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1. Introduction and Summary. Suppose a random sample of size 

n is drawn from a bivariate continuous population with probability 
density function (p. d. f.) j(a;, y). Suppose ~ and fJ are the random 

variables in the distribution of the population. Let X and X' be 
the minimum and the maximum observations on ~. and :r and :Y' 
on f/. Suppose f, ~". f/ 1 and f/

11
, 11-re the random variables corres-.. . - .. 

ponding to X, X', Y and Y', respectively. 

Sibuya (1960) bas giveti a necessary and sufficient condition 
for asymptotic independence of two extremes for a sample from 

bivariate population. We shall obtain such a condition for asym-

ptotic independenc!=J of all the four extremes X, X', Y and f'· 
It assumes a very simple form when j(a;,y) is symmetrical in a; 
and y, and the marginal p. d. f. of a; and y have the same f.orm. 

Under these conditions on the p. d. f., a modification is possible 
in the condition given by Sibuya (1960) which reduces to one 

given by Watson (1954) for other purpose. It is further shown 

that extremes for samples from bivariate noriJlal population 
satisfy our. condition if IPI < 1, where p is the population corre-
lation coefficient. Geffroy (1958) and Sibuya (1960} have proved 
a particular result for asymptotic independence of only two 
extremes X and Y in the normal case. 

2. Preliminaries for the condition. We can show that 

and 

where 

P(X < f <~~~<X')= { G(X, X')}", 

P (Y < f/ 1 < f/'' < Y') = { H(Y, Y') }", 

P(X< ~'<~"<X', Y< f/'< f/"< Y') 
= {P(X<"~<X', :Y<fJ< Y')}l', 

(1) 

(2) 

(3) 

G(X, X') =P(X< ~<X'), R(:Y, l")=P(Y< f/ < 1"). (4) 
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For proof of (3), one may refer to Mardia (1964). 

Out· investigation is based on the concept of dependence function. 

Its detailed behaviour is studied in Sihuya (1960). Following him, 

we write 

P(a:l < ~ < Wz,y I< 1)< yz) = n{G(a:J,Wz), H(Y~o'Yz ), 

G(w 1,cc), BlvJ,cx:)} G(wJ,a:z) H(yJ,yz), 

where !} denotes dependence function. Now 

njG\a:J,a:2), H(Yl·Yz), G(a:J,cr), HlyJ.co)}=l, 

(5) 

if and only if ~ and fJ are independent. Also n is a single valued 
function, since G(w 1, a:2 ) = G0 • G(a:~o ex:) = G~. specify a: 1 and w2 

for continuous distribution, and H(y 1 ,y2 ) = H 0 , H(y 1 , ex:)= H~ specify 

'111 and y 2 • 

In accordance with (5), we may write 

P(X<~' <~"<X', Y<7J'<7J"< X")= n~'{G*(X,X'), 

R*( Y,Y'), G*(X. CD), H!i'{Y. cc l}G*(X,X') H*(Y.Y') (6) 

where from (1) and (2) 

G* (X. X') = { G(X. X')}'', H*( Y, Y') = {H( 1', :Y')}". ( 7) 

Again 

n*{G*(X,X'), H~'(Y,Y'), G*(X, ex:), H*(Y, oo)} = 1, (8} 

if and only if (e. C) are independent of ( 11'. fJ") i.e. (X,X') are 
independent of (Y,Y'). 

3. The Condition. We shall prove the following theorem : 

Theorem 1. ..4. necessary and sufficient condition jo1· asymptotic 
independence of (X, X') and (Y, Y') is that the convergence of 
P{G(wpcc), G(- oo,w2 ), H(y 1,oo), H("7 oo, y2 )} is of such order as 

P(l- s, 1- 8, 1- 8, 1--;_s) = O(s), (9) 
where we have put 

P[~ Ej(- oo, w1 ), (w2, oo )}, fJ ej(- oo, y1), (y2 , oo)}} 

= P{G(a: 1 ,oo ), G(- oo, a:2 ), H(y 1 ,oo ), H(- oo, y 2 )! . (10) 

PROOF. On substituting (6) a.nd (5) in (3), and utilizing (7), 

we get 

n* {G*(X, X'). H*(Y, Y'), G~'(X, oo), H*(Y, ool} 

=(n{[G*(X,X')Jl'", [H*(Y.:r')Jl'". [G*(X,oo) 11", [H*(i,oo)Jl'"})"; 

10 
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since, it is an identity, we have 

Q*{G(X X'), H(Y. Y'), G( X, oo ), H(Y, ro)} 

=(Q{[G(X,X' )Jl 1" , [H(Y,Y')] 11", [G(X,ro) ] 11", [H(Y. oo)] 11"})". 

