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2 CNRS, LaBRI, Université de Bordeaux, Talence, France
ralf.klasing@labri.fr

3 Department of Computer Science, Lund University, Lund, Sweden
{christos.levcopoulos,andrzej.lingas}@cs.lth.se

4 Department of Informatics, King’s College London, London, UK
tomasz.radzik@kcl.ac.uk

Abstract. A garden G is populated by n ≥ 1 bamboos b1, b2, ..., bn with
the respective daily growth rates h1 ≥ h2 ≥ · · · ≥ hn. It is assumed that
the initial heights of bamboos are zero. The robotic gardener or sim-
ply a robot maintaining the bamboo garden is attending bamboos and
trimming them to height zero according to some schedule. The Bamboo
Garden Trimming Problem, or simply BGT, is to design a perpetual
schedule of cuts to maintain the elevation of bamboo garden as low as
possible. The bamboo garden is a metaphor for a collection of machines
which have to be serviced with different frequencies, by a robot which
can service only one machine during a visit. The objective is to design a
perpetual schedule of servicing the machines which minimizes the maxi-
mum (weighted) waiting time for servicing.

We consider two variants of BGT. In discrete BGT the robot is allowed
to trim only one bamboo at the end of each day. In continuous BGT the
bamboos can be cut at any time, however, the robot needs time to move
from one bamboo to the next one and this time is defined by a weighted
network of connections.

For discrete BGT, we show a simple 4-approximation algorithm and,
by exploiting relationship between BGT and the classical Pinwheel
scheduling problem, we obtain also a 2-approximation and even a closer
approximation for more balanced growth rates. For continuous BGT, we
propose approximation algorithms which achieve approximation ratios
O(log(h1/hn)) and O(log n).
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1 Introduction

In this paper we consider a perpetual scheduling problem in which a collection
of (possibly virtual) machines need to be attended with very often known but
possibly different frequencies, i.e., some machines need to be attended more often
than others. We model such scheduling problems as Bamboo Garden Trimming
(BGT) Problem. A collection (garden) G of n bamboos b1, b2, . . . , bn with
known respective daily growth rates h1 ≥ h2 ≥ · · · ≥ hn > 0 is given. Initially
the height of each bamboo is set to zero. The robotic gardener maintaining the
garden trims bamboos to height zero according to some schedule. The height of
a bamboo bi after t ≥ 0 days is equal to (t− t′)hi, where t′ is the last time when
this bamboo was trimmed, or t′ = 0, if it has never been trimmed by time t.
The main task in BGT is to design a perpetual schedule of cuts to keep the
highest bamboo in the garden as low as possible, while complying with some
specified constraints on the timing of cutting. The basic constraints considered
in this paper are that the gardener can cut only one (arbitrary) bamboo at the
end of each day and is not allowed to attend the garden at any other times.
Once the gardener has decided which bamboo to trim in the current round
(at the end of the current day), the action of actual trimming is instantaneous.
The problem, while of inherent combinatorial interest, originates from perpetual
testing of virtual machines in cloud systems [1]. In such systems frequency in
which virtual machines are tested for undesirable symptoms vary depending on
importance of dedicated cloud operational mechanisms.

BGT is also a natural extension of several classical algorithmic problems with
the focus on monitoring and mobility, including the Art Gallery Problem [17] and
its dynamic extension called the k-Watchmen Problem [20]. In a more recent
work on fence patrolling [9,10] the studies focus on monitoring vital (possibly
disconnected) parts of a linear environment where each point is expected to be
attended with the same frequency. The authors of [11] study monitoring linear
environments by robots prone to faults. Our paper focuses on the case where
each vital part of the environment has its own, possibly unique urgency factor,
which makes it related to periodic scheduling [19], a series of papers on the
Pinwheel problems [6,7,13] including the periodic Pinwheel problem [14,16] and
the Pinwheel scheduling problem [18], as well as the concept of P-fairness in
sharing multiple copies of some resource among various tasks [2,3].

