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ABSTRACT

As A/B testing gains wider adoption in the industry, more
people begin to realize the limitations of the traditional
frequentist null hypothesis statistical testing (NHST). The
large number of search results for the query “Bayesian A/B
testing” shows just how much the interest in the Bayesian
perspective is growing. In recent years there are also voices
arguing that Bayesian A/B testing should replace frequen-
tist NHST and is strictly superior in all aspects. Our goal
here is to clarify the myth by looking at both advantages and
issues of Bayesian methods. In particular, we propose an ob-
jective Bayesian A/B testing framework for which we hope
to bring the best from Bayesian and frequentist methods
together. Unlike traditional methods, this method requires
the existence of historical A/B test data to objectively learn
a prior. We have successfully applied this method to Bing,
using thousands of experiments to establish the priors.

Category and Subject Descriptors: G.3 [Probability
and Statistics]: Statistical Computing

Keywords: A/B testing, controlled experiments, Bayesian
statistics, prior, objective Bayes, empirical Bayes, multiple
testing, optional stopping

1. INTRODUCTION
The last decade witnessed a strong revival of Bayesian

methods, dating back over 250 years. It also witnessed the
trend of two sample hypothesis testing, a century old fre-
quentist statistical method [32] originally designed for small
data sets, now being applied to terabytes of data collected
online with extremely low cost [19; 33]. The application of
two sample hypothesis testing, often under the alternative
name of A/B testing in the industry, has been established
as a cornerstone for a data-driven decision making culture
[21; 20; 18; 6; 8]. It’s not surprising that there is a grow-
ing interest in applying Bayesian method in A/B testing.
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In fact, a web search of the query “Bayesian A/B testing”
returns millions of results. 1

In those articles or blogs freely accessible from the Inter-
net(also journal publications such as Kruschke [22]), Bay-
esian framework is often pictured as strictly superior to
the traditional frequentist null hypothesis statistical testing
(NHST). Some people even claim that everybody conduct-
ing A/B testing should be taking the Bayesian approach
and the reason that Bayesian method has long been shad-
owed by frequentist method is solely because of the lack of
computational power which is now largely irrelevant with
efficient Markov Chain Monte Carlo (MCMC). In the peer
reviewed statistics literature, the debate between the two
schools also never ended and many great statisticians have
contributed to the discussion and searched for a common
ground where frequentists and Bayesians can make peace
and even join force with synergy [9; 12; 2; 3]. Although
there is a deep philosophical component of the fight be-
tween Bayesian and frequentist, many recent researches have
been taking a pragmatic perspective, showing nice frequen-
tist properties of Bayesian methods and many frequentist
methods have a Bayesian perspective. In particular, regu-
larization methods that are widely used in machine learning
[26], mixed effect model or multi-level modeling [15] and false
discovery rate control [1; 10; 24] all can be seen as examples
of Bayesian-frequentist synergy. Many recent works focused
on bringing scientific objectiveness to Bayesian method, so
that it can be accepted as a scientific standard [2; 14; 3; 13].

This paper follows the same line of thinking pursuing ob-
jectiveness of Bayesian A/B testing. We introduce readers
to the Bayesian way of hypothesis testing and explain why
it is indeed a conceptually unified and elegant framework
that avoids many issues its frequentist counterpart faces
such as multiple testing and optional stopping when the
true prior is known or can be learned with enough accu-
racy. The main part of this paper considers an objective
Bayesian two sample hypothesis testing procedure learning
its prior through prior experiments. We also illustrate why
Bayesian approaches made popular online in aforementioned
blogs are often limited or impractical.