(11) 

Now by (8) and (11), (X.X') and (Y,Y') are asymptotically inde-

pendent if and only if 

lim (Q{[G(X,X')] 11", [H(Y.Y')]1 1", [G(X,ro)] 11", [H(Y,oo )] 1'"})" = 1. 
n...oo ••• . (12) 

Now from (5) and (10), we find 

!l{G(a:J, a:z), H(yl, yz ), G1a:1, a:), H(yJ , oo)} 

_ G(a:l ,a:2) + H(y 1 .v2l - 1 + P{Gia;T , ro ). G( - ro .xz ·,. W111, oo ), H( - ro .112)} 
- . Glx

1
,x

2
)H(yi.Y2) ------ ·- ----

so that the left membe1· of (12) becomes 

{G(X,X')}l'" + {H(Y,Y')}I'" -1 + P[{G(X, oo )}1 1", 

lim' {G(- oo,X')ll'",{H(Y,oo)} 1'"{H(- oo,Y')li'"] 
n~co ---~~--'G(XX') H(Y,Y') 

= exp {lim n P[lG(X, co )}1'", {G(- co, X') }11 ", {H( Y, co )} 1'", 
n..,.. CD 

{HI - co. Y')} 11"]}, (13) 

where we have utilized 

{G(X,X'lP'" = exp{.; log G(X.X' )} = 1 + -~log I G(X,X')} + o( ;2) ' 
and (14) 

{H(Y,Y')}11 " = exp{~ log H(Y.Y')} = 1 +;log {H(Y. Y'H + 0 ( ~2 ) . 

(15) 
Therefore the equation (1~) is equivalent to 

P[{G(X,co )}~'", {G(- co, X')}l'", jH, Y, a:J )} 1'", {H(- ro, Y')} 1"'] 

= p [1- G(X, 00
) + 0 ( !_) , 1- G(- 00 .X') + 0 ( l_ ) . 

n n 2 n n 2 

1 - H t :· 00 
) + 0 ( ~ 2 ) , 1 - H( - nro ' y' J + 0 ( ~ 2 ) ] = o ( ~ ) . 

(16) 

where we have used (14) and (15) in (13) for the first equality 

while for the second, (12) and (13 ) are used. Since we have 

(17) 
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where 

and 

lt = G(X, ro ), l2 = G(- ro ,X'), l:; = H( Y, ro ), l4 = H( - ro. Y'), 

l =maximum {G(X,ro ), G(- ro,X'), H(Y,ro ), H~ - oo,Y')!, 

m =minimum {G(X, ro ), G(- oo ,X'), H( Y, ro ). H(- ro ,Y')}, 

we find by (16) and (17) that (9) implies (16) and vice-versa. 
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Theorem 2. The necessary and sufficient condition fo1· asymptotic 
indepMdence of the fom· ea;tremes is given by (9). 

PROOF. We know asymptotic independence of X ' and X' from 
Gumbel (1958), section 8.2.7, as well as of Y and Y'. On using 
Theorem 1, the proof is complete. 

Theorem 3. If (i) f( a;,y) is symmetrical in a; and y, (ii) the 

marginal p. d. f. of a; and 11 have the same forms, and (iii) the 
variates a; and y are 1-mlimited, then the condition ( 9) can be replaced 
by the condition 

I' P( (a;( > l, lYl > l ) = O. 
/2! P( (a;( > l ) (18) 

PROOF. In this case, we have by symmetry G(- oo, -a;1) = 
G{- oo, a:2 ), so that we may take a;~= - a; 1 = l (say). 

Since the marginal p d. f. of a; and y have the same form, we 
have y 2 = - y 1 = l. Hence (10) becomes 

P(l - s, 1- s, 1- s, 1- s) 

= P[ ~ s{(- oo, -l), (l. oo)}, '1 sj(- oo, -l), (l, oo)}] 

= P( Ja;J > l, I y I > l ). (19) 

Now 1 .-s=G(a;l> oo)=G(- oo, w2) so that s~O if and only if 
G(- oo, l) and G( -l, oo )~1 simultaneously, i. e., if and only if 

P( I X I > l )~0 as z~ oo, because the variate is unlimited. Thus we 

can take 

s = P( I X I !> l), (20) 

where s~O should be read a.s Z~oo . 

