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A Representation Theorem for
Causal Decision Theory

Having come to grips with the concept of a conditional belief we now
return to the problem of proving a representation theorem for causal
decision theory. No decision theory is complete until it has been
supplemented with a representation theorem that shows how its “glo-
bal” requirement to maximize expected utility theory will be reflected
at the “local” level as constraints on individual beliefs and desires.
The main foundational shortcoming of causal decision theory has
always been its lack of an adequate representation result. Evidential
decision theory can be underwritten by Bolker’s theorem and the
generalization of it that was established at the end of Chapter 4.
This seems to militate strongly in favor of the evidential approach.
In this chapter I remove this apparent advantage by proving a
Bolker-styled representation result for an abstract conditional
decision theory whose two primitives are probability under a supposi-
tion and preference under a supposition. This theorem is, I believe,
the most widely applicable and intuitively satisfying representation
result yet attained. We will see that, with proper qualifications, it
can be used as a common foundation for both causal decision theory
and evidential decision theory. Its existence cements one of the basic
theses of this work. It was claimed in Chapter 5 that evidential and
causal decision theories should not be seen as offering competing
theories of value, but as disagreeing about the epistemic perspective
from which actions are to be evaluated. The fact that both theories can
be underwritten by the same representation result shows that this is
indeed the case.

7.1 the work of gibbard and armendt

The easiest way to prove a representation theorem for causal decision
theory would be to co-opt some existing result by supplementing
its axioms with constraints that capture utility as efficacy value.
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Allan Gibbard has done this by using Savage’s theorem, 1 and Brad
Armendt has employed Peter Fishburn’s conditional utility theory for
the same purpose.2 While both these results are interesting and impor-
tant for what they tell us about causal decision theory’s relationship to
two of the standard formulations of expected utility theory, neither is
ideal because the representation results of Savage and Fishburn are
less than fully satisfactory.

Gibbard supplements the axioms that govern preferences in Sav-
age’s theory by two constraints on beliefs about subjunctive con-
ditionals that together suffice to pick out an acceptable state partition
relative to which causal utilities may be computed. Expressed in terms
of a decision problem D � (Ω, O, S, A), these new axioms are3

Definiteness of Outcome: Let X be any proposition in Ω that the
agent cares about (in the sense of not being indifferent
between X and ¬X), and let A be any act in A. Then, either
[(A �→ X) & S] .�. S or [(A �→ ¬X) & S] .�. S should hold for
any state S in S.

Instrumental Act Independence: For any act A and any state S it should
be the case that [(A �→ S) ≡ S] .�. T.

The first of these says that the agent must be certain about all the good
or evil things that would accompany her acts when any given state
obtains. The second says that she must be certain that the states in S
are counterfactually independent of what she does. Under these con-
ditions, Gibbard shows, the expected utility that Savage’s axioms
deliver for any act A will coincide with its efficacy value. This makes
it possible for the causal decision theorist to use Savage’s representa-
tion theorem as a foundation for causal decision theory subject to the
proviso that Savage’s axioms are only appropriately applied when the
two stated conditions hold.

Gibbard’s approach does, of course, alter the nature of Savage’s
theorem since it no longer characterizes expected utility maximization
in terms of constraints on preferences alone. Some will see this as a
disadvantage, but I think it quite appropriate. As I argued in connec-
tion with Bolker’s theorem, it is wrong-headed to try to understand
prudential reason by reducing the laws of rational belief to the laws of
1 Gibbard (1984).
2 Armendt (1986). Fishburn’s theory is developed in Fishburn (1973).
3 Gibbard does not actually use the comparative probability relation to express these

requirements. Instead, he assumes a primitive notion of “knowing that” or “being
certain” conditional on some proposition being true. So, where he speaks of the
agent’s knowing X conditional on C, I speak of her being as confident in X & C as she
is in C. It should be clear that there is no substantive difference here.
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rational desire since this both gives rise to unacceptable forms of
pragmatism and forces theorists proving representation results to im-
pose unduly strong structural constraints on preferences. Thus, I have
no objection to Gibbard’s talk of the agent’s beliefs. I do, however,
think it is unwise to employ Savage’s representation theorem in this
context because all the problems associated with it are thereby im-
ported into causal decision theory. The main problems I have in mind
are its use of “constant” acts and its inability to handle “small-world”
decision making.

Armendt’s representation theorem takes Fishburn’s conditional de-
cision theory as its starting point. The basic concept here is that of the
utility of an action A on the hypothesis that some condition E obtains,
written here as U(A�E). This quantity is governed by the (partition
invariant) equation:
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where {E1, E2, . . . En} is any partition of E. For Armendt’s purposes
the most important thing about this formula is that it allows for a
distinction between an act A’s unconditional utility and its utility
conditional on its own performance. These are given, respectively,
by
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Notice how much U(A) looks like Savage’s Equation, and how much
U(A�A) looks like Jeffrey’s. Indeed, if one had U(A�S) � U(A�A & S)
� U(A & S), as one generally does not, then the top formula would be
Savage’s and the bottom one would be Jeffrey’s

In a suggestion that bears similarities to Jeffrey’s ratificationist
proposal, Armendt argues that A’s auspiciousness diverges from its
efficacy value precisely in cases where unconditional preference for A
differs from her preference for A conditional on itself. With respect
to the act A2 of refusing the extra $1,000 in Newcomb’s problem, for
example, Armendt writes, “it is highly plausible that A2 [given] A2 is
ranked below A2, . . . Under the hypothesis that I [refuse], my prefer-
ence for [refusing] is diminished, since worlds in which I [refuse] are
worlds where an empty [bank account] is likely.”4 More generally, he
claims that

4 Armendt (1986, p. 10).
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unconditional preference is perturbed by a conditional hypothesis to the
extent that the hypothesis carries information which makes a difference to the
agent’s estimate of [a prospect] P’s value or utility. But since to hypothesize is
not to acquire news, preference is not perturbed by alterations in degree of
belief . . . The hypothesis that a proposition is true or the hypothesis that it is
false does not affect the [causal] utility that the agent attaches to it. But
sometimes the hypothesis that the actual world is a P-world may carry infor-
mation about states that the agent (believes are) correlated with P.5

Any difference between U(A�A) and U(A) is, in Armendt’s view,
an indication that the state partition has been chosen incorrectly and
thus that the value of U(A) cannot be confidently used as a guide to
action.

To isolate the right state partition (i.e., the one for which U(A) is
A’s correct causal expected utility) Armendt imposes two additional
constraints on the agent’s preferences. Skipping over some of the
technicalities, his first idea is that the elements of an appropriate
state partition will “screen off” differences in value between A
and A conditional on itself. In our terms this can be expressed as
follows:

Value Screening. For each state S and act A, the decision maker
should be indifferent between A given S and A given A & S, so
that A�S � A�(A & S).

When this holds, U(A) � ΣSP(S)u(A�A & S) and U(A�A) �
ΣSP(S/A)u(A�A & S). These equations stand to one another as Sav-
age’s and Jeffrey’s do. As Armendt goes on to observe, the condi-
tional utilities U(A�A & S) can be eliminated in favor of unconditional
news values V(A & S) as long as there exists at least one partition of
“consequences” C such that for any proposition C ∈ C the agent’s
utility for A conditional on (A & C & S) always equals her uncondi-
tional utility for (A & C & S).

Existence of Consequences: There is a partition of propositions C
such that A�(A & C & S) � (A & C & S) for all states S and
acts A and all C ∈ C.

If this is the case then U(A�A & S) � ΣCP(C/A & S)U(A�A & C & S)
and the equation for unconditional utility becomes

        U   P P UA S C A S A C SS C( ) ( ) ( ) ( )[ ]� Σ Σ / & & &

This is a version of the K expectation formula for causal decision
theory discussed in Chapter 5. Armendt takes this similarity of
5 Armendt (1986, p. 10).
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form to show that his two constraints capture the appropriate notion
of a K partition for use in calculating efficacy values. If this is right,
then adding them to the axioms for Fishburn’s conditional utility
theory will provide a representation theorem for causal decision
theory.

