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Abstract

We present a theory of decision by sampling (DbS) in which, in contrast with traditional models,
there are no underlying psychoeconomic scales. Instead, we assume that an attribute’s subjective val-
ue is constructed from a series of binary, ordinal comparisons to a sample of attribute values drawn
from memory and is its rank within the sample. We assume that the sample reflects both the imme-
diate distribution of attribute values from the current decision’s context and also the background,
real-world distribution of attribute values. DbS accounts for concave utility functions; losses loom-
ing larger than gains; hyperbolic temporal discounting; and the overestimation of small probabilities
and the underestimation of large probabilities.
! 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Here, we offer an account of why the descriptive psychoeconomic functions—concave
utility functions for money, hyperbolic temporal discounting functions, and inverse-S-
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shaped subjective probability functions—take the forms that they do. The essence of our
decision by sampling (DbS) account is that attribute values (e.g., monetary amounts,
probabilities, and delays) are evaluated against a sample of other attribute values using
simple cognitive tools. The decision sample is assumed to comprise both attribute values
from both the immediate context in which a decision is made (e.g., the attribute values
of other options on offer) and values from memories of previously encountered attribute
values (e.g., those values encountered in previous decisions). In this article, we focus upon
the effect of previously encountered attribute values.

Theories of decisionmaking often take economic theory as a starting point: expected util-
ity theory for decision under risk; exponential discounting for decisions with delayed out-
comes. The next step is to assess the degree to which people make decisions as they should
(e.g., Allais, 1953;Kahneman&Tversky, 1979, 2000). The normative theory is thenmodified
to create a descriptive theory of observed behavior by including additional psychological
insight (e.g., prospect theory, Kahneman & Tversky, 1979; Tversky & Kahneman, 1992,
regret theory, Loomes & Sugden, 1982, and rank dependent utility theory, Quiggin, 1982,
1993, in decision under risk; hyperbolic discounting,Rachlin, 1989, for intertemporal choice;
support theory, Tversky&Koehler, 1994, for probability judgment). In beginningwith a lim-
ited set of simple cognitive tools, we are taking psychology as a starting point. We then con-
sider how economic decisions might be made using these simple tools.

A key difference between the approach we develop here and those derived from norma-
tive economic accounts is that we do not assume that people have stable, long-term inter-
nal scales along which they represent value, probability, temporal duration, or any other
magnitudes. Instead, we assume that people can only sample items from memory and then
judge whether a target value is larger or smaller than these items. This approach is inspired
by and builds on a series of successful accounts of key aspects of judgment and decision
making based on psychological assumptions concerning sampling from, and comparison
with, items from memory. In norm theory (Kahneman & Miller, 1986), the normality
of a stimulus is derived by comparing it to the norm (counterfactual examples and a set
of exemplars retrieved from memory) that it evokes. In decision field theory (Busemeyer
& Townsend, 1993), and its multialternative generalization (Roe, Busemeyer, & Town-
send, 2001), the time course of decision making is accounted for by the sequential sam-
pling of information from the decision context, with outcome valances constructed
relative to one another. In support theory (Tversky & Koehler, 1994), the subjective prob-
ability of a focal hypothesis depends on the sample of alternative hypotheses considered by
the subject, and is given by the ratio of the support for the focal hypothesis and the sum of
the support for all hypotheses under consideration (see Windschitl & Wells, 1998; compar-
ison heuristic for a similar mechanism). Dougherty, Gettys, and Ogden (1999) decision
making model MINERVA-DM (based on Hintzman’s, 1984, 1988; memory model) gives
a mechanism by which the support for hypotheses depends on the similarity to traces
stored in memory, providing an account of many heuristics and biases (see also Juslin
& Persson, 2002). In the stochastic difference model (González-Vallejo, 2002), the differ-
ences between the target attribute value and other attribute values in the sample of items
in the decision context determines the preference for one prospect over another. In sum-
mary, in all of these models, judgments and decisions result from comparison of an attri-
bute’s value to a sample of other values, either from the decision context or from memory.
For a review of memory processes in judgment and decision making see Weber, Goldstein,
and Barlas (1995) and Weber and Johnson (in press).
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In DbS, we assume that only the most simple cognitive processes—ordinal comparison
and frequency accumulation—are involved in evaluating a target attribute against a deci-
sion sample. Our assumption that, to a first approximation, comparisons are only ordinal
(i.e., only ‘‘greater than,’’ ‘‘equal to,’’ or ‘‘less than’’) is motivated by evidence from psy-
chophysics which suggests that people are rather good at discriminating stimuli from one
another, but rather bad at identifying or estimating the magnitude of the same stimuli (see
Garner, 1962; Miller, 1956; Laming, 1984, 1997; Shiffrin & Nosofsky, 1994; Stewart,
Brown, & Chater, 2005). Our assumption that people are good at keeping track of and
manipulating frequencies is well established (e.g., Gigerenzer & Hoffrage, 1995; see Sed-
lmeier & Betsch, 2002, for a recent review). By keeping a frequency count of the number
of comparison outcomes that favor the target, one can derive the rank of the target attri-
bute value within the decision sample (see, e.g., Kornienko, 2004, for a demonstration that
a cardinal utility function may be derived by keeping a frequency count of binary, ordinal
comparisons). It is this rank that we assume is the subjective value of an attribute. When
normalized to lie between 0 (the worst attribute value) and 1 (the best attribute value), the
subjective value or relative rank of an attribute value is given by r = (R ! 1)/(N ! 1),
where R is the rank within the sample of N items. The relative rank is effectively the pro-
portion of attribute values in the sample that are less than the target attribute value or,
equivalently, the probability that a randomly selected attribute value will be less than
the target attribute value.

In assuming that the subjective value of an item is its rank within a sample, DbS
embodies the frequency principle of range–frequency theory (Parducci, 1965, 1995). In
range–frequency theory, the subjective value of an item is a weighted sum of its rank with-
in the immediate context and its position within the range set by the immediate context.
We consider the range principle further in Section 6.