On using (19) and (20) in (9), we obtain {18). 
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Remark. Under the above-mentioned conditions of Theorem 3, 

we can similarly replace the condition for asymptotic independence 
of maximas X' and Y', given in Sibuya (1960), by 

. P(:c > l, y > l J _ 0 1f!!!, P(11: > l) - ' (21) 

For normal distribution, the "above condition is .also obtained and 
proved by Watson (1954) , for extreme values in samples from 

m·independent stochastic process. 

4. Independence of extremes in normal population. Suppose h(:c.y,p) 
is p. d. f. of the bivariate n.ormal population with zero means, unit 
standard deviations and correlation coefficient p. Let h(:c) and h(y) 
be the marginal p . d. f. of :c and y. 

Lemma 1. For any function V 1 :c, y), 

+oo +oo ao ao f f V(a:, 11) tla:dy-= f f CV(a:,y) + V( -:c,y) + V(:c,- y) + V(- :c,- y)d:cdy. 
-GO -GO 0 0 

Theorem · 4. For a sample from a bi'Variate normal populatio?l 
~oith 1 p 1 < 1, X, X', Y and Y' a1·e asymptoticallY independent. 

PROOF. Since the p. d. f. h(:c, y, p) satisfies the conditions of 
Theorem' 8, we shall require to prove (21). Its msmerator is 

P( l:tl > l, lf/1 > l) = 1- P( l:tl < l)- P( 11/l.<l) + P( la:l < l, 1111 < l) 

+l +' +'+Z 

= 1- J h(:c) d:c- f h(y)dy + f f h(:c, y)d:tdfl 
-z - l -z-z 

' l l 
=1-4Jh(iJ:)tia;+2 1 i {h{a;,y,p)+h(:t,1f.-p)}®;dy, (22) 

0 0 0 

where in the last 

symmetry of h(a:,y,p). 
equation, we have utilized Lemma 1 and 

While denominat.or of (21) is 

l 

P( J3ll > l ) = 1- 2 J h(:c)tla:. 
0 

(23) 

Since as l~ ex:, (22) and (23) tend to zero, we may apply L'Hospital1s 

rule to calculate the limit of (21); For this purpose, we obtain 



MISOELLANEOUS NOTES 

from (22) and (23) 

and 

! 

_!:__ { P( trot > l, l?il > ll} = - 4h(l) + 2 f h(a;, l, p) dw 
dl 

d 
. -dl{ P( trot > .z)} = -2hll). 

0 

l 

+ 2 f h(a;, l,-p)da;, 

0 

Hence on the application of L'Hospital rule. we find 

lim 
to+ CO 

P(Jwt>Z.tvt>ll = 2 _ 2(2n)-1'2{ lim g(Z)}, 
p ( Ja;J > l) l·HO 

where 

g(l} = (1- p~)-112 
[[ 

.. 

z exp { - (a; - pl)'2 } dw 
2(1-p 2 ) 

! ! { (a;+ pl)'2 } J + exp - 2(1- p2) da; . 
0 

On using suitable transformations in (25), we can show that 

l(1+p)l12 . l(l-p)l/2 

g(l) = J e - !z'1 dz + f e- iz
2 

dz, 

- plfl- p2)-l12 pl(l-p2)-l12 

and therefore 

lim g(l) = (2n) 112 + 0 if p:;;;,O and p ,e 1 
l-oco 

= 0 + (2n)112 if p.;;;;; 0 and p * -1, 
that is 

lim g(l} = (2n) 112 , if IPI < 1. 
J-oOO 

On using (26) in (24), we get the desired result. 
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(24) 

(25) 

(26) 

Corollary 1. The ran.ges R 1 ( = X'- Xl and R 2 ( = Y'- Y) of 
sample drawn from bivariate normal population are asymptotica.lly 

independent for I P I < 1 . 

In quality control, if R-charts o.re prepared for two measurable 
characteristics of same product then the range of one in genera.! 
would be dependent on the other. Further each sample could be 
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regarded as drawn from bivariate normal population for large 

sample size. However if n is large enough, then by the above 
theorem we should not worry about their dependence. 
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