This is a nice idea. Armendt is right to think that one should look to
a theory of conditional expected utility to find a foundation for causal
decision theory, and his characterization of K partitions is quite
suggestive. Still, I am not sure that he has made the case for Value
Screening as a hallmark of the partitions that should be used to
compute causal utilities. It is hard to see how it captures the intuitive
notion of an element of K as “a complete description of the ways in
which things the agent cares about might depend on what she does,”
or, indeed, to see where causality comes into the picture at all. How
do the indifferences A�S � A�(A & S) and A�(A & C & S) �
(A & C & S) reflect facts about the causal connection between A and
C in the presence of S? I am willing to be open-minded here – it may
be that Armendt really has characterized the role that K partitions
play in rational preference rankings – but the case needs to be more
clearly made.

Even if it is, however, Armendt’s result would still not provide a
sound foundation for casual decision theory. The problem is not his
work, but Fishburn’s. While Fishburn’s equation is partition-invariant
(for a given S), and while his representation result does not employ
constant acts, it does assume that mitigators exist. Recall from Chap-
ter 3 that a mitigator is an act that is able to offset whatever desirable
or undesirable things might occur, for example, an act whose per-
formance can make a person indifferent between the prospect of an
asteroid destroying all life on earth in the next five minutes and the
prospect of peace and prosperity for a millennium. Fishburn’s theory
includes an axiom which says, in effect, that for any two events E and
F there is an action A such that the agent prefers A on the condition
that E to A on the condition that F. Let E � “An asteroid hits the
earth in the next five minutes and destroys all life” and F � “There
is peace, prosperity, and happiness everywhere on earth for a thou-
sand years.” Try to think of an appropriate A, but don’t try too hard
because there is none. As we saw in Chapter 3, representation theo-
rems that make use of constant acts or mitigators are to be avoided
because these are the sorts of structure requirements that cannot be
explained away by construing them as extendibility conditions. For
this reason we cannot use Fishburn’s theory as a basis for causal
decision theory.
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The only live option here, in my view, is the extended version of
Bolker’s theorem that was proved Chapter 4. As we saw, this result is
particularly appealing from the formal point of view. It requires only
two nonnecessary structure axioms – a completeness axiom and a non-
atomicity condition – both of which are plausible as canons of ratio-
nality when viewed as extendibility requirements. Moreover, unlike
Fishburn or Savage, Bolker does not make essential use of prefer-
ences over prospects that a reasonable agent might regard as impossi-
ble, such as constant acts or mitigators. In the next section I will show
how to prove a general representation theorem for causal decision
theory on the basis of Bolker’s theorem. I will do this by proving a
general representation result for conditional expected utility theory,
and then showing how both causal and evidential decision theory can
be seen as instances of it.

7.2 a statement of the theorem

The representation result we are after assumes an agent facing a
decision D � (Ω, O, S, A) whose beliefs are described by a conditional
likelihood ranking (�.�.�, �.�.�) defined relative to a set of conditions
C that contains all the acts in A (and perhaps other propositions), and
whose desires are described by a conditional preference ranking (�>�,
�  > �) also defined relative to C. Since I will be assuming that both
these rankings are complete for the purposes of this proof I will simply
use �.�.� for (�.�.�, �.�.�) and �  > � for (�>�, �  > �). This greatly simplifies
the presentation, but the reader should remain aware that this com-
pleteness requirement should ultimately be dispensed with, so that the
full story is told in terms of the incomplete rankings (�.�.�, �.�.�) and
(�>�, �  > �).

We seek a set of axiomatic constraints on �.�.� and �  > � that suffice
for the existence of a pair of functions P(•�•) and V(•�•) defined on
Ω � C such that

7.1a. P(•�•) is a supposition function; that is, for each C ∈ C one has
SUP1 (Coherence): P(•�C) is a probability on Ω.
SUP2 (Certainty): P(C�C) � 1.
SUP3 (Regularity): P(X�C) � P(X & C) when C ∈ C.

7.1b. For each C ∈ C, V(•�C) gives expected news values computed
relative to P(•�C), so that for all X ∈ Ω

        
V

P
P

uX C
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where u is a function that assigns an unconditional utility u(W)
to each atomic proposition W in Ω.6

7.1c. P(•�•) ordinally represents �.�.�, and V(•�•) ordinally repre-
sents �  > �.

7.1d. P(•�•) is unique, and V(•�•) (and hence u) is unique up to the
arbitrary choice of a unit and a zero point relative to which
utility is measured.

Once we have a theorem like this it is straightforward to use it to
underwrite either causal decision theory or evidential decision theory.
We merely need to impose constraints on the decision maker’s condi-
tional likelihood ranking that are strong enough to determine that it
represents her beliefs under the right sorts of suppositions. So, if we
are interested in a representation result for evidential decision theory
�.�.� must satisfy

        

MOF T comparative version If  . . // ,  then 

. .  if and only if  . . 

( ) ¬ ( )
( ) ( ) ( )

. // // &

// & & // & // .

C D D X C D

Y C D C X D C Y D

�

� �

In the presence of the other axioms this uniquely picks out the stand-
ard conditional probability P(•/•) as the value of P(•�•) relative to
C � {C ∈ Ω: C .�. C & ¬C}, and, more generally, it forces P(•�•)
to be a Réyni–Popper measure.

The causal decision theorist, on the other hand, can impose
whatever conditions she thinks necessary to have �.�.� capture the
decision maker’s causal beliefs. As we have seen, one natural
constraint here is

        

SUB T T Comparative Version If  . . ,

then  . . 

( ) →( ) ¬ → ¬( ). \ \ \ \

\ \ \ \

C X D Y

X C Y D

�

�

Or, when Conditional Excluded Middle holds,

        C X D Y X C Y D→( ) →( )\\ \\ \\ \\T T . .  if and only if  . . � �

Other, stronger requirements could be imposed on the basis of the
view that one takes about the proper analysis of causal judgments.
Whatever these requirements are, however, they would be always
imposed on top of the ones already given and can therefore be ne-
glected in the present context.

Now it might seem as if there is not much being offered to the
evidential decision theorist here. They do, after all, already have

6 Recall that atomic outcomes are act/state conjunctions A & S where A ∈ A and S ∈ S.
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Bolker’s theorem as the foundation for their theory and this “gener-
alization” really does not do much since “conditional” utilities reduce
to unconditional utilities of conjunctions when the supposition func-
tion is indicative; that is, V(X�C) � V(X & C) when P(•�C) � P(•/C).
So, the appearance of a “unified” foundation for causal and evidential
decision theory might be illusory. I am happy to grant that there is
nothing new in this result as it applies to evidential decision theory as
standardly formulated. Its advantage is that it allows evidential deci-
sion theorists to extend their theory to allow for news values defined
in terms of Réyni–Popper functions. There is a good reason for them
to want to do so.

As a number of critics have noted,7 Jeffrey’s theory seems to lead
to absurd results in cases where an agent is certain about what she
will do. When P(A) � 1 Jeffrey’s Equation sets V(A) � V(A ∨ ¬A)
and leaves V(¬A) undefined (though Jeffrey conventionally sets it to
0). The problem with this is that it makes it appear as if “awareness of
[one’s] preference for [one’s] top-ranked option over A ∨ ¬A reduces
preference to indifference.”8 It thus becomes impossible for one to
speak sensibly about the evidentiary value of acts one has irrevocably
decided to perform. Jeffrey has responded to this difficulty by (i)
distinguishing the utility, V, that represents the agent’s desires before
she makes up her mind from the utility, VA, that represents her desires
after she is sure she will do A, and (ii) pointing out that V(A ∨ ¬A)
and VA(A ∨ ¬A) may differ.9 The agent, in other words, need not be
portrayed as being indifferent between the “status quo” before she
becomes certain of A and the status quo afterward. With this distinc-
tion in place we can say that she sees herself as better off for having
done A just in case VA(A ∨ ¬A) � V(A ∨ ¬A).