So far we have said little about the sample of attribute values against which an item is
compared. The basic idea is that, when considering a target attribute value, there will typ-
ically already be some other attribute values from the context of the decision in the sample.
The target attribute value will also evoke other values from long-term memory, and it is
the effect of these attributes that we focus upon in this article (cf., Kahneman & Miller,
1986). Thus, the subjective value of an option is constructed online whenever it is consid-
ered (cf., Bettman, Luce, & Payne, 1998; Payne, Bettman, & Johnson, 1992; Slovic, 1995)
and will vary from occasion to occasion with (a) the distribution of attribute values from
the immediate decision context, (b) the distribution of attribute values in memory, and (c)
stochasticity in the sample of attribute values from both the immediate decision context
and also from memory.

As a starting point, we assume that the contents of memory reflects the structure of the
world, and represents a subset of the attribute values that people typically encounter.
There is good evidence that memory adaptively reflects the structure of the environment
(e.g., Anderson, 1990; Anderson & Milson, 1989; Anderson & Schooler, 1991; Chater &
Brown, 1999; Oaksford & Chater, 1998; Shepard, 1987). In the following sections, we will
examine the distributions of gains, losses, time delays, and probabilities that people
encounter. We focus on these attributes because they are the psychological primitives of
economic decisions: Many decisions involve evaluating the value of some risky, uncertain,
or delayed gain or loss. We will use these distributions to make predictions about the sub-
jective value functions that will be revealed when people make decisions in the context of
these real-world distributions.
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2. Gains

First, we consider gains. Following Kahneman and Tversky (1979), we consider gains
and losses separately. Key questions are: (a) What is the distribution of gains in people’s
memories? (b) What effect will this distribution have on the subjective valuation of gains?

We assume that the decision sample, to which a target gain is compared, is a small, ran-
dom sample of gains from memory. Of course this random sampling assumption is likely
to be incorrect: other factors, such as recency, similarity, and background knowledge will
surely play a role. However, in what follows we pursue this random sampling hypothesis
as a first approximation.

An approximation to the distribution of gains that people encounter can be revealed by
examining credits to people’s current (in the UK; checking in the US) bank accounts.
Fig. 1A shows the frequency with which credits of different amounts are made. These data
are a random sample of one year of credits to current accounts held by a leading UK bank.
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Fig. 1. (A) The distribution of credits to people’s current bank accounts. (B) The distribution of debits from
people’s current bank accounts.
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Automatic credits were omitted, but all manual payments including direct debits, standing
orders, and salary payments were included. The distribution of credits approximately fol-
lows a power law, with many small gains and relatively fewer larger gains (the data rough-
ly follow a straight line on the plot of log frequency against log credit). The observation of
this power-law relation between event magnitude and event probability is unsurprising, as
it is seen in many aspects of the world (see Bak, 1997, for a review). For example, natural
phenomena such as earthquake energies follow this pattern (Gutenberg & Richter, 1949;
Johnstone & Nava, 1985), as do social phenomena like the size of corporations (Ijiri &
Simon, 1977), city sizes, and the frequencies of words within natural language (Zipf, 1949).

Supposing that the decision sample can contain an unlimited number of exemplars, the
subjective value of a target credit within our larger sample of credits is given by its relative
rank within this large sample. Fig. 2A plots the relative rank of each credit. Because of the
equivalence between the relative rank of a target attribute value and the proportion of
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Fig. 2. (A) The relative rank of credits within the entire population of credits. (B) The relative rank of debits
within the entire population of debits.
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attribute values that are smaller than the target, Fig. 2A can also be described as a plot of
the cumulative probability of obtaining a gain at least as big as that on the abscissa.

As a direct consequence of the distribution of credits, relative rank is an increasing but
negatively accelerating function of the size of the credit. Thus, additional incremental
wealth has a diminishing impact on the relative rank of the credits. For example, a credit
of £1000 has less than twice the psychological value of a credit of £500. In summary, from
only the assumption that people make ordinal comparisons with a sample of values reflect-
ing the positively skewed real-world distribution, DbS predicts that the marginal subjec-
tive value of an extra unit of wealth diminishes as wealth increases (i.e., concave utility
functions for gains).

If the distribution f (g) of gains g in the world follows a power-law distribution with
power c (i.e., f (g) = cgc, where c is a normalizing constant) then DbS predicts a power-
law revealed utility function, as the relative rank of g is given by the cumulative distribu-
tion function r(g) = c/(1 + c) gc+1.

The assumption that gains are fully sampled is unlikely to be true given the well-estab-
lished finding of a severely limited capacity of short-term memory (Miller, 1956). Howev-
er, if a small, randomly drawn sample of gains is considered, then similar predictions
follow. The relative rank of an attribute value is determined by the probability that a ran-
domly sampled credit will be less than or equal to that value. Thus, the distribution of rel-
ative ranks for a given target and given sample size will be binomial. Fig. 3A illustrates the
binomial distribution of relative ranks obtained for a target value of £250 if five items are
sampled randomly from the distribution of credits. Fig. 3B illustrates how this binomial
distribution will change as a function of the target credit. (Every plane perpendicular to
the attribute value axis is a binomial distribution.) As the mean of a binomial distribution
is its probability parameter, then Fig. 2A represents the mean relative rank for a target
credit, independent of sample size.

Bordley and LiCalzi (2000) present an argument that is similar to the DbS account
above. In their account, the value of a gain is the probability that it will meet an uncer-
tain target. Thus, the value of the gain depends on its location within the distribution of
target values. Bordley and LiCalzi do not give a detailed psychological account of the
origin of the distribution of the target values, but do suggest that they result from uncer-
tainty over which targets are necessary to achieve higher superordinate goals. They
assume that people select an outcome to maximize the probability of meeting this target
and show that this approach makes the same predictions as expected utility. This
approach is similar to DbS in that the subjective value of a target attribute depends
upon its ordinal position in some reference distribution, but differs from DbS in assum-
ing that the reference distribution reflects an uncertain aspiration level rather than the
real-world distribution of gains.