We consider two variants of the BGT problem. The constraints that only
one bamboo is cut at the end of each day define discrete BGT. In the second
variant, continuous BGT, we assume that for any two bamboos bi and bj , we
know the time ti,j > 0 that the robot needs to relocate from bi to bj . In this
variant the time when the next bamboo is trimmed depends on how far that
bamboo is from the bamboo which has just been trimmed. As in discrete BGT,
when the robot arrives at the bamboo which is to be trimmed, the actual action
of trimming is instantaneous. We assume that the travel times are symmetric,
that is, ti,j = tj,i, and can be fractional. Previous work on problems of similar
nature as the continuous BGT includes recent work on patrolling [9–11,15].
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In related research on minimizing the maximum occupancy of a buffer in
a system of n buffers, the usual setting is a game between the player and the
adversary [4,5,8]. The adversary decides how the fixed total increase of data in
each round is distributed among the buffers and tries to maximize the maximum
occupancy of a buffer. The player decides which buffer (or buffers, depending on
the variant of the problem) should be emptied next and tries to minimize the
maximum buffer size. The upper bounds developed in this more general context
can be translated into upper bounds for our BGT problems, but our aim is to
derive tighter bounds for the case when the rates of growth of bamboos are fixed
and known.

Probably the most natural strategy to keep the elevation of the bamboo
garden low is the greedy approach of always cutting next the highest bamboo.
This approach, called Reduce-Max, was considered recently in the context of
periodic testing of virtual machines in cloud systems [1], and was also studied
in the adversarial setting of the buffer minimization problems mentioned above.
The results presented in [5] imply a tight bound of H(Hn−1 + 1) = Θ(H log n)
on the performance of Reduce-Max for discrete BGT when the adversary keeps
changing the growth rates of bamboos, where H is the sum of the daily growth
rates (the adversary cannot change this sum) and Hk =

∑k
i=1

1
k = Θ(log k) is

the k-th harmonic number. While the O(H log n) upper bound applies obviously
also to our setting of the discrete BGT, when the growth rates are fixed, it is
not clear whether there are instances which force Reduce-Max to leave bamboos
of height Ω(H log n). On the contrary, the experimental work presented in [1]
indicates possibility that Reduce-Max keeps the maximum bamboo height within
O(H). The upper bound of O(H log n) on Reduce-Max for discrete BGT implies
an O(DH log n) upper bound on the same approach for continuous BGT, where
D is the diameter of the set of bamboos (the largest travel time between any
pair of bamboos), but again this upper bound from the adversarial setting does
not help us in analyzing how well we can do for given growth rates.

In both cases, discrete and continuous, we consider algorithms A which for
an input instance I (of the form 〈hi : 1 ≤ i ≤ n〉 in the discrete case and
[〈hi : 1 ≤ i ≤ n〉, 〈ti,j : 1 ≤ i, j ≤ n〉] in the continuous case) produce a perpetual
(trimming) schedule A(I), that is, a sequence of indices of bamboos (i1, i2, . . .)
which defines the order in which the bamboos are trimmed. We are mainly
interested in the approximation ratios of such algorithms, which are defined in
the usual way. For an input instance I and a trimming schedule S for I, let
MH(S) denote the supremum of the heights of bamboos over all times t ≥ 0
when the trimming proceeds according to schedule S, and let OPT(I) denote
the infimum of MH(S) over all schedules S for I. The upper bounds on Reduce-
Max imply that OPT(I) is finite. The approximation ratio of a schedule S is
defined as MH(S)/OPT(I) and the approximation ratio of an algorithm A is
the supremum of MH(A(I))/OPT(I) over all input instances I. While our main
goal is a low approximation ratio, we are also interested in the time complexity
of BGT algorithms and try to keep low both the time of any preprocessing and
the time needed to compute the index of the next bamboo in the schedule.
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For each instance of discrete BGT with the sum of the growth rates H =
h1 +h2 + · · ·+hn, OPT(I) ≥ H, as shown below. Thus the approximation ratio
of Reduce-Max is O(log n) but it remains an open questions whether this upper
bound is tight. In Sect. 2, we show that a simple modification of Reduce-Max has
the approximation ratio at most 4. We also show more complicated algorithms,
which are based on the relation between discrete BGT and the Pinwheel problem
and have approximation ratios of 2, for any growth rate sequence, and (1 + δ),
for a constant 0 < δ < 1 and “balanced” growth rate sequences.