While this is right as far as it goes, it leaves a crucial issue unre-
solved. On Jeffrey’s proposal a person who is certain she will perform
A must still assign the same news value to every act incompatible with
A, and this makes it impossible for her to compare news values of acts
she is sure she will not perform. The most she can say is that as far
7 See, for example, Sphon (1977, p. 113).
8 Jeffrey (1977, p. 136).
9 Jeffrey expresses this point by saying that the contradictory proposition need not

appear at the same place in the agent’s preperformance and postperformance prefer-
ence rankings. Instead of saying that V(A ∨ ¬A) and VA(A ∨ ¬A) may differ, he says
that V(A ∨ ¬A) � V(A & ¬A) and VA(A ∨ ¬A) � VA(A & ¬A) may differ where it
is understood that he is keeping the news value of A ∨ ¬A set at 0. The more intuitive
way of making the point, it seems to me, is to keep the news-value of A & ¬A fixed,
say at 0, and to let that of A ∨ ¬A vary, depending on what the decision maker does.
This coheres better with the idea, expressed in the previous chapter, that the goal of
action is to produce the best postaction status quo.
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as auspiciousness goes, A is better than the alternatives. This is not
an ideal result. Even someone who is sure she will do A should still
be able to evaluate her other alternatives and say things like “The
most auspicious option among the ones I did not choose was B”
where this not merely a statement about her past evaluations of acts,
but an expression of her current view of the situation. Comparisons
like this, after all, often figure into our justifications of acts; for exam-
ple, I might be sure I am going to do (or did) A because I recognize
that A is better than B and that B is better than C, where B and C
are acts I know I will not (or did not) perform. Jeffrey’s approach lets
me say the first thing but not the second. If I am going to be allowed
to make discriminations in evidential expected utility among acts
I am sure not to perform, then evidential decision theory’s basic
equation must be rewritten so that V(B) can be well defined even
when P(B) � 0.

The best way to do this is by substituting a Réyni–Popper measure
for the ordinary conditional probability in Jeffrey’s equation so
that it becomes V(B) � ΣSP(S//B)u(S & B). Since P(S//B) can be
well defined and positive even when P(B) � 0, this allows a decision
maker to draw distinctions in news value among actions that she is
quite sure she will not perform.10 A person who has irrevocably
decided to take the extra thousand dollars in the Newcomb pro-
blem can, for example, still make sense of the idea that refusing it
would be a more auspicious act, not just from the perspective of her
predecision beliefs but from her current epistemic position. A fully
adequate account of the auspiciousness of acts will thus need to
traffic in Réyni–Popper measures. And, if this is so, then evidential
decision theorists are going to need a new representation theorem
because Bolker’s only provides an expected utility representation
for propositions that are nonnull relative to the decision maker’s
preference ranking. This new theorem will need to make sense of
true conditional news values that are not mere unconditional news
values of conjunctions. The result they will need is the one we are
about to prove.

10 In his unpublished work Frank Doring has independently suggested that Jeffrey’s
theory needs to be formulated in terms of Réyni–Popper measures. While Doring
is right about this point his main motivation for accepting it has to do with finding a
way of making sense of “if only I had done A” evaluations of actions. Since these
evaluations have a subjunctive character I do not regard them as being appropriately
captured by Réyni–Popper measures. To reemphasize, the Réyni–Popper measures
are not suited to capturing subjunctive beliefs. Thus, a news-value for an act B that
an agent is sure she will not perform need not be the same as the act’s efficacy value
(as the next sentence in the text indicates).
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7.3 sections and their representations

My proof strategy is going to be one of divide and conquer. For each
condition C in C, define the C-section as the unconditional likelihood/
preference ranking pair defined by

        

X Y X C Y C

X Y X C Y C

C

C

 .   if and only if  . . 

 .   if and only if   

� �.

.> >

Since the function defined in 7.1c is a news value for every C, it makes
sense to impose the Jeffrey/Bolker axioms of Chapter 4 on each C-
section individually. This produces a set of sectional representations
SR � {(P(•�C), V(•�C)): C ∈ C } where each (P(•�C), V(•�C)) pair is
a Bolker-style representation of its associated C-section. The chal-
lenge will be to stitch these sectional representations together in the
right way to get a full joint representation for �.�.� and �  > �.

It requires three axioms (really two axioms and a general principle)
to ensure that the requisite system of sectional representations SR will
exist. The first describes the behavior of propositions that the decision
maker regards as certainly true.

Axiom1 (Certainty). If C .�. T, then .�C. is identical to .�T., and   >
C is

identical to   >
T.

This says that the supposition of propositions that an agent regards as
certain should not alter her beliefs or desires. When she supposes that
some proposition C is true, the agent adopts a new set of beliefs .�C.
that makes C certain and does as little damage as possible to her prior
opinions .�T.. Axiom1 merely says that if she already takes C to be
certain, then the new belief system that approximates the old one
most closely is the old system itself. The requirement that   >

C should
not change is a consequence of the fact that supposition is an epistemic
operation that affects belief directly and alters desires only through
the mediation of beliefs. Supposition, in other words, never changes
the decision maker’s basic desires.

The second rationality requirement for C-sections is

Axiom2 (Conditional Certainty). C .�C. T.

This says that belief given C should be genuinely based on the sup-
position of C’s truth. In the presence of the other axioms, this implies
that things that happen when C is false are irrelevant to beliefs and
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desires conditional on C. Thus, the agent will always regard X as
precisely as likely and desirable as X & C when she supposes C.

Our final constraint on C-sections requires beliefs and desires con-
ditional on C to obey the same laws of rationality that apply to
unconditional beliefs and desires:

Axiom3 (Conditional Rationality). C-sections must obey the same laws
of rationality that apply to unconditional likelihood and preference
rankings.

This demands that .�C. and   >
C be evaluated with regard to rationality

in the same way that any other unconditional likelihood/preference
ranking pair would be. It says, in other words, that a person should be
bound by the same laws of rationality when she supposes some hy-
pothesis to be true as when she supposes nothing at all. I have been
careful to state this principle in a way that does not presuppose any
specific analysis of rationality for unconditional beliefs or desires
because I believe that its validity should be affirmed independently
of any disagreements there may be about the particulars of such an
analysis. This is a view with which I think most decision theorists
would agree.11

That having been said, I mean to defend a version of Axiom3

that does take a stand on the nature of rationality for unconditional
beliefs and desires. As I argued at the end of Chapter 5, I think
all value is news value. Thus, I will require each C-section to satisfy
the axioms employed in the version of Bolker’s theorem established
at the end of Chapter 4. Accordingly, my official version of Axiom3

will be

Axiom3. For each C ∈ C, .�C. should satisfy the laws of comparative
probability CP1–*CP8,   >

C must obey the Jeffrey/Bolker axioms EDT1–
*EDT9, and .�C. and   >

C should jointly obey Coherence.

In other words, each belief/desire pair .�C. and   >
C must be EDT-

coherent in the terminology of Chapter 4. I suspect that at this point
even the most conscientious readers will have forgotten what this
means. The only two things about EDT-coherence that matter at the
moment are that (i) it forces the base algebra Ω to be atomless with
respect to .�C., and (ii) it ensures the existence of a joint probability/
news-value representation (P(•�C), V(•�C)) of .�C. and   >

C in which

11 See, for example, Savage (1954/1972, p. 78).
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P(•�C) is unique and V(•�C) is unique up to the arbitrary choice of a
zero point and a unit for measuring utility.

I take Axiom1–Axiom3 to be the fundamental laws governing ra-
tional belief and desire conditional on a single hypothesis C. They
take us some way toward a representation result for conditional like-
lihood and preference rankings.

Lemma 7.2 (Existence of Sectional Representations). If .�C. and   >
C

satisfy Axiom1–Axiom3 for every C ∈ C, then there is a sectional
representation

        SR P • V • � C C C( ) ( )( ) ∈{ }, : C

in which
i. P(•�C) is a countably additive probability on Ω with P(C�C) � 1.
ii. V(X�C) � ΣW [P(W & X�C)/P(X�C)]V(W�C) when P(X�C) � 0.
iii. P(•�C) represents .�C..
iv. V(•�C) represents   >

C.
Moreover, any other sectional representation for .�C. and   >

C will have
the form

        SR * P • V • �  � C a C b CC C( ) ( )( ) ∈{ }, : C

for aC and bC real numbers (dependent on C) with aC � 0.