The main contribution of this paper is the objective Bay-
esian hypothesis testing framework in Section 3. This frame-
work provides a solution for multiple testing, optional stop-

1For instance, blog posts from www.bayesianwitch.com,
Lyst’s developer blog developers.lyst.com, Evan Miller’s
closed-form formula for posterior probability of a lifted con-
version rate under the Beta-Bernoulli model. Interestingly
but not surprisingly, there are more search results for query
“Bayesian A/B testing” than “Bayesian hypothesis testing”.



ping, power analysis and metric sensitivity analysis. Simu-
lation and empirical results are also presented in Section 4
and 5. We hope this paper can point researchers and prac-
titioners in this big data era to a new direction of objective
Bayesian analysis where it is possible to use historically col-
lected data to avoid the subjectiveness of Bayesian modeling.

We assume readers are familiar with the concepts of null
hypothesis statistical testing in controlled experiments and
familiar with the Bayes Rule. Readers new to these concepts
should refer to references such as Kohavi et al. [21].

2. BAYESIAN ADVANTAGES AND ISSUES
We illustrate Bayesian hypothesis testing using a simple

example from Efron [12] and leave the formulation of Bayes-
ian two sample hypothesis testing for Section 3. A physicist
found out she was going to have twin boys and wanted to
know the chance of the twins being Identical rather than
Fraternal. According to the doctor, past experience favors
Fraternal with the prior odds between these two hypotheses
being

P (identical)

P (fraternal)
=

1/3

2/3
=

1

2
(Prior Odds).

On the other hand, given the observed data that the twins
being twin boys,

P (twin boys|identical)

P (twin boys|fraternal)
=

1/2

1/4
= 2 (Bayes Factor),

where the first equality is based on the belief that boys and
girls have equal probability and the fact that identical twins
must have the same sex while fraternal sexes are result of
two independent fair coin flipping. This ratio represents
the odds of the two hypotheses based on evidence from the
data. The numerator and denominator is the likelihood of
observing the data under the identical twin hypothesis and
the fraternal twin hypothesis, respectively. It is also called
Bayes factor [17].

The last step applies the Bayes Rule by combining the two
pieces of information to get the posterior odds.

Posterior Odds = Prior Odds× Bayes Factor. (1)

In this case the posterior odds is 1/2 × 2 = 1. Therefore a
Bayesian would decide the chance of Identical or Fraternal

to be 50%.
The twins problem has a simple structure. But it cap-

tures the essence of Bayesian Model Comparison or Bayesian
Hypothesis Testing. Under the Bayesian framework, when
trying to guess the true state from two possible states, one
always need two pieces of information: the prior odds and
the likelihood ratio. The former represents prior belief while
the latter represents the evidence manifested through data.

The twins problem also sets an example that a frequen-
tist will likely also agree with the deduction. To see why, the
frequentist and the Bayesian only needs to agree upon the
prior odds. The frequentist might question the source of this
prior experience and learns that the doctor, having observed
birth rate of twins, was giving this prior odds based on his-
torical birth rate. The frequentist might also want to get the
data from which the doctor got his estimate but he would
certainly not fight against the Bayesian because he knows
he can study the accuracy of this procedure given the birth
rate data under the frequentist framework and the result

would likely to be the same if the birth data is large enough.
Following frequentist philosophy, we call this type of Bayes-
ian analysis objective because conclusions (e.g Type-I error,
confidence interval coverage) can be verified by a thought ex-
periment where we can repeat the procedure independently
for many times [2].

There will be peace between Bayesian and frequentist if
all problems are this simple. The prior odds in the twins
problem is an example of genuine prior [12] and the Bayes-
ian/frequentist controversy centers on the use of Bayes rule
in the absence of such prior. Cases like this are not just toy
examples. We will show that with hundreds or thousands of
historical experiments available, just like having birth rate
data as side information, the two sample hypothesis test-
ing problem can be very similar to the twins problem and
it is possible for us to have an objective Bayesian testing
procedure.

