX * HALF
    WORK(3, I) = ALOG(ALNORM(XX, .TRUE.))
    WORK(4, I) = ALOG(ALNORM(XX, .FALSE.))
    XX = XSTART + FLOAT(I) * H
1 0 \text { CONTINUE}
    RETURN
    END
    REAL FUNCTION ALNFAC(J)
        ALGORITHM AS 177.2 APPL. STATIST. (1982) VOL.31, NO.2
            NATURAL LOGARIT.,M OF FACTORIAL FOR NON-NEGATIVE ARGUMENT
    REAL R(7), ONE, HALF, AO, THREE, FOUR, FOURTN, FORTTY,
    * FIVFTY, W, Z
    DATA R(1), R(2), R(3), R(4), R(5), R(6), R(7) /0.0E0, O.0EO,
    * 0.69314718056EO, 1.79175946923EO, 3.17805383035EO,
    * 4.78749174278E0, 6.57925121101EO/
        DATA ONE, HALF, AO, THREE, FOUR, FOURTN, FORTTY, FIVFTY /
    * 1.0E0, 0.5E0, 0.918938533205EO, 3.0E0, 4.0E0, 14.0EO, 420.0EO,
    * 5040.0E0/
        IF (J .GE. O) GOTO 10
        ALNFAC = ONE
        RETURN
10 IF (J .GE. 7) GOTO 20
        ALNFAC = R(J + 1)
        RETURN
20 W = J + 1
    Z = ONE / (W * W)
    ALNFAC = (W - HALF) * ALOG(W) - W + AO + (((FOUR - THREE * Z)
    * * Z - FOURTN) * Z + FORTTY) / (FIVFTY * W)
        RETURN
    END
    SUBROUTINE NSCOR2(S,N,N2, IFAULT)
            ALGORITHM AS 177.3 APPL. STATIST. (1982) VOL.31, NO.2
            APPROXIMATION FOR RANKITS
    REAL S(N2), EPS(4), DL1(4), DL2(4), GAM(4), LAM(4), BB, D, B1, AN,
    * AI, E1, E2, L1, CORREC, PPND
    DATA EPS(1), EPS(2), EPS(3), EPS(4)
    * /0.419885EO, 0.450536EO,0.456936EO, 0.468488E0/,
    * DL1(1), DL1(2), DL1(3), DL1(4)
    * /O.112063E0, 0.121770E0,0.239299E0, 0.215159E0/,
    * DL2(1), DL2(2), DL2(3), DL2(4)
    * /O.080122EO, O.111348E0, -0.211867EO, -0.115049EO/,
```

```
    * GAM(1),GAM(2),GAM(3),GAM(4)
    /0.474798E0, 0.469051EO,0.208597E0,0.259784E0/,
        LAM(1), LAM(2), LAM(3), LAM(4)
    /0.282765E0, O.304856EO, 0.407708E0, 0.414093E0/,
        BB/-0.283833EO/, D/-0.106136EO/, B1 /0.5641896E0/
    IFAULT = 3
    IF (N2 .NE.N / 2) RETURN
    IFAULT = 1
    IF (N .LE. 1) RETURN
    IFAULT = O
    IF (N .GT. 2000) IFAULT = 2
    S(1) = B1
    IF (N .EQ. 2) RETURN
            CALCULATE NORMAL AREAS FOR 3 LARGEST RANKITS
        AN = N
    K=3
    IF (N2 .LT. K) K = N2
    DO 5 I = 1, K
    AI = I
    E1 = (AI - EPS(I)) / (AN + GAM(I))
    E2 = E1 ** LAM(I)
    S(I) = E1 + E2 * (DL1(I) + E2 * DL2(I)) / AN - CORREC(I,N)
    5 CONTINUE
    IF (N2 .EQ. K) GOTO 20
        CALCULATE NORMAL AREAS FOR REMAINING RANKITS
    DO 10 I = 4,N2
    AI = I
    L1 = LAM(4) + BB / (AI + D)
    E1 = (AI - EPS(4)) / (AN + GAM(4))
    E2 = E1 ** L1
    S(I) = E1 + E2 * (DL1(4) + E2 * DL2(4)) / AN - CORREC(I, N)
10 CONTINUE
            CONVERT NORMAL TAIL AREAS TO NORMAL DEVIATES
20 DO 30 I = 1,N2
30 S(I) = -PPND(S(I))
    RETURN
    END
    REAL FUNCTION CORREC(I,N)
        ALGORITHM AS 177.4 APPL. STATIST. (1982) VOL.31, NO.2
        CALCULATES CORRECTION FOR TAIL AREA OF NORMAL DISTRIBUTION
        CORRESPONDING TO ITH LARGEST RANKIT IN SAMPLE SIZE N.
    REAL C1(7), C2(7), C3(7), AN, MIC, C14
    DATA C1(1),C1(2),C1(3),C1(4),C1(5),C1(6),C1(7)
    * /9.5E0, 28.7E0, 1.9E0, 0.0EO, -7.0EO, -6.2EO, -1.6EO/,
    * C2(1), C2(2),C2(3), C2(4), C2(5), C2(6), C2(7)
    * /-6.195E3, -9.569E3, -6.728E3, -17.614E3, -8.278E3, -3.570E3,
        1.075E3/,
            C3(1),C3(2),C3(3),C3(4),C3(5),C3(6),C3(7)
    * /9.338E4,1.7516E5,4.1040E5, 2.157E6, 2.376E6, 2.065E6,
    * 2.065E6/,
    * MIC /1.0E-6/, C14 /1.9E-5/
    CORREC = C14
    IF (I * N .EQ. 4) RETURN
    CORREC = 0.0
    IF (I .LT. 1 .OR. I .GT. 7) RETURN
    IF (I .NE. 4 .AND. N .GT. 20) RETURN
    IF (I .EQ. 4 .AND. N .GT. 40) RETURN
    AN=N
    AN = 1.0 / (AN * AN)
    CORREC = (C1(I) + AN * (C2(I) + AN * C3(I))) * MIC
    RETURN
    END
```