This lemma codifies what we can say about the rationality of a system
of conditional beliefs and desires when we restrict our attention to
beliefs and desires under the supposition that a single condition is
true.

It does not, however, tell us anything about “mixed” beliefs and
desires in which a decision maker judges that X is more likely or
more desirable given C than Y is given D. Since “mixed” beliefs
and desires of this type are important to the evaluation of actions,
we need to extend Lemma 7.2 to cover this case. It does not do so
automatically. While any full representation for �.�.� and �  > � is a
sectional representation, the converse is not the case. In fact, nothing
we have said to this point guarantees that any of these sectional
representations is a full representation. It is, for example, consistent
with Axiom1–Axiom3 that �  > � is intransitive (even though all of
its individual sections are transitive). We must introduce additional
axioms if we want to establish the existence of a full representation of
the desired type.
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7.4 r e p r e s e n t a t i o n s of conditional belief
a n d desire

There has been a great deal of work done on the representation of
ordinary conditional probability functions.12 The result we need,
however, is slightly more general than any that can be found in the
literature because we want it to be possible for �.�.� to describe
nonevidential forms of belief revision like imaging. The axiom re-
quired to obtain the desired representation is

Axiom4. For and C, D, E ∈ C and W, X, Y, Z ∈ Ω, �.�.� must satisfy

• Normalization: C�C .�. D�D and ¬C�C .�. ¬D�D.
• Transitivity: If X�C .�. Y�D and Y�D .�. Z�E, then X�C .�. Z�E.
• Connectedness: Either X�C .�. Y�D or X�C .
. Y�D.
• Dominance: If W and X are logically incompatible, and if Y and Z

are also incompatible, then W�C .�. Y�D and X�C .�. X�D only if
(W ∨ X)�C .�. (Y ∨ Z)�D.

• Regularity: X�C .�. (X & C)�T.
• Solvability: If X�C .�. Y�D, then there exists X* ∈ Ω such that

(X* & X)�C .�. Y�D.

The only one of these that is not self-explanatory (by this point in this
book) is Solvability. It is an Archimedean axiom that rules out infini-
tesimal probabilities. Since .�C. is atomless (by Axiom3), it follows
that, for any proposition X ∈ Ω that is nonnull with respect to .�C. the
set of numbers {P(X & X*�C): X* ∈ Ω} will contain every value in the
interval from 0 to P(X�C). Therefore, if P(X�C) � P(Y�D) and both
these probabilities are real numbers, then P(X*�C) � P(Y�D) should
hold for some X*.

Using Axiom4 one can establish

Theorem 7.3 (Existence of Probability Representations for
Suppositions). If �.�.� and �  > � satisfy Axiom1–Axiom3 and if SR �
{(P(•�C), V(•�C)): C ∈ C} is any sectional representation for
(.�C.,   >

C), then Axiom4 is necessary and sufficient for
7.1a SUP1: P(•�C) is a countably additive probability on Ω.

SUP2: P(C�C) � 1.
SUP3: P(X�C) � P(X & C) when C ∈ C.

7.1c P(•�•) ordinally represents �.�.�.
7.1d P(•�•) is the only function for which 7.1a and 7.1c hold.

12 See, for example, Fine (1973, p. 29).
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(Interested readers can find the proof of Theorem 7.3 in the Appendix
of this chapter.) The most important thing to notice about this result
is its uniqueness clause, which ensures that every sectional represen-
tation for �.�.� and �  > � must involve the same supposition function.
This is a consequence of the Ordinal Uniqueness Theorem that was
established in Chapter 4. The uniqueness of P(•�•) turns out to be
crucial in what follows.

To obtain a joint representation for �.�.� and �  > �, we must intro-
duce supplementary axioms to clarify the nature of conditional prefer-
ence and its relationship to belief. Here are the “desire specific”
conditions that pertain to the preference ranking �  > �:

Axiom5. For and C, D, E ∈ C and W, X, Y, Z ∈ Ω, �.�.� must satisfy

• Transitivity: If X�C   >  Y�D and Y�D   >  Z�E, then X�C   >  Z�E.
• Connectedness: Either X�C   >  Y�D or X�C   <  Y�D.
• Invariance of Basic Desires: If W is an atom of Ω, then W�C � W�D

for all C, D ∈ C.
• Solvability: Let X and Y be nonnull relative to C, so that X�C .�.

¬C�C and Y�C .�. ¬C�C. For any Z ∈ Ω and D ∈ C such that X�C
  >  Z�D   >  Y�C there exists X* ∈ Ω with X*�C � Z�D.

• Topological Separability: If D is a subset of conditions in C such
that, for all C, D ∈ C, one has either X�C > Y�D for all X, Y ∈ Ω or
X�C < Y�D for all X, Y ∈ Ω, then D must be countable.

The first two principles require conditional preferences to be transi-
tive and connected. The third expresses the idea that supposition does
not affect basic desires. The role of the solvability condition here is
the same as it was in Axiom4. For a given probability/news value pair
P(•�C) and V(•�C), define the essential range of V(•�C) as the collec-
tion of numbers {V(X�C): P(X�C) � 0}. When �.�.� and �  > � satisfy
Axiom3 the essential range of any utility V(•�C) will be an interval on
the real line. (See Fact 4 in the Appendix at the end of this chapter.)
Hence, if X�C   >  Z�D   >  Y �C holds when X and Y are nonnull with
respect to �.�.�, then in any real-valued representation V(•�•) of �  > �
it must be the case that V(X*�C) � V(Z�D) for some X*. If this were
not so, V(Z�D) could not be any real number. The separability condi-
tion ensures that the representing function V(•�•) can fit into the real
line. To get a sense of its meaning, note that if its antecedent holds and
if P(•�•) and V(•�•) are any representations of �.�.� and �  > �, then the
essential ranges of all the functions V(•�D), D ∈ D, will form a family
of disjoint intervals on the real line each of which has a nonempty
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interior. Since there can be at most countably many such intervals, the
set D must be countable.

It will be convenient to introduce some terminology in connection
with these last two requirements that will set up our next axiom.
Say that the sections (.�C.,   >

C) and (.�D.,   >
D) are linked when there

are nonnull pairs X1�C, X2�C, and Y�D such that X1�C > Y�D > X2�C.
Given Solvability and Separability, this means that, in any representa-
tion of (�.�.�, �  > �), the essential ranges of V(•�C) and V(•�D) will have
a nonempty intersection that contains an open interval of numbers. A
chain is a countable sequence of sections (.�C1.,   >

C1), (.�C2.,   >
C2),

(.�C3.,   >
C3), . . . , such that (.�C1.,   >

C1) is linked to (.�C2.,   >
C2), (.�C2.,

  >
C2) is linked to (.�C3.,   >

C3), (.�C3.,   >
C3) is linked to (.�C4.,   >

C4), and
so on. Two sections that appear in the same chain are fettered.

Since we are aiming for a representation in which desires are
represented by real-valued expected utilities defined over a set of
atomic propositions it makes sense to demand that any two sections
in (�.�.�, �  > �) should be fettered. This is not strictly required by
the existence of the desired representation, but any representation
for which it fails will be very, very odd.13 I propose to rule them out by
fiat:

Axiom6. Any two sections of (�.�.�, �  > �) are fettered.

It turns out (as a result of Lemma 7.6) that the linking relation is
symmetric, so this axiom makes (�.�.�, �  > �) into one big chain.

Our next axiom is a generalization of the Coherence principle of
Chapter 4. It serves as the fundamental principle of rationality con-
necting �.�.� and �  > �. To introduce it we need yet another a piece of
terminology.

Definition. A test configuration is a four-tuple (X1�C, X2�C, Y1�D,
Y2�D) for which all of the following hold
• X1 and X2 are mutually incompatible propositions such that

X1� � (X1 ∨ X2)�C � X2�C.
• Y1 and Y2 are mutually incompatible propositions such that

Y1�D � (Y1 ∨ Y2)�D � Y2�D.
• X1�C � Y1�D and X2�C � Y2�D.