Leaving the objectiveness of Bayesian procedure for later
discussion, assuming the genuine prior is known, we now give
a few reasons why a Bayesian procedure conceptually could
be a better alternative than frequentist null hypothesis sta-
tistical testing (NHST). Many issues of frequentist statistics
have been discussed elsewhere, see Murphy [25, Section 6.6].
Straightforward Interpretation and Unified Framework

Frequentist concepts such as p-value and confidence inter-
val are often criticized by their unintuitive definitions. In
our experience, many people, especially engineers and busi-
ness executives often misinterpret p-value as P (H0|Data) —
Bayesian posterior of the null hypothesis. We believe this
reflects the fact that people often find Bayesian posterior a
more natural way of summarizing strength of the statistical
evidence.

Bayesian reasoning is also a unified framework based on
the Bayes rule. All reasoning center around updating prior
into posterior given data. This is in stark contrast to fre-
quentist methods where different problems need to be tack-
led using different methods.
Accumulative Evidence and Optional Stopping

Bayesian methods naturally handle evidence update. It is
straightforward to combine evidence from repeated tests us-
ing belief update, in contrasts to frequentist approaches us-
ing meta-analysis or multiple testing adjustment [7].

As noted in Berger and Bayarri [3] and Berger andWolpert
[4] as the stopping rule principal, Bayesian methods with a
genuine prior automatically support optional stopping, i.e.
the experimenter can choose to stop collecting data once
the posterior evidence is strong enough. Also see Rouder
[27] for related debate in the literature and some simulation
justifications. On the contrary, NHST is incompatible with
optional sampling unless special sequential or group sequen-
tial test procedure is followed.
Multiple Testing

Somewhat related to optional stopping, multiple testing is
another issue in NHST. The root cause of the problem is
connected to the way null hypothesis testing is constructed
to control Type-I error. Multiplicity will inflate the Type-I
error. Traditional frequentist methods struggle to control
FWER (family-wise error rate), e.g. Bonferroni correction,
but typically found the criteria too restrictive. Modern mul-
tiple testing procedure are all based on the notion of false
discovery rate (FDR), which resembles the Bayesian poste-
rior P (H0|Data). See Benjamini and Hochberg [1]; Efron
[10] and Muller et al. [24].



There is no coincidence that FDR resembles Bayesian pos-
terior and many frequentist works in this area borrow ideas
from Bayesian methods. Bayesian reasoning with a genuine
prior automatically adjusts for multiplicity in many cases
[11; 31]. Take the twin’s problem again for illustration, if
we have another 100 or 1,000 twins for whom we need to
test the hypothesis of identical vs. fraternal, assuming no
connection between those twins whatsoever, after getting
the posterior probabilities for each and every one of them,
our job is done. There is no need for multiple testing adjust-
ment because for any given twin, all observations for other
twins should not interfere with reasoning for this given twin.
Accepting the Null

Another issue of frequentist NHST is that it is not consis-
tent in the sense that chance of accepting the null hypothesis
does not converge to 100% with infinite data when the null
is indeed true. To see this, p-value under mild regularization
condition will follow uniform(0,1) distribution under the null
hypothesis no matter how many data are observed. Hence
the Type-I error stays at 5% when 5% is the chosen sig-
nificant size. NHST is just not designed to accept the null
hypothesis.

2.1 Importance of a Genuine Prior
Bayesian methods have many advantages beyond what

we listed above, such as dealing with nuisance parameter,
etc. However, not everyone is a Bayesian. Instead, fre-
quentist NHST is still the dominating standard for scientific
discovery. The main reason is the choice of prior. Typi-
cally, one either choose a prior from a distribution family
that is easier for computation (conjugate prior), or use so-
called “uninformative” priors. First, there is no evidence
that the prior should come from the conjugate family. Sec-
ondly, there is no truly uninformative prior and every prior
carries information. For example, assigning uniform prior to
a parameter gives information of its range, and an improper
uniform prior would suggest this parameter could be very
large and would cause a well-known problem called “Lind-
ley’s paradox” [25]. Jeffery’s prior, another common choice
of uninformative prior, only makes sure the inference won’t
be affected by transformation of the prior. In literature,
almost all Bayesian approaches nowadays chose certain un-
informative prior since computational cost is lower thanks
to procedures like MCMC. However, this is far from saying
that the choice of prior is genuine like in the Twin’s problem.