In summary, DbS predicts a power-law utility function modulated by binomially dis-
tributed noise. The power-law function is a result of memory reflecting the scale-free dis-
tribution of credits observed in the environment, and the binomial noise is the result of a
sampling process. This motivation of this prediction stands in contrast to descriptive
models, which simply assume a curvature of the utility function, rather than explaining
it. For example, in prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman,
1992) the curvature of the utility function describes risk aversion. Here, we have inde-
pendently motivated the curvature, and risk aversion will follow as a consequence of this
curvature.
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3. Losses

We carried out a parallel analysis for losses. Fig. 1B shows how the frequency with
which debits are made from current bank accounts depends on the magnitude of the debit.
Like gains, the distribution of losses also follows a power law, with many small losses and
relatively few large losses. The mean relative rank of losses (for any sample size) can be
derived as for gains, and is illustrated in Fig. 2B. As before, incremental loss produces
a diminishing rise in relative rank. A comparison with gains reveals an interesting predic-
tion. There are relatively more small losses compared to small gains (as reflected in the dif-
fering best fitting powers of !0.93 for gains and !0.96 for losses). This makes intuitive
sense: One is paid in a lump sum (e.g., a monthly salary) which one spends on many things
(e.g., mortgage, grocery bills, etc.). Because of this asymmetry, a loss of a given magnitude
will have a higher relative rank than that of a gain of the same monetary amount. Of
course, this conclusion, that losses loom larger than gains, is exactly that embodied in
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Fig. 3. (A) The distribution of relative ranks for a target credit of £250. (B) The distribution of relative ranks as a
function of the target credit. Sample size = 5.
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Fig. 4. (A) The relative ranks of 9756 prices from a UK supermarket. (B) The relative ranks of the prices of
bread. (C) The relative ranks of the prices of chocolate.
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Kahneman and Tversky’s (1979) prospect theory. DbS predicts this asymmetry in behav-
ior because there is an asymmetry in the natural real-world distribution of gains and
losses.

Friedman (1989) gives an argument related to DbS. Friedman assumes that there are
more small gains and losses than large gains and losses, consistent with our data on credits
and debits. He further assumes that we have a limited capacity for sensitivity to these gains
and losses (because of time, memory, and other cognitive constraints) which we distribute
over the most likely outcomes: We are assumed to be more sensitive to small gains and
losses because there are more of them. This is consistent with our DbS account according
to which people are sensitive to small gains and losses because they are more numerous
and hence more frequently sampled. Friedman proves that these two assumptions are suf-
ficient to produce an S-shaped approximation to the true, conventional, concave utility
function with the point of inflection at current wealth.

One might wonder whether the positively skewed distributions of gains and losses will
be found else where or whether they are specific to bank accounts. One reason to expect
that these positively skewed distributions will occur in many contexts is the ubiquity of
power law distributions. Another is that we found positively skewed distributions in
other domains. For example, we have also examined the distribution of prices in UK
supermarkets. Fig. 4A shows the relative ranks for a large number of prices in the super-
market. Figs. 4B and C show two examples of the relative ranks calculated for bread
and chocolate products. In almost all of the cases we have examined, we have found
positively skewed distribution of prices, which leads to a concave function for relative
ranks.

4. Time

We seek a uniform account of behavior across a wide variety of domains. There is evi-
dence that the processing of number and time may rely upon a common cortical resource
(Walsh, 2003). Thus, the treatment of temporal delays that we offer here is the same as that
outlined above for gains and losses. More specifically, the subjective value of a target tem-
poral delay will be determined in the context of a decision sample of other temporal
delays.

We argue that DbS explains of some of the key temporal anomalies reviewed by Loe-
wenstein and Thaler (1989). As before, we assume that the distribution of delays in mem-
ory reflects the distribution in the real world. To obtain a crude approximation, our
colleague, Stian Reimers, collected the number of hits produced by an internet search
engine (http://www.google.com) when prompted with various temporal delays. We accu-
mulated hits over different search strings representing the same period (e.g., ‘‘a day,’’ ‘‘one
day,’’ ‘‘1 day,’’ ‘‘24 hours’’) for intervals between 1 day and 1 year. Fig. 5 plots the fre-
quency of different temporal intervals as a function of their magnitude. As for gains
and losses, the distribution approximately follows a power law (replicating the findings
of Pollmann, 1998; and Pollmann & Baayen, 2001; who used different sources of data
and time periods). The best fitting slope for this distribution, and those obtained by Poll-
mann from other corpora with other ranges, are listed in Table 1. (Power laws also
describe the time intervals between repetitions of words in New York Times headlines,
words in parental utterances to children, and e-mails from particular correspondents in
Anderson’s mail box, Anderson & Schooler, 1991).
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4.1. Hyperbolic temporal discounting

Fig. 6 shows the mean relative rank assigned to each delay as a function of delay mag-
nitude assuming random sampling from the distribution in Fig. 5. Incremental delay has a
diminishing effect, just as for gains and losses. DbS predicts a specific form for the mean
relative rank of a delay as a function of its magnitude. A straight line provides a better fit
to a log–log plot of the distribution of temporal intervals (Fig. 5) than it does to a linear-
log plot, indicating that a power law function describes the distribution of intervals better
than an exponential function. Approximating the distribution of times t with a power law
f (t) = c t!s gives the cumulative distribution function, which is the mean relative rank
function, of r (t) = ct1 ! s/(1 ! s). Thus, DbS predicts power-law temporal discounting,
in which the discount rate decreases over time, rather than the normative exponential dis-
counting, where the discount rate is constant. It is experimentally well established that
people’s discount rate does indeed decrease over time (Kirby, 1997; Benzion, Rapoport,
& Yagil, 1989; Thaler, 1981).

