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 Adding Risks: Samuelson's Fallacy of Large
 Numbers Revisited

 Stephen A. Ross*

 Abstract

 Samuelson called accepting a sequence of independent positive mean bets that are individ-
 ually unacceptable a fallacy of large numbers, and subsequent researchers have extended
 Samuelson's condition on utility functions to assure that they would not allow this fallacy.
 By contrast, some behavioralists, arguing the merits of diversification, believe that it is sim?
 ply wrong headed to refuse a long series of independent "good" bets out of a misguided
 faith in expected utility theory. Contrary to what one might infer from the literature, this
 paper shows that accepting sequences of good bets is both consistent with expected utility
 theory and quite usual.

 I. Introduction

 At the root of a contentious literature on economic behavior in the face of

 repeated random choices is the observation that maximizing the geometric growth
 rate of a portfolio will, with probability one, asymptotically outperform any other
 significantly different choice. This result has led some to suggest that any other
 choice would be irrational. Samuelson (1971), however, argued that convergence
 in probability is too weak to support such a strong behavioral conclusion. In?
 deed, since maximizing the geometric growth rate is equivalent to maximizing
 the expected log of wealth, the position of its advocates is tantamount to judging
 all other utility functions as irrational choices. In addition, as the horizon for a
 problem of maximizing terminal expected utility grows infinite, the natural "at-
 tractors" or turnpikes for all optimal policies are the optimal policies for constant
 relative risk aversion utility functions of which the log is just one example (see
 Ross (1974a) and Huberman and Ross (1983)).

 This class of issues is a variant of an earlier theme in Samuelson's work on

 what he termed the fallacy of large numbers (see Samuelson (1963)). Samuelson
 offered a colleague a better than fair bet?a 50-50 chance of winning $200 or
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 bridge, MA 02142. Despite the helpful comments of Paul Samuelson, Doug Diamond, David Pollard,
 Richard Roll, Ken French, Jon Ingersoll, Dick Thaler, Christian Gollier, Stephen Brown (the editor),
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 losing $100.1 use the adjective "good" to describe bets such as these with positive
 means. When the colleague rejected the bet, but said that he would be willing to
 accept a string of 100 such good bets, Samuelson demonstrated that if one bet
 were rejected and if that bet were rejected at all wealth levels, then any sequence
 of n such bets should also be rejected. The colleague's intuition was based on
 a loose application of the law of large numbers; he apparently felt that if the
 bet were repeated sufficiently often the probability of winning would converge to
 one and be a sure thing. Samuelson pointed out that the law of large numbers
 applies to averages and not to sums. As the gamble is repeated, the distribution of
 potential outcomes spreads?the variance goes as n?while the expected return
 from repeating good gambles increases as n.

 Unfortunately, Samuelson's correct but purposely limited analysis has led
 to a more general perception that eventually accepting a sequence of good bets
 when a single one would be rejected is somehow truly a "fallacy of large num?
 bers" and suspect behavior from the perspective of expected utility theory. Pratt
 and Zeckhauser (1987) and Kimball (1993) defined a von Neumann-Morgenstern
 utility function as "proper" if the sum of two independent undesirable gambles
 would be inferior to either of the gambles individually. These authors found suffi?
 cient and separate necessary conditions on utility functions for them to be proper.
 Kimball (1993) extended these results.1 By contrast, in a delegated monitor?
 ing problem, Diamond (1984) found sufficient conditions on utility functions for
 "... the 'fallacy of large numbers' to be correct, rather than a fallacy_"

 Rather than disagreeing with the view that preserving an initial rejection is
 an attribute of expected utility theory, Benartzi and Thaler (1996) have displayed
 it as an undesirable aspect of the theory itself. First, they argue that Samuelson
 misinterpreted his colleague's irrationality. They agree that the colleague was ir?
 rational, but they emphasize what they call "myopic loss aversion," i.e., excessive
 sensitivity to short-term losses for good bets. Naturally, they also believe it is
 implausible that someone would turn down 100 plays of the bet with an expected
 value of $5000 and, what is for the example above, a less than 0.005 chance of
 losing money. Intuitively, as the gamble is repeated the mean return grows and
 the probability of any particular loss diminishes. Why, then, would any sensible
 individual reject such repeated gambles? Presumably, such shrinking violets grow
 irrationally risk averse as their wealth increases.