Why is a genuine prior so important? First it is obvious
that scientific objectiveness is crucial for any method to be
set as a standard. For A/B testing one might be willing to
take a more pragmatic view since after all the ultimate goal
is not to submit the result for the scientific community to
review, and the benefits from using Bayesian approach as
listed above seem to strongly prefer using Bayesian method
without the need of a genuine prior. However, another im-
portant point is that many benefits we listed above relies
on the prior to be a genuine prior, not just any prior. In
fact, optional stopping and multiple testing pose no issue for
Bayesian methods only when the right prior is being used!
One way to see why is to notice that in Bayesian posterior
estimation, assuming uniform prior on a parameter, maxi-
mizing the posterior is mathematically equivalent to maxi-
mizing the likelihood, and the posterior mode is the MLE.
On the other hand, when a non-uniform prior is applied,
the posterior mode can be seen as a smoothed or regular-

ized version of the MLE. From this perspective, knowing
the genuine prior as in the twin’s problem is like applying
the right amount of smoothing such that the estimation is
neither too aggressive nor too conservative. Without know-
ing the right amount of smoothing, we can either be too
aggressive like using uniform prior and therefore falling into
the trap of multiple testing and optional stopping, or be too
conservative.

3. OBJECTIVE BAYESIAN A/B TESTING
In this section we propose an objective Bayesian A/B test-

ing procedure where we try to model and fit the genuine
prior objectively from historical data. Suppose the data we
observed for treatment and control groups are i.i.d. observa-
tions from two distributions with unknown mean τT and τC
respectively. Denote our observations by Yi, i = 1, . . . , NT

and Xi, i = 1, . . . , NC . We want to test the null hypothesis
H0 : τT − τC = 0 against the alternative H1 : τT 6= τC .

Without assuming distributions of X and Y , in A/B test-
ing we normally resort to the central limit theorem and
hence use Wald test which can be seen as large sample ver-
sion of the well-known t-test. The test statistic is

Z :=
X − Y√

σ2

T
/NT + σ2

C
/NC

=
∆√

σ2

T
/NT + σ2

C
/NC

,

where σC and σT are variances of X and Y . The variances
are also unknown but in large sample scenario we can assume
they are known and use their estimates. This is because
the test is already using asymptotic normal approximation.
Note that metrics are often in different scales. We first de-
fine NE = 1/(1/NT + 1/NC) to be the effective sample

size. And then let σ2 be the pooled variance such that
σ2/NE = σ2

T /NT + σ2

C/NC . With δ = ∆/σ, Z-statistics can
be rewritten as

Z =
δ√

σ2/NE

. (2)

δ is ∆ scaled by pooled standard deviation and is called the
effect size. Finally, define

µ := E(δ) = E(∆)/σ = (τT − τC)/σ (3)

is the average treatment effect scaled by σ. When σ is
known, inference on τT − τC and µ are equivalent. In Bay-
esian analysis it is common to define prior for µ as it is
scaleless.

3.1 One Group and Two Group Model
There are in general two approaches for two sample hy-

pothesis testing problem in Bayesian literature and here we
call these two one group model and two group model.

In one group model, we observe δ ∼ N(µ, 1/NE) where
µ has a prior distribution with density π(µ). Under this
model, we then focus on inferring the posterior distribution
of δ given the observation δ. See, for example, [22] and [11].
Notice there is no special mentioning of H0 and H1 in this
model and in particular if the prior π has continuous density,
then P (µ|δ) is also continuous. Hence it is inevitable that
we have P (H0|δ) = P (µ = 0|δ) = 0. We can avoid this
issue by assuming there is a region of practical equivalence
(ROPE) around 0 that we can define as H0 so P (H0|δ) is
nonzero. Another approach is to put a nonzero probability



in 0 on the prior π itself, making it not continuous at 0, as
in the two group model.2

