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Abstract

Large and statistically powerful A/B tests are increasingly popular to screen new
business and policy ideas. We study how to use scarce experimental resources to
screen multiple potential innovations by proposing a new framework for optimal ex-
perimentation, that we term the A/B testing problem. The main departure from the
literature is that the model allows for fat tails. The key insight is that the optimal exper-
imentation strategy depends on whether most gains accrue from typical innovations
or from rare and unpredictable large successes that can be detected using tests with
small samples. We show that, if the tails of the unobserved distribution of innova-
tion quality are not too fat, the standard approach of using a few high-powered “big”
experiments is optimal. However, when this distribution is very fat tailed, a “lean”
experimentation strategy consisting of trying more ideas, each with possibly smaller
sample sizes, is preferred. We measure the relevant tail parameter using experiments
from Microsoft Bing’s EXP platform and find extremely fat tails. Our theoretical re-
sults and empirical analysis suggest that even simple changes to business practices
within Bing could increase innovation productivity.
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1 Introduction

Randomized experiments are increasingly important for innovation in many fields. In the
high-tech sector, major companies run thousands of experiments (called A/B tests) each
year, and use the results to screen most product innovations.1 In policy and academic
circles, randomized experiments are used to evaluate social programs and shape public
policy.2 A striking fact in many of these settings is that there are anecdotes of “black
swans”: outlier ideas with large unexpected effects. These outliers are commonly thought
to be important for innovation.3

This paper studies how to use scarce experimental resources (participants in a random-
ized experiment) to screen different potential innovations. To do so, we develop a simple
model of optimal experimentation.4 The model’s details are based on how modern tech-
nology companies use online, large-scale experiments to guide their product innovation
decisions. The key departure from previous work is that we allow for the distribution of
innovation quality to have fat tails, thus allowing for outlier ideas. Despite the importance

1For example, when a user makes a search on a search engine like Bing or Google, the user is placed in
about ten experiments, that are run in parallel. Experiments vary aspects such as different parts of the search
algorithm and different parts of the user interface. Bing uses these experiments, called A/B tests, to evaluate
almost all product innovations. This is now a common practice throughout the technology industry. A/B
tests rose in popularity in cloud-based products that run on servers, like Bing and Google, where the costs
of experimentation are low. But A/B tests are now increasingly used in traditional software products and
other areas of business.

2See Duflo et al. (2007), Imbens (2010), Athey and Imbens (2017), and Deaton (2010).
3In technology, Kohavi et al. (2013) describe a team of Microsoft Bing engineers that increased the length

of the description of each advertisement, by providing links to the target site. This idea required almost no
coding effort, but went untested for a long time because other engineers did not expect it to be successful.
Eventually the idea was tested, and shown to increase revenue by over tens of million dollars per year.
Such anecdotes of black swans are common in many other companies. Other evidence suggestive of fat tails
in innovation processes are the distribution of patent valuations (Silverberg and Verspagen, 2007) and the
distribution of citations (Redner, 1998, Clauset et al., 2009). In behavioral interventions, there are examples
such as defaults that have arguably generated very large effects (Madrian and Shea, 2001; Johnson and
Goldstein, 2003).

4There are two broad strands of the theoretical literature on optimal experimentation. One strand follows
the sequential decision problem proposed by Wald (1947). He and Arrow et al. (1949) considered the prob-
lem of acquiring costly information over time, and then making a decision. Recent contributions include
Moscarini and Smith (2001), Fudenberg et al. (2017), Che and Mierendorff (2016), and Morris and Strack
(2017). McClellan (2019) considers agency problems in this setting, and has a review of the literature on
these agency problems. Banerjee et al. (2017) consider an optimal experimentation model to argue that ran-
domized experiments are a good way to persuade an audience with heterogenous beliefs. The other strand
follows the multi-armed bandit problem proposed by Thompson (1933) and Robbins (1985). They consid-
ered the problem of choosing which number of “arms” to pull over time, with arms having known payoff
distributions. This sparked a fruitful literature, mostly in computer science. Bubeck and Cesa-Bianchi (2012)
is an excellent overview. Bergemann and Valimaki (2008) give an overview of economic applications. Kasey
and Sautmann (2019) study the problem of designing a dynamic experiment to choose between one of a
number of designs, and develop an algorithm following the bandits literature on the best-arm identification
problem.
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of fat tails, they are assumed away in almost all of the optimal learning literature.5

Our main result is that the thickness of the tail of innovation quality is crucial for how
to experiment. With sufficiently thin tails, the optimal strategy is similar to “big data”
approaches commonly used by large technology companies. These companies carefully
triage ideas, and conduct large-scale, statistically powerful experiments, that can detect
even small benefits of a given product innovation. With sufficiently fat tails, however,
the optimal strategy is similar to “lean” approaches used by many start-ups and en-
trepreneurs. These consist of running many small-scale experiments, and discarding any
innovation without outstanding success.6 More broadly, going beyond the internet set-
ting, our results suggest that fat tails are important for optimal learning and experimenta-
tion models, at least in some settings.

We apply our model to data from A/B tests conducted at one of the largest experimen-
tation platforms in the world at Microsoft Bing’s search engine. We find evidence for fat
tails, and that these fat tails have important consequences for how to run and interpret
experiments.7 Before going into details, we provide an overview of the paper.

Section 2 introduces the model. A risk-neutral firm has a set of ideas and a set of users. The
quality of each idea is uncertain and is drawn independently from a prior distribution. To
learn about the value of an idea, the firm can run an experiment on a subset of the users.
The experiment produces a noisy signal of the quality of the idea. The firm’s problem is
how to assign its total budget of available users to the different ideas, and to then select
which ideas to implement. We term this the A/B testing problem.

Section 3 derives our theoretical results. The decision of which ideas to implement is sim-
ple. The firm should use Bayes’ rule to calculate the posterior mean of the quality of each
idea, and implement ideas with a positive posterior mean quality (Proposition 1). The de-

5In the literature on the value of information the main results in Chade and Schlee (2002), Moscarini and
Smith (2002), and Keppo et al. (2008) use bounded utility. In the optimal learning literature, the main results
in Arrow et al. (1949); Fudenberg et al. (2017); Che and Mierendorff (2016) assume either a finite number of
states or normally distributed utility. In the bandits literature, Bubeck et al. (2013) state “The vast majority
of authors assume that the unknown distributions [...] are sub-Gaussian”. They develop algorithms with
asymptotically similar losses as the standard UCB algorithms for distributions with at least 2 moments, but
worst bounds if no second moment exists. See also their survey Bubeck and Cesa-Bianchi (2012) section
2.4.7. The bandits literature is concerned with algorithms that achieve certain regret bounds in complex
models where the optimal strategy is too complex to analyze, whereas we study properties of the optimal
solution in a simple model.

6This is referred to as the lean startup methodology, and closely related to agile software development
frameworks (Ries, 2011; Blank, 2013; Kohavi et al., 2013). The idea is to quickly and cheaply experiment
with many ideas, abandon or pivot from ideas that do not work, and scale up ideas that do work.

7This part of out paper contributes to the recent academic literature that studies A/B testing in the tech
industry. Goldberg and Johndrow (2017); Coey and Cunningham (2019) consider how to use data from
many experiments to improve estimates from each experiment. They and Peysakhovich and Lada (2016);
Peysakhovich and Eckles (2017) give evidence of fat tails in the quality of innovations. Feit and Berman
(2018) considers a model of for how long to test new advertisements and how long to run them, and and
Berman et al. (2018) give evidence of p-hacking in firms that use off-the-shelf A/B testing services.
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cision of how to experiment depends on what we call the production function. We define
the production function of an idea as the expected gain to the firm of allocating a number
of users to experiment on the idea. It can be shown that the firm should allocate users
to maximize the sum of production functions of all ideas (Proposition 2). Whether the
production function has increasing or decreasing marginal returns determines the pro-
ductivity of big and lean experiments.

Our main theoretical result relates the tails of the of the prior distribution of innovation
quality to the shape of the production function. We assume that the prior distribution has
tails that are approximately a power law with coefficient α.8 We show that, for a relatively
small number of users n, the marginal product of data is approximately proportional to

n
α−3
2

(Theorem 2). This suggests that the tail coefficient α is the key parameter for understand-
ing the shape of the production function, and the marginal returns of lean A/B tests.9

We use the theorem to formalize how the tails affect the optimal experimentation strategy
(Corollary 1). With relatively fat tails (α < 3), lean experimentation strategies are optimal.
The intuition is that a large share of the gains from experimentation comes from finding
black swans, and these outliers can be detected even with small experiments. In contrast,
with relatively thin tails (α > 3), and somewhat limited data, big data experimentation is
optimal. The intuition is that, with thin tails, it is very unlikely that a small experiment
will move the prior sufficiently to affect decision making. Therefore, it is best to run fewer
but more precise experiments.

Besides fat tails, there is a simpler reason for lean experimentation. Allocating a large
amount of users to test a single idea has eventually decreasing returns. Therefore, when
experimental resources are sufficiently abundant, it is better to experiment on as many
ideas as possible (remark 1). We also present results on asymptotics for large experiments,
showing that marginal product decreases as 1/n2 (Theorem 1).

Section 4 applies our model to data from experiments at Microsoft Bing’s EXP experi-
mentation platform. EXP runs thousands of experiments per year, with the average ex-
periment in our data having about 20 million users. Our theoretical framework leads
to an Empirical Bayes problem (Robbins, 1964) in which the unobserved distribution of
innovation quality can be nonparametrically identified from these data. We find both

8That is, the probability of an observation exceeding δ is roughly proportional to δ−α.
9The production function is often referred to as the value of information (Radner and Stiglitz, 1984; Chade

and Schlee, 2002; Moscarini and Smith, 2002; Keppo et al., 2008). A common finding in this literature is that
the value of information is often convex close to zero. We contribute to this literature by showing that the
tails of the distribution of innovation quality are a key determinant of whether this convexity result holds.
With thin tails, a small experiment is of limited value, as it is unlikely to move the experimenter away from
here prior beliefs. With fat tails, even small experiments can be valuable, because they can discover outliers.
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reduced-form and structural evidence of fat tails. Our benchmark estimates for the key
metric used to evaluate innovations is of a tail coefficient considerably smaller than 3.
This result is statistically significant, robust to a number of alternative specifications, and
consistent with evidence from similar products. Thus, the data suggest that fat tails can
be important, even in large mature products like Bing.

The estimates have three sets of implications for experimentation in this setting. First,
the fat tails affect the proper Bayesian updating of quality of an idea given experimental
results. Ideas with small t-statistics should be shrunk aggressively, because they are likely
to be lucky draws, whereas outlier ideas are likely to be real. In particular, the top 2% of
ideas are responsible for 74.8% of the historical gains. This is an extreme version of the
usual 80-20 Pareto rule. Second, the marginal value of data for experimentation is an order
of magnitude lower than the average value, but is not negligible. Third, there are large
gains from moving towards a lean experimentation strategy. We consider a counterfactual
where Bing experiments on 20% more ideas, with the marginal ideas having the same
quality distribution, while keeping the same number of users. We find that productivity
would increase by 17.05%. Naturally, whether these gains can be attained depends on the
costs of running additional experiments. We perform a back-of-the envelope calculation
using Bing’s monetary valuation for quality improvements. We find that moving towards
lean experimentation would be profitable even if the fixed costs of one experiment were
of the order of hundreds of thousands of dollars per year.

Section 5 presents additional results and robustness checks. First, we use the empirical es-
timates to understand when each of our asymptotic approximations is relevant. We find
that the small sample size asymptotics of Theorem 2 provide a reasonable approximation
to the production function in the Bing application.10 Second, we provide a number of
theoretical extensions: additional costs of experimentation (such as fixed costs, variable
costs, and user experience costs), mutually exclusive ideas, different payoffs after imple-
mentation (such as a hypothesis-testing payoff), an elastic supply of ideas, and alternative
assumptions about experimental noise. Third, we consider a limited data on triage proce-
dures used at Bing to check whether marginal discarded ideas are worse than the average
ideas tested. We find no evidence that the offline tests predict online performance. Finally,
we report that the empirical results are robust to several alternative specifications.

10This is at first surprising, given that the typical sample sizes are of millions of users. But, in practice,
user behavior is sufficiently noisy relative to effect sizes that Bing is far from the case of perfect information.
Instead, outliers are important, which is the key approximation used in the asymptotic results for small sam-
ple sizes. In particular, in our application, this suggests that the force pushing towards lean experimentation
is fat tails, as opposed to abundance of data.
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2 The A/B Testing Problem

2.1 Model

A firm considers implementing potential innovations (or ideas) I = {1, . . . , I}. The quality
of innovation i is unknown and equals a real-valued random variable ∆i, whose values we
denote by δi. The distribution of the quality of innovation i isGi. Quality is independently
distributed across innovations.

The firm selects the number of users allocated to innovation i, ni in R+, for an experiment
(or A/B test) to evaluate it.11 If ni > 0, the experiment yields an estimator or signal equal
to a real-valued random variable ∆̂i, whose value we denote by δ̂i. Conditional on the
quality δi of the innovation, the signal has a normal distribution with mean δi and variance
σ2
i /ni. The signals are assumed to be independently distributed across innovations. The

firm faces the constraint that the total amount of allocated users
∑N

i=1 ni is at most equal to
the number of users N available for experimentation. The firm’s experimentation strategy
is defined as the vector n = (n1, . . . , nI).

After seeing the results of the experiments, the firm selects a subset S of innovations to
implement (or to “ship”) conditional on the signal realizations of the innovations that were
tested. Formally, the subset S of innovations that are implemented is a random variable
whose value is a subset of I , and is measurable with respect to the signal realizations. We
also refer to S as the firm’s implementation strategy.

The firm’s payoff, which depends on both the experimentation and implementation strate-
gies, is the sum of the quality of implemented innovations. The A/B testing problem is to
choose an experimentation strategy n and an implementation strategy S to maximize the
ex ante expected payoff

Π(n, S) ≡ E

[∑
i∈S

∆i

]
. (1)

2.2 Discussion

One way to gain intuition about the model is to think about how it relates to our empirical
application: the Bing search engine. The potential innovations I correspond to the thou-
sand innovations that engineers propose every year. Bing triages these innovations, and
selects a subset that makes it to A/B tests (by setting ni > 0). These innovations are typi-
cally A/B tested for a week, with the average ni of about 20 million users.12 The number

11The number of users is assumed to be in the positive real line, because we are interested in experiments
with sample sizes in the millions.