As estimates of s range from !1.7 to !1.4 (see Table 1), estimates of the power of the
discounting function will range from !0.7 to !0.4. A power of !1.0 gives hyperbolic dis-
counting and therefore DbS predicts sub-hyperbolic discounting. This differs from hyper-
bolic discounting in that it predicts that people will not discount long delays as much as is
predicted either by hyperbolic or exponential discounting. Just such a finding is reported
by Myerson and Green (1995) and Simpson and Vuchinich (2000).
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Fig. 5. The distribution of time delays on the internet.

Table 1
Best fitting powers for power-law fits to the distribution of delays in several corpora

Source Range Best fitting power

Telegraph 30 days !1.7
Google hits 1 year !1.5
Frankfurter Allgmeine Zeitung NRC/Handelsblad
International Herald Tribune (Pollmann & Baayen, 2001)

500 years !1.4
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4.2. Discount rate depends on the magnitude of the gain

Discount rate decreases with the magnitude of the gain on offer (e.g., Benzion et al.,
1989; Green, Myerson, & McFadden, 1997; Holcomb & Nelson, 1989, as cited in Loe-
wenstein & Thaler, 1989; Thaler, 1981). If magnitudes are sampled at random from
memory then DbS does not account for this phenomenon. If it is assumed that similar-
ity plays a role in the sampling process, DbS can offer an account. There must be a
positive correlation between the delay until a gain and the size of the gain in the world:
As large gains are less frequent than small gains, the average delay between large gains
must be larger than the delay between small gains. Assume that people sample large
delays when considering large gains, because large gains and large delays were associ-
ated in the past. In this context of large delays, the target delay will receive a low rel-
ative rank compared to the case when the sample comprises small delays. In other
words, in the context of delays evoked by the large gain, the given target delay will
seem less bad, and thus be discounted less. We return to the issue of similarity sampling
in Section 6.

4.3. Discount rate is greater for gains than losses

Thaler (1981) found that discount rates were higher for gains than for losses of equiv-
alent magnitude. In any account where losses loom larger than gains, including DbS, the
discount rate for gains will appear higher. This is because the discount rate depends not
only on the discounting function but also upon the curvature of the utility function. Con-
sider the discount rate implied by an indifference between £x now and the larger amount
£y delayed by time t. With a power law utility function u (x) = xc and any discount func-
tion f (t),

xc ¼ ycfðtÞ

gives a discount rate of
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Fig. 6. The distribution of relative ranks of delays within the entire population of delays.
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x
y
¼ ðf ðtÞÞ

1
c.

The discount rate incorporates the curvature of the utility function (e.g., Benzion et al.,
1989; Mazur, 1987; Thaler, 1981; but see Chapman, 1996, for a separation, and also Kirby
& Santiesteban, 2003; though this example does not involve gains and losses). Thus, if the
curvature c is larger for losses, the discount rate will be smaller. Note that, even if the free
parameter(s) of a utility function are fitted at the same time as the free parameter(s) of the
discounting function and differences in the discounting parameters are found, one cannot
be sure that the difference in discounting parameters reflects different discounting of gains
and losses. Johnson and Bickel (2005) found that, when fitting a hyperbolic-like discount-
ing function of the form x/y = 1/(1 + kt)s, the k and s free parameters were correlated. The
equivalence of s in this form with c in the above form means that if c is different for gains
and losses, k will also differ for gains and losses even if gains and losses are discounted in
exactly the same way.

4.4. DbS and working memory load

The DbS explanation of the shape of the temporal discounting function is that the sub-
jective value of a target delay is derived from comparisons with a sample of delays from
memory. In support of this, a working-memory load has been found to affect temporal dis-
counting. With a larger working-memory load, discounting of delayed gains is greater
(Hinson, Jameson, & Whitney, 2003). According to DbS, a larger working memory load
should reduce the number of items in the decision sample. In turn, this means that, in the
absence of other larger delays from memory, the delay associated with a delayed outcome
will seem particularly bad in comparison to only the zero delay of an immediate outcome.
Thus, DbS correctly predicts the finding of greater discounting when working memory is
loaded.

4.5. Summary

We do not suggest that DbS can offer an account of all of the intertemporal choice phe-
nomena reported in the literature. There are surely other important psychological factors
at play, such as savoring and dread (e.g., Loewenstein, 1987) and mental accounting (e.g.,
Shefrin & Thaler, 1988; Prelec & Loewenstein, 1998). However, DbS can explain why dis-
counting is (sub)hyperbolic and, with a plausible modification (assuming that similarity
sampling rather than random sampling), can explain why the discount rate is reduced
for larger amounts of money. Finally, because the curvature of the utility function is often
combined within the measure of discount rate, DbS (and presumably other models) can
explain why gains are discounted more heavily than losses.

5. Risk

We treat probability in the same way as we have treated gains, losses, and delays. We
will argue that the distribution of probabilities that people experience is such that small
probabilities will be over weighted and large probabilities will be under weighted. In other
words, subjective probability is an inverse S-shaped function of actual probability (e.g.,
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Abdellaoui, 2000; Bleichrodt & Pinto, 2000; Gonzalez & Wu, 1999; Kahneman & Tversky,
1979; Prelec, 1998; Tversky & Kahneman, 1992; Wu & Gonzalez, 1996, 1999; but see
Hertwig, Barron, Weber, & Erev, 2004, for the opposite pattern for small probabilities
when probabilities are experienced as the number of successful outcomes over a series
of trials).

There is some evidence that probabilities (or frequencies) are compared with attribute
values retrieved from memory. Dougherty and Hunter (2003a, 2003b) found correlation
between working memory span and probability judgments. Larger working memory spans
coincided with less subadditivity. (Subadditivity is the extent to which the judged proba-
bilities of a set of mutually exclusive, exhaustive events sum to greater than 1.) Further,
time constraints increased subadditivity. They argued that these data are consistent with
a model where larger working memory and longer time allows target probabilities to be
compared to a larger pool of sampled probabilities. Together with the finding that the par-
ticular frequencies with which the items were experienced affected the probability judg-
ments, this is strong evidence that probabilities are judged in comparison to a decision
sample.