A two group model assumes two different priors for H0

and H1. Under the null H0, µ = 0. Under the alterna-
tive H1, we assume a prior π for µ. For both cases we
observe δ ∼ N(µ, 1/NE). In addition, we assume a prior
probability p for H1 being true. The goal of the analysis
is to infer the posterior P (H0|δ) as well as the posterior
distribution of µ. This model is very similar to the twin’s
problem except that we have one extra prior distribution π
for µ under H1. Posterior P (H1|δ) can also be inferred by
prior odds× likelihood ratio = posterior odds.

There are no essential differences between two models and
the two group model can be seen as one group model with a
pre-specified nonzero probability at 0. The key issue here is
how can we achieve objectiveness, i.e. how can we choose the
prior π and p without assuming too much. In the following
we use the two group model. The method we described here
can also be used in the one group model with or without
ROPE. Results under the one group model are left as future
work.

3.2 Learning the Objective Prior
Literature using the two group models often avoids dis-

cussing the choice of prior probability p of H1 being true by
assuming prior odds of H1 against H0 to be 1 or simply leave
the decision to the users. Methods proposed differ in the way
prior distribution π(µ) is chosen. One of them is the unit-
information prior where µ ∼ N(0, 1). Another choice closely
related to unit-information prior is using Bayesian informa-
tion criterion [23; 17], which is based on a rough Laplace
approximation to the log Bayes factor. Rouder et al. [28]
proposed JZS prior and compared it to other priors afore-
mentioned.

Here we take advantages of historical experiment results
and use them to learn the prior. Suppose for a given metric,
we have N previously conducted tests with observed effect
size and effective sample size (δi, NEi), i = 1, . . . , N . We
have no idea which of those are from H0 or H1. Next we put
π into a parametric family such as exponential family[11].
The two group model, with a parametric model of π and
prior probability p, formed a generative model for δi and we
can estimate model parameters of π and p using maximum
likelihood. In fact, this approach is called Empirical Bayes

or ML-II[13; 25].
Although an exponential family model for π(µ) up to some

degree of freedom is more general, here we use a simple
N(0, V 2) model. The reason being: 1) the model is simple
and relatively easy to fit. It is a special case of exponential
family up to the 2nd degree and too large degree of freedom
requires larger N to make the estimation robust; 2) the re-
sult is also easier to interpret and illustrate with limited
space in this paper. The idea here extends to the general
case.

Fitting the model to find MLE isn’t straightforward, due
to the fact that we don’t know each δi belongs to H0 or
H1. Fortunately, a solution for this type of hidden latent
variable problem, called Expectation-Maximization, is well-

2It is true that the distribution of µ contains more infor-
mation than a value like P (H0|δ) so we don’t necessar-
ily require a nonzero P (H0|δ). However having a nonzero
P (H0|δ) makes a more direct comparison to to frequentist
A/B testing.

known[5]. EM algorithm in our case reduces to a fairly in-
tuitive form as the following.
Step I. If p and V are known, the posterior odds for each δi
belonging to H1 against H0 have the simple form

φ(δi; 0, 1/NEi + V 2)

φ(δi; 0, 1/NEi)
×

p

1− p
(4)

where φ(x;µ, σ2) is the normal density with mean µ and
variance σ2. Convert posterior odds to Pi := P (H1|δi; p, V ).

