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Abstract

Receiver Operating Characteristic (ROC) curves are popular ways of summarising the performance of two class

classi"cation rules. In fact, however, they are extremely inconvenient. If the relative severity of the two di!erent kinds of

misclassi"cation is known, then an awkward projection operation is required to deduce the overall loss. At the other

extreme, when the relative severity is unknown, the area under an ROC curve is often used as an index of performance.

However, this essentially assumes that nothing whatsoever is known about the relative severity } a situation which is very

rare in real problems. We present an alternative plot which is more revealing than an ROC plot and we describe

a comparative index which allows one to take advantage of anything that may be known about the relative severity of the

two kinds of misclassi"cation. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights

reserved.
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1. Introduction

An &optimum' classi"cation rule is one which mini-

mises the expected future loss when it is used to classify

objects. The amount of loss will depend on the costs of

the di!erent kinds of misclassi"cation and the probabilit-

ies with which they occur. In this paper we restrict our-

selves to just two classes and assume that the processing

costs involved in producing a classi"cation are the same

for all objects. Without loss of generality, we can take this

constant cost to be zero. We further assume that those

objects which are correctly classi"ed incur no additional

costs, and denote the additional costs associated with

misclassifying a class 0 object by c
0
and a class 1 object by

c
1
. The overall expected future loss is then simply

¸"n
0
f
0
c
0
#n

1
f
1
c
1
, (1)

where f
i
is the probability of misclassifying a class i ob-

ject, and n
i
is the probability that an object comes from

class i. Parameter estimation, model selection, and per-

formance assessment can be based on minimising this

overall loss. So also can choice of classi"cation threshold.

This is the value t such that the object is to be classi"ed

into class 0 whenever pL (0 Dx)'t. Here pL "pL (0 Dx) is the

estimated probability that an object with measurement

vector x will belong to class 0. A standard result shows

that minimum loss is achieved by choosing the classi"ca-

tion threshold such that points are classi"ed into class 0 if

pL 't"c
1
/(c

0
#c

1
).
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Fig. 1. An example of an ROC curve.

All of this is "ne in principle, but in practice it is rare

for the costs of misclassifying objects to be known pre-

cisely. This might be because it is simply di$cult to

quantify them (in medical diagnostic problems, for

example), or it might be because costs evolve over time

(in banking applications, for example, where the cost

incurred by an incorrect classi"cation depends on ex-

ternal economic conditions [6]). This paper describes a

measure of performance for situations in which the costs

are not known exactly.

Error rate or misclassi"cation rate is often used as a

comparison criterion for comparing classi"ers [4].

Super"cially this requires no choice of costs, but in fact it

merely makes the implicit assumption that the costs of

the two types of misclassi"cation are equal. This is just as

much an assumption as any other. Indeed, it is perhaps

worse than many other assumptions, since, as we have

argued elsewhere [1], we believe that the assumption of

equal misclassi"cation costs is seldom realistic.

When costs cannot be speci"ed, an alternative strategy

for measuring performance is to compare the distribution

of pL for objects from class 0 with the distribution of pL for

objects from class 1. We denote these two distributions

by f (pL D0) and f (pL D1), respectively. In fact, of course, we do

not know these distributions and must estimate them

from a test set (or by some other more sophisticated

means; since such issues are peripheral to the purpose of

this paper, we shall simply adopt an independent test set)

yielding estimates fK (pL D0) and fK (pL D1). The greater the sep-

aration between these two distributions the more likely it

is that, for an arbitrary choice of classi"cation threshold,

good classi"cation performance will be achieved, though

this is, of course, not guaranteed. Many statistical

measures of the separability between distributions have

been de"ned. They include the Kolmogorov}Smirnov

statistic, the t-statistic, Cherno! distance, Lissack}Fu

distance, and the Wilcoxon two group test statistic. The

last of these is an estimate of the probability that a ran-

domly chosen member of class 0 will have a smaller value

of pL than a randomly chosen member of class 1. (It is

de"ned as the sum of the ranks associated with the test

set objects in class 0 when the test set elements are ranked

in terms of pL .) We will be especially concerned with this

measure because of this attractive interpretation. How-

ever, by very virtue of the fact that it compares the overall

distributions of fK (pL D0) and fK (pL D1), it is equivalent to

aggregating losses over all possible choices for the classi-

"cation threshold, and hence over all possible choices for

the costs. As well as being an advantage, this is also a

weakness.