 Benartzi and Thaler and other students of what is coming to be called "be?
 havioral finance" offer as a substitute for von Neumann-Morgenstern utility a
 form of prospect theory (developed by Kahneman and Tversky (1979)) in which
 the outcomes of prior lotteries "frame" current choices by providing a reference
 point against which losses and gains are assessed. Whether this is of significance
 for finance remains to be determined.2

 Contrary to the view that accepting a sequence of good bets while reject-
 ing a single gamble is not easily reconciled with expected utility theory, I argue

 *See Ross (1998) for a dissenting analysis of proper utility functions.
 2One thing is for sure, it is very hard. In effect, all portfolio problems now become path dependent

 in the sense that what you do depends on how you got there. This is a high price to pay and a road
 to travel down only if we are sure that we will like what we find at the end. In research, unlike life,
 however satisfying the journey, we do not always try to climb the highest mountain.
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 that such behavior is quite normal. Interestingly, in a later unpublished paper,
 Samuelson (1984) has also taken the opposite side ofthe traditional fallacy argu-
 ment and constructed an example of a utility function that will eventually accept
 a long enough sequence of good bets. This paper is not the first to further analyze
 Samuelson's fallacy. Nielsen (1985) found necessary and sufficient conditions
 for a concave utility function to eventually accept a sequence of bounded i.i.d.
 good bets. Lippman and Mamer (1988) generalized Nielsen's sufficiency result
 to sequences of i.i.d. good bets that could be unbounded, and Hellwig (1995) gen?
 eralized Samuelson's problem to comparisons of sums of i.i.d. bounded random
 variables. Nielsen and Lippman and Mamer's principal condition is that the left
 tail of the utility function not decline exponentially as wealth declines, and Hell?
 wig showed that, for his problems, a similar condition must also apply as wealth
 increases.

 This paper finds necessary and sufficient conditions for the eventual ac?
 ceptance of sequences of good bets that are independent, but not necessarily
 bounded or identically distributed. The results hold for monotone functions that
 are bounded by an affine function above but need not be concave, and they con-
 firm the importance of the exponential lower bound on utility. An interesting way
 to think about the lower utility bound is that it requires that the agent not be as
 sensitive as the exponential to bad outcomes.3 Since proper utility functions are
 defined by reference to pairs of independent but not necessarily identically dis?
 tributed random variables, my results are directly in contradiction to the spirit of
 the research on "proper" utility functions.

 Section II introduces the central problem and reviews Samuelson's theorem.
 Section III derives necessary and sufficient conditions for a utility function to
 eventually accept a long enough sequence of good bets. Section IV extends the
 results of previous sections to multiplicative independent gambles such as occur
 over time. Section V briefly summarizes and concludes the paper with some
 speculation on its possible uses.

 II. Samuelson's Result

 Throughout this paper, I consider individuals whose choices are governed
 by taking the expectation of a von Neumann-Morgenstern utility function. Unless
 specified to the contrary, this function will always be assumed to be nondecreas-
 ing.

 Samuelson's basic theorem provides a sufficient condition for an individual
 to reject n repetitions of an undesirable gamble.

 Theorem 1. (Samuelson (1963)) If a utility function, U, rejects a lottery x at all
 wealth levels, then it will reject any arbitrary partial sum,

 S(n) = x\ + ? - ? +xn,

 where the Xj are i.i.d. replications of x.

 3The author is grateful to Stephen Brown for this observation.
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 Proof Since at all wealth levels, w,

 E{U(w + x)} < U(w),

 conditional on any outcome of the first n?\ such gambles, the n\h gamble would
 be rejected,

 E{U(S(n))\S(n-\)} = E{U(S(n- 1) +x)\S(n - 1)} < U(S(n-l)),

 hence,

 E{U(S(n))} < E{U(S(n-l))},

 and continuing,

 E{U(S(n))} < U{0),

 i.e., S(n) is rejected for all n. ?

 Samuelson's basic theorem is appealing in its simplicity but, unfortunately,
 it does not tell very much about individual preferences. It is a result that applies
 jointly to specific pairs of utility functions and gambles, and one is left without a
 general sense of what there is about a utility function that will cause it to reject
 repeated gambles if it rejects one such gamble. One of the aims of this paper is to
 provide such general results.

 The first step in exploring the classes of utility functions that preserve rejec-
 tion or acceptance is to relate them back to Samuelson's criteria. Which utility
 functions have the property that if they reject a gamble at one wealth level they
 will reject it at all wealth levels? Unfortunately, as is well known in related con-
 texts, the answer is disappointingly limited.

 Theorem 2. The only utility functions that reject the same gambles at all wealth
 levels are the risk-neutral function and the exponential, i.e., the constant coeffi?
 cient of absolute risk aversion utility functions,

 U(x) = x, ? e
 -Ax

 Proof. See Appendix.