Step II. Set p to be P (H1|δ; p, V ) by taking average of all Pi

calculated in Step I.
Step III. To update V , note that under H1, V ar(δi) =
E(δ2i ) = V 2 + E(1/NEi). Although we don’t know abso-
lutely whether a δi belongs to H1, we can use posterior Pi

in Step II as weights:

V 2 = WAvg(δ2i ;Pi)−WAvg(1/NEi;Pi) (5)

where WAvg(xi;wi) =
∑

wixi/
∑

wi. To avoid numerical
issue that V 2 in (5) can take negative value, we bound V 2

away from 0 by a lower bound.
The EM algorithm starts with an initial value of p and V ,

iterates through the 3 steps above until they converge. Step
I is the E-step. Step II and Step III are the M-step updat-
ing p and V .(Technically Step III is generalized M-step. We
update V using method of moment estimator knowing with
high probability it increase the expected log-likelihood.) The
algorithm is summarized in Algorithm 1. We can also learn
parameters of π and p using a full (Hierarchical) Bayesian
approach by putting another layer of prior for p and V as in
Scott and Berger [29]. The comparison of Empirical Bayes-
ian and Full Bayesian is beyond the scope of this paper.

Algorithm 1 Fitting p and V with EM algorithm

Initialize p and V
repeat

Step I: Update Pi using (4)
Step II: p← Pi

Step III: Update V using (5)
until Converge

The lower bound in Step III is not purely a numerical
trick. It is needed for model identification. When V = 0,
µ ≡ 0 under both H1 and H0. We cannot distinguish H1

and H0, leading to an unidentifiable model. We recommend
setting the lower bound V 2 = k2 ×Avg(1/NE) and set k to
2, for reason which will be make clear below.

3.3 Practical Applications
We have proposed algorithm 1 to learn a prior directly

from historical data. In this section we talk about practical
applications. As laid out in Section 2 we are now in the posi-
tion of reaping many Bayesian benefits. On top of the list is
automatic multiple testing adjustment and the ability to do
optional stopping. Our framework also enables us to com-
bine results from repeated experiments by straightforward
Bayesian belief update, avoiding techniques as in Deng et al.
[7]. We will also accept the null given enough data if null is
indeed true, achieving consistency. Here we mention 3 other
applications useful in A/B testing.
P-Assessment. The concept of P-Assessment is an applica-
tion of posterior probability. Instead of reporting p-value,
we can now report three probabilities, P(Negative), P(Flat)



and P(Positive), defined as the posterior probability of µ
being negative, 0 and positive given the data. P-Assessment
is more intuitive than p-value, and also separates positive
and negative movements. If we intend to ship a feature if
there is no degradation, e.g. a code clean-up, we can look at
P(Negative) to see whether it is small enough for us to be
confident enough in the no degradation claim. If we intend
to ship a feature if there is an improvement, we then look at
P(Positive). For a metric, given its learned prior parameters
p and V as well as observed δ and effective sample size NE .
We first use (4) to get posterior odds and then convert to
P (H0|Data). Under H1, the posterior of µ is N(Aδ,A/NE)
where A = V 2/(V 2 + 1/NE) is the shrinkage factor. Then
P(Flat) = P (H0|Data) and

P(Negative) = (1− P (Flat))× Φ(0;Aδ,A/NE),

P(Positive) = 1− P (Flat)− P(Negative),

where Φ(x; θ, σ2) is the normal cumulative density function.
Power Analysis. Power in NHST depends on the unknown
true alternative. In the Bayesian framework since we model
the alternative prior as N(0, V 2) we can calculate the mar-
ginal power. Let V 2 = k2× 1/NE . It can be shown that the
power is 2(1−Φ(1.96; 0, 1+k2)). When k = 2, the marginal
power is 38%. This justifies the choice of k for the lower
bound of V , i.e., we assume the alternative at least provides
a marginal power of about 40%.
Metric Sensitivity Evaluation. In A/B testing we often tweak
metric definitions. A common task is to improve metric sen-
sitivity. It is made clear in the two group model that metric
sensitivity has two separate components. One is whether
the features we came up with truly moved the metric, rep-
resented by prior parameter p. The other is the power, i.e.,
if the metric moved, can we detect it. The latter can be
compared by k.