There is one striking difference between the distributions of gains, losses and delays, and
the distribution of probabilities: Probabilities are bounded to be between 0 and 1, and thus
cannot follow a power-law distribution. Here, we shall argue that there are more cogni-
tively relevant events with small and large probabilities than with mid-range probabilities.
Specifically, we shall present four arguments. Each leads to the same conclusion: that small
probabilities will be overestimated and large probabilities underestimated in a DbS
framework.

5.1. The distribution of probability phrases

As with time and money, here we attempt to find a proxy for the distribution of prob-
abilities in long-term memory from which people sample when they evaluate a target
probability. Because people prefer to give verbal rather than numerical descriptions of
probabilities (Beyth-Marom, 1982; Brun & Teigen, 1988; Budescu & Wallsten, 1985;
Erev & Cohen, 1990; Olson & Budescu, 1997; Wallsten, Budescu, Zwick, & Kemp,
1993), use many different verbal labels (Budescu, Weinberg, & Wallsten, 1988; Karelitz
& Budescu, 2004), and find it about as easy to reason with verbal or numerical descrip-
tions of probabilities (see Budescu & Wallsten, 1995, for a review) we chose to analyze
the frequency with which verbal phrases occurred in natural language. As before, we
assume that the availability of probabilities in memory reflects this real world
distribution.

Karelitz and Budescu (2004) asked 20 participants to ‘‘select phrases that spanned the
whole probability range and that they also used in their everyday lives’’ (p. 29). We used
the 71 different phrases that their participants generated in our analysis. For each phrase,
we attempted to determine two things: (a) the numerical probability equivalent of the
phrase, and (b) the frequency with the phrase is used to describe probabilities in natural
language.

There is already a literature that attempts to relate numerical probabilities and verbal
phrases (see Budescu & Wallsten, 1995, for a review). Here, we simply asked 40 partici-
pants to imagine that a truthful person had used each phrase to describe the probability
of winning an urn draw by drawing a red ball from 100 balls in total. For each phrase,
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participants were asked to say how many red balls (between 0 and 100 inclusive) the phras-
es suggested were in the urn. For each participant, phrases were presented in a different
random order. Table 2 shows the mean and standard deviation of the probability attached
to each phrases. Out of a total of 2840 responses, 121 lay two interquartile ranges outside
the upper and lower quartiles and were deleted as outliers. Their deletion does not affect
the qualitative pattern of the results. Where our phrases overlap with those of other
researchers (Beyth-Marom, 1982; Budescu & Wallsten, 1985; Clarke, Ruffin, Hill, & Bea-
men, 1992; Reagan, Mosteller, & Youtz, 1989) there is reasonable agreement on the
numerical equivalents.

To estimate the frequency of the phrases in natural language, we searched the British
National Corpus (BNC) World Edition (http://www.natcorp.ox.ac.uk/index.html). There
are about 100 million words in the BNC, which was designed to be representative of spo-
ken and written English. The frequency with which each phrase occurred is listed in Table
2. Where one phrases is a sub-phrase of another (e.g., ‘certain’ is a sub-phrase of ‘fairly
certain’), then the frequency of the sub-phrase was counted ignoring occurrences of the
subsuming phrase. Because some of the phrases also occur in natural language outside
the context of probability description, a random sample of twenty occurrences was ana-
lyzed for each phrase to estimate the proportion of the time that the phrases was used
to describe a probability. The product of the frequency of occurrence and the proportion
of times a phrase is used to describe a probability was calculated to give the frequency with
which each phrase was used to describe a probability. (Omitting this weighting does not
alter qualitative pattern described below.)

Fig. 7 plots the relative rank of each phrase against the probability that best repre-
sents it. Because very small (or zero) and very large (or certain) probabilities are more
frequent than for midrange probabilities, the function has an inverse S-shape. Because
large probabilities are more frequent than small probabilities the point at which proba-
bility judgments would be accurately calibrated (i.e., at which the subjective probability
function crosses the line y = x) is less than p = .5. When the function w (p) = pb/
((pb + (1 ! p)b)1/b) is fitted to these data, the best estimate for b is .59 (r2 = .92). The
range of b values for which 90% of the variance is captured is .46–.67. This range coin-
cides reasonably well with b values found by Camerer and Ho (1994, b = .56), Tversky
and Kahneman (1992, b = .61) and Wu and Gonzalez (1996, b = .71). In other words,
there is good agreement between the function we have derived here using the distribution
of probability phrases in natural language and those that best describe choices between
gambles.

Table 2 shows that the numerical values assigned to many probability phrases are quite
variable. This finding is well established in the literature (see Budescu & Wallsten, 1995).
Thus, the positioning of each probability phrase on the abscissa of Fig. 7 is subject to some
noise. However, if one instead smears out the contribution to the increase in relative rank
due to each phrase over the full distribution of numerical probability equivalents for each
phrase, rather than just using the mean equivalent, a very similar inverse S-shaped func-
tion is found.

5.2. The distribution of probabilities in experiments

Brown and Qian (2004) examined the distribution of probabilities used in experiments
designed to elicit the form of the probability weighting function in decision making under
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Table 2
Judged numerical equivalents and BNC frequencies of probability phrases