12It is common practice to require the duration of the experiments to be a multiple of weeks in order to
avoid fishing for statistical significance and multiple testing problems; see Kohavi et al. (2013) p. 7. Also
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N of users available for experimentation is constrained by the total flow of user-weeks in
a year.13

We now discuss three important modeling assumptions. First, the gain from implement-
ing multiple innovations is additive. This is a simplification because, in principle, there
can be interactions in the effect of different innovations. Section 5 shows that allowing
for mutually exclusive ideas does not change the main message of the paper. Interactions
between ideas was the subject of an early debate at the time when A/B testing started
being implemented in major technology companies (Tang et al., 2010; Kohavi et al., 2013).
One proposal was to run multiple parallel experiments, and to analyze them in isolation,
to increase sample sizes. Another proposal—based on the idea that interactions between
innovations could be important—was to use factorial designs that measure all possible
interactions. While both positions are theoretically defensible, the industry has moved
towards parallel experiments because it was found that interactions were of second-order
importance relative to the value of parallelization in running more precise experiments.

Second, there is no cost of running an experiment, so that the scarce resources are inno-
vation ideas and data for experimentation. This assumption is for simplicity. Section 5
shows that introducing costs of experimentation does not change the main message of the
paper. However, some readers may find it counter-intuitive that data is scarce, given the
large sample sizes in major platforms. This point was raised in early industry discussions
about A/B testing, where some argued that “there is no need to do statistical tests be-
cause [...] online samples were in the millions” (Kohavi et al., 2009b p. 2). Despite this
intuitive appeal, this position has been discredited, and practitioners consider data to be
scarce. For example, Deng et al. (2013) say that “Google made it very clear that they are
not satisfied with the amount of traffic they have [...] even with 10 billion searches per
month.” And parallelized experiments are viewed as extremely valuable, which can only
be the case if data is scarce (Tang et al., 2010; Kohavi et al., 2013). Data is scarce because
large, mature platforms pursue innovations with small effect sizes, often of a fraction of a
percent increase in performance (Deng et al., 2013).

Third, experimental errors are normally distributed. This is a reasonable assumption in
our main application because the typical estimator for the unknown quality is a difference
between sample means with i.i.d. data, and treatment/control groups are in the millions.

treatment effects often vary with the day of the week, so industry practitioners have found an experiment
to be more reliable if it is run for whole multiples of a week (Kohavi et al., 2009a). While the timing in our
model is simpler than reality, it is closer to practice than the unrestricted dynamic experimentation in bandit
problems.

13Our model is related to the standard multi-armed bandit problem. The potential innovations I corre-
sponds to the bandit arms. The number of available users N corresponds to the number of periods in the
bandit problem. There are three key differences. First, the A/B testing problem ignores the payoffs during
the experimentation phase because, in practice, they are dwarfed by payoffs after implementation. Second,
multiple innovations can be implemented. Third, the timing of the A/B testing problem is simpler: there
are no dynamics.
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2.3 Assumptions and Notation

We assume that the distribution Gi has a finite mean, a smooth density gi with bounded
derivatives of all orders, and that gi(0) is strictly positive. These assumptions will be
maintained throughout the paper, unless otherwise stated.

We use the following notation. Two functions h1 and h2 are asymptotically equivalent as n
converges to n0 if

lim
n→n0

h1(n)

h2(n)
= 1.

This is denoted as h1 ∼n0 h2, and we omit n0 when there is no risk of confusion.

Given a sample size ni > 0 for experiment i and signal realization δ̂i , denote the posterior
mean of the quality ∆i of innovation i as

Pi(δ̂i, ni) ≡ E[∆i|∆̂i = δ̂i ; ni].

If ni = 0, we abuse notation and define Pi(δ̂i, ni) as the unconditional mean of ∆i.

Because the experimental noise is normally distributed, it is known that Pi(·, ni) is smooth
and strictly increasing in the signal provided ni > 0. Moreover, there is a unique threshold
signal δ∗i (ni) such that Pi(δ∗i (ni), ni) = 0 (see Lemma A.1).

3 Theoretical Results

3.1 The Optimal Implementation Strategy

The optimal implementation strategy is simple. The firm observes the signal δ̂i, calcu-
lates the posterior mean Pi(δ̂i, ni) using Bayes’ rule, and implements innovation i if this
posterior mean is positive. We formalize this immediate observation as the following
proposition.

Proposition 1 (Optimal Implementation Strategy). Consider an arbitrary experimentation
strategy n and an implementation strategy S∗ that is optimal given n. Then, with probability
one, innovation i is implemented iff the posterior mean innovation quality Pi(δ̂i, ni) is positive.

The proof of this proposition and all of our theoretical results are collected in the Ap-
pendix. In practice, the most common implementation strategy is to implement an inno-
vation if it has a statistically significant positive effect at a standard significance level, typ-
ically 5%. Other versions of this strategy adjust the critical value to account for multiple
hypothesis testing problems. Proposition 1 shows that these approaches are not optimal.
Instead, the optimal is to base implementation decisions on the posterior mean.
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Figure 1: The posterior mean function Pi(δ̂i, ni)
Notes: The figure assumes a prior with a Student t-distribution and parameters equal to our benchmark empirical estimates from

Section 4. The parameter σi is set to the average in the data and ni is set to the typical value of 20 million users, so that the standard

error σi/
√
ni is 0.022.

Fat tails can have a substantial impact on the posterior mean function. To illustrate this
point, Figure 1 plots the posterior mean function for a fat-tailed prior with a t-distribution
with a small negative mean. With this fat-tailed prior, the posterior mean function is flat
close to zero, so that typical observations with small t-statistics should be considerably
shrunk. The intuition is that typical observations with good results are likely to be due
to lucky experimental draws. However, for large outliers, the posterior mean function
approaches the diagonal. The intuition is that, with fat tails but normal experimental
noise, large outliers are likely to be due to idea quality, and not to experimental noise.14

We will return to this issue when we discuss our empirical findings.

3.2 The Production Function

The value of potential innovation i with no data equals its mean, provided that it is posi-
tive,

E[∆i]
+.

If the firm combines innovation iwith data from ni users, the firm can run the experiment,
and only implement the idea if the posterior mean quality is positive. By Proposition 1,
the total value of A/B testing innovation i is the expected value of the positive part of the
posterior mean; this is

E[Pi(∆̂i, ni)
+].

14See Morris and Yildiz (2016) for similar results in a coordination game.
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Thus, the value of investing data from ni users into potential innovation i equals

fi(ni) ≡ E[Pi(∆̂i, ni)
+]− E[∆i]

+. (2)

We term fi(ni) the production function for potential innovation i. We term f ′i(ni) as the
marginal product of data for i. With this notation, the firm’s payoff can be immediately
decomposed as follows.

Proposition 2 (Production Function Decomposition). Consider an arbitrary experimentation
strategy n and an implementation strategy S that is optimal given n. Then the firm’s expected
payoff is

Π(n, S) =
∑
i∈I

E[∆i]
+

︸ ︷︷ ︸
value of ideas with no data

+
∑
i∈I

fi(ni)︸ ︷︷ ︸
additional value from data

.

That is, the payoff equals the sum of the gain from innovations that are profitable to implement
even without an experiment, plus the sum of the production functions of the data allocated to each
experiment. The production functions are differentiable for ni > 0.

This straightforward decomposition reduces the A/B testing problem to constrained max-
imization of the sum of the production functions. Therefore, the shape of the production
function is a crucial determinant of the optimal innovation strategy. Figure 2 plots the
production function with illustrative model primitives for sample sizes up to 40 million
users. Panel B depicts the case of a normal prior. Panel A depicts the case of a fat-tailed
t-distribution, for varying tail coefficients. The figure shows that the production func-
tion can have either increasing or decreasing returns to scale, and that the shape of the
production function depends on the tail coefficients of the prior distribution.

3.3 Main Results: Shape of the Production Function

This section develops our main theoretical results, which characterize the shape of the
production function (and consequently speak to the optimal experimentation strategy).
Throughout this subsection, we consider a single innovation, and omit the subscript i for
clarity. To describe the optimal implementation strategy, define the threshold t-statistic t∗(n)

as the t-statistic associated with the threshold signal, t∗(n) = δ∗(n)/(σ/
√
n). We remind

the reader that δ∗i (ni) is defined as the unique threshold signal such that Pi(δ∗i (ni), ni) = 0.

We establish two theorems. The first theorem characterizes the production function for
very large sample sizes (large-n approximation), in the limit where the experiment is much
more informative than the prior.

Theorem 1 (Production Function for Large n). Consider n converging to infinity. We have the
following.
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Figure 2: The production function f(n) with and without fat tails
Notes: The figures plot the production function as a fraction of the value of perfect information, f(n)/f(∞). Panel A depicts a Student

t prior, and Panel B depicts a normal prior. The t-distribution parameters correspond to the benchmark empirical estimates in Section

4.5 for our main metric, but with varying tail coefficients. The normal prior has the same mean and scale parameters. σi is set to the

average value in the data.

1. The threshold t-statistic t∗(n) converges to 0. Moreover, if g′(0) 6= 0,

t∗(n) ∼ − σ√
n
· g
′(0)

g(0)
.

2. Marginal products converge to 0 at a rate of 1/n2. More precisely,

f ′(n) ∼ 1

2
· g(0) · σ2 · 1

n2
. (3)

The theorem shows that, for very large samples, the marginal product of additional data
declines rapidly. Moreover, this holds regardless of details about the distribution of ideas,
which only affects the asymptotics up to a multiplicative factor. The intuition is that addi-
tional data only helps to resolve edge cases, where the value of an innovation is close to 0.
Mistakes about these cases are not very costly, because even if the firm gets them wrong
the associated loss is small.15

The intuition of the proof is as follows. Lemma A.2 in the appendix shows that, for all n,

15This argument echoes themes developed by Vul et al. (2014) for more special distributions and by Fu-
denberg et al. (2017) in dynamic learning context. Moscarini and Smith (2002); Keppo et al. (2008) find that,
in models with a finite number of states of the world, the value of information decays exponentially for
large n. The reason for the difference is that we have an infinite number of states, and a strictly positive
density g(0).
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marginal product equals

f ′(n) =
1

2n
·m(δ∗(n) , n) · Var

[
∆|∆̂ = δ∗(n)

]
, (4)

where m(· , n) is the marginal distribution of the signal ∆̂. The marginal product depends
in an intuitive way on the elements of this formula. It is more likely that additional data
will be helpful if the existing estimate has few data points n, if the likelihoodm(δ∗(n), n) is
large, and if there is a lot of uncertainty about quality conditional on the marginal signal.
The proof gives further intuition of why the exact formula holds. We then proceed to show
that m(δ∗(n) , n) ·Var

[
∆|∆̂ = δ∗(n)

]
∼ g(0)σ2/n2. Intuitively, this result can be thought of

as a consequence of the Bernstein-von Mises theorem, which says that Bayesian posteriors
are asymptotically normal with the same mean and variance as the maximum likelihood
estimator. This implies that the threshold δ∗(n) is close to zero, and the conditional vari-
ance in equation (4) is σ2/n. Thus, the general formula (4) simplifies to the asymptotic
formula (3). The formula for the threshold t-statistic is derived from an asymptotic ver-
sion of Tweedie’s formula (Corollary A.1).

Theorem 1 may only hold for extremely large sample sizes. For example, in Figure 2, even
experiments with tens of millions of users only generate a fraction of the value of perfect
information. The theorem implicitly relies on a Bernstein-von Mises type approximation
where there is so much data that the prior is uninformative. This only happens when the
experiments are much more precise than the variation in the quality of ideas. Even large
platforms like Bing are far below this scale, as in the anecdotal evidence cited in section
2.2, and in the empirical evidence we give below.

Matters are different for small n, where the shape of g has dramatic effects on the shape of
f . The next theorem shows that, if the ex ante distribution of idea quality has Pareto-like
tails,16 the marginal product is determined by the thickness of the tails.

Theorem 2 (Production Function for Small n). Assume that the distribution of innovation
quality satisfies g(δ) ∼ αc(δ) · |δ|−(α+1) as δ converges to ±∞, where c(δ) is a slowly varying
function, α > 1 and α 6= 3. Assume there is a constant C > 0 such that c(δ) > C for large enough
|δ|. Assume also that E[∆] < 0 and consider n converging to 0. We have the following.

1. The threshold t-statistic t∗(n) converges to infinity at a rate of
√

log 1/n. More precisely,

t∗(n) ∼
√

2(α− 1) log
σ√
n

.

16The p.d.f.s covered by Theorem 2 include the generalized Pareto density of Pickands (1975), affine trans-
formations of the t-distribution (which is the model used in our empirical application), and any distribution
where the tails are Pareto, Burr, or log gamma.
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2. Marginal products are roughly proportional to n
α−3
2 . More precisely,

f ′(n) ∼ 1

2
· αc(δ∗(n)) · (σt∗(n))−(α−1) · n

α−3
2 .

3. If the tails of g are sufficiently thick so that α < 3, then the marginal product at n = 0 is
infinity.

4. If the tails of g are sufficiently thin so that α > 3, the marginal product at n = 0 is zero.

The theorem states that, for small n, f ′(n) behaves as approximately proportional to n
α−3
2 .

This behavior determines the marginal returns of the production function in small A/B
tests. Much like in neoclassical producer theory, this behavior is crucial for the optimal
experimentation strategy. With relatively thin tails α > 3, marginal products are increas-
ing (and zero at n = 0), and we have increasing returns to scale. With relatively thick
tails, marginal products are decreasing (and infinite at n = 0), so that we have decreasing
returns to scale. These cases are illustrated in Figure 2.

The intuition for the theorem is as follows. If g is not sufficiently fat tailed, α > 3, then
a small bit of information is unlikely to change the optimal action as it is too noisy to
overcome the prior. A bit of information is therefore nearly useless. Only once the signal
is strong enough to overcome the prior does information start to become useful. This
makes the value of information convex for small sample sizes. This intuition has been
formalized in a classic paper by Radner and Stiglitz (1984). They consider a setting that
is, in some ways, more general, but that precludes the possibility of fat tails. Because they
assumed away fat tails, they concluded that the value of information is generally convex
for small n. Our theorem shows that their conclusion is reversed in the fat tailed case.17

Our theorem shows that if α < 3, most of the value of experimentation comes from a few
outliers and even extremely noisy signals will suffice to detect them. More precise signals
will help detect smaller effects, but if most of the value is in the most extreme outliers,
such smaller effects have quickly diminishing value. Thus, the value of information is
concave for small n.