3.4 Problems of Beta-Bernoulli Model
Almost all search results using the query “Bayesian A/B

Testing” focus on a particular metric called conversion rate,
or simply a rate metric, defined as the count of success di-
vided by number of trials. It’s true that conversion rate is
the most widely used metrics in A/B testing. However many
metrics we care do not fall into this category, such as revenue
per user and page loading time. This is why the Gaussian
model above is more flexible as it deals with all kinds of met-
rics as long as central limit theorem applies. Nevertheless,
limited to conversion rate is not the most critical issue.

For conversion rate, people often think about Bernoulli or
Binomial distribution. Under this model, each page-view is
an independent trial and each conversion counts as a suc-
cess, we want to infer the success rate p. In particular, for
A/B testing, we want to compare p1 and p2 from treatment
and control. For computational simplicity, a common beta
prior distribution for both treatment and control is used and
closed-form formula for posterior P (p1 > p2|Data) is known.

There are at least two issues regarding the method pop-
ular online. First is the sampling distribution. Assuming
page-view to be independent usually requires a page level
randomization. This is different from most applications of
A/B testing where user or surrogate like user cookie is used
for randomization. The reason is obvious in that we don’t
want user to experience switching experience and also for
the purpose of being able to track user metrics such as ac-
tive days per user. When user is used as the randomization

unit, the Bernoulli distribution assumption, and hence the
whole Beta-Bernoulli model should not be used as it un-
derestimates the variance and Type-I error by assuming too
much independence.

Secondly, even if page-view is used as the randomization
unit, the prior used is not genuine. In particular, since the
Beta prior can be interpreted as trials and success data col-
lected prior to the experiment, the posterior mean of p is
a smoothed version of MLE and the posterior of p1 − p2 is
shrunk towards 0. It is often presented as a hint that multi-
ple testing and optional stopping can be used with this kind
of Bayesian method. As we explained in Section 2 that Bay-
esian method provides a hope to avoid the need of multiple
testing adjustment and allows optional stopping. However,
all these promises depend on knowing the genuine prior (Sec-
tion 2.1). Also see Scott and Berger [29] where the authors
emphasized the importance of using a prior learned from
data to avoid multiple testing adjustment. To the time of
writing this paper, we didn’t find any online blogs or articles
discussed the procedure of objectively learning prior.

4. SIMULATION RESULTS
To illustrate consistency of Algorithm 1, we use simula-

tion study. First, we show that if the prior P (H0) is 100%,
our method will uncover this. We varied the number of his-
torical data points N from 100 to 2,000. In each case we fix
the effective sample size NE to be 1E6 so δ ∼ N(0, 1E− 6).

Table 1 reported P̂ (H0) = 1 − p̂, and its standard devia-
tion(estimated with 10,000 bootstrap) in parenthesis. We
see that except when N = 100, we correctly uncovered
P (H0) is 1. Even for the case N = 100 the estimation is
not very off.

N 100 200 1,000 2,000

P̂ (H0) 0.987(0.040) 1.000(0.0007) 1.000(0.004) 1.000(0.0005)

Table 1: Simulation Results when P (H0) = 1.

Next we simulated mixtures of H0 and H1. We varied
P (H0) from 95% to 50%. In each case, we also varied V by
using different k (V 2 = k2 × 1/NE). Intuitively we expect

smaller relative standard deviation for V̂ as P (H0) decrease
since more cases are under H1 for us to better estimate V .
Also, the larger the V , the easier to separate H0 with H1

so we expect standard deviation of P̂ (H0) to decrease too.
Both intuition are verified in Table 2 and Table 3 showing
results when N = 2, 000 and N = 200 respectively. When
N = 2, 000, we found both p and V can be estimated with
reasonable accuracy. Accuracy of V is worse than p, espe-
cially when P (H0) is high. When N = 200, without surprise
we found accuracy degraded comparing to N = 2, 000. How-
ever the accuracy of p and V are still close enough to the
ground truth for this method to be applied in practice, de-
pending on how sensitive the posterior is to the variation of
p and V .