In Sect. 3, we show algorithms for continuous BGT with approximation ratios
O(log(h1/hn)) and O(log n). In the full version of our paper, we show also some
hard instances of the continuous BGT problem such that for any schedule the
maximum bamboo height is greater than our lower bounds by a Θ(log n) factor.
Thus for these input instances our O(log n)-approximation algorithm computes
in fact constant-approximation schedules. We also leave to the full version of the
paper a O(1)-approximation algorithm for continuous BGT for the case when
h1 = Θ(H).

Lower Bound on Discrete BGT. We note a natural lower bound of H =
h1 + h2 + · · · + hn on the maximum height of a bamboo in the discrete
BGT problem. Thus neither Reduce-Max nor any other algorithm for the
discrete BGT problem can keep the bamboos within the height H, that is,
max{MH(A(I)) : sum of growth rates in I is H}/H is an upper bound on the
approximation ratio of an algorithm A. This bound can be proved by contra-
diction. Assume there exists a perpetual schedule that keeps the heights of all
bamboos below HMAX < H. During each day the total height T of the bam-
boos, that is, the sum of the current heights of all bamboos, increases at least
by H − HMAX > 0. Thus after �nHMAX/(H − HMAX)� + 1 days the height of
at least one bamboo is greater than HMAX – a contradiction. A similar lower
bound argument can be obtained via density restrictions in Pinwheel problem,
discussed later in Sect. 2.2.

2 Discrete BGT

We consider two types of algorithms for the discrete variant of BGT. An online
algorithm is based on simple queries of type “what is the tallest bamboo?” (as
in Reduce-Max), or “what is the fastest growing bamboo with the height above
some threshold?” (as below in Reduce-Fastest). Such queries can be answered
without knowing the whole distribution of growth rates. Online scheduling is
more flexible since its performance can adapt, if the growth rates change. On
the downside, the performance analysis of online scheduling is more complex and
the approximation bounds tend to be weaker. In contrast, an offline algorithm
determines which bamboo is to be trimmed during a particular round by produc-
ing, based on the knowledge of the whole distribution of growth rates, the full
perpetual schedule during preprocessing. This reduces the flexibility of the solu-
tion, but leads to stronger approximation bounds. We note that our online-offline
characterization is to indicate only a general nature of possible BGT algorithms.



Bamboo Garden Trimming Problem 233

2.1 Constant Approximation of BGT by Online Scheduling

We obtain our first constant-approximation algorithm by the following simple
modification of Reduce-Max. We cut next the fastest growing bamboo among
those with the current heights at least x · H, for some constant x > 1. We call
this algorithm Reduce-Fastest(x) and show the following approximation bound.

Theorem 1. Reduce-Fastest(2) is a 4-approximation algorithm for discrete
BGT.

Proof. Without loss of generality, we assume that if there are two or more
bamboos with the same fastest growth rate among the bamboos with the cur-
rent height at least x · H, then Reduce-Fastest chooses for trimming the bam-
boo with the smallest index. Thus the largest height of bamboo b1 is at most
xH + h1 ≤ (x + 1)H.

We consider now a bamboo bi, for some arbitrary 2 ≤ i ≤ n, and assume that
it reaches the height at least C ·H for some constant C ≥ x+1. At any time the
heights of bamboos belong to two disjoint regions: the lower region [0, x ·H) and
the upper region [x · H,∞). At some point bamboo bi must stay in the upper
region for at least � (C−x)·H

hi
� consecutive rounds to reach the height C · H.