13 For example, there must be real numbers x � y and a proposition X such that (i) the
utility u(W) of every atom W that entails X falls above x, (ii) the utility of every atom
that entails and ¬X falls below y, and (iii) there is no proposition Z such that P(Z�X)
and P(Z�¬X) are both nonzero.
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A test configuration gives us a way of comparing X1’s conditional
probability given X1 ∨ X2 in the C-section with Y1’s conditional pro-
bability given Y1 ∨ Y2 in the D-section. In general, if (X1�C, X2�C,
Y1�D, Y2�D) is a test condition, and if P(•�•) and V(•�•) is a repre-
sentation of �.�.� and �  > �, then (X1 ∨ X2)�C   >  (Y1 ∨ Y2)�D will
hold if and only if P(X1�C)/P(X1 ∨ X2�C)   >  P(Y1�D)/P(Y1 ∨ Y2�D)
or, equivalently, if and only if P(X1�C)/P(X2�C) � P(Y1�D)/P(Y2�D).
Our next axiom requires the relationships among probabilities
determined in this way by the agent’s preferences to cohere with her
beliefs.

Axiom7 (Generalized Coherence). Let (X1�C, X2�C, Y1�D, Y2�D) be a
test configuration. Then,
• If X2�C .�. Y2�D, then (X1 ∨ X2)�C   >  (Y1 ∨ Y2)�D if and only if

X1�D .�. Y1�D.
• If X1�C .�. Y1�D, then (X1 ∨ X2)�C   >  (Y1 ∨ Y2)�D if and only if

X2�D .
. Y2�D.
• If (X1 ∨ X2)�C .�. (Y1 ∨ Y2)�D, then (X1 ∨ X2)�C   >  (Y1 ∨ Y2)�D if

and only if X1�D .�. Y1�D.

All these clauses are different ways of saying that an agent’s
preferences only force P(X1�C)/P(X2�C) to be greater than
P(Y1�D)/P(Y2�D) when her beliefs do not force the opposite inequal-
ity to be true.

7.5 constructing the representation

We now have the resources we need to construct a representation for
conditional utility theory. Here is the result:

Theorem 7.4 (Existence of Conditional Utility Representations). If
�.�.� and �  > � satisfy Axiom1–Axiom7, then there is a pair of functions
P(•�•) and V(•�•) defined on Ω � C such that
7.1a P(•�•) is a supposition function.
7.1b For each C ∈ C and X ∈ Ω,

        
V

P
P

uX C
W A C

A C
WW( ) ( )

( ) ( ) � Σ
&

for some function u that assigns an unconditional utility u(W) to
each atomic proposition W ∈ Ω.
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7.1c P(•�•) represents �.�.�, and V(•�•) represents �  > �.
7.1d P(•�•) is unique, and V(•�•) (and hence u) is unique up to the

arbitrary choice of a unit and a zero point relative to which utility
is measured.

I will merely sketch the argument of Theorem 7.4 here, leaving the
proofs of the more difficult lemmas to the last section.

To begin, suppose that (�.�.�, �  > �) satisfies the axioms. Lemma 7.2
entails the existence of a sectional representation SR � {(P(•�C),
V(•�C)): C ∈ C } for (�.�.�, �  > �), and Theorem 7.3 ensures that its
suppositional probability P(•�•) is unique. It also follows from Lemma
7.2 that any other sectional representation for (�.�.�, �  > �) will have
the form SR* � {(P(•�C), aCV(•�C) � bC): C ∈ C } where aC � 0 and
bC are real constants that depend on C. The key to proving Theorem
7.4 lies in finding the right constants to make SR* a full representation
for (�.�.�, �  > �).

We can start by asking how to construct a joint representation for
two linked sections (.�C.,   >

C) and (.�D.,   >
D). To do this we must find

aC, bC, aD and bD, with aC and aD positive, such that

7.5. X�C   >  Y�D if and only if aCV(X�C) � bC � aDV(Y�D) � bD

whenever X�C and Y�D are nonnull. To find these numbers we rely
on the following important fact about linked sections:

Lemma 7.6. If (.�C.,   >
C) and (.�D.,   >

D) are linked, then there exists at
least one test configuration of the form (X1�C, X2�C, Y1�D, Y2�D).

Since X1�C � Y1�D . X2�C � Y2�D holds in any such test configuration
we know that the desired values of aC, bC, aD, and bD must be such that
aCV(X1�C) � bC � aDV(Y1�D) � bD and aCV(X2�C) � bC � aDV(Y2�D)
� bD. This forces it to be the case that

7.7. aD � aC[V(X1�C) � V(X2�C)]/[V(Y1�D) � V(Y2�D)]
bD � aCV(X1�C) � aDV(Y1�D) � bC

These turn out to be the crucial relationships involved in obtaining a
joint representation for a pair of linked sections. Their importance is
due to

Lemma 7.8. If (.�C.,   >
C) and (.�D.,   >

D) are linked, and if aC � 0 and
bC are chosen arbitrarily and aD and bD are defined as in 7.7, then for all
propositions X, Y ∈ Ω such that neither X�C nor Y�D is null one has

7.5. X�C   >  Y�D if and only if aCV(X�C) � bC � aDV(Y�D) � bD
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Moreover, the values of aD and bD given by 7.7 are the only ones for
which 7.5 holds.

Lemma 7.8 is the heart of my representation theorem. Its proof can be
found at the end of this chapter.

The method we used to jointly represent (.�C.,   >
C) and (.�D.,   >

D)
can be extended to a chain (.�C1.,   >

C1), (.�C2.,   >
C2), (.�C3.,   >

C3), . . .
Since (.�Cj.,   >

Cj) and (.�Cj�1.,   >
Cj�1) are linked for each j, Lemma 7.6

gives us a test configuration (Xj�Cj, Xj*�Cj, Yj�Cj�1, Yj*�Cj�1) for
each j. Choose an index k at random, and fix ak � 0 and bk arbitrarily.
Lemma 7.8 then lets us use 7.7 to recursively define a unique series
of pairs of constants (a1, b1), (a2, b2), . . . , (ak, bk), (ak�1, bk�1), . . .
such that

X�Cj   >  Y�Cj�1 if and only if ajV(X�Cj) � bj � aj�1V(Y�Cj�1) � bj�1

holds for all j and all X, Y ∈ Ω. Let’s call the construction that results
in the sequence of pairs (a1, b1), (a2, b2), . . . , (ak, bk), (ak�1, bk�1), . . .
the scaling process.

The importance of this process in the present context is a result of
the following result:

Lemma 7.9: Let (.�C1.,   >
C1), (.�C2.,   >

C2), (.�C3.,   >
C3), . . . , be a chain

in (�.�.�, �  > �), and suppose that (a1, b1), (a2, b2), . . . , (ak, bk),
(ak�1, bk�1), . . . , is the unique sequence of constants that results from
the application of the scaling process when ak � 0 and bk are chosen
arbitrarily. Then, for any indices i and j one has
7.5*. X�Ci   >  Y�Cj if and only if ai V(X�Ci) � bi � ajV

Dj(Y�Dj) � bj

Again the proof is presented at the end of this chapter.
Lemma 7.9 and Axiom6 make it possible to represent all the sec-

tions in (�.�.�, �  > �) simultaneously. Axiom6 ensures that (�.�.�, �  > �)
is one big chain. So, if one fixes aC � 0 and bC for some section
(.�C.,   >

C), then the scaling process will produce unique scaling con-
stants aD and bD for every other section (.�D.,   >

D). Lemma 7.9 then
ensures that the resulting sectional representation SR* � {(P(•�C),
aCV(•�C) � bC): C ∈ C } is a full representation for (�.�.�, �  > �).

Thus, the axioms we have set down do perform the job for which
they were designed: They capture the notion of conditional evidential
expected utility. Since any reasonable decision theory should be ex-
pressible in this form, all future work on the foundations of rational
choice theory ought to be either attempts to weaken the axioms given
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here without changing the basic result or attempts to capture special
types of conditional evidential expected utility by strengthening the
basic axioms presented here.