The fact is that, although precise costs may not be

known in any given real application, it is very likely that

something will be known about the cost ratio. For

example, it would be a rare problem for which one could

not assert that c
0
/c

1
was either not 0 or not R. It follows

that, in any real application, it is unlikely that nothing

whatsoever would be known about the classi"cation

threshold } hence it is inappropriate to summarise over

all possible values of this threshold. As a measure of

separability suitable for classi"cation rules, then, the Wil-

coxon statistic is too loosely de"ned.

The Wilcoxon test statistic is closely related to a popu-

lar graphical display for showing performance of classi-

"cation rules. A receiver operating characteristic, or ROC

curve (see [2] for a comprehensive overview) plots the

proportion of class 0 points correctly classi"ed into class

0 against the proportion of class 1 points (incorrectly)

classi"ed into class 0 as the classi"cation threshold is

varied. That is, it uses the cumulative distributions

FK (pL D0) and FK (pL D1) as vertical and horizontal axes, respec-

tively and is parameterised by pL . Fig. 1 illustrates such

a curve for the Pima Indians data to be described below.

This curve has the characteristic shape of ROC curves,

starting from the bottom left of the diagram (when no

objects are classi"ed into class 0) and ending at the top

right (when all objects are classi"ed into class 0). A classi-

"cation rule which is no better than chance would pro-

duce a curve lying along the diagonal of the ROC square

} then FK (pL D0) and FK (pL D1) would be identical. A perfect

classi"cation rule would produce a curve which followed

the left-hand side and top edges of the square } FK (pL D0)

would reach 1 while FK (pL D1) remained at 0. (In this case

the value of pL at the top left-hand corner of the ROC

square would de"ne a threshold t such that all of the

pL values for class 0 would be below t while none of

the pL values for class 1 would be below t.) The area of the

square beneath the ROC curve (denoted AUC) is a popu-

lar measure of separability of two distributions } and
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hence of the performance of a classi"cation rule. Formal-

ly, the AUC is given by

AUC"PFK (pL D0) dFK (pL D1)"PFK (pL D0) fK (pL D1) dpL .

It is a simple transformation of the Gini index (twice the

area between the curve and the diagonal [5]) and is an

estimate of the probability that a randomly drawn mem-

ber of class 0 has pL value less than that of a randomly

drawn member of class 1 } as is the Wilcoxon two sample

test statistic described above.

The ROC curve also permits one to see the loss asso-

ciated with any choice of classi"cation threshold and any

ratio of costs. For cost ratio c
0
/c

1
the loss associated with

any point (x, y) on the ROC curve is given by the length

of the projection of that point onto the line through (0,1)

as origin and with slope !n
1
c
1
/n

0
c
0
. For a given cost

ratio, the value of the classi"cation threshold which mini-

mises the loss corresponds to that position on the ROC

curve for which this projection is the smallest.

This property of the ROC curve immediately reveals

why AUC is not an ideal measure of performance. If the

ROC curves of two classi"ers cross, then one classi"er

will be superior for some values of the cost ratio and the

other classi"er will be superior for other values. If it were

known that the actual cost ratio for a problem led to

a classi"cation threshold which lay to one side or the

other of the crossing point, even if one did not know the

precise position of the actual cost ratio, then a summary

measure integrating over all possible values of the cost

ratio would be worthless. It could tell us that one classi-

"er was superior while, in fact, for the relevant values of

the cost ratio, the other one was better.

In this paper we describe an alternative to the AUC

which takes advantage of what is known about the likely

values of the cost ratio.

An in-depth discussion of performance measures of

classi"cation rules is given in [1] where several di!erent

types of measure are identi"ed. Measures based on loss

are termed &inaccuracy' measures and those based on

overall comparisons of the distributions of fK (pL D0) and

fK (pL D1) are termed &resemblance' measures.

2. Loss di4erence plots

We commented in the preceding section that it is

unlikely that nothing would be known about the relative

costs of the two kinds of misclassi"cation. To say that

nothing is known means that one cannot even assert that

one kind of misclassi"cation is more serious than the

other. Although there are two misclassi"cation costs as-

sociated with two class problems, since the thres-

hold which minimises loss in Eq. (1) is given by

t"c
1
/(c

0
#c

1
)"[1#(c

0
/c

1
)]~1, only the ratio of mis-

classi"cation costs is relevant. Furthermore, in our

experience, acquiring cost values from domain experts is

naturally done in terms of the ratios } how much more

serious one type of misclassi"cation is than the other.