We consider a period of t = � (C−x)·H
hi

� consecutive rounds when bamboo bi

remains in the upper region. At each of these rounds, trimming of bamboo bi

“is blocked” by trimming of another bamboo bj for some j < i. The number
of times when bamboo bj can block bamboo bi during this period is at most
tj = 1 + � t

fj
�, where fj = 	x·H

hj

 is the number of rounds needed by bamboo bj

to climb back to the upper region after trimming. Thus the number of rounds
when bamboo bi is blocked is at most

i−1∑

j=1

tj =
i−1∑

j=1

(

1 +

⌊
� (C−x)H

hi
�

	xH
hj




⌋)

≤
⌊

(C − x) · H

hi

⌋
⎛

⎝ i − 1

� (C−x)·H
hi

�
+

i−1∑

j=1

1
	x·H

hj



⎞

⎠

Using hi ≤ H/i and
∑i−1

j=1 hj < H, we obtain

i − 1

� (C−x)·H
hi

�
+

i−1∑

j=1

1
	x·H

hj

 <

1
C − x

+
1
x

.

Bamboo bi is blocked in all � (C−x)·H
hi

� rounds, so

i−1∑

j=1

tj ≥
⌊

(C − x) · H

hi

⌋

,

implying that
1

C − x
+

1
x

> 1.

The above inequality is equivalent to C < 2 + (x − 1) + 1/(x − 1). This
bound is minimized for x = 2, giving C < 4. Thus the approximation ratio
of Reduce-Fastest(2) is at most 4. ��
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2.2 Offline Scheduling

In this section we focus on off-line scheduling which permits tighter approx-
imation results. We recall first classical Pinwheel scheduling problem which is
closely related to BGT. This is followed by the presentation of a 2-approximation
algorithm for any distribution of the growth rates and a (1 + δ)-approximation
algorithm for instances with more balanced growth rates in BGT.

Pinwheel. The Pinwheel problem [13] is defined as follows. Given a set V =
f1, f2, . . . , fn of positive integers called Pinwheel frequencies. One is asked to
create an infinite sequence S of indices drawn from the set 1, 2, . . . , n, s.t., any
sub-sequence of fi ∈ V consecutive elements in S includes at least one index
i. The density of set V is defined as D =

∑n
i=1

1
fi

. It has been coined in [13]
that Pinwheel is NP-hard assuming succinct representation of the problem. It is
also known [13] that all instances of Pinwheel with the density exceeding value
1 cannot be scheduled. On the other hand any instance of Pinwheel with the
density at most 3

4 can be scheduled, however, finding such a schedule may require
a substantial time [12].

In order to determine the relationship between BGT and Pinwheel problems
we show first how to relate the daily growth rates in BGT with the frequencies in
Pinwheel. We define the set of frequencies fi = H/hi, for i = 1, 2, . . . , n, which
form a pseudo-instance of Pinwheel with frequencies as real numbers (rather
than integers) and with the density

D =
n∑

i=1

1
fi

=
n∑

i=1

hi

H
= 1.

Note that one can replace H by H ′ = (1 + δ)H, for any δ > 0 to reduce the
density of the respective pseudo-instance to

D′ =
n∑

i=1

1
f ′

i

=
n∑

i=1

hi

(1 + δ)H
=

1
(1 + δ)

n∑

i=1

1
fi

=
1

(1 + δ)
D.

In other words, by manipulating δ one can obtain another pseudo-instance I ′(δ)
of Pinwheel with the density 1

(1+δ) lower than one. For example, by adopting
δ = 1

3 one can obtain a pseudo-instance I ′( 1
3 ) of Pinwheel with the density 3

4 .
Furthermore, having a pseudo-instance I ′(δ) with sufficiently low density

1
(1+δ) , for δ > 0, enables replacement of non-integral frequencies by their floors
to create a proper instance I(δ) of Pinwheel with the density below one.

Lemma 1. A solution (if feasible) to the proper instance I(δ) of Pinwheel results
in a (1 + δ)-approximation schedule for the original BGT problem.