At first sight, it is not clear why the dividing line is α = 3. As it turns out, α = 3 can
be explained with a simple heuristic argument. Consider a startup firm that uses a lean

17One reason for the difference between our result and Radner and Stiglitz (1984) is the units of infor-
mation that they use. In their leading example (p. 40), they measure the quantity of information by the
correlation between a signal and the state, which is roughly proportional to

√
n. The value of information

in their example is roughly proportional to n, so that, as they explain, the convexity result depends on the
units. However, allowing for fat tails is the main reason for the different results. Chade and Schlee (2002)
explain that, even when information is measured by n, the convexity result depends on substantial assump-
tions. Nevertheless, they show that convexity does hold with some generality. And Keppo et al. (2008) find
a convex value of information in a natural model with thin tails. Our result clarifies that one practically
important reason why we can have a concave value of information close to 0 is the existence of fat tails.
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experimentation strategy. The firm tries out many ideas in small A/B tests, in hopes of
finding one idea that is a big positive outlier. Even though the A/B tests are imprecise, the
firm knows that, if a signal is several standard errors above the mean, it is likely to be an
outlier. So the firm decides to only implement ideas that are, say, 5 standard errors above
the mean. This means that the firm will almost certainly detect all outliers that are more
than, say, 7 standard errors above the mean. This yields value

f(n) ∝
∫ ∞

7σ/
√
n

δg(δ) dδ ∝
∫ ∞

7σ/
√
n

δδ−(α+1) dδ =

∫ ∞
7σ/
√
n

δ−α dδ.

Integrating we get

f(n) ∝ 1

α− 1
(7σ/
√
n)−(α−1) ∝ n

α−1
2 .

Thus, the marginal product is proportional to n
α−3
2 , as in the theorem.

The proof of the theorem formalizes and generalizes this heuristic. The starting point is to
show that the first order condition for the optimal threshold, and the marginal products
can be written as integrals. These integrals are dominated by regions where either quality
is in the mean of its distribution, but the signal is extreme, or where the signal is in the
middle of its distribution, but true quality is extreme. This implies that these integrals can
then be approximated by closed-form expressions, due to the power law assumption. The
theorem can then be derived with calculations in the lines of the heuristic argument.

The heuristic argument clarifies why the small-n approximation can be useful for the sam-
ple sizes in real applications, that often include millions of users. The key approximation
used in the proof of Theorem 2 is that outlier ideas are responsible for a large share of the
gains. As long as this is true, the theorem can provide a useful approximation. Indeed,
Section 5.1 shows that, in our empirical application, the approximations in Theorem 2 are
useful for the typical sample sizes of tens of millions of users.

3.4 The Optimal Experimentation Strategy

We now use the results to understand the optimal experimentation strategy. The simplest
case is when experimental resources are abundant, so that we are close to having perfect
information. That is, the case where N converges to infinity.

Remark 1. If N is large enough, then it is optimal to run experiments on all ideas (that is,
it is optimal to “go lean”).

With plentiful data, it is optimal to experiment on every idea because the returns to data
are eventually decreasing. This follows because the production function is increasing and
bounded by the value of perfectly observing idea quality. For example, all of the pro-
duction functions in Figure 2 are eventually bounded by 100% of the value of perfect
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information. So allocating a large number of users to a single idea eventually has small
returns, and it is better to experiment on as many ideas as possible.

Assuming that experimental resources are abundant is equivalent to assuming that there
are enough users to make the noise of each A/B test almost negligible. The following
corollary characterizes the optimal experimentation strategy when there the outcome of
an A/B test does not fully reveal the innovation quality.

Corollary 1. [Optimal Experimentation Strategy]Assume that all ideas have the same prior dis-
tribution of quality, that this distribution satisfies the assumptions of Theorem 2, and that there is
more than one idea.

• If the distribution of quality is sufficiently thick-tailed, α < 3, it is optimal to run experi-
ments on all ideas (that is, it is optimal to “go lean”).

• Suppose in addition that the slowly varying function in Theorem 2 satisfies c(δ) → c as
δ →∞. If the distribution of quality is sufficiently thin-tailed, α > 3, and ifN is sufficiently
small, the firm should allocate all experimental resources to one idea (that is, it is optimal to
“go big”).

The corollary relates the experimentation strategy to the tail of the distribution of innova-
tion quality. If the distribution of innovation quality is sufficiently thin-tailed, most ideas
are marginal improvements. The production function is convex close to n = 0, because
obtaining a small amount of data is not sufficient to override the default implementation
decision. In this case, it is optimal to choose only one idea, and run a large, high-powered
experiment on it. We call this strategy “big data A/B testing” as it involves ensuring the
experiment has a large enough sample to detect fairly small effects. This strategy is in line
with common practice in many large technology companies, where ideas are carefully
triaged, and only the best ideas are taken to online A/B tests.

If the distribution of innovation quality is sufficiently thick tailed, a few ideas are large
outliers, with very large negative or positive impacts. These are commonly referred to as
black swans, or as big wins when they are positive. The production function is concave
and has an infinite derivative at n = 0. The optimal innovation strategy in this case is
to run many small experiments, and to test all ideas. We call this the “lean experimen-
tation” strategy, as it involves running many cheap experiments in the hopes of finding
big wins (or avoiding a negative outlier). This strategy is in line with the lean startup ap-
proach, which encourages companies to quickly iterate through many ideas, experiment,
and pivot from ideas that are not resounding successes (Blank, 2013).
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4 Empirical Application

4.1 Setting

We now apply the model to a major experimentation platform, Microsoft’s EXP. This is
an ideal setting because we have detailed data on thousands of A/B tests that have been
performed in the last few years. We can use the data to estimate the ex ante distribution
of innovation quality, and thus understand the importance of fat tails and the optimal
experimentation strategy.

EXP was originally part of the Bing search engine, but has since expanded to help several
products within Microsoft run A/B tests. This expansion coincides with the rise of A/B
testing throughout the technology industry, due to the large increase in what is known
as cloud-based software. Traditional client-based software, like Microsoft’s Word or Ex-
cel, runs locally in users’ computers. Innovations used to be evaluated offline by product
teams, and implemented in occasional updates. In contrast, cloud based software, like
Google, Bing, Facebook, Amazon, or Uber, mostly runs on server farms. In these cloud-
based products, most innovations are evaluated using A/B tests, and are developed and
implemented at scale in an agile workflow. These practices have spread, and even tradi-
tional software products like Microsoft Office now use A/B testing.

EXP runs thousands of A/B tests per year. Our empirical analysis focuses on Bing, which
is itself a large product. Bing has revenues of the order of 7 billion USD per year, and
makes comparable investments in engineering. Bing serves over 12 billion monthly searches
worldwide. In the US, Bing had 136 million unique searchers in 2017, with about 1/3 mar-
ket share in the PC market.18

There are three key empirical challenges to obtain reliable estimates of the distribution of
innovation quality. First, the distribution gi represents the prior information about idea
i. Thus, to estimate gi, even with perfect observations of the realized true quality δi, we
need many observations of ideas that engineers see as coming from the same distribution.
To illustrate this problem, imagine that engineers test a set of ideas that look good, and
have a distribution g1, and ideas that look bad and have a distribution g2. If we do not
observe which ideas are good and which are bad, we would incorrectly think that the
ex-ante distribution of ideas is an average of g1 and g2.

The second challenge is that many online A/B tests have potential data issues: they are
experimental flukes. These data issues arise because running many parallel A/B tests in a
major cloud product is a difficult engineering problem. The simplest examples are failures
of randomization, which can be detected when there is a statistical difference between the

18Based on 2017 Comscore data and on Microsoft’s form 10Q for the quarter ending on March 31, 2018.
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number of users in treatment and control groups.19 This kind of measurement error can
bias estimates of the distribution of innovation quality. For example, if true effects are
normally distributed, but experimental flukes produce a few large outliers, a researcher
may incorrectly conclude that the distribution of true effects is fat tailed.

The third challenge is that our model assumes that innovations can be identified by a
single quality metric, that is additive across different innovations. In practice, there are
multiple possible performance measures that can be used. Also, it is not unreasonable to
think that some innovations can be complements or substitutes.

4.2 Data Construction

We have detailed data on the universe of experiments EXP ran on Bing from January
2013 to June 2016. The data includes dates, areas experimented, experimental results of
thousands of metrics disaggregated across dimensions such as geography, language, and
device types, details about the experimental procedure, comments, and identity of the
owner of the experiment.

To alleviate the empirical problems above, we restricted our sample in four ways. First, we
restricted attention to relatively homogeneous areas because engineers consider the prior
on ideas to be ex ante homogeneous.20 Second, we restricted attention to experiments
that are similar to the basic version of our model.21 Third, to ensure high data quality we
restricted attention to the US market and dropped A/B tests with signs of experimental
problems. Fourth, we restricted attention to user experience areas so idea quality is well
summarized by a few key metrics. See the supplementary appendix for further details.

The main quality measure we consider is a proprietary success metric that we call ses-
sion success rate or simply success rate. The success rate for a user is the proportion
of queries where the user found what she was looking for. This measure is calculated

19Many other, more complex experimental problems commonly happen. For example, Bing caches the
first few results of common queries. For the experiments to be valid, every user has to cache the data for
all the versions of all the experiments that she takes part on, even for the treatments that she will not be
exposed to. This both creates a cost of the experimentation platform, since it slows down the website as
a whole, and creates a challenge to run a valid experiment. As a final example, consider a treatment that
slows down a website. This treatment could cause a instrumentation issue if it makes it easier for clicks to
be detected. So, even if the treatment worsens user experience, it could seem to be increasing engagement,
only because it made it easier to detect clicks (Kohavi and Longbotham, 2011).

20Engineers currently view ideas in a relatively even footing because of their previous experience with
A/B tests. Previous A/B tests revealed that it is very hard to predict which innovations are effective ex-
ante, and sometimes the best innovations come from unexpected places. Kohavi et al. (2009b, 2013) describe
their experience running experiments at Bing as “humbling.” One of their major tenets is that “we are poor
at assessing the value of ideas.” They give several examples of teams in other companies that have reached
similar, if not even more extreme, conclusions.

21We dropped, for example, experiments with multiple treatments or that only applied to narrow areas.
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from detailed data on user behavior. The success rate is a good overall measure of per-
formance, and plays a key role in the decision to implement an idea at scale. While our
main analysis uses success rate, we will consider some of these other metrics in robustness
and placebo analyses. First, we consider three alternative metrics based on short-run user
interactions, much like success rate. We refer to them as alternative short-run metrics #1,
#2, and #3. These metrics help us validate our methodology, because qualitative results
should be similar to the results for success rate. We consider two long-run metrics, that
measure overall user engagement. We refer to them as placebo long-run metrics #1 and
#2. Engineers consider the long-run metrics more important. However, it is hard to detect
movements in these metrics, which is why most shipping decisions are based on short-run
metrics such as success rate. We use these metrics as placebos to validate our methodol-
ogy, because they should have a small amount of signal relative to the experimental noise,
and experiments should have a low value. All of the metrics we use are measured at the
user level, which is also the level of randomization of the experiments. Although these
metrics use different units, engineers commonly consider percentage improvements. We
define the delta of a metric in an experiment as the raw effect size divided by the control
mean, defined in percent. In the remainder of the paper, we will use deltas to analyze
experiments across all metrics. We refer to the sample delta in a metric in an experiment,
or signal, as the sample estimate of the percentage improvement. This corresponds to the
signal δ̂i in the theoretical model.

Finally, we performed a detailed audit on the data. We contacted the owners of all exper-
iments in the tails of the outcome distribution, and of a random sample of experiments in
the head of the distribution. We used the audit to weed out experiments that were minor
tweaks of the same idea, or that owners considered to be unreliable because of potential
data issues. We found that 50% of the audited observations had concerns. To be conser-
vative, we estimated our model in two ways. The first is a standard maximum likelihood
estimator that ignores the potential data concerns (except for dropping invalid observa-
tions). The second is a weighted maximum likelihood strategy that weights each obser-
vation by its reliability (where the reliability is estimated using the audit data).22 The two
estimators produce similar results (Supplementary appendix Figure B.3). For that reason,
we report the standard maximum likelihood estimator in the body of the paper. Supple-
mentary Appendix B derives the theoretical properties of the alternative estimator, gives
further details on the audit data, and reports the results.

22In the appendix we show that the weighted maximum likelihood estimator is consistent and asymp-
totically normal in a model where the data is a mixture of the distribution of interest an a non-parametric
distribution for the observations with data reliability concerns.
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4.3 Descriptive Statistics

Table 1 displays summary statistics, at the level of experiments. The table reveals three
striking facts. First, Bing conducts large experiments, with the average experiment having
about 20 million subjects. This reflects both the fact that Bing has a substantial number of
active users, and also the fact that experiments are highly parallelized. These large sample
sizes are translated in precise estimation of all metrics. For example, the average standard
error for success rate is of only 0.029%.

Table 1: Summary statistics: experiments

Mean Min Max Standard Interquartile
deviation range

All experiments (N = 1,450)
Number of subjects 19, 447, 892 2, 005, 051 125, 837, 134 16, 539, 352

Duration (days) 10.84 7.00 28.00 4.69

Probability valid 0.52 0.25 1.00 0.10

Sample delta
Success rate −0.001% −0.220% 0.283% 0.036% 0.035%

Short-run metric #1 −0.003% −0.234% 0.345% 0.035% 0.033%

Short-run metric #2 −0.019% −11.614% 3.289% 0.434% 0.139%

Short-run metric #3 −0.004% −0.465% 0.504% 0.066% 0.058%

Long-run metric #1 0.001% −2.157% 0.669% 0.157% 0.153%

Long-run metric #2 0.002% −0.565% 0.432% 0.084% 0.090%

Sample delta standard error
Success rate 0.029% 0.009% 0.091% 0.013%

Short-run metric #1 0.025% 0.009% 0.072% 0.011%

Short-run metric #2 0.103% 0.035% 0.271% 0.040%

Short-run metric #3 0.044% 0.012% 0.120% 0.020%

Long-run metric #1 0.158% 0.045% 0.459% 0.075%

Long-run metric #2 0.092% 0.030% 0.255% 0.044%

The second fact is that effect sizes of the studied interventions are also small. The mean
sample deltas are close to zero, for all metrics. The standard deviation of the sample delta
for success rate is of only 0.036%. This reflects the fact that Bing is a mature product, so
that it is hard to make innovations that have, on their own, a very large impact on overall
performance. Even though the effects are small in terms of metrics, they are considered
important from a business perspective. Practitioners consider that the value of a 1% im-
provement in success rate is of the order of hundreds of millions of dollars. Thus, even
gains of the order of 0.1% are substantial, and worth considerable engineering effort.