Thus an expert will often be happy to say that the cost of

misclassifying a class 0 object is, say, roughly three times

or "ve times as serious as the reverse. In what follows, we

go further and require the expert to specify an interval

within which he or she is con"dent that the true or future

cost ratio will lie, even though they are unable to specify

it precisely. Thus, for example, an expert may be able to

say that misclassifying a class 1 object is between 2 and

10 times as serious as the reverse } that is, that the cost

ratio c
0
/c

1
lies in the interval [0.1,0.5]. In the extreme

case in which all that can be said is that misclassifying

a class 0 object is less serious than misclassifying a class

1 object, the expert would report that the ratio lies within

the interval [0.0,1.0]. Likewise, if the expert was prepared

only to say that misclassifying a class 0 object was more

serious than the reverse, the interval would be [1.0, R].

The asymmetry of these intervals, for what are essen-

tially equivalent converse situations, is rather troubling.

Moreover, when we come to produce plots below, it is,

to say the least, inconvenient having a parameter which

goes to R. For these reasons, although we elicit cost

information in terms of the cost ratio, we will produce

plots in terms of c
1
/(c

0
#c

1
)"[1#(c

0
/c

1
)]~1. The in-

tervals [0.0,1.0] and [1.0, R] above are mapped to the

symmetric intervals [0.5, 1] and [0, 0.5] by this trans-

formation. In general, c
0
/c

1
"a maps to 1/(1#a)"b

(say) while c
0
/c

1
"1/a maps to a/(1#a)"1!b. Since

only the ratio of c
0
to c

1
is relevant to c

1
/(c

0
#c

1
), we can

arbitrarily rescale c
0

and c
1

without a!ecting the result.

In particular, we can choose that rescaling such that

(c
0
#c

1
)"1.

We could now plot loss, as calculated in Eq. (1) above,

against c
1

(with c
1

ranging from 0 to 1). However, the

losses due to di!erent cost pairs (c
0
, c

1
) are not compara-

ble: it does not make sense to claim that the loss due to

cost pair (5,1) is greater than that due to the pair (4,3) for

example. On the other hand, if one classi"er has a loss

curve which lies above that of another classi"er in certain

ranges of c
1
, then the "rst classi"er is worse, in terms of

loss, in those ranges. For this reason, rather than plotting

loss against c
1
, to compare classi"ers we simply plot the

sign of the di!erence in losses due to the classi"ers

against c
1
. This leads to a partition of the [0,1] range of

c
1
into segments in which the classi"ers alternate in terms

of superiority.

3. Eliciting costs

We have already noted that in our experience domain

experts "nd it convenient to specify costs in terms of the

ratio c
0
/c

1
, and that they can usually give an interval I in
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which they are con"dent this ratio must lie. Further, they

can also usually specify a value they consider to be most

likely. We use these three points } the ends of the interval

I and the most likely value } to specify a belief distribu-

tion for likely values of c
0
/c

1
. For simplicity, we take the

form of this distribution to be triangular, with support I

on the c
1
-axis, and with apex occurring at the point

corresponding to the most likely value. Thus, if the inter-

val of feasible values for the cost ratio c
0
/c

1
is given as

I"[a, b] and the most likely value for the cost ratio is m,

then the distribution is taken to be a triangle with end

points at c
1
"1/(1#a) and c

1
"1/(1#b) and with apex

at c
1
"1/(1#m). The height of the triangle is h"

2(1#a)(1#b)/(b!a), determined such that its area is 1.

We denote this distribution on c
1

by D(c
1
).

One might object to the arbitrary choice of a triangu-

lar form for this distribution } although perhaps agreeing

that a unimodal form is almost always appropriate. Like-

wise, one might also argue that a triangular form de"ned

on the cost ratio axis c
0
/c

1
rather than on the c

1
-axis

would be more natural, since the relative costs have been

elicited in terms of this axis. If one accepts this, then

a triangular distribution on the c
0
axis would be inappro-

priate by virtue of the nonlinearity of the transformation

c
1
"[1#(c

0
/c

1
)]~1 . We are sympathetic to these argu-

ments but suggest that general uncertainty over the rela-

tive probabilities for the di!erent values of c
0
/c

1
render

such arguments irrelevant. The shape of the distribution,

whether on c
0
/c

1
or on c

1
, cannot be determined (in

almost all situations, anyway) with su$cient precision to

distinguish between a triangular form on c
1

and the

transformation of a triangular form on c
0
/c

1
. To put it

another way, while we accept that our proposal is not

ideal, it seems to us that the popular alternatives de-

scribed in Section 1 (of assuming that the cost ratio is

known precisely or that nothing whatsoever is known

about the cost ratio) are more extreme and even less ideal.