Proof. In I(δ) the frequence fi ≤ H(1+δ)
hi

is an upper bound on the number of
rounds between two consecutive visits to bi in BGT. And since the height of bi

is limited to hi · fi we get the upper bound H(1 + δ) on the height of each bi. ��
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A 2-approximation algorithm. According to Lemma 1 the main challenge in
BGT, i.e., keeping all bamboos as low as possible can be reduced to finding the
smallest value of δ for which the relevant proper instance of Pinwheel problem
can be scheduled. The main idea behind our solution refers to the result from [13]
indicating that any instance of Pinwheel with frequencies being powers of 2 and
the density at most 1 can be scheduled efficiently. By adopting H ′ = 2H one
can first translate any instance of BGT to a pseudo-instance of Pinwheel with
the density 1

2 , and later by reducing each frequency to the nearest power of 2
produce a proper instance of Pinwheel with the density at most 1.

Corollary 1. The algorithm described above provides a 2-approximation for the
BGT problem.

A (1 + δ)-approximation algorithm for more balanced growth rates. In
search for more tight approximation one cannot reduce frequencies to just the
closest power of 2. Instead, to obtain greater granularity we start with reduction
of frequencies (in the respective pseudo-instance of Pinwheel) to the closest val-
ues of the form 2k(1 + j

C ), where C = 2a, for some integer constant a ≥ 0, and
j ∈ [0, C). We make the following two observations.

Observation 1. Any two frequencies of the form 2k(1 + j
C ) can be combined

via their equidistant superposition into a shorter frequency 2k−1(1 + j
C ). For

example, for k = 4, C = 4 and j = 3 we obtain two frequencies f1, f2 of size
2k(1 + j

C ) = 24(1 + 3
4 ) = 28 which can be combined into a shorter frequency

2k−1(1+ j
C ) = 23(1+ 3

4 ) = 14 by alternating f1 and f2 in a round robin fashion.

Observation 2. One can combine mj = C + j frequencies 2k(1 + j
C ) into one

frequency 2k/C which is also a power of 2, since 2k(1 + j
C )/mj = 2k/C.

We say that an instance of BGT is α-balanced, if h1 ≤ α · H, for some
constant α < 1.

The Main Algorithm. Given an α-balanced instance of BGT with growth
rates h1, h2, . . . , hn.

1. Adopt H ′ = (1 + δ)H, and form the respective pseudo-instance of Pinwheel
with the frequencies f1, f2, . . . , fn > 2min, for the largest possible integer
min, and the density 1

1+δ .
2. Reduce each frequency fi to the closest value of the form 2k(1+ j

C ), for some
k ≥ min and j ∈ [0, C).
[This increases the density by a factor of 1 + 1

C to the value (1 + 1
C )/

(1 + δ).]
3. Use Observation 1 for as long as possible to combine pairs of the same fre-

quencies pushing them down towards the range [2min, 2min+1).
[On the conclusion of this step there is at most one frequency 2k(1 + j

C ),
for k > min and j ∈ [0, C).]

4. Apply the transformation from Observation 2 in the range [2min, 2min+1)
until there are at most C + j −1 frequencies 2k(1+ j

C ) left, for any j ∈ (0, C).
[After this step, there are at most C+j−1 frequencies in each group j in
the range [2min, 2min+1).]
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5. In each range reduce all remaining frequencies (different to powers of two)
group by group starting from the top group j = C − 1 and apply the trans-
formation from Observation 2 whenever possible.
[Wegain an extra density ΔD.Wemust ensure that

1+ 1
C

1+δ +ΔD≤1. This can
be done by the appropriate selection of parameters C and δ, see below.]

The following theorem about the approximation of the above algorithm is
proven in the full version of the paper.

Theorem 2. For any δ > 0, the Main Algorithm produces (1+δ)-approximation
BGT schedules for α-balance instances, if α ≤ δ2(1+δ)

(2+δ)2
.

3 Continuous BGT

We consider now the continuous variant of the BGT problem. Since this variant
models scenarios when bamboos are spread over some geographical area, we will
now refer not only to bamboos b1, b2, . . . , bn but also to the points v1, v2, . . . , vn

(in the implicit underlying space) where these bamboos are located. We will
denote by V the set of these points.