Phrase Judged numerical equivalents BNC frequency

M SD Mdn IQR Raw
frequency

Proportion of
probability uses

Adjusted
frequency

Impossible 0.00 0.00 0.0 0.0 6170 1.00 6170
Not possible 0.00 0.00 0.0 0.0 1217 1.00 1217
No chance 0.00 0.00 0.0 0.0 534 .60 320
Never 0.00 0.00 0.0 0.0 48,217 .80 38574
Extremely doubtful 3.76 2.81 3.0 3.0 20 .95 19
Almost impossible 3.79 3.19 2.5 4.0 486 .90 437
Pretty impossible 5.36 5.86 3.0 7.5 2 1.00 2
Almost unfeasible 6.33 6.14 5.0 8.0 0 .00 0
Highly unlikely 7.11 5.08 5.0 5.0 172 1.00 172
Highly improbable 7.31 5.17 5.0 5.0 27 1.00 27
Very doubtful 8.08 5.73 5.0 5.0 66 .95 63
Very unlikely 8.25 4.58 9.5 5.0 157 1.00 157
Little chance 11.75 7.38 10.0 10.0 273 .80 218
Faint possibility 11.89 8.71 10.0 15.0 7 1.00 7
Pretty doubtful 13.20 8.57 10.0 12.25 1 1.00 1
Improbable 13.28 11.22 10.0 15.0 340 1.00 340
Small chance 14.43 8.03 10.0 10.0 20 .95 19
Not very feasible 14.51 9.63 10.0 12.5 0 .00 0
Not likely 15.38 10.23 15.0 15.0 455 1.00 455
Slight possibility 16.22 10.98 15.0 12.0 3 1.00 3
Doubtful 16.75 10.72 15.0 15.0 1303 .25 326
Quite doubtful 17.00 9.51 20.0 10.0 1 1.00 1
Pretty unlikely 17.08 10.17 15.0 15.0 6 .83 5
Unlikely 17.38 11.55 15.0 17.5 5099 1.00 5099
Not very likely 17.72 11.71 15.0 15.0 18 1.00 18
Rather unlikely 19.53 12.71 20.0 20.0 17 1.00 17
Slight chance 20.93 17.01 15.0 21.3 5 1.00 5
Slight probability 21.48 16.22 15.0 20.0 0 .00 0
Against the odds 23.46 17.04 20.0 35.0 48 .20 10
A chance 28.49 17.97 25.0 29.0 3093 .22 680
Little likely 29.58 18.07 25.0 21.3 2 1.00 2
A possibility 32.85 20.12 30.0 35.0 638 .70 447
Uncertain 37.63 16.39 45.0 26.3 4608 .15 691
Possible 42.69 16.24 50.0 20.0 31,550 .20 6310
Little uncertain 42.87 23.72 40.0 30.0 16 .13 2
Maybe 45.66 10.28 50.0 10.0 6064 .20 1213
Even odds 50.00 0.00 50.0 0.0 4 .25 1
Fifty-fifty chance 50.00 0.00 50.0 0.0 9 1.00 9
Toss-up 50.00 0.00 50.0 0.0 13 0.46 6
Medium likelihood 50.00 0.00 50.0 0.0 0 .00 0
Fair chance 53.22 11.77 50.0 10.0 57 .35 20
Fair possibility 53.86 10.17 50.0 10.0 0 .00 0
Fair probability 58.98 13.85 50.5 20.0 0 .00 0
Quite possible 59.93 16.39 60.0 20.0 234 .60 140
More likely 63.90 9.36 60.0 10.0 3556 .00 0
Probable 64.26 9.88 65.0 10.0 1177 .90 1059
Good possibility 66.31 14.14 65.0 15.0 2 1.00 2
Good chance 69.08 9.07 70.0 10.0 366 .75 275
Likely 69.70 13.20 70.0 20.0 16733 .85 14223
Good probability 71.90 10.14 70.0 20.0 1 1.00 1

(continued on next page)
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both risk and uncertainty. In a majority of studies, smaller and larger probabilities are
over-represented compared to mid-range probabilities. Fig. 8A illustrates this with the
probabilities used by Gonzalez and Wu (1999). Fig. 8B shows the relative rank that would
be assigned to a target probability if the sample people compared it to comprised the
experimental probabilities. Again, small probabilities are overestimated and large proba-
bilities are underestimated.

Table 2 (continued)

Phrase Judged numerical equivalents BNC frequency

M SD Mdn IQR Raw
frequency

Proportion of
probability uses

Adjusted
frequency

Usually 74.15 10.96 75.0 15.0 18619 .85 15826
Rather likely 74.25 9.88 75.0 11.3 1 1.00 1
Very feasible 74.26 10.15 75.0 10.0 3 .00 0
Most of the time 78.74 10.78 80.0 15.0 580 .95 551
High likelihood 79.73 8.50 80.0 16.3 5 1.00 5
Fairly certain 79.83 12.16 85.0 20.0 56 1.00 56
Great likelihood 80.82 9.64 80.0 12.5 1 1.00 1
High possibility 80.93 7.30 80.0 11.0 1 1.00 1
Most likely 81.05 11.86 80.0 15.0 1341 .00 0
Very likely 81.53 8.05 80.0 13.5 296 .85 252
Great possibility 82.49 8.04 80.0 10.0 1 1.00 1
Quite certain 82.85 10.27 85.0 15.0 97 .90 87
Pretty certain 85.30 9.19 89.5 10.0 45 1.00 45
Very certain 89.78 7.35 90.0 11.3 15 .87 13
Almost certain 92.32 5.76 95.0 5.0 1694 1.00 1694
Most definitely 95.13 5.32 95.0 7.8 109 .20 22
Sure thing 97.53 4.34 100.0 5.0 27 .35 9
Always 100.00 0.00 100.0 0.0 41,869 .90 37682
Absolute certainty 100.00 0.00 100.0 0.0 37 .40 15
Certain 100.00 0.00 100.0 0.0 36,121 .25 9030
Definitely 100.00 0.00 100.0 0.0 3233 .80 2586
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Fig. 7. The relative rank of probability phrases.
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5.3. Subjective estimates of probability frequency

Brown and Qian (2004) asked participants to estimate the relative frequencies with
which different probabilities occur in the environment, and found that (a) low and high
probabilities are rated as occurring most frequently, and (b) high probabilities are rated
as occurring more often than low probabilities. Assuming the veridicality of participants’
ratings, DbS can therefore explain both the S-shape of the probability weighting curve and
also its asymmetry.