4. The LC index

We now have all the elements to de"ne the new index,

which we shall call the ¸C index (for loss comparison). In

comparing two classi"ers A and B, we know on which

parts of the c
1

interval each is superior. De"ne a function

¸ (c
1
) taking the value #1 in regions of the c

1
[0,1]

interval for which A is superior (meaning that its loss plot

lies beneath that of B) and !1 for regions in which B is

superior (the loss plot of A lies above that of B). We also

know how con"dent we are that any particular value of

c
1

will occur, given by D(c
1
). The integral of the product

¸(c
1
)D(c

1
) over [0,1] thus gives us a measure of con"-

dence that A will yield a smaller loss than B. This is the

LC index. It ranges from !1 to #1, taking positive

values when classi"er A is more likely to lead to a smaller

loss than classi"er B and negative values when the con-

verse applies. A value of #1 means that A is certain to be

the superior classi"er, since A is superior for all feasible

values of c
1
.

5. Examples

In this section we compare the LC index with the AUC

for four examples, two from medicine (obtained from the

UCI repository of machine learning databases [3] and

two from the area of "nancial credit. These examples

have been chosen to illustrate the variety of index values

which can be produced, and the interpretation which

should be put on them. The "rst two examples have been

chosen since they are widely used as comparative data

sets in supervised classi"cation problems. By virtue of

this we have no real cost intervals available. We therefore

chose some which we thought appropriate for the prob-

lem, and which would illustrate particular aspects of LC

index interpretation. The third and fourth examples

arose from our own work analysing banking data sets.

The cost intervals we used were obtained in consultation

with the bankers who provided us with the data.

5.1. Pima indians data

The data consist of 768 observations on people belong-

ing to a particular tribe of Indians, 268 who tested posit-

ive for diabetes (class 1) and 500 (class 0) who tested

negative. The values of eight variables are recorded for

each. The data were randomly divided into a design set of

538 and a test set of 230. (Questions of whether such

a division is an ideal thing to do are not relevant here,

since our aim is merely to illustrate how classi"cation

rules built using these data can be compared.)

Fig. 2 shows ROC curves for quadratic discriminant

analysis and a neural network classi"er. The AUCs are

0.7781 and 0.7793, respectively, suggesting that, if any-

thing, the neural network classi"er is superior, but that

there is little to choose between the two methods. How-

ever, a glance at the "gure shows that things are not this

simple. The two ROC curves cross. For some values of

costs one classi"er will be superior, while for other costs

the other will be superior. Moreover, since, in order to see

which is superior for a given cost pair it is necessary to

carry out the awkward projection, it is not easy to see

what these costs are. Suppose that one is con"dent that

the ratio of the costs of the two kinds of misclassi"cation,

c
0
/c

1
, lies in the interval [0.1, 0.25], so that misclassifying

a diabetic as non-diabetic is thought to be between 4 and

10 times as serious as the reverse. Suppose also that it is

thought most likely that misclassifying a diabetic is 7

times as serious as the reverse. This corresponds to a

ratio of 0.14 on the c
0
/c

1
scale. These three values corres-

pond to a c
1

interval of [0.80, 0.91] with a most likely

value of 0.875. Fig. 2 is not very enlightening.
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Fig. 2. ROC curves for Pima Indians data.

Fig. 3. The cost distribution and relative superiority of the two

classi"ers applied to the Pima Indians data.

Fig. 4. ROC curves for Hungarian heart disease data.

Fig. 3 is a much more useful representation. The hori-

zontal axis shows c
1
, ranging from 0 to 1. The bold line

segments above this axis show the intervals of c
1
in which

the neural network method is superior and the intervals

in which quadratic discriminant analysis is superior. The

triangle standing on this axis has interval of support

[0.80,0.91] and apex occurring at c
1
"0.875. The LC

index, computed as described above, is !1.0. This sug-

gests that the quadratic method is superior. This thus

gives a message in the opposite direction to the AUC,

and much more de"nitively.

5.2. Hungarian heart disease data

These data were collected at the Hungarian Institute of

Cardiology, Budapest, by Andros Janosi, MD, and are

available from the heart disease directory of the UCI

data archive. They consist of 261 subjects, 163 of whom

did not have heart disease (class 0) and 98 had heart

disease (class 1), each measured on 14 variables. They

were randomly divided into a design set of 183 subjects

and a test set of 78 subjects.

Fig. 4 shows the ROC curves for linear discriminant

analysis and quadratic discriminant analysis for these

data. The AUCs are 0.8311 and 0.8143 respectively.