Recall that input I for the continuous BGT problem consists of the rates
of growth of bamboos (hi : 1 ≤ i ≤ n) and the travel times between bamboos
(ti,j : 1 ≤ i, j ≤ n). We assume that h1 ≥ h2 ≥ . . . ≥ hn, as before, and
normalize these rates, for convenience, so that h1 + h2 + . . . + hn = 1 (this is
done without loss of generality, since the exact unit of the heights of bamboos
is irrelevant). We assume that the travel distances are symmetric and form a
metric on V . (In the scenarios which we model, if ti,j was greater than ti,k + tk,j ,
then the robot would travel between points vi and vj via the point vk.)

For any V ′ ⊆ V , the minimum growth rate among all points in V ′ is denoted
by hmin(V ′), and the maximum growth rate among all points in V ′ is denoted
by hmax(V ′). Let hmin = hmin(V ) = hn, and hmax = hmax(V ) = h1.

The diameter of the set V is denoted by D = D(V ) = max{ti,j : 1 ≤
i, j ≤ n}. For any V ′ ⊆ V , MST(V ′) denotes the minimum weight of a Steiner
tree on V ′. Recall that for an algorithm A and input I, MH(A(I)) denotes the
maximum height that any bamboo ever reaches, if trimming is done according
to the schedule computed by A, and OPT(I) is the optimal (minimal) maximum
height of a bamboo over all schedules.

3.1 Lower Bounds

We first show some simple lower bounds on the maximum height of a bamboo.
For notational brevity, we omit the explicit reference to the input I. For example,
the inequality MH(A) ≥ Dhmax in the lemma below is to be understood as
MH(A(I)) ≥ D(V (I)) · hmax(V (I)), for each input instance I.

Lemma 2. MH(A) ≥ Dhmax, for any algorithm A.
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Algorithm 1. An O(hmax/hmin)-approximation algorithm for continuous BGT.

1. Calculate a minimum spanning tree T of the point set V .
2. Repeatedly perform an Euler-tour traversal of T .

Proof. The robot must visit another point x in V at distance at least D/2 from
v1. When the robot comes back to v1 after visiting x (possibly via a number of
points in V ), the bamboo at v1 has grown at least to the height of Dh1. ��
Lemma 3. MH(A) = Ω(hmin(V ′)·MST(V ′)), for any algorithm A and V ′ ⊆ V .

Proof. Let v be the point in V ′ visited last: all points in V ′\{v} have been visited
at least once before the first visit to v. The distance traveled until the first visit
to v is at least MST(V ′), so the bamboo at v has grown to the height at least
hv · MST(V ′). ��

3.2 Approximation Algorithms

We describe our Algorithms 1, 2 and 3 for the continuous BGT problem in
pseudocode and give their approximation ratio in the theorems below.

Theorem 3. Algorithm 1 is an O(hmax/hmin)-approximation algorithm for the
continuous BGT problem.

Proof. Let A1 denote Algorithm 1. Every point vi ∈ V is visited by A1 at least
every 2 · MST(V ) time units. Hence,

MH(A1) = O(hmax(V ) · MST(V )). (1)

According to Lemma 3,

OPT = Ω(hmin(V ) · MST(V )). (2)

Combining the two bounds (1) and (2), it follows that Algorithm 1 is an
O(hmax/hmin)-approximation algorithm for BGT. ��
Theorem 4. Algorithm 2 is an O(log(hmax/hmin))-approximation algorithm for
the continuous BGT problem.

Proof. Consider any point v ∈ Vi, for any i ∈ {1, 2, . . . , s}. The distance traveled
between two consecutive visits to v is at most

O

(

D · log
(

hmax

hmin

)

·
⌈
MST(Vi)

D

⌉)

= O

(

log
(

hmax

hmin

)

· max{D,MST(Vi)}
)

.

Hence, the height of the bamboo at v is never larger than

O

(

hmax(Vi) · log
(

hmax

hmin

)

· max{D,MST(Vi)}
)

. (3)
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Algorithm 2. An O(log(hmax/hmin))-approximation algorithm for continuous BGT.