 Theorem 2 confirms that if one tries to apply the strict Samuelson criterion,
 the linear and the exponential are the only utility functions that have the property
 that, if they reject a gamble at one wealth level, they will reject it at all levels.
 But, while these conditions are sufficient for rejecting a sequence any of whose
 members would be rejected, they are far from necessary and are overly strong. In
 the next section, Samuelson's problem will be studied in detail and, contrary to
 what might be thought from Theorems 1 and 2, I will show that there is a large
 and not at all unusual class of utility functions that accepts a sequence of gambles,
 any one of which considered individually would be rejected.
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 III. Eventual Acceptance Property (EAP)

 I begin with a definition of the essential property being studied. This defi?
 nition is more general than that originally posed by Samuelson and others (see,
 e.g., Nielsen (1985), Lippman and Mamer (1988), and Hellwig (1995)) in that it
 permits gambles to differ.

 Definition 1. Eventual Acceptance Property (EAP) Let x\ ,X2,..., be a sequence
 of independent good random variables with means pi satisfying the following
 conditions,

 p ? irdpi > 0.

 A utility function has the Eventual Acceptance Property (EAP) iff for each such
 sequence there exists a finite n such that the partial sum S(n) is accepted.

 If a utility function has the EAP property, then it will eventually accept any
 sequence of good gambles even if each were rejected on its own. Notice that the
 EAP only requires eventual acceptance and not acceptance for all n larger than
 some specified n*, which would, in general, depend on the specific sequence as
 well as the utility function. Notice, too, that the EAP is an additive property.
 Section IV extends the results to multiplied repeated gambles of the sort that arise
 in intertemporal portfolio theory.

 The EAP is the property with which Samuelson was most concerned but,
 unfortunately, completely general necessary and sufficient conditions on utility
 functions for the EAP to hold are difficult to obtain. The problem is difficult
 because it turns on the behavior of random walks in the tails, and the usual sorts

 of local differential tricks employed to characterize utility functions in terms of
 coefficients of risk aversion are of little use. As a consequence, some additional
 properties will have to be imposed on the sequences, e.g., the variances might be
 required to be uniformly bounded, and the EAP will then be defined to hold for
 sequences satisfying the restriction.

 The first result is a sufficient condition on a utility function for it to have
 the EAP. Later, a more general result will be obtained (Theorem 5), but the
 next theorem is of some independent interest because it generalizes a result in
 Samuelson (1984). Samuelson (1984) provided an example of a utility function
 that was bilinear with a single kink?a Domar-Musgrave utility function?and
 showed that the EAP held for the example. He then conjectured that the result
 would be true in general. The following theorem verifies this conjecture.

 Theorem 3. A sufficient condition for a concave utility function, U, to have the
 EAP for sequences with uniformly bounded individual variances is that U be un-
 bounded from above and that U' be bounded from above, i.e., as x 4- ? oo,

 U' t rn < oo.

 Proof. See Appendix.

 Intuitiveiy, as independent good gambles are added, the probability mass
 shifts to the right and also spreads. If the left tail of the utility function does not
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 decline faster than the linear, then the law of large numbers will bound the neg?
 ative contribution to expected utility from losses. Hence, if the utility function
 is unbounded from above, expected utility will be unbounded and the sequence
 eventually will be accepted. While it is nearly a special case of the above anal?
 ysis, it is also worth separately considering the case where the utility function is
 no longer concave but, rather, is bounded from above and from below. Strictly
 speaking, to prevent extended versions of the St. Petersburg Paradox, this must
 be the case, although it is unclear what the negative domain means since presum-
 ably this entails losses that the individual cannot cover (see Ross (1974b) on the
 relation of this observation to bankruptcy). Conversely, presumably someone on
 the other side of these bets is making promises in the right-hand domain that they
 cannot keep. I will be able to finesse these issues when I interpret my results for
 multiplicative gambles in Section IV.

 Theorem 4. If the utility function is bounded below and non-satiated above, then
 it has the EAP with respect to sequences with uniformly bounded individual vari?
 ances.

 Proof. See Appendix.

 Theorems 3 and 4 expand understanding of which preferences have the prop?
 erty to eventually accept repeated good gambles, but I have not shown that they
 are necessary and, until I do so, it is difficult to get a more complete understand?
 ing of the EAP. In both theorems, what matters is the rather delicate behavior of
 the partial sums in the tails. Although the probability mass is shifting upward, it
 is also spreading and, particularly in the lower tail of the distribution of the par?
 tial sum, S(n), if the utility function is approaching minus infinity fast enough,
 then the contribution of the negative portion of the expected utility integral may
 be unbounded from below. Theorem 3 shows that, in general, failure of the EAP
 requires that the marginal utility become unbounded as x declines. The following
 example illustrates the tension between the rapidly declining utility function in
 the left tail and the shifting mass ofthe distribution.