5. EMPIRICAL RESULTS
We also applied Algorithm 1 using Bing experiments data.

After data quality check, we found for many metrics except
a few recently added ones, we typically had more than 2,000
historical data. After fitting the model, we found the prior



N=2000 k=4(V=4E-3) k=8(V=8E-3) k=10(V=1E-2)

P (H0) = 95% P̂ (H0) 0.962(0.008) 0.953(0.006) 0.953(0.006)

V̂ 4.23E-3(0.55E-3) 7.76E-3(0.82E-3) 9.66E-3(0.98E-3)

P (H0) = 90% P̂ (H0) 0.909(0.012) 0.903(0.009) 0.903(0.008)

V̂ 3.81E-3(0.31E-3) 7.42E-3(0.48E-3) 9.28E-3(0.58E-3)

P (H0) = 80% P̂ (H0) 0.798(0.015) 0.802(0.011) 0.802(0.011)

V̂ 3.89E-3(0.18E-3) 7.83E-3(0.31E-3) 9.80E-3(0.37E-3)

P (H0) = 50% P̂ (H0) 0.487(0.020) 0.491(0.015) 0.492(0.014)

V̂ 3.88E-3(0.11E-3) 7.77E-3(0.19E-3) 9.73E-3(0.23E-3)

Table 2: Mixture of H1 and H0. N = 2,000.

N=200 k=4(V=4E-3) k=8(V=8E-3) k=10(V=1E-2)

P (H0) = 95% P̂ (H0) 0.965(0.019) 0.963(0.016) 0.962(0.016)

V̂ 4.44E-3(1.04E-3) 8.67E-3(2.04E-3) 1.07E-2(0.25E-2)

P (H0) = 90% P̂ (H0) 0.925(0.034) 0.907(0.026) 0.908(0.025)

V̂ 3.62E-3(0.75E-3) 6.80E-3(1.12E-3) 8.55E-3(1.45E-3)

P (H0) = 80% P̂ (H0) 0.869(0.042) 0.843(0.033) 0.835(0.033)

V̂ 3.94E-3(0.69E-3) 7.40E-3(1.10)E-3 9.05E-3(1.33E-3)

P (H0) = 50% P̂ (H0) 0.594(0.067) 0.518(0.051) 0.506(0.047)

V̂ 3.44E-3(0.37E-3) 6.42E-3(0.59E-3) 7.94E-3(0.71E-3)

Table 3: Mixture of H1 and H0. N = 200.

P (H1) = p ranges from as much as 70% to less than 1%.
The ordering of those p for different metrics aligns well with
our perception of how frequently we believed a metric truly
moved. For example metrics like page loading time moved
much more often than user engagement metrics such as vis-
its per user. For most metrics p is below 20%. This is
because the scale of Bing experimentation allows us to test
more aggressively with ideas of low success rate. We also
used P(Flat) in the P-Assessment and only looked at met-
rics with P(Flat)<20% and found it very effective in con-
trolling FDR. Compared to other FDR method [1; 24], our
method is the first that takes advantages of metric specific
prior information.

6. CONCLUSION AND FUTURE WORKS
In this paper we proposed an objective Bayesian A/B test-

ing framework. This framework is applicable when hundreds
or thousands of historical experiment results are available,
which we hope will be soon common in this big data era.
An natural and important question is how to pick such a
set of historical experiments. In principle, when analyzing
a new experiment, we want to use only similar historical
experiments for prior learning. Similarity can be judged by
product area, feature team and other side information. How-
ever, if we put too many selecting criteria, we will eventually
face the problem of not having enough number of historical
experiments for an accurate prior estimation, similar to the
cold-start problem. One solution is to use the prior learned
from all the experiments as a baseline global prior so the
prior for a subtype of experiment is a weighted combination
of this global prior and the prior learned from the (possibly
small) restricted set of historical data. This can be done
via hierarchical Bayes, i.e. putting a prior on prior. Other
future works include using more general exponential family
for π(µ), and also using one group model as in [11].
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