7.6 appendix: proofs

In this section the central theorems and lemmas of this chapter are
proved in the order in which they were presented. It is assumed
throughout that the pair (�.�.�, �  > �) satisfies Axiom1–Axiom3 and that
SR � {(P(•�C), V(•�C)): C ∈ C } is a sectional representation of (�.�.�,
�  > �) whose existence is guaranteed by Lemma 7.2 (which does not
itself require proof since it is a consequence of Theorem 4.3). Since
SR is a sectional representation of (�.�.�, �  > �) we can always rely on
its being the case that P(X�C) � P(Y�C) iff X�C .�. Y�C and that
V(X�C) � V(Y�C) iff X�C   >  Y�C. We cannot, however, assume that
SR is a full representation, in the sense that P(X�C) � P(Y�D) iff
X�C .�.Y�D and V(X�C) � V(Y�D) iff X�C   >  Y�D, since this is what
we are trying to prove.

In carrying out the proofs I will make free use of four related facts,
all established by Bolker,14 that pertain to probability/utility pairs
that satisfy the Jeffrey/Bolker axioms. All assume a probability/
utility representation (P, V) that obeys Jeffrey’s Equation on atomless
algebra Ω.

Fact 1. If P(X) � 0 and λ is a real number between 0 and 1, then there
is a proposition X* that entails X and is such that P(X*) � λP(X)
and V(X) � V(X*).

Fact 2. If P(X) and P(Y) are nonzero and if V(X) � V(Y ), then there
exist mutually incompatible, nonnull propositions X* and Y*
that entail X and Y, respectively, and are such that V(X*) �
V(X) � V(Y*) � V(Y).

Fact 3. If P(X) and P(Y) are nonzero and if V(X) � V(Z) � V(Y),
then there exist mutually incompatible, nonnull X* and Y* that
entail X and Y, respectively, and are such that V(X*) � V(X) �
V(X* ∨ Y*) � V(Z) � V(Y*) � V(Y).

Fact 4. V’s essential range I � {V(X): P(X) � 0} is an interval with
nonempty interior on the real line.

Since every (P(•�C), V(•�C)) pair in SR satisfies Jeffrey’s Equation
and is defined over an atomless algebra (by Axiom3) these results
apply to all of them.
14 See Bolker (1966, lemma 1.17 and lemma 3.5). The two latter facts are fairly obvious

consequences of the two former facts.
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Here is the first result we need to prove:

Theorem 7.3 (Existence of Probability Representations for
Suppositions). If �.�.� and �  > � satisfy Axiom1–Axiom3 and SR �
{(P(•�C), V(•�C)): C ∈ C} is any sectional representation for
(.�C.,   >

C), then Axiom4 is necessary and sufficient for
7.1a. SUP1: P(•�C) is a countably additive probability on Ω.

SUP2: P(C�C) � 1.
SUP3: P(X�C) � P(X & C) when C ∈ C.

7.1c. P(•�•) ordinally represents �.�.�.
7.1d. P(•�•) is the only function for which 7.1a and 7.1c hold.

Proof. The necessity of Axiom4 is trivial because each of its condi-
tions is necessary for the existence of a probability representation
for �.�.�. So, assume �.�.� obeys Axiom4. Since each P(•�C) is a
probability for which P(C�C) � 1, and since Axiom4 requires �.�.� to
be regular, there is no question that P(•�•) is a supposition function.
Moreover, since each .�C. is atomless (by Axiom3) it follows from the
Ordinal Uniqueness Theorem of Chapter 4 that P(•�C) is the only
representation for .�C, and thus that P(•�•) must be unique if it is a
representation for �.�.�.

To prove 7.1c, let .�C. and .�D. be any two sections of �.�.�. For each
integer n � 0, Fact 1 guarantees the existence of partitions
{C(j, n): j � 1, 2, . . . , n} and {D(j, n): j � 1, 2, . . . , n} such that
P(C(j, n)�C) � P(D(j, n)�D) � 1/n for all j. Since P(•�C) and P(•�D)
represent .�C. and .�D., this entails that C(j, n) .�C. C(k, n) and
that D(j, n) .�D. D(k, n) for all j, k, and n. The next step is to show
C(j, n)�C .�. D(k, n)�D for all cases. If things were otherwise, then
(without loss of generality) there would have to be an index n such that

      

C n C C n C C n n C

D n D D n D D n n D

1 2

1 2

, , . . ,

. , , . . ,

( ) ( ) ( )
( ) ( ) ( )
 . .  . . . .  . 

.  . .  . . . .  . 

� � �

� � � �

The additivity clause of Axiom4 would then entail that

      

C n C n C j n C

D n D n D n n D

1 2

1 2

, , ,

, , , .

( ) ∨ ( ) ∨ ( )[ ]
( ) ∨ ( ) ∨ ( )[ ]. . �

which contradicts the normality clause of the axiom since the C(j, n)’s
and D( j, n)’s each form a partition. Thus, it must be the case that
C(j, n)�C .�. D(k, n)�D for all j and k.

Define C*(m, n) � [C(1, n) ∨ . . . ∨ C(m, n)] and D*(m, n) �
[D(1, n) ∨ . . . ∨ D(m, n)]. The Dominance clause of Axiom4 entails
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that C*(m, n)�C .�. D*(m, n)�D for all m and n. Moreover, since the
additivity law of probability implies that P(C*(m, n)�C) �
P(D*(j, n)�D) � m/n, and since the rational numbers are dense in the
reals, both of the following will hold for any X, Y ∈ Ω:

• X�C .�. Y�C iff there are indices m and n with X�C .�. C*(m, n)�C
.�. Y�C.

• X�D .�. Y�D iff there are indices m and n with X�D .�.
D*(m, n)�D .�. Y�D.

If X�C .�. Y�D we can use the solvability clause of Axiom4 to find an
X* ∈ Ω such that (X* & X)�C .�. Y�D. It then follows that for some
indices m and n we have

      X C C m n C D m n D Y D . .  . . �  � �* , * ,( ) ( )
and thus that

      P   P P PX C C m n C m n D j n D Y D( ) ( )( ) ( )( ) ( )�  �  �  � * , / ,

Thus, X�C .�. Y�D implies P(X�C) � P(Y�C). The converse also
holds since there will always be some m and n for which the lower set
of relationships holds. This will entail that the upper set of relation-
ships holds as well given that P(•�C) represents .�C. and that P(•�D)
represents .�D. This completes the proof of Theorem 7.3. �

For the next lemma we should remind ourselves that a test configu-
ration for (.�C.,   >

C) and (.�D.,   >
D) is a four-tuple (X1�C, X2�C, Y1�D,

Y2�D) where X1 & X2 and Y1 & Y2 are both contradictory, and X1�C �
Y1�D � X2�C � Y2�D. The result we need to prove is

Lemma 7.6. If (.�C.,   >
C) and (.�D.,   >

D) are linked, then there is at
least one test configuration of the form (X1�C, X2�C, Y1�D, Y2�D).

Proof: If (.�C.,   >
C) and (.�D.,   >

D) are linked then there are nonnull
pairs F�C, H�D, and F*�C such that F�C > H�D > F*�C. Since   >

D

cannot be indifferent among all propositions (Axiom3) there must be
an H* in Ω that is not ranked with H by   >

D. Assume without loss of
generality that H�D > H*�D. The possibilities then are
(i) F�C > H�D > F*�C   >  H*�D

(ii) H�C > H�D > H*�D > F*�C
In (i), apply the Solvability clause of Axiom5 twice, once to   >

C

and once to   >
D, to obtain nonnull Z, Z* ∈ Ω with Z�C � H�D > F*�C
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� Z*�D. In (ii), apply the clause twice to   >
C to find nonnull Z,

Z* ∈ Ω with Z�C � H�D > Z*�C � H*�D. In either event one has
X�C � Y�D > X*�C � Y*�D for some nonnull propositions X, Y, X*,
and Y*.