 Example. Assume that each member of the sequence, Xj ~ N(fi,a2). Let the
 utility function be exponential,

 U(x) = -e~a\

 on (-oo, 0) and arbitrary above with a smooth pasting at the origin so as to pre-
 serve overall concavity. Extending the exponential to the entire line, the expecta?
 tion is minus the (real) moment-generating function for the exponential,

 _ p?iian+l/2(T2a2n

 Since the exponential is bounded from above by zero, by the Chebyshev
 inequality, the contribution ofthe portion ofthe expectation on [0, oo) approaches
 zero and the above term is the limiting form of the negative integral on (?oo, 0).
 If fia < Via2a2, then as n | oo, this term approaches -oo exponentially.

 By contrast, since the expected value of S(n) is jin, it is straightforward to
 show that the positive integral is bounded above by a linear term in n. Hence, for
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 any good gamble, the expected utility becomes arbitrarily low for large n violating
 the EAP.

 The example violated the EAP because the exponential utility function di-
 verged too rapidly in the lower tail relative to the speed with which the distribution
 spread upward. In fact, this is a feature of the exponential and it is a watershed
 case for a broad class of distributions. To make this precise, assume that the
 distributions possess moment-generating functions somewhere on the line, i.e.,
 distributions will be assumed to have a real moment-generating function for some
 0>O,

 (t>i{0) = E[e~6xi] < oo,

 where X[ is the rth good bet. As a practical matter, the restriction is not terribly
 confining since nearly all distributions of interest will satisfy it. The following
 lemma develops the principal tool that justifies our attention to generating func?
 tions.

 Lemma 1. Let jci,jc2, ..., be a sequence of independent random variables with
 means pi satisfying the following conditions,

 p = inf/i/ > ?oo,

 0. = liminffl; > 0,

 where 0/ = sup{0|0,-(0) < oo} > 0.

 It follows that, for a < p and a given s,

 P[Sn < s + an] < eesen^a6+K^\

 where Sn = *i+ ???+*?,

 n z?'

 and, for 0 > 0 and sufficiently small,

 sup[a0 + /c?(0)] < 0.

 Proof. See Appendix.

 The main result can now be proved.

 Theorem 5. Under the conditions on the sequence of random variables given in
 Lemma 1, a sufficient condition for the EAP to hold is that the utility function, U,

 be non-satiated and have the property that

 U(x)e^x -> 0,

 as x ?> ?oo for all 7 > 0. If the utility function is bounded above by a linear
 function, e.g., if it is concave, then this condition is necessary as well.

 Proof. See Appendix.
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 Theorem 5 is quite general and subsumes the previous two results. Perhaps
 counterintuitively, even though the mass is shifting upward, a utility function with
 decreasing absolute risk aversion on the whole line will not satisfy the integrabil-
 ity condition of Theorem 5 since it will decrease at least as rapidly as an exponen?
 tial in the lower tail. The EAP requires that a utility function be less risk averse
 than the exponential in the lower tail. Notice that the central issue for necessity
 is the relative speed with which the left tail declines since, for a concave utility
 function, the upper tail is bounded above by a linear term in n. A parametric ex?
 ample is presented in the Appendix, which develops the arguments of Theorem
 5 in detail for the exponential distribution. My condition is a variant of those
 found in Nielsen (1985), Lippman and Mamer (1988), and Hellwig (1995), but
 my theorem is somewhat stronger than theirs.

 The next section applies these results to multiplicative gambles of the sort
 that arise in intertemporal portfolio problems.

 IV. Multiplicative Gambles and Minimum Wealth Constraints

 In many applications the gambles are multiplicative rather than additive. For-
 tunately, a number of my previous results carry over by a simple transformation
 to relative wealth gambles. Instead of working with a sequence of gambles whose
 outcomes add or decrement current wealth, consider a sequence of the form,

 wl\xh

 which multiplies current wealth.
 If the utility function is given by U(-) and defined on i?+, then an additive

 function on the line by the log transform is defined,

 G(z) = U(<*),

 and E(U(wY[xi) = E(G(logw + S(n))),

 where S(n) = logjei + ? ? ? + logje?.