Third, the summary statistics suggest that the distribution of measured effects is fat tailed.
Many experiments have very small measured deltas, while a handful show substantial
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(a) Histogram of success rate and estimated den-
sity.
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(b) Q–Q plot of model fit.

Figure 3: Model fit

Notes: A histogram (panel A) and Q–Q plot (panel B) showing the raw data on measured deltas in success
rate and the fit of the benchmark model estimates.

gains. This can be seen in the histogram in Figure 3a. The summary statistics display
signs of fat tails: for all metrics, the largest absolute value deltas are several standard
deviations away from the mean.

Figure 4 displays a log-log plot of the tail distribution of sample delta. That is, the log of
the rank of each observation versus the log of the observation. Log-log plots are a standard
way to visualize fat-tailed distributions. If the variable δ̂i has a Pareto distribution with
tail parameter α, then, with infinite data, the log-log plot is a straight line with a slope
of negative α. Consistent with fat tails, Figure 4 displays relatively low slopes. Indeed,
we simulated data with the same sample size and variance, but coming from a normal
distribution, and found substantially higher slopes. Log-log plots suffer from well-known
problems in finite samples (Clauset et al., 2009). For that reason, we use the log-log plots to
transparently describe the data, but the slopes are not a reliable way to estimate the precise
tail coefficients. Thus, we will use a maximum likelihood procedure for our benchmark
estimates.

4.4 Identification and Maximum Likelihood Estimation

Fix a metric of interest (for example, success rate). We would like to estimate the metric’s
ex ante distribution of innovation quality, which is the key parameter of our model (and
which we will henceforth denote succinctly by the density g). In the A/B testing problem
there are at least two functions of g that are empirically relevant. The first one is the pos-
terior mean of δi given δ̂i, which provides the optimal estimator (from a decision-theoretic
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Figure 4: Log-log plots of the tails of the distribution of sample deltas
Notes: Each figure plots, in a log-log scale, the rank of the absolute value of sample deltas, versus the absolute value of sample delta

|δ̂i|. Each panel corresponds to a metric. Each plot has 150 observations, and the 15 largest observations are used to calculate the slope.

perspective) for the unobserved quality of idea i. The second one is the optimal experi-
mentation strategy n(g), which is defined as the experimentation strategy that maximizes
the firm’s expected payoff subject to user availability.

Our empirical strategy is to use the outcomes of the different A/B tests to estimate g.
We then construct ‘plug-in’ estimators of the functions of g that are relevant in the A/B
testing problem. For example, if ĝ denotes the estimator of g, then n(ĝ) is the plug-in
estimator of the optimal experimentation strategy. These type of procedures are usually
called Empirical Bayes estimators, as the prior is estimated from the data.23

To formalize our strategy, we start by summarizing each A/B test i affecting the corre-
sponding metric using the triplet

(δ̂i, σi, ni), (5)

where δ̂i denotes the estimated delta of idea i, σi/
√
ni is the estimated standard error, and

ni is the sample size.24

23Azevedo et al. (2019) review parametric and nonparametric Empirical Bayes approaches to estimate the
distribution of unobserved quality given previous outcomes of A/B tests.

24For notational simplicity—and given that we will estimate the ex ante distribution of idea quality sepa-
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Following the theoretical analysis from Section 3, the distribution of δ̂i is given by a two-
stage hierarchical model:25

δi is distributed according to g, (6)

δ̂i|δi is distributed as a N (δi, σ
2
i /ni). (7)

That is, the estimator δ̂i is normally distributed with known variance given the true quality
δi. This is a reasonable assumption because of the large sample sizes in each experiment.
This makes the errors approximately normally distributed, and the standard estimate for
the sample variance is consistent and precisely estimated relative to treatment effects.

NONPARAMETRIC IDENTIFICATION OF g: The prior g is nonparametrically identified. To
see this, note that the unconditional distribution of δ̂i equals the sum of two independent
random variables:

δ̂i = δi + (σi/
√
ni)ε, where δi has p.d.f. g, εi is N (0, 1), and δi⊥εi.

If we let ψX(t) denote the characteristic function of X at point t, it is straightforward to
see that:

ψδ(t) = ψδ̂i(t)
/

exp

(
−1

2

σ2
i

ni
t

)
. (8)

It is a well-known fact that any probability distribution is characterized by its characteris-
tic function (Billingsley (1995), Theorem 26.2, p. 346). Consequently, g is non-parametrically
identified from the unconditional distribution of δ̂i, which in principle can be estimated
using data for different A/B tests with similar σi.26

MAXIMUM LIKELIHOOD ESTIMATION: Although the ex ante distribution of idea quality, g,
is non-parametrically identified, we estimate our model imposing parametric restrictions

rately for each metric—we omit the use of subscript m throughout this section.
25Hierarchical models are used extensively in Bayes and Empirical Bayes statistical analysis (see Chapters

2 and 3 in Carlin and Louis (2000)). Two-stage hierarchical models are also known as mixture models (Seidel
(2015)), where g is typically called the mixing distribution.

26The identification argument above has been used extensively in the econometrics and statistics litera-
ture; see Diggle and Hall (1993) for a seminal reference. If, contrary to our assumption, the distribution of
(σ/
√
n)ε were unknown, non-parametric identification of g would not be possible unless additional data is

available or additional restrictions are imposed; see for example Li and Vuong (1998).
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on g.27 In particular, we assume that

δ ∼M + s · tα, (9)

whereM ∈ R, s ∈ R+, and tα is a t-distributed random variable with α degrees of freedom.
This means that we can write the second stage of our hierarchical model as

δ has distribution g(·; β), with β ≡ (M, s, α)’,

and the parametric likelihood of each estimate δ̂i as the mixture density

m(δ̂i|β;σi, ni) =

∫ ∞
−∞

φ
(
δ̂i; δ, σi/

√
ni

)
g(δ, β)dδ. (10)

In the equation above φ(·; δ, σi/
√
ni) denotes the p.d.f of a normal random variable with

mean δ and variance σ2
i /ni.

Now, we will write the likelihood for the results of n different A/B tests

δ̂ = (δ̂1, δ̂2, . . . , δ̂n).

If we assume that each estimator δ̂i is an independent draw of the model in (10), then
the log-likelihood of δ̂ given the parameter β and the vector of standard errors: σ ≡
(σ1/
√
n1, σ2/

√
n2, . . . , σn/

√
nn) is given by

logm(δ̂|β;σ) ≡
n∑
i=1

logm(δ̂i|β;σi, ni). (11)

The Maximum Likelihood (ML) estimator, β̂, is the value of β that maximizes the equation
above. Note that the likelihood in (11) corresponds to a model with independent, not
identically distributed data. Sufficient conditions for the asymptotic normality of the ML
estimator for β are given in Hoadley (1971).28,29

27The default approach for doing nonparametric estimation of g in the mixture model given by equations
(6)-(7) is the infinite-dimensional Maximum Likelihood estimation routine suggested by Kiefer and Wol-
fowitz (1956), and refined recently by Jiang and Zhang (2009). It is known, see Theorem 2 in Koenker and
Mizera (2014), that the nonparametric Maximum Likelihood estimator of g given a sample of size n is an
atomic probability measure with no more than n atoms. The tails of an atomic probability measure are never
fat, even if the true tails of g are. Because of this reason, we decided to follow a parametric approach for the
estimation of g.

28The conditions in Hoadley (1971) essentially require that the first and second derivatives of the log-
likelihood with respect to β to be well-defined.

29It is also possible to follow a fully Bayesian approach for the estimation of the parameters of the model.
To do this, one could complete the Bayesian hierarchy by choosing a prior for the hyper-parameters of the
model β ≡ (M, s, α). The outcomes of the A/B tests then allow us to get posterior distributions over β.
Since each β is associated to a posterior mean for ∆i (for each treatment), the following procedure provides
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4.5 Estimation Results

The model fits the data well. Figure 3a displays a Q-Q plot and figure 3b compares the
fitted and actual histograms for success rate. The estimated parameters are given in Table
2 and Figure 5.

Table 2: Maximum Likelihood Estimates

α M s

Success Rate (SR0) 1.31** -0.000946 0.00296
(0.149) (0.000647) (0.000861)

Short-Run Metric #1 1.35** -0.00136 0.00413
(0.14) (0.000667) (0.000912)

Short-Run Metric #2 0.887** -0.0067 0.0089
(0.089) (0.00277) (0.0028)

Short-Run Metric #3 1.43** -0.00365 0.00988
(0.135) (0.00108) (0.00161)

Long-run metric #1 3.03 0.00161 2.21e-05
(0.14) (0.000667) (0.000912)

Long-run metric #2 3.04 0.00106 2.51e-06
(0.0916) (0.00209) (0.00277)

Notes: The table displays the maximum likelihood estimates of the parameters M , s, and the tail coefficient
α. Standard errors are reported in parentheses. Asterisks are used to denote the magnitude of p values
based on a one-sided t-tests for the hypothesis α < 3 (∗p < 1% and ∗∗p < .1%).

Our main empirical result is that idea quality is fat tailed, with a tail coefficient far be-
low the α = 3 threshold in Theorem 2. The tail coefficient for success rate is of 1.31.
The hypotheses that α = 3 and α = 2 are both rejected with a p-value of <0.001. This
result is supported by three additional facts. First, the tail coefficients are similar for
all short-term metrics. Second, this is consistent with findings of fat tails in data from
similar large cloud products, from Facebook and Ebay experiments (Coey and Cunning-
ham, 2019; Peysakhovich and Lada, 2016; Peysakhovich and Eckles, 2017; Goldberg and
Johndrow, 2017). Third, we show in Supplementary Appendix D that the key finding
of fat tails is robust to disaggregating the data across a number of dimensions, such as
across budget areas. This assuages concerns that the results are driven by our estimation
incorrectly pooling ideas that engineers see as being ex ante different.

There are three facts that suggest that the coefficient estimates are reasonable. First, the
magnitudes are all consistent with the reduced form statistics. Second, the estimates are

a natural Bayesian estimator for the effect of a specific treatment: generate posterior draws of β, evaluate
the posterior mean of ∆i for each draw, and then average across draws.
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Figure 5: Parameter estimates

Notes: The figure displays the maximum likelihood estimates of the parameters M and s (panel a) and the
tail coefficient α (panel b). SR0 is success rate. SR1, SR2, and SR3 are the alternative short-run metrics. LR1
and LR2 are the long-run metrics. The solid lines are 95% confidence intervals.

qualitatively similar across all short-run metrics. The mean idea quality M is always a
small negative number, with a similar slope as a function of the scale parameter s. Third,
the placebo long-run metrics have parameters that imply that there is very little signal
relative to noise. This can be seen from the low values of the scale parameter s.30 Supple-
mentary appendix E shows that, for long-run metrics, typical experiments should hardly
update the posterior mean, and that the value of experimentation is very low. Meanwhile,
the short-run metrics have qualitatively similar results as success rate. This is consistent
with long-run user behavior being more difficult to change than short-run user behav-
ior. It is also consistent with Bing engineers’ view that it is hard to generate detectable
movements in long-run metrics.

4.6 Implications

We now discuss three key implication of the theoretical and empirical results. We use
the benchmark parameter estimates for success rate. Throughout this section, we will
illustrate results with a typical experiment, which means the estimated prior, 20 million
users, and the average value of σi, so that the standard error σi/

√
ni is 0.022. These are the

parameters used in Figure 1.

30These estimates should be interpreted carefully because the estimated values of s for long-run metrics
are close to zero, which is the boundary of the parameter space. The results in Andrews (1999) suggest that
the standard errors based on the Fisher Information matrix might be conservative.
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4.6.1 Implication 1: Shrinking Experimental Estimates with Small t Statistics

The fat tails imply that measured deltas with small t statistics should be shrunk aggres-
sively, whereas measured deltas that are outliers should not be shrunk very much. The
intuition is that marginally statistically significant deltas are likely to be due to a lucky
experiment, whereas large outliers are likely to be real. This can be seen from the shape of
the posterior mean function of a typical experiment. Figure 1 displays the posterior mean
function Pi(δ̂i|ni). A marginally significant delta equal to 0.044 (which has a t statistic of
2) has a posterior mean of only 0.006. However, an outlier experimental result of 0.088
(which has a t statistic of 4), has a posterior mean of 0.066.

This shrinkage implies that the black swan ideas correspond to a large share of the gains
from innovation. To see this, consider the following “p-value” implementation strat-
egy: to implement all ideas with positive statistically significant at the 5% level measured
deltas. The p-value strategy is the most commonly used implementation strategy in prac-
tice. We can evaluate the historical gains of this policy by adding the posterior mean
quality of the ideas in the data that would be implemented. We find that 74.8% of the his-
torical gains come from the top 2% ideas. This is an extreme version of the Pareto 80/20
principle. This extreme Pareto principle arises from the combination of large outliers and
the Bayesian shrinkage.

Finally the Bayesian shrinkage has implications for the optimal implementation strategy.
In the typical experiment in Figure 1, the threshold for implementation is only 0.010,
which corresponds to a t statistic of 0.472. The reason is that, due to the small nega-
tive prior mean, a relatively weak positive experimental result already pushes an idea
into the region of positive posterior mean. This is similar to the findings of Goldberg and
Johndrow (2017) in Ebay data. The optimal policy generates a historical gain in our data
of 2.3% improvement in success rate. This is 28.16% more than the gain of the p-value pol-
icy. We note that practitioners use a more strict implementation threshold because there
are costs of implementing each feature, and of making the codebase more complex. In the
typical experiment of Figure 1, the p-value policy is optimal if the implementation cost
equals a 0.0055% gain in success rate.

4.6.2 Implication 2: Gains from Lean Experimentation

The estimated tail coefficient α of 1.31 is well below the theoretical threshold α = 3 of
Theorem 2. Consistent with the theorem, the estimated production function has decreas-
ing returns to scale close to 0 (figure 2a). This suggests that, in Bing’s setting, there are
considerable gains in moving towards a lean experimentation strategy.

To understand the value of moving towards lean experimentation, consider the following
numerical example. A firm tests I innovations in a total of N users. Innovations are
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homogeneous, and the firm splits users equally across innovations, so that there are n =

N/I users in each experiment. Total production Y is then

Y = I · f
(
N

I

)
= I · f(n). (12)

We begin by computing the gain of testing a larger number I of ideas, keeping the total
amount of data N fixed. We continue to use the benchmark empirical estimates for Gi and
n equal to 20 million users. The computations show that the total production Y grows
almost linearly with the number of ideas tested. An increase in the number of ideas by
10% increases total production by 8.59%, and an increase in the number of ideas by 20%
increases total production by 17.05%.