5.4. Sampling of events

From assuming that there are few frequent events and many rare events (Oaksford &
Chater, 1994) we argue that the distribution of probabilities experienced is such that there
are many small and large probabilities and relatively few moderate probabilities. Here, we
illustrate this argument by considering a toy universe, where there are only 100 possible
events that can and will ever occur. We begin by assuming that the frequency of these
events follows Zipf’s power law (see Fig. 9A). Many real-world events, such as the fre-
quency of words in natural language, follow just such a distribution (see, e.g., Bak,
1997; Ijiri & Simon, 1977; Mandelbrot, 1982; Zipf, 1949). According to support theory
(Tversky & Koehler, 1994), people judge the probability of an event by comparing it to
possible alternative events. Thus, here we do not assume that people have access to the
raw frequencies of each event. Instead they judge how likely each event is compared to
a subset of possible alternatives. Continuing the word frequency example, the raw frequen-
cies themselves are not of communicative importance. Instead, what matters and what is
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Fig. 8. (A) The probabilities used in Gonzalez and Wu’s (1999) experiment. (B) The relative ranks for
probabilities in this experiment.
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probabilities of events in randomly selected pairs of events. (C) The cumulative probability of the relative
probabilities. See text for details.
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experienced is co-occurrence (indeed many computational models of the lexical semantics
are constructed from just such co-occurrence relations, e.g., the hyperspace analogue to lan-
guage, Lund&Burgess, 1996; and latent semantic analysis, Landauer&Dumais, 1997). That
is, they experience the relative frequencies of words in a particular context. For example, the
raw frequencies of ‘‘hedge’’ and ‘‘fence’’ are not experienced directly. Instead, we experience
their relative frequencies in contexts like ‘‘the horse jumped over the. . .’’.

Fig. 9B shows the probability with which various relative probabilities are experienced
when pairs of events are drawn from the universe of events. Specifically, consider sampling
two events E1 and E2. Call the absolute probability of these events p1 and p2. Thus, the
probability of randomly sampling the pair from the universe is given by the pair probabil-
ity p1p2. The relative probability of event E1 is p1/(p1 + p2) and the relative probability of
event E2 is p2/(p1 + p2). The probability with which each relative probability can be expe-
rienced can be calculated by averaging over all possible event pairs, and it is this distribu-
tion that is plotted in Fig. 9B. We suggest that it is these relative probabilities that people
encode, and thus sample from memory. Fig. 9C plots the mean relative rank of a proba-
bility within a sample from all of the relative probabilities (effectively the cumulative den-
sity function, exactly as for gains, losses, and delays). There are two important features of
this resulting function. First, there are more small and large relative probabilities than
intermediate values: The cumulative density function is steepest initially and finally. Sec-
ond, certain round fractions (e.g., 1/2, 1/3) occur frequently. Note that most of the density
of the fractal-like pattern is at the edges despite the central spikes.

The immediately preceding argument assumes people are sensitive to the relative prob-
ability of one event compared to another p1/(p1 + p2). An alternative assumption is that
people are sensitive to the odds p1/p2. Because odds are a simple monotonic transform
of relative probability—specifically odds = probability/(1 ! probability)—the distribution
and cumulative distribution of odds can be derived directly from those for relative prob-
ability. Crucially, for a given pair of events, the relative rank of the relative probability is
the same as the relative rank for the corresponding odds. Thus, according to DbS the rel-
ative rank of an event will be the same whether people are sensitive to odds or relative
probability (though presenting the chances of an event happening as odds rather than
probability might well evoke a different sample of chances from long-term memory).

6. General discussion

The shapes of the descriptive functions for the utility of gains and losses, temporal dis-
counting, and the subjective value of probabilities are well established in the literature.
Here, we have offered an account of why these functions might take the forms that they
do. DbS makes two key claims about the psychology of decision making. First, people
can make only binary, ordinal comparisons between attribute values. Second, attribute
values are compared with a decision sample comprising a sample of values from memory.
The distribution of values in memory is assumed to reflect the distribution of attribute val-
ues in the world. Thus, according to DbS, these functions take the forms they do because
of the real-world distribution of gains, losses, delays, and probabilities. These assumptions
are sufficient to account for incremental wealth having diminishing incremental utility (i.e.,
risk aversion); losses looming larger than gains; sub-hyperbolic temporal discounting, with
a dependency of magnitude and nature of the outcome; and overestimation of small prob-
abilities and underestimation of large probabilities.
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6.1. DbS and economic theory

The assumption that people do not directly utilize internal scales for value constitutes a
break from Bentham (1789/1970) notion that utility is calibrated on an internal psycholog-
ical scale and thus a break from psychological theories derived from economics that make
a similar assumption. Interestingly, mainstream economic theory has not assumed the
existence of such scales. Indeed the revealed preference interpretation (Samuelson,
1937), which has become standard in economics, takes utility to be revealed by observable
preferences. For one item to have higher utility than another for a particular person is tak-
en to mean no more than the first item would be chosen over the second by that person.
Savage (1954) generalized this result to utilities and probabilities, showing that, given cer-
tain normatively reasonable constituency conditions on people’s preferences over gambles,
these preferences could be used to reveal utility and probability information simultaneous-
ly. From the revealed preference perspective, the utility and probability scales are derived
from dispositions concerning preferences, rather than amounting to psychological claims.
The approach developed in this paper has intriguing similarities to and differences from
this view. The similarity is that, in our approach, people have access only to their binary
preferences (or more generally binary, ordinal comparison of perceptual magnitudes) and
hence, to the extent that people have a broader grasp of their own more global preferences,
these must be constructed from their own binary preferences (Kornienko, 2004), just as the
economist constructs probability and utility scales from a person’s binary choices. This
account also has a striking dissimilarity from the economists’ conception. This is because
we assume that sampling from memory is limited and stochastic. People’s judgments of a
particular attribute will be strongly influenced by the particular comparison items that
they happen to sample. Hence, people’s assessments of payoffs, probabilities, time inter-
vals, and other attributes, will be highly malleable, rather than conforming to a stable
ordering as in standard economic theory.