 If I now define a good gamble as one with a positive expected growth rate,

 Pi = E [log xi\ > 0,

 then I can apply my previous results to G with the exception of those that relied
 on concavity. The concavity of U is not sufficient to assure that G is concave.
 Differentiating twice,

 G" = U'ez[l-R],

 where R is the coefficient of relative risk aversion, R = ?wU"/U! = wA.
 It follows that G is concave iff the coefficient of relative risk aversion is not

 greater than one. Since concavity serves primarily to bound the utility function
 by a linear function on the positive interval, Theorems 3 and 4 and the sufficiency
 part of Theorem 5 apply to G. However, for R < 1, G is no longer concave and
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 while it may fail the lower tail integrability condition of Theorem 5, it may in?
 crease fast enough to permit the EAP to hold. Because the integral would then
 diverge on both the negative and the positive orthant, necessary as well as suffi?
 cient conditions for the EAP to hold for general functions are difficult to obtain,
 but weak sufficient conditions that will cover most useful cases are easy to obtain
 as extensions of my previous results.

 Theorem 6. Assume that the conditions of Lemma 1 hold for the sequence of
 gambles, {logx/} and that G(z) satisfies the integrability condition of Theorem 5.
 The EAP holds for such multiplicative gambles if

 limsup R(w) < 1,
 w ->? 0

 and U is non-satiated.

 Proof The condition implies that there exists S and r, 0 < S, r < 1, such that,
 for w G (0, S), R(w) < r. Integrating this inequality twice and scaling the utility
 function, I obtain for w G (0, S),

 U(w) > cw1_r,

 where c > 0 is a constant of integration. Hence,

 G(z) = U(ez) > c^1"'^,

 for z < log S. Since r < 1, G satisfies the conditions of Theorem 5 and the EAP
 holds. D

 Theorem 6 verifies that if G(x)elx is integrable over the negative line for
 7 > 0, and G is non-satiated, then the EAP holds. Converting this back into
 conditions on the original utility function U, U(ex)elx must be integrable and U
 must be non-satiated.

 As a rule of thumb, for multiplicative gambles, the constant relative risk
 aversion utility functions play the role that the exponential does for additive gam?
 bles. For instance, Theorem 2 generalizes immediately to this class when applied
 to multiplicative gambles. As a consequence, for any sequence of independent
 gambles, if each is rejected then the sequence will be rejected, violating the EAP.

 In the special case of the class of constant relative risk aversion utility func?
 tions defined on (0, oo),

 U(w) =
 1

 w

 .(l-K)

 and U(w) = logw for/? = 1.

 Applying the exponential transform,

 G(z) = U{e*)
 1

 and G(z) = z forfl=l

 l~R for/?>0, mdR? 1,

 e(\-R)z for/? > 0, and/?^ 1,
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 For /? < 1, the conditions of Theorem 6 are satisfied and the EAP holds,
 but it fails for /? > 1. If one is willing to indulge in a discussion about the
 reasonable properties of utility functions, though, a case can be made that /? > 1
 is unreasonable for low values of wealth, which is precisely the region where the
 conditions for the EAP are violated.

 As a simple example, with /? = 2 a 50-50 gamble of size a will require an
 insurance premium of 7T, where

 7r _ /a\2

 To put this in perspective, imagine an individual with a total wealth of $25,000
 facing a 50-50 gamble of losing 90% of his wealth, $22,500, or winning $22,500.
 The premium to insure against this bet is 81% of total wealth, or $20,250. In other
 words, this individual is so risk averse that, despite having a current wealth level
 of only $25,000, he would pay up fully $20,250 of it, leaving him with $4,750
 for sure to avoid having a 50% chance of having $2,500 and a 50% chance of
 having $47,500. Such behavior is certainly possible and one can imagine unusual
 circumstances where it would occur, but it does not seem to be a reasonable de?

 scription ofthe behavior of economic everyman to pay 80% of his wealth to avoid
 a 50% chance of losing 90% and pass up a 50% chance of nearly doubling.

 Whatever the worth of such speculations about what is reasonable behavior,
 at a minimum they have the plausible implication of the eventual acceptance of
 a long enough string of independent proportional good bets. To put the matter
 another way, if the utility function is not too risk averse, i.e., /? < 1, then diversi?
 fication over time will assure that a string of independent proportional good bets
 eventually will be accepted.

 V. Conclusion

 I have argued that accepting a long enough sequence of independent good
 bets, even though the individual bets would be rejected, is not only consistent
 with expected utility theory, it is quite usual. Whatever the appeal of this line
 of reasoning, it directly contradicts the work of Pratt and Zeckhauser (1987) and
 Kimball (1993) who argue that two independent individually undesirable indepen?
 dent gambles are jointly undesirable. Contrary, too, to the assertions of Benartzi
 and Thaler (1996), expected utility theory is rich enough to encompass acceptance
 as well as rejection of sequences of good bets.