This computation assumes that there is a costless way to increase the number of ideas and
that marginal ideas are just as productive as the current ideas. Therefore, a key question is
whether there are practical ways to move towards lean experimentation. That is, whether
there are additional ideas to be tested that have much greater benefits than costs.

In the case of Bing, one practical way to increase the number of ideas would be to reduce
offline tests and triage procedures. Triage procedures take place before online A/B tests.
In Section 5.3, we describe some of the current triage procedures, and use the best avail-
able data to evaluate them. The data shows that a substantial number of ideas seem to be
eliminated in the offline tests. Moreover, we tried to measure the quality of the marginal
ideas, by checking how offline tests predict online performance. We find no evidence that
marginal ideas are worse. This indicates that there may be gains moving towards lean
experimentation.

A potential objection to this point is that there might be high fixed costs of experimenta-
tion, so that it would not be worth it to run smaller experiments. We can use a simple
back-of-the-envelope calculation to show that this would require implausibly large costs.
For this analysis, we have to consider the value of an experiment in dollars. While our
analysis is based on success rate, Microsoft uses a proprietary “monetary overall evalua-
tion criterium,” which is a conversion rate between metrics and revenue. This conversion
rate is used to make decisions that involve tradeoffs between key metrics, such as a change
that increases ad revenue but hurts user experience. This conversion rate is proprietary,
so that we cannot use it in our paper to convert the results to dollars. However, we can
use a ballpark value to understand the value of having a typical idea and testing it in a
typical experiment. The value of a typical idea in an experiment with 20 million users is
f(20e6), or a 2.39e-03% gain in success rate. A 1% gain in success rate is valued in the
order of hundreds of millions of dollars of yearly revenue. Therefore, the value of testing
an additional marginal idea is in the order of a million dollars of yearly revenue increase.
The ideas that are evaluated in offline tests are mostly coded. Therefore, the additional
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costs of A/B testing them are likely small. It is implausible that these costs are greater
than the estimated benefit, which is of the order of a million dollars of yearly revenue. In
particular, this analysis suggests that the gains from moving towards lean experimenta-
tion are economically significant. See Section F.1 for a thorough discussion of alternative
costs of experimentation and other caveats.

4.6.3 Implication 3: The Marginal Value of Data is Economically Significant

It is sometimes argued that, in large platforms, sample sizes are so large that the marginal
value of data is close to zero. For example, in the early days of A/B testing many industry
experts argued that online sample sizes were “in the millions” so that it is not necessary
to use statistics (Kohavi et al., 2009b). More recently, there are claims that parallelized ex-
perimentation makes sample sizes so large that the marginal value of data is insignificant.

We can use our estimates to evaluate the merit of this view in the Bing setting. We con-
sider the same numerical example with total production being given by equation 12. We
consider the gains from increasing n by 10%, holding fixed the number of ideas. We find
that this results in an increase in Y of 1.29% of the total. This increase is much smaller
than 10%, due to the decreasing returns, but still economically significant.

We can gain some intuition into why data has a nontrivial marginal value from the pro-
duction function. The estimated production function at an n of 20 million users is far from
its maximum value, so that getting more data is still valuable. Moreover, consider the the-
orem 2 approximation that f(n) is a constant times n

α−1
2 . This suggests that the marginal

product of the data f ′(n) is about α−1
2

times the average product f(n)/n. This is close to
what we found when increasing n by 10%. That is, the empirical estimates suggest that
the marginal value of data is an order of magnitude smaller than the average value. At
the same time, the estimates are not consistent with the view that the marginal value of
data is negligible.

5 Additional Results and Robustness

5.1 Relevance of the Small-n and Large-n Asymptotics

We now examine the range where the asymptotic formulas in Theorems 1 and 2 provide
a relevant approximation to the value of experimentation. Figure 6 plots the production
function for the Bing application (based on the parameter estimates for session success
rate) along with the approximations. We plot n in a log scale, so that we cover a broad
range of sample sizes.
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Figure 6: Empirically relevant ranges for the asymptotic approximations.
Notes: The figure depicts the production function, the large n approximation from Theorem 1, and the small n approximation from

Theorem 2 under the benchmark parameter estimates. For large n, we integrate Theorem 1’s formula for f ′ to obtain the approximation

f(n) ≈ f(∞) − 1/2g(0)σ2n−1. For small n, we approximated t∗(n) by Theorem 2’s asymptotic formula at n = 1, so that t∗(n) ≈√
2(α− 1) log σ. We took c(δ∗(n)) to be the relevant constant for the t-distribution. With this further approximation, the only term in

the formula for f ′(n) that depends on n is nα−3/2. Integration then yields f(n) ≈ 1
α−1

αc(σt∗)−(α−1)n
α−1
2 .

The large-n approximation in Theorem 1 starts to be useful in experiments of the order
of hundreds of millions of users. It becomes a very good approximation close to one bil-
lion users. This is also the point where the experiment is precise enough to attain most
of the value of perfect information, so that the production function starts to converge to
this value. In principle, it seems surprising that the asymptotic approximation only be-
comes good at such large values, which are much greater than in realistic experiments.
The reason is that the large-n approximation is based on the fact that, asymptotically,
the experiment becomes so informative that we can basically ignore the prior, as in the
Bernstein-von Mises theorem. However, large-scale A/B testing aims to detect small per-
formance improvements with noisy outcome data. This means that, for realistic sample
sizes, there is still considerable uncertainty, and the prior should not be ignored.

The small-n approximation in Theorem 2 gives useful estimates for experiments with at
most tens of millions, or maybe one hundred million users. For larger experiments, the
approximation is far off, as the approximation converges to infinity while the production
function is bounded by the value of perfect information. Moreover, Figure 2 shows that
the small-n approximation gives the correct qualitative shape of the production function
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for the relevant sample sizes of up to tens of millions. And, moreover, the approximation
correctly matches the key economic property of returns to scale and the optimal exper-
imentation strategy. At first, it seems counter intuitive that a small-n approximation is
useful for experiments with millions of users. The reason is that in the small-n approxi-
mation outlier signals δ̂i are responsible for most of the gains. In practice, mediocre signal
draws still have some payoff importance, which is why the approximation is not exact for
realistic experiments. Nevertheless, as shown by our estimates, outliers are still extremely
important at the practically relevant sample sizes. This why the small-n approximation is
relevant in realistic experiment sizes, and why the tail coefficient is a useful statistic for
optimal experimentation.

5.2 Theoretical Extensions

This section considers several extensions of the baseline A/B testing problem. For the sake
of exposition, we only provide a brief description of the main findings of each extension.
The details are provided in Section F of the Supplementary Materials.

1. Other costs of experimentation. We consider three additional costs: fixed costs of test-
ing an idea; variable costs of experimentation (as a function of the sample size); and
short-term user experience costs, in which each idea i has a benefit proportional to
∆i·ni.31 There are three main lessons derived from a model that allows for costs of ex-
perimentation. First, our production function approach is still useful to understand
the value of experimentation. Second, lean experimentation need not be optimal in
the presence of fixed costs because of standard arguments: if fixed costs are large,
then the benefit of running a small experiment may be not be enough to cover the
fixed costs. Third, fat tails are still important for determining the optimal experi-
mentation strategy even in the presence of fixed costs. In fact, the tail coefficient of
the distribution of unobserved idea quality affects how different characteristics of
ideas should be evaluated.32

2. Mutually exclusive ideas. We consider a variation of the A/B testing problem where
the firm can implement at most one of the I different ideas after observing the ex-
perimentation results. Thus, the payoff from implementing multiple innovations is
no longer additive. This fits examples like a firm deciding between five alternative
designs for a website. The main message from this variation is that the results in

31In the Bing example, this cost corresponds to how much the experimental platform hurts user experi-
ence.

32For example, with a t-prior and abundant data greater spread (s) is much more valuable the thicker the
tails are. This is intuitive because, in the fat-tailed case, a larger fraction of the gains of experimentation
comes from outliers.
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Corollary 1 are still true: if the tails are thick enough (α > 3), it is optimal to run
experiments on all ideas even if only one can be implemented.

3. Hypothesis-testing payoff. We assume that if an innovation is implemented, its payoff
is

K1 (∆i > 0)− 1 (∆i ≤ 0) ,

as opposed to the linear and unbounded payoff ∆i. The main implication of this
model is that the threshold for determining the optimality of lean experimentation
becomes α = 2. This can be derived using the same argument we used to establish
Theorem 2. An intuitive derivation can be obtained using the heurisitc argument
provided in p. 14.

4. Elastic Supply of Ideas. This variation of the model assumes that the firm has an
infinitely elastic supply of identical ideas at a fixed cost per idea. We have two main
results. First, under some mild conditions, the optimal scale of each experiment has
to maximize average product net of fixed costs. Importantly, the optimal scale does
not depend on the total number of users. Therefore, it is not optimal to grow the
size of each experiment without bound as more data is available. Instead it is better
to increase the number of ideas being tested. This result gives another version of
the optimality of lean experimentation with a very large amount of users. Second,
we consider priors of the form ∆ = M + s∆0 and show that, if the prior is very
uninformative, then greater spread (higher s) leads to leaner experimentation.

5. A fluke model for the experimental noise. Suppose that with probability w the signal
δ̂i|δi isN (0, σ2

n) and with probability 1−w, δ̂i has as a p.d.f p(·) that does not depend
on δi. In this model the posterior distribution of δ is a convex combination of the
posterior density in the model without flukes and the prior. This happens because
the fluke density is not informative about the true idea quality (thus, with some
probability, the prior is not updated). We want to consider the case in which the
fluke density p(δ̂i) has fat-tails. We show that our small-n results will hold as long
as tails of the fluke distribution are thinner than those of the prior, but the value of
small experiments will be close to zero in other cases.

5.3 Quality of Marginal Ideas

Our results suggest that Bing could gain by moving towards a lean experimentation ap-
proach. One direction for improvement would be to reduce offline triage procedures,
which now are used to eliminate a substantial number of ideas before they make it to an
A/B test. However, this conclusion depends on the quality of the marginal ideas that are
being cut in the offline procedures. It is possible the the offline triage accurately eliminates
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ideas that have low quality, and that these procedures are optimal. In this Supplemen-
tary Appendix C we examine limited data on the offline triage procedure to understand
whether this is the case. We caution that these data are recorded in an incomplete and
potentially biased way, and that there are few observations. The analysis should be inter-
preted cautiously due to the data limitations.

We hand-collected data on offline triage procedures conducted by a major development
team within Bing. The procedure works as follows. In an unobserved phase 0, engineers
turn ideas into fully coded techniques. Candidate techniques are evaluated offline with
a crowdsourcing tool similar to Amazon’s Mechanical Turk. If these results look promis-
ing, engineers can make a submission to the formal phase 1 review panel. The review
panel decides which techniques to move to phase 2, with the guidelines being that flat
or positive offline metrics should pass in usual cases. Phase 2 is an online A/B test. The
development team keeps records of a subset of the phase 1 submissions. Unfortunately,
this is far from a complete record because most ideas in the dataset were ultimately im-
plemented. Thus, this data is incomplete and biased towards successful ideas. We have
33 observations, out of which 18 were implemented. For each observation, we have the
results of four offline metrics, the decision to go to phase 2, results of online A/B tests
when available, and the decision of whether to implement the idea.

Supplementary Appendix C documents two main patterns. First, the data is consistent
with a substantial number of ideas being turned down in triage. The data has some evi-
dence that is consistent with the review panel roughly following its guidelines.

Second, there is no evidence that these offline tests are predictive of online performance.
Under the hypothesis that the offline tests are successful in screening promising ideas,
we expect to find that the offline results are highly predictive of performance in online
A/B tests. In fact, the offline tests have little to no predictive power of the results of
online A/B tests. For example, Figure 7 plots the change in session success rate in an
online A/B test versus each standardized offline metric. The figure suggests that there
is almost no correlation between the offline and online results. This is confirmed by a
series of alternative specifications reported in Supplementary Appendix C. In particular,
the offline metrics seem to have almost no correlation with each other, even though some
of them are supposed to be alternative measures of similar aspects of performance.

The results in this subsection should be taken with a grain of salt due to the data limita-
tions. However, the results do show that there is no strong evidence that offline metrics
are highly predictive of online results, nor is there strong evidence that the marginal ideas
that are being discarded are of lower quality than the ideas that make it to online A/B
tests.
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Figure 7: Performance in online A/B tests versus performance in offline tests.
Notes: The vertical axis plots the measured delta in success rate. The horizontal axes plot performance in each of the offline metrics.

The horizontal axes are standardized so that the standard error of the offline experiments is 1.

5.4 Robustness Checks

Priors with bounded support.

Theorem 2 assumes a prior with unbounded support. In principle, this is at odds with
our empirical application because the success rate metric is bounded between 0 and 1.
In practice, this is not an issue because the prior is concentrated around 0, so that the t-
distribution describes the data well in the relevant range. The probability of ∆ taking a
value that is not feasible is negligible. For example, under the benchmark estimates, the
probability of an increase in success rate of more than 10% is 8.35e-06. For this reason,
our numerical results are virtually unchanged if we replace g by a distribution that is
truncated at -10% and 10%.

Heterogeneous priors and biases in tail coefficient estimates.

One potential bias in our empirical analysis is that we assumed that all ideas come from
the same prior idea distribution. This assumption is partly justified because the dataset
was constructed to include relatively homogeneous ideas, and that engineers consider
to be ex ante similar. However, if engineers see these ideas as different, we could be
incorrectly inferring that the distribution of quality is fat tailed.
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We examined empirically whether our estimates are robust to this concern. To do so, we
estimated the prior distribution of ideas for different subsets of the data. We split the data
into different groups based on areas of experimentation, time period, experiment length,
and sample size. The results of these disaggregated analyses is reported in Supplementary
Appendix D. For all of these subgroups, we found low tail coefficients, in the ballpark of
the coefficients in our main specification. This lends support to our central estimates not
suffering from large biases due to heterogeneity in priors.

Sequential testing.

A pontential concern is that our estimates could be biased due to engineers using dynamic
experimentation strategies. The most obvious concern would be if there is p-hacking,
where engineers stop experiments as soon as they find a statistically possible result. In-
deed, Berman et al. (2018) find evidence of p-hacking for businesses using off-the-shelf
A/B testing software. However, large experimental platforms like EXP employ several
statisticians, and have policies in place to eliminate p-hacking. For example, one of the
rules is that experiments are usually run in multiples of one week.33 To formally test
whether our finding of fat tails is an artifact of p-hacking, Supplementary Appendix D
estimates our model separately for experiments that last exactly one week (which is the
most modal case), experiments that are run for longer. Both subsamples display fat tails
with coefficients in the same ballpark. Our main result also holds for experiments that are
run for exact multiples of a week, where sequential testing is less likely to be a concern.