Since V(•�C) represents   >
C we can apply Fact 2 with V(X�C) �

V(X*�C) to find disjoint, nonnull propositions X1 and X2 that entail X
and X*, respectively, and are such that V(X1�C) � V(Y�C) � V(X*�C)
� V(F*�C). Doing the same thing with V(•�D) and   >

D gives us
disjoint, nonnull propositions Y1 and Y2 such that V(Y1�D) � V(Y�D)
� V(Y2�D) � V(Y*�D). Since V(•�C) represents   >

C and V(•�D)
represents   >

D this entails X1�C � Y1�D � X2�C � Y2�D. (X1�C, X2�C,
Y1�D, Y2�D) is the test configuration we seek. This completes the
proof of Lemma 7.6. �

We now turn to the crucial result:

Lemma 7.8. If (.�C.,   >
C) and (.�D.,   >

D) are linked, and if aC � 0 and
bC are chosen arbitrarily and aD and bD are defined by
7.7. aD � aC[V(X1�C) � V(X2�C)]/[V(Y1�D) � V(Y2�D)]

bD � aCV(X1�C) � aDV(Y1�D) � bC

for (X1�C, X2�C, Y1�D, Y2�D) any test configuration associated with
(.�C.,   >

C) and (.�D.,   >
D), then one has

7.5. X�C   >  Y�D if and only if aCV(X�C) � bC � aDV(Y�D) � bD

for all propositions X, Y ∈ Ω such that neither X�C nor Y�D is null.
Moreover, the values of aD and bD given by 7.7 are the only ones for
which 7.5 holds.

Proof. To simplify things, let aC � 1 and bC � 0. The proof works the
same way with any other choice. What we want to show first is that for
any nonnull X and Y it must be the case that
7.5 X�C   >Y�D if and only if V(X�C) � aDV(Y�D) � bD

where
7.7 aD � [V(X1�C) � V(X2�C)]/[V(Y1�D) � V(Y2�D)]

bD � V(X1�C) � aDV(Y1�D)
We can assume without loss of generality that X�C   >  Y�D, so the goal
will be to establish
7.5a V(X�C) � aDV(Y�D) � bD

The proof will be broken into cases depending on where X�C and
Y�D fall in relation to elements of the test configuration.
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In working through the cases one must keep in mind that the test
configuration is such that X1�C � Y1�D > X2�C � Y2�D, and that the
constants aD and bD have been specifically chosen to ensure that
V(X1�C) � aDV(Y1�D) � bD and V(X2�C) � aDV(Y2�D) � bD.
Case 1. (1a) X�C   >  X1�C � Y1�D   >  Y�D

(1b) X�C � X2�C � Y2�D � Y�D
In subcase 1a one has V(X�C) � V(X1�C) � aDV(Y1�D) � bD �

aDV(Y�D) � bD. Subcase 1b is identical with X1 and Y1 replaced by X2

and Y2.
Case 2. X1�C � Y1�D . X�C   >  Y�D . X2�C � Y2�D.

Here we appeal to Fact 3 twice to find nonnull X1*, Y1*, X2*,
Y2* ∈ Ω that entail X1, Y1, X2, and Y2, respectively, and are such that

      

X C Y D X C

X X C X C

Y Y D Y D

X C Y D X C

1 1 1

1 2

1 2

2 2 2

* *

* *

* *

* * .

� �
� �
� �
� �

( )
( )

Assume, without loss of generality, that (X1* ∨ X2*)�C .�.
(Y1* ∨ Y2*)�D and set

          λ � P PY Y D X X C1 2 1 2* * / * *� �( ) ( )
(which is sure to be well defined because X1* and X2* are nonnull in
the C-section). Since 1 � λ � 0 we can apply Bolker’s Fact 1 to find
nonnull X1**, X2** ∈ Ω that entail X1* and X2*, respectively, and are
such that

        

V V  and P P

V V  and P P

X C X C X C X C

X C X C X C X C
1 1 1 1

2 2 2 2

** * ** *

** * ** *

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

 �  � 

 �  � 

λ

λ

This entails that V(X�C) � V(X1** ∨ X2**�C) since

          

V V

P
P

V
P

P
V

P
P

V

P
P

X C X X C

X C
X X C

X C
X C

X X C
X C

X C
X X C

X C

X C
X

( ) ( )
( )

∨( ) ( ) ( )
∨( ) ( )

( )
∨( ) ( )

( )

 � 

�  � 

�  

� 

1 2

1

1 2
1

2

1 2
2

1

1 2
1

2

1

* *

*
* *

*
*

* *
*

**
** **

**

**
*

�

λ

λ

λ

λ ** **
**

∨( ) ( )
X C

X C
2

2V
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The first identity follows from the indifference (X1* ∨ X2*)�C � X�C
and the fact that V(•�C) represents   >

C. The third is a consequence of
the identities V(X1**�C) � V(X1*�C) and P(X1**�C) � λP(X1*�C),
and the fact that X1** and X2** are mutually incompatible. The other
two identities hold because V(•�C) obeys Jeffrey’s Equation.

Since V(•�D) represents   >
D it is also true that V(Y�D) � V(Y1* ∨

Y2*�D). So, we can establish the desired inequality 7.5a by proving

7.5b V(X1** ∨ X2**�C) � aDV(Y1* ∨ Y2*�D) � bD.

Start by using the identities V(X1**�C) � V(X1�C), V(X2**�C) �
V(X2�C), V(Y1*�D) � V(Y1�D), and V(Y2*�D) � V(Y2�D) to rewrite
7.7 as
7.7* aD � [V(X1**�C) � V(X2**�C)]/[V(Y1*�D) � V(Y2*�D)]

bD � V(X1**�C) � aDV(Y1*�D)
This (and a little algebra) allows us to express 7.5b as

      

V V
V V

V V
V V

X X C X C
X C X C

Y Y C Y C
Y C Y C

1 2 1

1 2

1 2 1

1 2

** ** **
** **

* * *
* *

∨( ) ( )
( ) ( )

∨( ) ( )
( ) ( )

 � 

 � 
�

 � 

 � 

Since V(•�C) and V(•�D) obey Jeffrey’s Equation in conjunction with
P(•�C) and P(•�D), respectively, we can rewrite this inequality in
terms of probabilities as

      

P
P

P
P

X C

X X C
Y D

Y Y D
2

1 2

2

1 2

**
** **

*
* *

( )
∨( )

( )
∨( )


(Note the change in the direction of the inequality.)
Since X1** and X2** were chosen to make it true that P(X1**�C) �

λP(X1*�C) and P(X2**�C) � λP(X2*�C) where λ � P(Y1* ∨ Y2*�D)/
P(X1* ∨ X2*�C) it follows that P(X1** ∨ X2**�C) � λP(X1* ∨ X2*�C) �
P(Y1* ∨ Y2*�D). This allows us to simplify the inequality we need to
establish still further to

      P   PX C Y D2 2** *( ) ( )


and thus to

X2**�C .
. Y2*�D

since P(•�•) ordinally represents �.��.
To see why this last relationship has to hold notice that we have a

situation in which
• X1** and X2** are nonnull, mutually incompatible propositions
• Y1* and Y2* are nonnull, mutually incompatible propositions
• X1**�C � Y1*�D > (X1** ∨ X2**)�C   >  (Y1* ∨ Y2*)�C > X2**�C �

Y2*�D
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This shows that (X1**�C, X2**�C, Y1*�D, Y2*�D) is a test configura-
tion. Moreover, since we know that (X1** ∨ X2**)�C.�. (Y1* ∨ Y2*)�D
it follows from the last clause of the Generalized Coherence principle,
Axiom7, that X1**�C .�.Y1*�D, and this implies that X2**�C .
.
Y2*�D. 7.5a is thus established in Case 2.

Case 3. X�C   >  Y�D > X1�C � Y1�D > X2�C � Y2�D.
The proof here is similar to that of Case 2, so I will merely sketch

the main ideas. Note first that when X�C > Y�D we can use the
Solvability clause of Axiom5 to find a nonnull X* such that X*�C �
Y�D. Thus, we can assume without loss of generality that we are
dealing with a case in which X�C � Y �D because if we show that
V(X�C) � aDV(Y �D) � bD in this case then V(Z�C) � aDV(Y�D) �
bD will follow whenever V(Z�C) � V(X�C). Our goal, then, is to
establish that V(X�C) � aDV(Y�D) � bD given that X�C � Y�D >
X1�C � Y1�D > X2�C � Y2�D.