 These matters are not solely questions about rational individual choice be?
 havior. Samuelson's main point was that the law of large numbers applies to
 risks that are cut up among shareholders and not to sequences of gambles that are
 added. Risk is controlled and lessened by being cut up into smaller pieces among
 the shareholders ofa large insurance or investment portfolio. Adding n identically
 distributed uncorrelated gambles raises the total variance as n, but cutting a given
 risk into n independent risks lowers the total variance as n. But what exactly is
 being "cut up" and how this is done is not so obvious. And the insurance company
 analogy is not particularly compelling. After all, when an insurance company or
 a "swaps shop" opens its doors, it attracts n independent risks, it does not cut up
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 some larger existing risk. The presumption is that the race between a financial
 market that cuts up risks and a business that adds them is won by the market but,
 whether or not companies behave as though they have utility functions, this ten-
 sion nevertheless puts a greater burden on understanding what is rational choice
 across repeated gambles.

 As a final note, there is now a growing interest in risk control for both the
 internal management and the external regulation of financial firms, and there is
 an increasing use of measures such as value at risk (VAR). Whether or not firms
 behave as if they have utility functions, the choice of a VAR level is akin to the
 choice of a utility function with certain tail properties of the sort analyzed here.

 Appendix

 Proof of Theorem 2. For any local (compact) gamble,

 E{U(w + x)} < U(w) iff pU'(w) + ^a2U"(w) < 0,
 where p is the mean of the gamble and a is the standard deviation. As a conse-
 quence, acceptance or rejection is determined by the coefficient of absolute risk
 aversion,

 Af \ - U'?
 A{w) = -7/vT

 It follows immediately that only the constant coefficient of absolute risk aver?
 sion utility functions, i.e., the exponential and the linear, have the same rejection
 regions at all levels of wealth. ?

 In what follows, the well-known Chebyshev inequality, which is repeated
 here for completeness, is employed.

 Chebyshev's Inequality. Let ibea mean zero random variable and let e > 0.
 Denoting the probability of an event by the symbol P(-),

 P{\A >e)<^,
 where a2 is the variance of x.

 Proof of Theorem 3. Let S(n) denote the nth partial sum of a sequence of good
 gambles, Xj, each of which is distributed independently with mean pj > p > 0,
 and variance af < a2 < 0. Let Fn denote the distribution function of the nth
 partial sum.

 Without loss of generality, the utility function will be normed so that U(0) =
 0. The criterion for acceptance then becomes

 E{U(S(n))} > U(0) = 0.

 To study this, the integral is broken into its component positive and negative
 parts,

 E[U(S(n))] = f U(x)dFn(x)
 J (?00,00)
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 = / U(x)dFn(x)+ j U(x)dFn(x).

 Since U is unbounded from above, for any S > 0, there exists w such that for
 all x > w, U(w) > S. Using the Chebyshev inequality,

 [ U(x)dFn > j U(x)dFn
 > U(w)P(S(n) > w)
 > 8P(nn + e(n) > w)
 = S[l - P(e(n) <w- fin)]

 > s

 -> 5,

 2 noL

 (fin ? w)2

 where n > w/fi. Hence, the positive integral is unbounded in n.
 From concavity and the assumption that the marginal utility is bounded

 above, it follows that the utility function is bounded from below on (?oo, 0] by
 the linear function mx. This implies that the negative integral,

 / U(x)dFn > m [ U(x)dFn

 = mxFn 1?.^ ? m Fn(x)dx.
 J(-oo,0]

 Letting p,(n) > ji denote the mean of the nth partial sum, as x l ? oo, the
 Chebyshev inequality implies that for any n,

 2
 no

 ? y~ XF"{X) * X(,(n)n-Xy -> ?>
 hence the limit in the first term is 0. Again employing the Chebyshev inequality,
 the integral,

 / Fn(x)dx < I na-r^dx A-oo,o] J(-oo,o] (p>(n)n-x)2

 2 noL

 ~ fin

 Combining these results,

 / U(x)dFn >  -m?

 Choosing 6 > ma2/fi completes the proof. ?

 Proof of Theorem 4. The proof is a simple modification of the proof of Theorem
 3. From the Chebyshev inequality, for any x,

 2
 no

 Fn(x) = P(S(n)<x) = P(e(n) < x - fi(n)n) <-??^ -> 0,
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 as n t oo.
 If b is the lower bound of U, it follows that

 E[U(S(n))} = f U(x)dFn
 J (?00,00)

 = f U(x)dFn + f U(x)dFn J ( ? oo,a) J[a,00)

 > U(a)[l-Fn(a)]+bFn(a)

 which, by non-satiation, exceeds 17(0) for "a" sufficiently large. ?