6 Conclusion

A/B tests have risen in prominence with increased availability of data and with lower
costs of experimentation. We considered a simple optimal learning model to understand
how to use scarce experimental resources in this setting. Crucially, we contribute to the
literature on optimal learning by allowing for the presence of fat tails of innovation quality.

The results suggest that the presence of fat tails are an important determinant of the opti-
mal innovation strategy. In contexts with a thin-tailed distribution of innovation quality,
it is desirable to perform thorough prior screening of potential innovations, and to run
a few high-powered precise experiments. In the technology industry, this corresponds
to rigorously screening innovation ideas prior to A/B tests. In research on anti-poverty
programs, it corresponds to trying out only a few ideas with few but high-quality, high-
powered research studies. In contexts with a fat-tailed distribution of innovation quality,

33The rule is not enforced perfectly, but whenever an experiment run for, say, 10 days, its final scorecard
is compared with the scorecard at the end the first week to detect anomalies. In describing experimentation
at Microsoft, (Kohavi et al., 2013) write: “While we allow experimenters to look at daily results, as they lead
to insights and could help identify bugs early on, there is one final scorecard at the end of the experiment,
which we require to be a multiple of weeks, usually two weeks.”
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it is advantageous to run many small experiments, and to test a large number of ideas
in hopes of finding a big winner. In the technology industry, this corresponds to doing
little to no screening of ideas prior to A/B tests, and to run many experiments even if this
sacrifices sample sizes. In research on anti-poverty programs, it corresponds to trying out
many ideas, even if particular studies have lower quality and statistical power, in hopes
of finding one of the rare big winners.

We applied our model to detailed data on the experiments conducted in a major cloud
software product, the Bing search engine. We find that the distribution of innovations
is fat-tailed. This implies that lean innovation strategies are optimal. This suggests that
large performance gains are possible in our empirical context. These gains are substantial
in dollar terms. And there is suggestive evidence that some of these gains can be realized
with simple changes such as reducing triage processes, and using Bayesian methods to
evaluate innovations.

We stress that our results on Bing should not be taken as externally valid for all contexts.
While it is plausible that these results extend to other similar products, it is quite pos-
sible that the distribution of innovations is different in different contexts. However, the
Bing application illustrates that it is possible to achieve large gains by understanding the
optimal innovation strategy, even in a setting that already uses cutting-edge experimen-
tation techniques. It would be interesting to extend this analysis to other contexts, to try
to increase the speed of innovation, especially in areas of high social value.
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A Proofs

A.1 Notation

Denote the normal cumulative distribution with mean µ and variance σ2 as Φ(·|µ, σ2) and
density as φ(·|µ, σ2). Denote the standard normal cumulative distribution as Φ(·) and
density as φ(·). The density of the signal δ̂i conditional on true quality δi is φ(δ̂i|δi, σ2

i /ni).
Therefore, the likelihood of δi and δ̂i is φ(δ̂i|δi, σ2

i /ni) · gi(δi). The marginal distribution of the
signal δ̂i is

mi(δ̂i, ni) ≡
∫ ∞
−∞

φ

(
δ̂i

∣∣∣ δi, σ2
i

ni

)
· gi(δi) dδi. (A.1)

By Bayes’ rule, the posterior density of δi given signal δ̂i is

gi(δi|δ̂i, ni) =
φ(δ̂i|δi, σ2

i /n) · gi(δi)
mi(δ̂i, ni)

.

The posterior mean is

Pi(δ̂i, ni) =

∫ ∞
−∞

δi · gi(δi|δ̂i, ni) dδi =

∫
δi · φ(δ̂i|δi, σ2

i /n) · gi(δi) dδi
mi(δ̂i, ni)

. (A.2)

A.2 Basic Results

Lemma A.1 (Regularity Properties). For ni > 0, the marginal density mi(δ̂i, ni) and the poste-
rior mean Pi(δ̂i, ni) are smooth in both variables. The posterior mean strictly increasing in δ̂i, and
there exists a unique threshold signal δ∗i (ni) such that the posterior mean given ni and the signal
equals zero.

Proof. By equation (A.1) and Leibniz’s rule, mi is smooth and strictly positive. Efron’s
equation (2.8) then implies that Pi is smooth. Efron (2011) p. 1604 shows that Pi is trictly
increasing. Because of the strict monotonicity of Pi, to show that there exists a unique
threshold δ∗i (ni), it is sufficient to show that the posterior mean is positive for a sufficiently
large positive signal and negative for a sufficiently large negative signal. Consider the case
of a large positive signal δ̂i > 1. Because gi(0) > 0, there exists δ0 with 0 < δ0 < 1 and
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gi(δ0) > 0. The numerator in the posterior mean formula (A.2) is bounded below by∫ 0

−∞
δi · φ(δ̂i|δi, σ2

i /n) · gi(δi) dδi

+

∫ 1

δ0

δi · φ(δ̂i|δi, σ2
i /n) · gi(δi) dδi

≥φ(δ̂i|0, σ2
i /n) ·

∫ 0

−∞
δi · gi(δi) dδi

+ φ(δ̂i|δ0, σ
2
i /n) ·

∫ 1

δ0

δi · gi(δi) dδi.

The fact that gi(δ0) > 0 implies that the second integral is strictly positive. Moreover, as δ̂
converges to infinity, the ratio

φ(δ̂i|δ0, σ
2
i /n)

φ(δ̂i|0, σ2
i /n)

converges to infinity, so that the posterior mean is positive. The case of a large negative
signal is analogous.

Proof of Proposition 1. The expected payoff of experimentation strategy n and implemen-
tation strategy S is given by equation (1). By the law of iterated expectations,

Π(n, S) = E

(
E

(∑
i∈S

∆i

∣∣∣∣∣ ∆̂
))

= E

(∑
i∈S

Pi(∆̂i, ni)

)
.

This implies that, conditional on the signals, it is optimal to implement all innovations
with strictly positive posterior mean, and not to implement innovations with strictly neg-
ative posterior mean. Moreover, any innovation strategy that does not do so with positive
probability is strictly suboptimal, establishing the proposition.

Proof of Proposition 2. The decomposition of the expected payoff follows from the argu-
ment in the body of the paper. The smoothness of the production function follows from
equation (2) and from the smoothness of the marginal density of the signal and the poste-
rior mean established in lemma A.1.
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A.3 Proof of the Main Theorems

Throughout this section, we omit dependence on the innovation i because the results ap-
ply to the production function for a single innovation. To avoid notational clutter, we use
subscripts to denote the sample size n, as in δ∗n and t∗n. We denote the standard error of the
experiment as σn = σ/

√
n.

We now give a formula for the marginal product, which is used in the proof of the main
theorems.

Lemma A.2 (Marginal Product Formula). The marginal product equals

f ′(n) =
1

2n
·m(δ∗n, n) · Var[∆|∆̂ = δ∗n, n]. (A.3)

Proof. The total value of an innovation combined with data ni equals the expectation of
the value of the innovation times the probability that it is implemented. Moreover, the
innovation is implemented iff the signal is above the optimally selected threshold. There-
fore,

f(n) = max
δ̄

∫
δ · Pr{∆̂ ≥ δ̄|∆ = δ, n} · g(δ) dδ − E[∆]+

= max
δ̄

∫
δ · Φ

(
δ − δ̄
σn

)
· g(δ) dδ − E[∆]+.

And this expression is maximized at δ̄ = δ∗n by Proposition 1. The maximand is a smooth
function of δ̄ and n. Therefore, by the envelope theorem and Leibniz’s rule,

f ′(n) =

∫
δ ·
[
d

dn
Φ

(
δ − δ̄
σn

)]
· g(δ) dδ

∣∣∣∣
δ̄=δ∗n

.

Taking the derivative,

f ′(n) =
1

2
√
n

∫
δ · (δ − δ∗n) · 1

σ
· ϕ
(
δ − δ∗n
σn

)
· g(δ) dδ

=
1

2n
·
∫
δ · (δ − δ∗n) · ϕ

(
δ∗n|δ, σ2

n

)
· g(δ) dδ

=
1

2n
·m(δ∗n, n) ·

∫
δ · (δ − δ∗n) · g(δ|δ∗n, n) dδ.

Writing the integrals as conditional expectations we have

f ′(n) =
1

2n
·m(δ∗n, n) ·

(
E[∆2|∆̂ = δ∗n, n]− δ∗nE[∆|∆̂ = δ∗n, n]

)
.
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The result then follows because E[∆|∆̂ = δ∗n, n] = 0 at the optimal threshold δ∗n.

A.3.1 Proof of Theorem 1

Part 1: Preliminary Results We will use a standard result from Bayesian statistics, known
as Tweedie’s formula, which holds because of the normally distributed experimental noise.
Tweedie’s formula expresses the conditional mean and variance of quality using the marginal
distribution of the signal.

Proposition A.1 (Tweedie’s Formula). The posterior mean and variance of ∆ conditional on a
signal δ̂ and n > 0 are

P (δ̂, n) = δ̂ + σ2
n

d

dδ̂
logm(δ̂, n) (A.4)

and

Var[∆|∆̂ = δ̂, n] = σ2
n + σ4

n ·
d2

dδ̂2
logm(δ̂, n).

Proof. See Efron (2011) p.1604 for a proof and his equation (2.8) for the formulas.

The next lemma allows us to apply Tweedie’s formula to obtain our asymptotic results.

Lemma A.3 (Convergence of the Marginal Distribution of Signals). For large n, the marginal
distribution of signals is approximately equal to the distribution of true quality, and the approxi-
mation holds for all derivatives. Formally, for any k = 0, 1, 2 . . . , as n converges to infinity,

dk

dδ̂k
m(δ̂, n) =

dk

dδ̂k
g(δ̂, n) +O(1/n)

uniformly in δ̂.

Proof. The kth derivative of the marginal distribution of the signal equals

dk

dδ̂k
m(δ̂, n) =

dk

dδ̂k

∫
g(δ) · φ

(
δ̂|δ, σ2

n

)
dδ

=
dk

dδ̂k

∫
g(δ) · 1

σn
φ

(
δ − δ̂
σn

)
dδ.

With the change of variables

u =
δ − δ̂
σn
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we have du = dδ/σn so that

dk

dδ̂k
m(δ̂, n) =

dk

dδ̂k

∫
g(δ̂ + σnu) · φ (u) du.

The integrand and its derivatives with respect to δ̂ are integrable. Thus, we can use Leib-
niz’s rule and differentiate under the integral sign, yielding

dk

dδ̂k
m(δ̂, n) =

∫
dk

dδ̂k
g(δ̂ + σnu) · φ (u) du.

By Taylor’s rule,

dk

dδ̂k
m(δ̂, n) =

∫ [
dk

dδ̂k
g(δ̂) +

dk+1

dδ̂k+1
· g(δ̂)σnu+ h(σnu) · σ

2
nu

2

2

]
· φ (u) du,

where the function h is bounded byH = supδ d
k+2g(δ)/dδk+2. H is finite by the assumption

that the derivatives of g are bounded. Integrating we have

dk

dδ̂k
m(δ̂, n) =

dk

dδ̂k
g(δ̂) +

∫
h(σnu) · σ

2
nu

2

2
· φ (u) du.

The integral is bounded by Hσ2
n/2, yielding the desired approximation.

Substituting this approximation in the Tweedie formulas in Proposition A.1 yields the
following asymptotic versions of the Tweedie formulas. Note that the variance formula is
consistent with the intuition from the Bernstein von-Mises theorem, that the asymptotic
variance of the Bayesian posterior is close to σ2

n, which is the variance of a frequentist
estimator that ignores the prior.

Corollary A.1 (Asymptotic Tweedie’s Formula). Consider δ̂0 with g(δ̂0) > 0. Then, for all δ̂
in a neighborhood of δ̂0, as n converges to infinity,

P (δ̂, n) = δ̂ + σ2
n ·

d

dδ̂
log g(δ̂) +O(1/n2),

and
Var[∆|∆̂ = δ̂, n] = σ2

n +O(1/n2).

These bound hold uniformly in δ̂. In particular,

lim
n→∞

P (δ̂0, n) = δ̂0.



45

Part 2: Completing the Proof

Proof of Theorem 1. Consider δ̂ > 0 with g(δ̂) > 0 and g(−δ̂) > 0. By corollary A.1, P (δ̂, n)

converges to δ̂ > 0 and P (−δ̂, n) converges to −δ̂ < 0. By the monotonicity of P , the limit
of δ∗n must be between −δ̂ and δ̂. Because g(0) > 0, there exist arbitrarily small such δ̂, so
the limit of δ∗n is zero.

The threshold δ∗n satisfies P (δ∗n, n) = 0. Substituting the asymptotic Tweedie formula for
P from Corollary A.1, we get

δ∗n = −σ2
n

d

dδ̂
log g(δ∗n) +O(1/n2)

= −σ2
n ·

g′(0)

g(0)
+O

(
1

n
· δ∗n
)

+O

(
1

n2

)
.

The approximation in the second line follows because g(0) > 0 and the second derivative
of g is bounded. This proves the desired asymptotic formula for t∗n.

For the marginal product, if we substitute the aproximation for the marginal density in
lemma A.3 and for the variance in corollary A.1 into the marginal product formula (A.3),
we obtain

f ′(n) =
1

2n
· g(0) · σ2

n + o

(
1

n
· σ2

n

)
,

implying the desired formula.

A.3.2 Proof of Theorem 2

Throughout this section we assume there is a slowly varying function c(δ) such that34

g(δ) ∼ αc(δ)δ−(1+α) (A.5)

as |δ| → ∞. In words, we will be assuming that the p.d.f. g(δ) is regularly varying at ∞
and −∞ with exponent −(α + 1). We assume the existence of a strictly positive constant
C such that c(δ) > C for |δ| large enough. Finally, we assume that E[∆] ≡M < 0.

Part 1: Integration Formulas and Auxiliary Definitions:

Define
34In a slight abuse of terminology we say that a positive function c(·) is slowly varying if

lim|δ|→∞ c(λδ)/c(δ) → 1 for any λ > 0. Examples include constant functions, logarithmic functions, and
others.
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In(δ, δ, β) ≡
∫ δ

δ

δβg(δ) exp

(
−1

2

(
δ − δ∗n
σn

)2
)
dδ. (A.6)

Both the marginal density and the posterior moments evaluated at the threshold signal δ∗n
can be written in terms of (A.6):

m(δ∗n , n) = (
√

2πσn)−1In(−∞,∞, 0),

E[∆β | ∆̂ = δ∗n;n] = In(−∞,∞, β)/In(−∞,∞, 0).