Using Fact 3 in essentially the same way as in Case 2 we can find
propositions X*, Y*, X2*, Y2* ∈ Ω that entail X, Y, X2, and Y2,
respectively, and are such that
• X* and X2* are mutually incompatible
• Y* and Y2* are mutually incompatible
• X*�C � X�C   >  Y*�D � Y�D > (X* ∨ X2*)�C � X1�C �

(Y* ∨ Y2*)�D � Y1�D > X2*�C � Y2*�D � X2�C � Y2�D.
Again, we can assume, without loss of generality, that (X* ∨ X2*)�C
.�. (Y* ∨ Y2*)�D, set

        λ � P PY Y D X X C* * / * *∨( ) ∨( )2 2

and then use Fact 1 to find nonnull X**, X2** ∈ Ω that entail X* and
X2*, respectively, and are such that

        

V V  and P P

V V  and P P

X C X C X C X C

X C X C X C X C

** * ** *

** * ** *

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

 �  � 

 �  � 

λ

λ2 2 2 2

Reasoning analogous to that used in Case 2 yields that V(X1�C) �
V(X** ∨ X2**�C), and it follows that (X**�C, X2**�C, Y*�D, Y2*�D) is
a test configuration in which

        X C Y D X X C Y Y D X C Y D** * ** * * * ** * .� � �> > ∨( ) ∨( )2 2 2 2

Now, since V(X**�C) � V(X�C) and V(Y*�D) � V(Y�D), the
relevant version of 7.5a for this case can be established by proving that
V(X**�C) � aDV(Y*�D) � bD. Since V(X** ∨ X2*�C) � V(X1�C),
V(X2**�C) � V(X2�C), V(Y* ∨ Y2*�D) � V(Y1�D), and V(Y2*�C)
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� V(Y2�C), we can use 7.7 and Jeffrey’s Equation to rewrite this
inequality as

      

V V
V V

  
V V

V V
X C X X C
X X C X C

Y D Y Y D

Y Y D Y C
** ** **
** ** **

* * *

* * *
( ) ∨( )

∨( ) ( )
( ) ∨( )

∨( ) ( )
 � 

 � 
�

 � 

 � 
2

2 2

2

2 2

And, in the presence of Jeffrey’s Equation, this is equivalent to

      P P P PX C X C Y C Y C** / ** * / *( ) ( ) ( ) ( )2 2 � 

Given that P(X**�C) � P(X2**�C) � λP(X* ∨ X2*�C) � P(Y* ∨
Y2*�D), this holds if and only if P(X2**�C) � P(Y2*�C) or, equiva-
lently, Y2*�C .�. X2**�C (since P(•�•) represents �..��). This follows
from Axiom7 because X** ∨ X2*�C .�. Y* ∨ Y2*�D and (X** ∨ X2*)�C
� (Y* ∨ Y2*)�D. This completes the proof of 7.5a for Case 3. �

Case 4. X1�C � Y1�D > X2�C � Y2�D > X�C   >  Y�D.

This is almost identical to Case 3, and I leave it to the reader.
Since Cases 1–4 exhaust the possibilities, we have shown that 7.5a

holds when aD and bD are given by 7.7. Showing that no other values
do the job is a matter of noting that if both V(X1�C) � aV(Y1�D) � b
and V(X2�C) � aV(Y2�D) � b are going to hold, then b � V(X1�C) �
aV(Y1�D) � V(X2�C) � aV(Y2�D), and from this it follows directly
that a � [V(X1�C) � V(X2�C)]/[V(Y1�D) � V(Y2�D)]. This completes
the proof of Lemma 7.8.

We turn now to the final lemma we shall need to prove. It assumes
a chain of sections (.�C1.,   >

C1), (.�C2.,   >
C2), (.�C3.,   >

C3), . . . . To
simplify the presentation I am going to write these as (.�1.,   > 1),
(.�2.,   > 2), (.�3.,   > 3), . . . , and denote their utilities from SR by Vj(•)
� Vj(• �Cj) for j � 1, 2, 3, . . . .

Lemma 7.9. Let (.�1.,   > 1), (.�2.,   > 2), (.�3.,   > 3), . . . be a chain of
sections in (�.�.�, �  > �), and suppose that (a1, b1), (a2, b2), . . . , (ak, bk),
(ak�1, bk�1), . . . , is the unique sequence of constants that results from the
application of the scaling process when ak � 0 and bk are chosen
arbitrarily, so that

      

a X X Y Y

b X a Y
j j j j j j j j j

j j j j j j

� � �

� � �

 �  �  � 

 �  � 

1 1 1

1 1 1

V V V V

V V

( ) ( )[ ] ( ) ( )[ ]
( ) ( )

* / *

*

where (Xj�Cj, Xj*�Cj, Yj�Cj�1, Yj*�Cj�1) is a test configuration for each j.
Then, for any indices j and k one has
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7.5* X�Cj   >  Y�Ck if and only if ajVj(X) � bj � akVk(Y) � bk

Proof. Assume that k � j. The first step is to “thin out” the chain
between (.�j.,   > j) and (.�k.,   > k) so that each section is linked only
to its immediate predecessor and successor. There is a simple
algorithm for doing this: Go to the least m such that (.�m�1.,   > m�1)
and (.�m�1.,   > m�1) are linked; throw away the section (.�m.,   > m);
repeat the process until it is no longer possible to do so. This pro-
cedure always leaves us with a chain that has (.�j.,   > j) as its first
link, (.�k.,   > k) as its last link, and in which one section is never linked
to the section that follows its immediate successor. To keep the proof
simple we will simply assume that we had a chain of this sort to begin
with.

Fact 4 implies that the essential range Im � {amVm(X) � bm: P(X�Cm)
� 0} of each utility function amVm(X) � bm (m � j, j � 1, . . . , k � 1)
is an interval on the real line with nonempty interior. The previous
lemma entails that the sections (.�m.,   > m) and (.�n.,   > n) are linked if
and only if Im and In overlap in an interval with nonempty interior.
Thus, since the chain we are dealing with is thin, the intersection of Im

and Im�2 must be empty for all m � j, j � 1, . . . , k � 1. The only way
for this to happen when each Im ∩ Im�1 is nonempty is for there to be
a real number zm in each Im such that either

(I) xm � zm � ym for all xm ∈ Im�1, ym ∈ Im�1

or

(II) xm 
 zm 
 ym for all xm ∈ Im�1, ym ∈ Im�1

The intervals, in other words, must be overlapping and descending, as
in case (I), or overlapping and ascending, as in case (II). Without loss
of generality assume that (I) is the relevant possibility. Given that
each zm is in the essential range of amVm(•) � bm this means that there
must be propositions Zj, Zj�1, . . . , Zk such that

          # , , . . . , .( ) X C Z C Y C X Y m j km m m m� �  �  �  � 1 1 1     for all  and  > > Ω

And, since we already know from the previous lemma that 7.5* holds
for all when k � j � 1 we also have

        

# #

, , . . . , .

( ) ( ) ( )
( )

a X b a Z b

a Y b X Y m j k
m m m m m m m

m m m

� � � �

� � �

� � �

� �  �  �  � 

1 1 1 1

1 1 1 1

V     V   

 V   for all  and  Ω

Now, to complete the proof merely notice that we will either have
k � j � 1 in which case the chain has only one link and 7.5* follows
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from the lemma. Or, on the other hand, if k � j � 1 then (#) and (##)
imply

          X C Z C Y C X Yj j j k    for all > >� �   1 1 , ∈ Ω

and

        

a X b a Z b a Y b

X Y

j j j j j j j k k kV   V     V   

for all 

( ) ( ) ( )
∈

 � � � � �

  

� � � �1 1 1 1

, Ω

7.5* follows directly. This completes the proof of Lemma 7.9. �
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