 Proof of Lemma 1. The proof is an adaptation of an argument in Durrett (1996).
 Since 0. > 0, there exists N such that for all n > N, 0/(0) < 00. Let 0# =
 min(0i,..., 0/v, 0-) > 0. For 0 G (0,0#), the exponential function is a positive
 and decreasing function and for any n,

 (IIcj)j)n = E[e-?s*]
 > P[Sn < s + na\e-ese-nae,

 or P[Sn < s + an] < es0en^a6+K^e^.

 Since a < p, it suffices to show that ?n(0) < ?p as 0 -> 0. This can be
 shown rigorously by an application of the dominated convergence theorem and
 the monotone convergence theorem (see Durrett (1996)), but the argument only
 serves to verify the formal analysis that follows from observing that

 K?(0+) = (l/n)5>j(?)M(?) = -(l/n)?> < -A*. D
 Proof of Theorem 5. First I show sufficiency. Without loss of generality, I will set
 U(0) = 0. From non-satiation, the contribution to expected utility from the mass
 above zero will be positive. From the limit condition, for any 7 > 0, there exists
 Xy such that for all x < Xy,

 U(x) > -e-^.

 Hence,

 / U{s)dFn > ~ [ e~lsdFn+ f U(s)dFn.

 For an appropriate choice of 7 > 0, it is shown that this converges to 0 as n ?> 00.
 From Lemma 1, for any fixed s,

 Fn(s) < eesenk^e\

 where for 0 > 0 and sufficiently small, kn(0) < 0. Hence, as n ?> 00,

 Fn(s) -+ 0,
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 assuring that the integral of U(s) on [jc7, 0] converges to 0 as n grows large.
 Integrating by parts,

 - / e~^dFn = -e~^Fn(s) |% + f e~^Fn(s)ds.

 Choosing 7 < 6, as s ?> ?00,

 e-^sFn(s) < e-^eesetlk?W -> 0.

 Hence, e~^Fn(s)\x200 = e~^ Fn(x7) -> 0,
 as n -? 00. Similarly, as n -? 00,

 / e-^'Fn(s)ds < f e-^seesenk^ds
 J (? 00 ,;t7) ?/ (? 00 ,;t7)

 = enk"W f eV-^'ds
 J (?oo,;t7)

 -> 0.

 To verify necessity, observe first that if U is satiated at some wealth level,
 w*, then any bet with some mass below w* will be rejected. Hence, for EAP, we
 must not have satiation. To conclude the necessity argument, consider a sequence
 of i.i.d. good bets that have /i > 0 and that assign an atom of mass e~Xz at ? z.
 For any n,

 L  U(s)dFn(s)ds < e~XnzU(-nz).
 00,0]

 Assume, to the contrary, that U(s)eis is not integrable on [?00,0) for some
 7 > 0. Letting A < 7 implies that the above right-hand side bound -? -00 of
 exponential order, e^~x^zn as n -? 00. Since U(s) is bounded above by a linear
 function, a + bs, the right-hand integral,

 / U(s)dFn(s)ds < a + bfin,
 J[0,oo]

 which only grows linearly in n. It follows that choosing z large enough assures
 that the sequence of bets will be rejected for any n. ?

 Parametric Example Illustrating Theorem 5. Let x\, *2, ? ? ?, be i.i.d., with xi = a +
 ?/, where a > 1 and ?/ is distributed as a negative exponential,

 f(x) = ex if jc < 0, 0 if ;t > 0.

 Since E{xt} = a ? 1 > 0, these are good bets. The moment-generating function
 of ?/ is given by

 4>(9) = I  -(V& = ?-
 [-00,0]
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 which converges for 0 < 1. The moment-generating function for ]T) &, is

 4>"(0) = 1
 (\-ey

 Integrating the Laplace transform gives the resulting density function for
 ?6,

 (?- 1)!