The definition of the threshold signal implies that In(−∞,∞, 1) = 0. We establish the
asymptotics of the threshold δ∗(n) and the marginal product in a series of claims.

Claim 1: Divergence of the Threshold t-statistic

Claim 1. t∗n ≡ δ∗n/σn →∞.

Proof. We establish the claim using a contradiction argument. Suppose δ∗n/σn 9 ∞. This
implies the existence of a subsequence along which δ∗nk/σnk → C, where either i) −∞ <

C <∞ or ii) C = −∞. In the first case(
δ − δ∗nk
σnk

)2

→ C2, ∀δ.

The integrand in In(−∞,∞, 1) is dominated by the integrable function δg(δ). The Domi-
nated Convergence Theorem thus implies that

Ink(−∞,∞, 1)→
∫ ∞
−∞

δg(δ) exp

(
−C

2

2

)
dδ = M exp

(
−C

2

2

)
< 0,

which contradicts the optimality condition In(−∞,∞, 1) = 0 for all n. Thus, i) cannot
hold.

Suppose ii) holds. Since E[∆] < 0 and

f(nk) =

∫ ∞
−∞

δΦ

(
δ − δ∗nk
σnk

)
g(δ)dδ,

the Dominated Convergence Theorem implies f(nk) → M < 0. This is a contradiction:
one can achieve a higher product by using the implementation strategy that does not
implement any innovation regardless of the signal observed.
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Claim 2: Approximation for the integral near δ∗n

By Claim 1, for any 0 < ε < 1 there exists n small enough such that

σn < Bn(ε) ≡ εδ∗n < δ∗n,

Claim 2. For any power β ≥1 and any 0 < ε < 1:

In(δ∗n −Bn(ε), δ∗n +Bn(ε), β) ∼
√

2πσnδ
∗
n
βg(δ∗n),

∼
√

2πσnαc(δ
∗
n)δ∗n

β−α−1 (A.7)

Proof. Using the change of variables u ≡ δ/δ∗n we can write

In(δ∗n −Bn(ε), δ∗n +Bn(ε), β)

as

(δ∗n)β+1

∫ (1+ε)

(1−ε)
uβg(uδ∗n) exp

(
−1

2
(u− 1)2 t∗n

2

)
du. (A.8)

Define:

I1 ≡
∫ (1+ε)

(1−ε)
uβ(g(uδ∗n)/g(δ∗n)) exp

(
−1

2
(u− 1)2 t∗n

2

)
du,

I2 ≡
∫ (1+ε)

(1−ε)
uβ−α−1 exp

(
−1

2
(u− 1)2 t∗n

2

)
du,

I3 ≡
∫ (1+ε)

(1−ε)
uβ exp

(
−1

2
(u− 1)2 t∗n

2

)
du.

Laplace’s method (Small (2010), Proposition 2, p. 196) implies that:

I2 ∼
√

2π/t∗n ∼ I3

as t∗n →∞. Since g is bounded, Theorem A.5, Appendix A of Whitt (2002) implies that for
0 < ε < 1,

g(uδ∗n)/g(δ∗n)→ u−(1+α)

uniformly over u ∈ [1 − ε, 1 + ε]. Therefore, for any ζ > 0 there exists n(ζ) small enough
below which

I2 − ζI3 ≤ I1 ≤ I2 + ζI3.
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Since ζ is arbitrary we conclude that

I1 ∼
√

2π/t∗n =
√

2πσn/δ
∗
n.

Equation (A.8) implies that

In(δ∗n −Bn(ε), δ∗n +Bn(ε), β) = (δ∗n)β+1g(δ∗n)I1.

Therefore:

In(δ∗n −Bn(ε), δ∗n +Bn(ε), β) ∼
√

2πσnδ
∗
n
βg(δ∗n) ∼

√
2πσnαc(δ

∗
n)δ∗n

β−α−1.

Claim 3: Upper bound on δ∗n

Claim 3.
δ∗n ≤ (1 + o(1))

√
2(α− 1) log σnσn.

Proof. Take 0 < ε < 1. The optimality condition In(−∞,∞, 1) = 0 implies that

In(−∞, 0, 1) + In((1− ε)δ∗n, (1 + ε)δ∗n, 1) ≤ In(−∞,∞, 1) = 0. (A.9)

The first term in the equation above is bounded from below:

In(−∞, 0, 1) >

∫ 0

−∞
δg(δ) exp

(
−1

2
t∗n

2

)
dδ = −D exp

(
−1

2
t∗n

2

)
,

where D ≡
∫ 0

−∞ |δ|g(δ)dδ is finite and nonzero by assumption. Claim 2 and equation (A.9)
imply that

(1 + o(1))
√

2πσnαc(δ
∗
n)δ∗n

−α ≤ D exp

(
−1

2
t∗n

2

)
,

which we can write as

(1 + o(1))
√

2πσ1−α
n αc(δ∗n)t∗n

−α ≤ D exp

(
−1

2
t∗n

2

)
.

Taking logarithms on both sides and dividing by −(1/2)t∗n
2 implies

2(α− 1) log σn
t∗n

2
− 2 log(c(δ∗n))

t∗n
2

≥ 1 + o(1).
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By assumption c(δ∗n) is bounded from below by a constant C > 0. Hence

2(α− 1) log σn
t∗n

2
≥ 1 + o(1),

which implies that:
(1 + o(1))

√
2(α− 1) log σnσn ≥ δ∗n.

Claim 4: Integral around 0 for 1 ≤ β < α

For γ ∈ (0, 1) define

An(γ) ≡
(
σ2
n

δ∗n

)γ
.

Claim 1 implies An(γ) ∈ o(σn) and An(γ) < δ∗n for n small enough. Claim 3 implies
An(γ) → ∞ and An(γ) ∈ o(σ2

n/δ
∗
n). In the remaining part of this appendix we will often

use An instead of An(γ), for the sake of notational simplicity.

We split the integral In into different regions. Most of the value of the integral comes
from two regions: δ ∈ [−An(γ) , An(γ)] (where g is large and the exponential is small) and
δn ∈ [δ∗n −Bn(ε) , δ∗n +Bn(ε)] (where g is small and the exponential is large).

Claim 4. For any integer β such that 1 ≤ β < α, E[∆β] 6= 0; and any 0 < γ < 1,

In(−An(γ), An(γ), β) ∼ E[∆β] exp

{
−1

2
t∗n

2

}
.

Proof. The difference

In(−An, An, β)− E[∆β] exp

(
−1

2
t∗n

2

)
can be decomposed as∫ An

−An
δβg(δ) ·

[
exp

{
−1

2

(
δ − δ∗n
σn

)2
}
− exp

{
−1

2

(
δ∗n
σn

)2
}]

dδ

+

[∫ An

−An
δβg(δ)dδ −

∫ ∞
−∞

δβg(δ)dδ

]
· exp

{
−1

2

(
δ∗n
σn

)2
}

(A.10)

The first term in equation (A.10) is smaller than

E[|∆|β]

[
exp

{
An ·

δ∗n
σ2
n

}
− 1

]
· exp

{
−1

2
t∗n

2

}
.
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By construction An ∈ o(σ2
n/δ

∗
n), implying the term above is o

(
exp(−(1/2)t∗n

2)
)
. The second

term equals

−
[∫ −An
−∞

δβg(δ)dδ +

∫ ∞
An

δβg(δ)dδ

]
· exp

{
−1

2

(
δ∗n
σn

)2
}
.

Since β < α, Karamata’s integral theorem (Theorem 1a p. 281 in Feller (1967)) implies the
second term equals

−(1 + o(1))

[
α

α− β
c(An)Aβ−αn + (−1)β

α

α− β
c(−An)Aβ−αn

]
· exp

{
−1

2
t∗n

2

}
.

Since any slowly varying function is such that |δ|−ηc(|δ|)→ 0 for all η > 0 (see equation 2
in Karamata (1962)), then

In(−An, An, β)− E[∆β] exp

(
−1

2
t∗n

2

)
= o

(
exp

{
−1

2
t∗n

2

})
.

Since E[∆β] 6= 0, the result follows.

Claim 5: Integral around 0 for arbitrary β

Claim 5. For any integer β ≥ 1 and any 0 < γ < 1,

In(−An(γ) , An(γ), β) ∈ O
(
Aβ−1
n exp

{
−1

2
t∗n

2

})
.

Proof. |In(−An, An, β)| is bounded by∫ An

−An
|δ|βg(δ) exp

{
−1

2

(
δ − δ∗n
σ2
n

)2
}
dδ

≤ Aβ−1
n

∫ An

−An
|δ|g(δ) exp

{
−1

2

(
δ − δ∗n
σ2
n

)2
}
dδ

= Aβ−1
n (1 + o(1))E[|∆|] exp

{
−1

2
t∗n

2

}
,

where the last line follows from an argument identical to the proof of Claim 4.
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Claim 6: Integral below −An

Claim 6. Let 0 < γ < 1. For any α > 1, and any integer β ≥ 1:

In(−∞,−An(γ), β) ∈ o
(
δ∗n
β−1 exp

{
−1

2
t∗n

2

})
.

Proof. |In(−∞,−An, β)| is bounded above by the product of exp
{
−(1/2)t∗n

2
}

and

∫ −An
−∞

|δ|βg(δ) exp

{
δ∗nδ

σ2
n

− 1

2

(
δ

σn

)2
}
dδ. (A.11)

Since δ ≤ 0, equation (A.11) is further bounded by∫ −An
−∞

|δ|g(δ)Hβ(|δ|)dδ, (A.12)

whereHβ(δ) ≡ δβ−1e
−δ2

2σ2n is defined for δ ≥ 0. In this range, the functionHβ(·) is maximized
at δ+

n ≡ (β − 1)1/2σn.
35 The integral in (A.12) can then be bounded by

Hβ(δ+
n )

∫ −An
−∞

|δ|g(δ)dδ (A.13)

where Hβ(δ+
n ) = (β − 1)

β−1
2 e

−(β−1)
2 σn

β−1 = O
(
σn

β−1
)

if β > 1, and H1(δ+
n ) = 1 when β = 1.

By assumption, E[|∆|] < +∞, as a result
∫ −An
−∞ |δ|g(δ)dδ ∈ o(1). Therefore

|In(−∞,−An, β)| ∈ o
(
σn

β−1 exp
{
−(1/2)t∗n

2
})
.

Since σn ∈ o(δ∗n), we conclude that

|In(−∞,−An, β)| ∈ o
(
δ∗n
β−1 exp

{
−(1/2)t∗n

2
})

.

Claim 7: Integral between An and δ∗n −Bn(ε)

Claim 7. Take any α > 1 and β ≥ 1. For any ε, γ ∈ (0, 1) such that γ > 2(1− ε), then

35The derivative of Hβ(·) is given by H ′β(δ) = [(β − 1)− (δ2/σ2
n)]Hβ(δ)/δ.
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In(An(γ), δ∗n −Bn(ε), β) ∈ o
(
δ∗n
β−1 exp

{
−1

2
t∗2n

})
.

Proof. |In(An, δ
∗
n −Bn(ε), β)| equals

exp

{
−1

2
t∗2n

}∫ (1−ε)δ∗n

An

δg(δ)Hβ(δ)dδ,

whereHβ(δ) ≡ δβ−1 exp
(
−δ2
2σ2
n

+ δ∗nδ
σ2
n

)
. Hβ(·) is an increasing function on the interval [An, (1−

ε)δ∗n].36Consequently, |In(An, δ
∗
n−Bn(ε), β)| can be bounded by the product of exp

{
−1

2
t∗2n
}

and

∫ (1−ε)δ∗n

An

δg(δ)Hβ((1− ε)δ∗n)dδ ≤ Hβ((1− ε)δ∗n)Rn,

where Rn ≡
∫∞
An
δg(δ)dδ. Karamata’s integral theorem (Theorem 1a p. 281 in Feller (1967))

implies that
Rn ∼

α

α− 1
A2
ng(An) ∼ α

α− 1
A−(α−1)
n c(An).

Consider 0 < η ≡ (α− 1)/2 < α− 1:

α

α− 1
A−(α−1)
n c(An) =

α

α− 1
A−(α−1)/2
n A−ηn c(An),

=
α

α− 1
A−(α−1)/2
n o(1),

(since for any η > 0, A−ηn c(An)→ 0 as An →∞)

=
α

α− 1
t∗γ(α−1)/2
n

1

σ
γ(α−1)/2
n

o(1),

(by definition of An(γ)).

Therefore,

Rn ∈ o
(
t∗γ(α−1)/2
n

1

σ
γ(α−1)/2
n

)
.

36H ′β(δ) = [−δ2 + δ∗nδ+ (β− 1)σ2
n]Hβ(δ)/(δσ2

n). The sign of the derivative thus depends on the sign of the
quadratic function−δ2 + δ∗nδ + (β − 1)σ2

n, which can be written as −(δ − δ−n )(δ − δ+n ) where

δ±n =
δ∗n
2

(
1±

√
1 + 4(β − 1)σ2

n/δ
∗2
n

)
For nsmall enough, we have δ−n ≤ 0 ≤ An and (1− ε)δ∗n ≤ δ+n ∼ δ∗n.
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The definition of Hβ(·) further implies that

Hβ((1− ε)δ∗n) = (1− ε)β−1δ∗β−1
n exp

(
−(1− ε)2δ∗2n

2σ2
n

+
δ∗n(1− ε)δ∗n

σ2
n

)
,

= (1− ε)β−1δ∗β−1
n exp

(
t∗2n

(
(1− ε)− 1

2
(1− ε)2

))
,

= (1− ε)β−1δ∗β−1
n exp

(
(1− ε)t∗n

2/2
)
.

Claim 3 showed that t∗n
2/2 ≤ (1 + o(1))(α− 1) log σn. Consequently:

Hβ((1− ε)δ∗n) ≤ (1− ε)β−1δ∗β−1
n exp ((1− ε)(1 + o(1))(α− 1) log σn) ,

= (1− ε)β−1δ∗β−1
n σ(1−ε)(α−1)(1+o(1))

n .

Therefore

Hβ((1− ε)δ∗n)Rn = Hβ((1− ε)δ∗n)o

(
t∗γ(α−1)/2
n

1

σ
γ(α−1)/2
n

)
,

and the bound on Hβ((1− ε)δ∗n) implies

Hβ((1− ε)δ∗n)Rn ≤ δ∗β−1
n o

(
t∗γ(α−1)/2
n

1

σ
(γ(α−1)/2)−(1−ε)(α−1)(1+o(1))
n

)
.

Using again the upper bound for t∗n in Claim 3 gives.