6.2. Prospect relativity

In this article we have focused upon the effect of the attribute values that people sample
from memory. However, as we suggested above, we also think that attribute values from
the immediate context in which a decision is made are also likely to be sampled and thus
influence judgment and decision making. Two existing experiments have examined the
effect of the context in which a decision is made on judged certainty equivalents of risky
prospects (Birnbaum, 1992; Stewart, Chater, Stott, & Reimers, 2003) and in decision
under risk (Stewart et al., 2003; see Benartzi & Thaler, 2001; for a real-world example).
In both of these experiments the distribution of options (either values from which a par-
ticipant had to draw a certainty equivalent, or the range of prospects from which a par-
ticipant could select one to play) was manipulated. Birnbaum and Stewart et al. both
found strong effects of these manipulations which were consistent with attribute values
being judged in comparison to other attribute values in the immediate decision context.

6.3. DbS and the time course of decision

Recently, psychologists have begun to consider the time course of decision making (e.g.,
Roe et al., 2001; Diederich, 2003). We can formulate DbS as a sequential sampling model,
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where pairs of attribute values are subject to ordinal comparison, and frequency counts of
favorable comparisons are maintained. This formulation could naturally be extended to
model the time course of decision making. We envisage that this accumulation will contin-
ue either until a response deadline or until some threshold or difference is reached.

This account differs from that of Roe et al. (2001) and Diederich (2003). In their
account, dimensions, rather than attribute values, are sampled in an all or none process,
with stochastic switching between dimensions during the course of the decision process. At
each step, the valence of each alternative is derived by comparison with every other alter-
native in the choice set. Valences are integrated over time to produce preferences, with the
preferences for each option competing via similarity weighted lateral inhibition. In DbS,
valences would simply be incremented by favorable ordinal, binary comparisons. Compe-
tition between options in DbS would not come from lateral inhibition, but instead from
the fact that comparisons are binary. Because comparisons are assumed to be binary,
introducing a new option that is similar to an existing option would cause the favorable
comparisons to be shared between them.

6.4. Range–frequency theory

In Parducci’s (1965, 1995) range–frequency theory, an attribute value is a weighted sum
of its ordinal rank within the immediate context and its interval scale position within the
range set by the immediate context. In DbS, only rank matters. However, in DbS, effects
of the absolute magnitude of an attribute value (i.e., range effects) can arise because items
in the decision sample includes not only items from the immediate context but also other
values from memory. If the distribution of extra-contextual attribute values is uniform,
then the subjective attribute value is that given by range–frequency theory. Thus, we sug-
gest that demonstrations of effects of the position within the range with rank held constant
in fact reflect the use of attribute values from outside the immediate context. To the extent
that these are fixed from one situation to the next, it will appear as if more than pair-wise
ordinal information is available when this is not necessarily the case.

Consistent with this, applications of range–frequency theory to areas such as price per-
ception and wage satisfaction ratings have typically found that the rank/frequency weight-
ing is weighted more highly, and the range/end-point relative position less highly, when the
distribution of the decision sample is made salient (e.g., by simultaneous presentation:
Brown, Gardner, Oswald, & Qian, 2004; Niedrich, Sharma, & Wedell, 2001; cf. also Alba,
Mela, Shimp, & Urbany, 1999).

6.5. Decision by similarity sampling

It is unlikely that attribute values in the decision sample are sampled randomly from
memory. It seems likely that other factors such as similarity and recency must play a role.
Most models of memory retrieval assign a major role to recency as a factor determining
retrieval probability, and hence any complete account must assume that recent items
are more likely to be included in the decision sample. For example, Parducci (1995) argues
that the context for evaluation includes both recent exemplars and also remembered
extreme exemplars (anchors). However, similarity will also determine the probability of
inclusion: for example, the price of a car is likely to be judged with reference to a sample
of similarly priced cars, and wage satisfaction is likely to be evaluated in terms of a sample
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of wages earned by individuals in similar occupations and earning similar wages (e.g.,
Rablen, Brown, & Oswald, 2004).

In the discussion of how discount rate depends on the magnitude of the outcome, we
suggested that the long [shorter] delays experienced in the receipt of large [smaller] mon-
etary values would be sampled when considering the discounting of larger [smaller] values.
This suggestion is consistent with the idea that whole exemplars are sampled, rather than
isolated attribute values. Many exemplar models of memory offer the potential for inde-
pendently motivated accounts of the retrieval processes that might underpin the formation
of decision samples. Indeed, some of these accounts have been applied to judgments of
probability. In Kahneman and Miller’s (1986) norm theory, for example, a stimulus or
event is judged and interpreted in relation to an evoked contextual set of relevant stimuli
or events that are retrieved in response to the event to be judged. Such retrieval may be
similarity based. Dougherty et al. (1999) develop a similarity-based model of memory,
Hintzman’s MINERVA2 (Hintzman, 1984, 1988), and apply it to a wide range of likeli-
hood judgment phenomena. Thus, exemplar theories of memory can underpin models
of availability, and DbS can be interpreted as an account of processes operating subse-
quent to availability-stage phenomena. More specifically, the availability heuristic suggests
that event frequencies or likelihoods are judged by the ease with which instances come to
mind (Tversky & Kahneman, 1973). As Schwarz and Vaughn (2002) note, fluency of recall
and content of recall may provide distinct sources of information. DbS, while focussing on
content, is distinctive in assuming that only relative magnitude judgments are available to
provide the basis for judgment, and that judgments are made purely on the basis of a tally
of the number of retrieved exemplars above and below the target item on the dimension of
interest. In some cases (e.g., Brown et al., 2004) this simplistic sampling provides a better
fit to the data than when similarity (or dissimilarity) are taken into account.

6.6. Unifying normative and contextual models of decision making

We see the DbS framework as an important step towards unifying traditional models of
decisionmaking, where attribute values are derived from fixed psychoeconomic functions of
external values, and contextually driven models, such as range frequency theory and multi-
alternative decision field theory. We have offered an account where the frequently observed
psychoeconomic functions arise from the real-world decision making environment which
also incorporates an explanation of how variations in that context will influence decisions.
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