 Hence, for 5 < 0,

 P[S? < s] = P[nn+J2& < *}

 ^?Uj-^
 ? e{s~V>n)  \ + (pn-s) + --- +-? (pn - s)

 (n- 1)!

 n-\

 From the previous analysis,

 P[Sn < s] = eQsen<e\

 where k(0) < 0 for 0 sufficiently small.
 Notice that, as observed in the proof of Theorem 5, this is not sufficient for

 the exponential utility function to converge,

 E[U(w)] = [ -g-(-J"H*) l (-x)n-le*dx
 i[-oo,-H {ri-l)\

 e~v-n r

 Interestingly, consider the function,

 U(x) = -(-x)-me~x,

 where m is a positive integer. In the region, x < ?m, the function is monotone
 and concave. Patching it to preserve monotonicity and concavity above ?m ? a
 for some a > 0, then the resulting utility function has the interesting property that
 it converges for n < m+1 and fails to converge for n > m+1. In other words, even
 though the distribution is shifting to the right, the mass in the left tail is growing
 sufficiently rapidly that, for more than m + 1 bets, the integral diverges.

 The case of exponential divergence can be explored by amending the exam?
 ple to permit ?/ to be distributed as an exponential with parameter A > 0,

 M) = AeA?, ? < 0,
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 and where p > 1/A to assure that E[xt] = p, ? 1/A > 0.
 The moment-generating function of the sequence,

 no) =
 X

 x-e

 which applies for X < 8, can be Laplace inverted to produce the distribution
 function for the sum

 ?(") = 6+ ??? + ??,

 and, hence, for s < fm,

 Fn(s) = P[Sn < s] = P[?(n) < s-pm]

 1 -(-Xxf^e^dx, -i [-ocm-H (n~ !)!

 which implies that

 n?l\[s?(in]

 If U(x)e'yx is not integrable for some 7 > 0, i.e., if U(x) ?> ? 00 more rapidly
 than the exponential, then for A < 7 expected utility will not converge.

 This, in turn implies, that for x > 0,

 / U(s)fn(s)ds = j-^ [ U(s)(-X[s-pn}y~lex^ds J[-x,o] (n- 1)! J[-x,o]
 -> ?00

 of 0(xtl) asx -? 00. ?

 References

 Benartzi, S., and R. H. Thaler. "Risk Aversion or Myopia? The Fallacy of Small Numbers and its
 Implications for Retirement Savings." Unpubl. Manuscript, Univ. of Chicago (1996).

 Diamond, D. W. "Financial Intermediation and Delegated Monitoring." Review of Economic Studies,
 51 (1984), 393-414.

 Durrett, R. Probability: Theory and Examples, 2nd ed. Belmont, CA: Wadsworth Publishing (1996).
 Hellwig, M. F. "The Assessment of Large Compounds of Independent Gambles." Journal of Eco?

 nomic Theory, 67 (1995), 299-326.
 Huberman, G., and S. A. Ross. "Portfolio Turnpike Theorems, Risk Aversion, and Regularly Varying

 Utility Functions." Econometrica, 51 (1983), 1345-1361.
 Kahneman, D., and A. Tversky. "Prospect Theory: An Analysis of Decision under Risk." Economet?

 rica, 47 (1979), 263-291.
 Kimball, M. S. "Standard Risk Aversion." Econometrica, 61 (1993), 589-611.
 Lippman, S. A., and J. W. Mamer. "When Many Wrongs Make a Right." Probability in the Engineer?

 ing and Informational Sciences, 2 (1988), 115-127.
 Nielsen, L. T. "Attractive Compounds of Unattractive Investments and Gambles." Scandinavian

 Journal of Economics, 87 (1985), 463-473.
 Pratt, J. W., and R. J. Zeckhauser. "Proper Risk Aversion." Econometrica, 55 (1987), 143-154.
 Ross, S. A. "Portfolio Turnpike Theorems for Constant Policies." Journal of Financial Economics, 1

 (1974a), 171-198.

This content downloaded from 198.91.37.2 on Mon, 27 Jun 2016 09:15:25 UTC
All use subject to http://about.jstor.org/terms



 Ross 339

 _Comment on "Consumption and Portfolio Choices with Transaction Costs,"
 by R. Multherjee and E. Zabel, in Essays on Economic Behavior under Uncertainty. Amsterdam:
 North-Holland Publishing Co. (1974b).

 "How Proper are 'Proper' Utility Functions?" Unpubl. Manuscript, Sloan
 School, MIT (1998).

 Samuelson, P. "Risk and Uncertainty: A Fallacy of Large Numbers." Scientia, 98 (1963), 108-113.
 _"The 'Fallacy' of Maximizing the Geometric Mean in Long Sequences of

 Investing or Gambling." Proceedings ofthe National Academy ofSciences, 68 (1971), 2493-2496.
 "Additive Insurance Via the y/N Law: Domar-Musgrave to the Rescue of the

 Brownian Motive." Unpubl. Manuscript, MIT (1984).

This content downloaded from 198.91.37.2 on Mon, 27 Jun 2016 09:15:25 UTC
All use subject to http://about.jstor.org/terms