Hβ((1− ε)δ∗n)Rn ≤ δ∗β−1
n o

(
log σn

γ(α−1)/2

σ
((α−1)/2)[γ−2(1−ε)(1+o(1))]
n

)
.

Since γ− 2(1− ε) > 0, then γ− 2(1− ε)(1 + o(1)) > 0 for n small enough. We conclude that
Hβ((1− ε)δ∗n)Rn ∈ o(δ∗nβ−1) and therefore

|In(An, δ
∗
n −Bn(ε), β)| ∈ o

(
δ∗β−1
n exp

{
−1

2
t∗2n

})
.

Claim 8: Integral to the right of δ∗n +Bn(ε) is small

Claim 8. For any β < α + 1 and 0 < ε < 1:

In(δ∗n +Bn(ε),∞, β) ∈ o
(
σnδ

∗
n
βg(δ∗n)

)
.
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Proof. Define:

I1 ≡ t∗n

∫ ∞
1+ε

uβ(g(uδ∗n)/g(δ∗n)) exp

(
−1

2
(u− 1)2t∗n

2

)
du,

I2 ≡ t∗n

∫ ∞
1+ε

uβ−(α+1) exp

(
−1

2
(u− 1)2t∗n

2

)
du,

I3 ≡ t∗n

∫ ∞
1+ε

uβ exp

(
−1

2
(u− 1)2t∗n

2

)
du,

I4 ≡ t∗n

∫ ∞
1−ε

uβ exp

(
−1

2
(u− 1)2t∗n

2

)
du.

1. Since β < α + 1

I2 ≤
√

2π (1 + ε)β−(α+1) (1− Φ(εt∗n)),

(by definition of the standard normal c.d.f.)

=
√

2π (1 + ε)β−(α+1) Φ(−εt∗n),

= O

(
exp

(
−1

2
εt∗n

2

))
.

(by equation 26.2.12 in Abramowitz and Stegun (1964))

2. Laplace’s method implies that I4 ∼
√

2π.

3. By assumption, g is bounded. Hence, Theorem A.5, Appendix A of Whitt (2002)
implies that for ε > 0:

(g(uδ∗n)/g(δ∗n)→ u−(1+α)

uniformly over u ∈ [1− ε,∞).

Therefore, for any γ there exists small enough n(γ) below which

I1 ≤ I2 + γI3 ≤ I2 + γI4 = I2 + γ(1 + o(1))
√

2π

Using the change of variables u = δ/δ∗n and the inequality above

0 ≤ In((1 + ε)δ∗n,∞, β)/σnδ
∗
n
βg(δ∗n) = I1

≤ (I2 + γ(1 + o(1))
√

2π)

≤ O

(
exp

(
−1

2
εt∗n

2

))
+ γ(1 + o(1))

√
2π)
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Since this holds for any γ > 0, we conclude that

In((1 + ε)δ∗n,∞, β) ∈ o
(
σnδ

∗
n
βg(δ∗n)

)
.

Part 2: Asymptotics of the Threshold

Lemma A.4. Under the assumptions of Theorem 2

t∗n ≡ δ∗n/σn ∼
√

2(α− 1) log σn.

Proof. Since α > 1, the optimality condition In(−∞,∞, 1) = 0 and Claims 1, 2, 4, 6, 8, and
7 imply that

(1 + o(1)) · (−m) · exp

{
−1

2
t∗n

2

}
=
√

2πσnδ
∗
ng(δ∗n) = (1 + o(1))

√
2πσ1−α

n αc(δ∗n)t∗n
−α.

Taking logs on both sides implies that

o(1) + log(−m)− 1

2
t∗n

2 = log(
√

2πα) + log(c(δ∗n)) + (1− α) log σn − αt∗n,

which implies that for every η > 0

(1 + o(1))
1

2
t∗n

2 = (α− 1− η) log σn − log(c(δ∗n)/δ∗n
η).

Since c(δ∗n)/δ∗n
η → 0 for every η > 0, for any small enough n.

1

2
t∗n

2 ≥ (1 + o(1)) · (α− 1− η) log σn.

We conclude that for any η > 0

liminfn→0
t∗n

2

2(α− 1) log σn
≥ 1− η

α− 1
.

Claim 3 then implies

t∗n
2 ∼ 2(α− 1) log σn.
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Part 3: Asymptotics of the Marginal Product

Lemma A.5. Under the assumptions of Theorem 2

f ’(n) ∼ 1

2n
· g(δ∗n) · δ∗n

2 ∼ 1

2n
· αc(δ∗n) · (δ∗n)−(α−1)

Proof. The proof has 3 steps.

STEP 1: Lemma A.4 implies that:

exp

{
−1

2
t∗n

2

}
∈ O (σnδ

∗
ng(δ∗n)) .

STEP 2: Claims 2, 5, 6, 7, 8 and the fact that An(γ) ∈ o(δ∗n) for any 0 < γ < 1 imply that

I2(−∞,∞, 2) = o(1)δ∗n exp

{
−1

2
t∗n

2

}
+ (1 + o(1))

√
2πσnδ

∗2
n g(δ∗n)

Step 1 and δ∗n →∞ imply that:

I2(−∞,∞, 2) = (1 + o(1))
√

2πσnδ
∗2
n g(δ∗n)

STEP 3: The envelope theorem formula implies that:

f ’(n) =
1

2n

1√
2πσn

In(−∞,∞, 2).

Steps 2 and 3 imply that for any α > 1:

f ’(n) ∼ 1

2n
δ∗2n g(δ∗n) ∼ 1

2n
αc(δ∗n)δ∗n

−(α−1).

Part 4: Completing the Proof

Below we establish the four parts of Theorem 2.

1. Lemma A.4 showed that t∗n
2 ∼ 2(α − 1) log σn. The continuity of the square root

function and the definition of the asymptotic equivalence relation(∼) imply that

t∗n ∼
√

2(α− 1) log σn,
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where σn ≡ σ/
√
n.

2. Lemma A.5 showed that

f ’(n) ∼ 1

2n
δ∗2n g(δ∗n) ∼ 1

2n
αc(δ∗n)δ∗n

−(α−1).

Since t∗n ≡ δ∗n/σn, then

f ’(n) ∼ 1

2n
αc(δ∗n)t∗n

−(α−1)σ−(α−1)
n ,

=
1

2n
αc(δ∗n)(σt∗n)−(α−1)

√
n

(α−1)
,

=
1

2
αc(δ∗n)(σt∗n)−(α−1)n(α−3)/2.

3. Note that

f ′(n) > (1 + o(1))
1

2
αC(σt∗n)−(α−1)n(α−3)/2,

(since we have assumed that c(δ∗n) > C),

= O(1) (log σn)−(α−1)/2n(α−3)/2,

(by Part 1 of Theorem 2),

= O(1)

((
log

(
1

n

))−1(
1

n

)(3−α)/(α−1)
)(α−1)/2

.

The result follows, as for 1 < α < 3

lim
n→0

(
log

(
1

n

))−1(
1

n

)(3−α)/(α−1)

→∞.

4. For any η > 0

f ′(n) = O(1)c(δ∗n)(t∗n)−(α−1)n(α−3)/2,

= O(1)(c(δ∗n)/δ∗n
η)(δ∗n)η(t∗n)−(α−1)n(α−3)/2,

= O(1)(c(δ∗n)/δ∗n
η)(t∗n)−(α−1−η)n(α−3−η)/2.

Since α > 3, there exists η > 0 such that α− 1 > η and α− 3 > η. For any such η :

lim
n→0

(c(δ∗n)/δ∗n
η)(t∗n)−(α−1−η)n(α−3−η)/2 = 0,

as for any slowly varying function c(δ∗n)/δ∗ηn → 0 as δ∗n → ∞ (Lemma 2 in Feller
(1967) p. 277).
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A.4 Additional Proofs

A.4.1 Proof of Remark 1

Suppose that for N large enough, the optimal experimentation strategy is not lean. Then,
it is possible to construct a sequence Nk → ∞ such that, in the optimal experimentation
strategy, an idea i is not experimented on at all, and and idea j is experimented on the
most. The idea that is experimented on the most has at least Nk/I users. So the gain from
taking half the users in idea j and placing them on idea i is at least

fi(Nk/2I) + fj(Nk/2I)− fj(Nk). (A.14)

In the proof of Lemma A.2 the Appendix we showed

fi(n) =

∫ ∞
−∞

δΦ

(
δ − δ∗n
σn

)
gi(δ)dδ.

Part 1 of Theorem 1 showed that δ∗n/σn → 0 as n → ∞. Consequently, fi(n) → fi(∞) ≡
E[∆+

i ] > 0. We conclude that along the sequence Nk the bound on A.14 converges to
fi(∞), reaching a contradiction.

A.4.2 Proof of Corollary 1

Part 1: First we show that if α < 3 it is optimal to run experiments on all ideas (go lean).
The result follows directly from the first order conditions of the firm’s problem.

The firm’s optimal experimentation strategy solves

max
n1,...,nI

I∑
i=1

fi(ni), s.t.
I∑
i=1

ni ≤ N, ni ≥ 0 ∀ i.

The Karush-Kuhn-Tucker (KKT) conditions imply that the optimal experimentation strat-
egy n = (n∗1, . . . , n

∗
I) must satisfy:

fi’(n∗i )− λ+ µi = 0, ∀i,

λ(
I∑
i=1

n∗i − I) = 0, λ ≥ 0.

n∗iµi = 0, µi ≥ 0, ∀i

Suppose that α < 3 and that n is not lean. Any such experimentation strategy must leave
at least some idea i left untested. Without loss of generality suppose that it is the first one.
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This means that the Lagrange Multipliers, which are finite, must satisfy:

f ’1(0)− λ+ µ1 = 0.

This is a contradiction, as Theorem 2 have shown that whenever α < 3, f ’1(0) is infinity.
We conclude that when α < 3 the optimal experimentation strategy must be lean.

Part 2: We now show that if α > 3, it is optimal to concentrate all the experimental re-
sources on only one idea. Suppose this is not the case. Then an optimal experimentation
strategy must have at least two ideas i, j such that ni > 0 and nj > 0. Without loss of
generality, let i = 1 and j = 2. We slightly abuse notation and write n1, n2 instead of n1(N)

and n2(N), unless confusion may arise. We derive a contradiction in two steps.

STEP 1: We use Theorem 2 to show that if an optimal experimentation strategy has n1 >

0, n2 > 0, then

lim
N→0

n1

n2

=
(σ2

1

σ2
2

)α−1
α−3

.

We will use this result to argue that if N is small enough and n1 > 0, n2 > 0, it is optimal
to assign more participants to the idea with the largest experimental noise.

Proof. If it is indeed optimal to A/B test both ideas, then

f ′1(n1)

f ′2(n2)
= 1

(by the first-order conditions). Part 2 of Theorem 2 gives

(1 + o(1))
c(δ∗(n1))

c(δ∗(n2))

(
σ1t
∗(n1)

σ2t∗(n2)

)−(α−1)(
n1

n2

)(α−3)/2

= 1

(since, by assumption, α1 = α2). We have also assumed that c(δ) converges to some
constant c as δ →∞. Consequently, Part 1 of Theorem 2 implies

lim
N→0

σ2
2 ln
(

σ2√
n2

)
σ2

1 ln
(

σ1√
n1

)
(α−1)/2(

n1

n2

)(α−3)/2

= 1. (A.15)

The sequence n1/n2 must be bounded (otherwise, the left hand side of the equation above
will diverge to infinty). An anlogous argument implies that n2/n1 is also bounded.

Take any convergent subsequence of n1/n2. Such a subsequence exists by virtue of the
Bolzano-Weirstrass Theorem. Let η denote its limit. Since n2/n1 is also bounded, then
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η > 0. Algebraic manipulation of equation A.15 implies(
σ2

2

σ2
1

)(α−1)

η(α−3) = 1.

Hence

η =
(σ2

1

σ2
2

)α−1
α−3

.

The subsequence of n1/n2 was taken arbitrarily. Therefore any convergent subsequence
must have the same limit. We conclude that

lim
N→0

n1

n2

=
(σ2

1

σ2
2

)α−1
α−3

.

STEP 2: Assume σ1 ≥ σ2. We will show that

lim
N→0

f1(n1(N) + n2(N))

f1(n1(N)) + f2(n2(N))
> 1. (A.16)

This means that if N is small enough, the experimentation strategy in which n∗1 = n1 +

n2, n
∗
2 = 0 leads to higher output than the strategy in which n1 > 0, n2 > 0. This will

contradict the optimality of the strategy in which idea 1 and 2 are A/B tested.

Proof. Since the limit of both the numerator and the denominator in equation A.16 is zero,
we can use L’Hôpital’s rule and focus on

lim
N→0

df1(n1(N) + n2(N))/dN

d(f1(n1(N)) + f2(n2(N)))/dN
.

Both n1and n2 are differentiable functions of N. Consequently, it is sufficient to show that

lim
N→0

f ′1(n1(N) + n2(N))(n′1(N) + n′2(N))

f ′1(n1(N))n′1(N) + f ′2(n1(N))n′2(N)
> 1.

This inequalty holds if and only if

lim
N→0

f ′1(n1(N) + n2(N))

f ′1(n1(N))
> 1,

sincef ′1(n1(N)) = f ′2(n2(N)) is a necessary condition for optimality.
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In a slight abuse of notation, Theorem 2 implies

f ′1(n1 + n2)

f ′1(n1)
= (1 + o(1))

(
t∗(n1 + n2)

t∗(n1)

)−(α−1)(
1 +

n1

n2

)(α−3)/2

,

= (1 + o(1))

 ln
(

σ1√
n1+n2

)
ln
(

σ1√
n1

)
−(α−1)/2(

1 +
n1

n2

)(α−3)/2

,

= (1 + o(1))

1 +

ln

(
1√

1+n2/n1

)
ln
(

σ1√
n1

)

−(α−1)/2(

1 +
n1

n2

)(α−3)/2

.

And from Step 1

lim
N→0

f ′1(n1(N) + n2(N))

f ′1(n1(N))
=

(
1 +

(σ2
1

σ2
2

)α−1
α−3

)(α−3)/2

,

≥ 2(α−3)/2,

(as σ2
1 ≥ σ2

2)

> 1.

Where the last line is implied by the condition α > 3. Thus, we have shown that moving all
the experimental resources to the idea with a larger experimental noise leads to a higher
output level. This contradicts the optimality of any experimentation strategy in which
n1 > 0 and n2 > 0. Therefore, when N is small the optimal experimentation strategy
when α > 3 must be big (with all the experimental resources concentrated on only one
idea).
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