1. Let s = �log2(hmax/hmin)�.
2. For i ∈ {1, 2 . . . , s}, let Vi = {vj ∈ V | 2i−1 · hmin ≤ hj < 2i · hmin}, let Ti be an

O(1)-approximation of the minimum Steiner tree on Vi, and let Ci be an Euler-tour
traversal of Ti.

3. For i ∈ {2, . . . , s}, define an arbitrary point on Ci as the last visited point on Ci.
4. Start at an arbitrary point on C1.
5. repeat forever
6. for i = 1 to s − 1 do
7. Walk distance D on Ci in clockwise direction.
8. Walk to the last visited point on Ci+1.
9. for i = s to 2 do

10. Walk distance D on Ci in clockwise direction.
11. Walk to the last visited point on Ci−1.

On the other hand, using Lemmas 2 and 3, we obtain

OPT = Ω(hmin(Vi) · max{D,MST(Vi)}). (4)

Combining the two bounds (3) and (4), and observing that hmax(Vi) ≤ 2 ·
hmin(Vi), we see that Algorithm 2 is an O(log(hmax/hmin))-approximation algo-
rithm for BGT. ��
Theorem 5. Algorithm 3 is an O(log n)-approximation algorithm for the con-
tinuous BGT problem.

Proof. Consider any point v ∈ Vi, for any i ∈ {1, 2, . . . , s}. Then, the distance
traveled between two consecutive visits of v is at most

O(D · log n ·
⌈
MST(Vi)

D

⌉

) = O(log n · max{D,MST(Vi)}).

Hence, the height of the bamboo at v is never larger than

O(hmax(Vi) · log n · max{D,MST(Vi)}). (5)

On the other hand, using Lemmas 2 and 3, we obtain

OPT = Ω(hmin(Vi) · max{D,MST(Vi)}). (6)

Since hmax(Vi) ≤ 2hmin(Vi), then the height of the bamboo at v is always
O(OPT · log n).

Consider a point v ∈ V0. Then, the distance traveled between two consecutive
visits of v is at most

O(|V0| · D · log n) = O(n · D · log n).
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Algorithm 3. An O(log n)-approximation algorithm for continuous BGT.

1. Let s = �2 · log2 n�.
2. Let V0 = {vi ∈ V | hi ≤ n−2}.

For i ∈ {1, 2, . . . , s}, let Vi = {vj ∈ V | 2i−1 · n−2 < hj ≤ 2i · n−2}.
For i ∈ {1, 2, . . . , s}, let Ti be an O(1)-approximation of the minimum Steiner tree
on Vi, and let Ci be an Euler-tour traversal of Ti.

3. For i ∈ {2, 3, . . . , s}, define an arbitrary point on Ci as the last visited point on
Ci. Let V0 = {v′

0, v
′
1, . . . , v

′
�−1}.

4. Start at an arbitrary point on C1.
5. j = 0.
6. repeat forever
7. for i = 1 to s − 1 do
8. Walk distance D on Ci in clockwise direction.
9. Walk to the last visited point on Ci+1.

10. for i = s to 2 do
11. Walk distance D on Ci in clockwise direction.
12. Walk to the last visited point on Ci−1.
13. Walk to v′

j mod � and back.
14. j = j + 1.

Hence, the height of the bamboo at v is never larger than

O(n · hmax(V0) · D · log n) = O(n · n−2 · D · log n) = O(hmax · D · log n). (7)

On the other hand, using Lemma 2, we obtain

OPT = Ω(hmax · D), (8)

so the height of the bamboo at a point in V0 is also always O(OPT · log n). Thus
Algorithm 3 is an O(log n)-approximation algorithm for BGT. ��

4 Open Problems

There are several interesting open questions about approximation algorithms for
the BGT problems, including better understanding of the approximation ratio
of Reduce-Max for discrete BGT. For continuous BGT, we do not know whether
our Algorithm 3 or any other algorithm achieves an approximation ratio o(log n).
There are also questions about efficient implementation of BGT algorithms. For
example, how can we select the highest bamboo in Reduce-Max faster than in
linear time per round, if the growth rates are known to the gardener?
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