Again the super"cial inference that linear discriminant

analysis should be adopted is cast into doubt by the fact

that neither curve dominates the other. The &better'

method will depend on the unknown costs.

Suppose, however, that our domain expert tells us

that the cost of misclassifying a diseased subject is be-

tween 2 and 20 times as serious as misclassifying

a healthy subject and that the most likely value is 16

times as serious. These values correspond to c
1

ranging

between 0.667 and 0.952, with a most likely value of

0.937.

Our corresponding plot is shown in Fig. 5. The bars

show regions in which each of quadratic and linear dis-

criminant analysis is superior. The triangle shows the

belief distribution for c
1
. The corresponding value of

the LC index is 0.89. This suggests that quadratic

discriminant analysis is the better method, contradict-

ing the conclusion reached using the standard AUC

measure.
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Fig. 5. The cost distribution and relative superiority of the two

classi"ers applied to the heart disease data.

Fig. 6. ROC curves for credit card marketing data.

Fig. 7. The cost distribution and relative superiority of the two

classi"ers applied to the credit card marketing data.

5.3. Marketing strategies

This data set was provided by a major UK credit card

company, and is concerned with classifying customers

according to their likely response to a promotional

scheme. In particular, the company is interested in clas-

sifying people into one of two classes according to the

pattern of interest payments they are likely to make in

the future (since the details are commercially sensitive, we

have avoided de"ning the classes more precisely here).

We shall denote the classes as 1 and 0, where the former is

the class thought likely to return a pro"t. The classes had

priors of n
0
"0.87 and n

1
"0.13. The prediction into

likely future classes is to be made on the basis of 25

variables, mainly describing earlier credit card transac-

tion behaviour. 8000 records were available, and we split

them equally into training and test sets.

In collaboration with the banking experts, we de-

veloped a model for the costs of the two kinds of misclas-

si"cation, based on such factors as cost of manufacture

and distribution of marketing material, cost due to irrita-

tion caused by receiving junk mail, and loss of potential

pro"t by not mailing a potential member of class 1. All of

the factors in the model were given as intervals, and from

these was derived an interval of possible values for the

overall cost ratio c
0
/c

1
as being [0.065, 0.15], with the

most probable value 0.095.

In this example, we compare quadratic discriminant

analysis (QDA) and a neural network classi"er. The

latter had 13 nodes in its single hidden layer, and used

weight decay to avoid over"tting. Both network architec-

ture and penalty term were chosen by cross-validation.

The ROC curves for the test data are shown in Fig. 6. The

AUCs for these curves are 0.7244 and 0.7102 for the

quadratic and neural network classi"ers respectively.

Thus the AUC suggests that quadratic discriminant anal-

ysis is slightly preferable. Fig. 7 shows the corresponding

plot produced by our method. From this, the LC index is

!0.4. This also suggests that the quadratic method is to

be preferred. That is, when one places more appropriate

emphasis on the likely values of the cost ratio, and

de-emphasises those values thought to be inappropriate,

the method suggests more clearly that the quadratic

classi"er should be used. Although the evidence is per-

haps stronger than the AUC method provides, it is still
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Fig. 9. The cost distribution and relative superiority of the two

classi"ers applied to the banking data.

Fig. 8. ROC curves for banking data.

not overwhelming } an absolute value of 0.4 is far from

one of 1.0.

5.4. Banking data

These data were provided by a large UK bank. They

refer to an aspect of current account usage and consist of

1292 good risks (class 0) and 208 bad risks (class 1). The

training set had 1000 and the test set had 500 observa-

tions. ROC curves for linear discriminant analysis and

the nine-nearest-neighbour method are presented in

Fig. 8. The AUC for linear discriminant analysis is 0.7116

and that for the nearest-neighbour method is 0.6745,

suggesting that linear discriminant analysis has the edge.

Experts in the bank give misclassifying a bad risk as 5}10

times as serious as the reverse. With a most likely value of

9 times as serious, Fig. 9 shows our plot. The LC index is

!0.64, showing that linear discriminant analysis is also

to be preferred using our criterion. However, the con-

clusion is now not as clear-cut as it might be. In circum-

stances such as this, as a referee pointed out, it may well

be that relatively small alterations to the form of the

belief function D could change one's con"dence (or even

conclusion) about which is the better classi"er. The abso-

lute size of the LC index serves as an indication of how

con"dent one should be in the conclusion about which

classi"er is to be preferred.

6. Conclusion

The ROC curve and associated AUC statistic, equiva-

lent to the Gini index and Wilcoxon test statistic, are

often used as criteria by which to compare classi"cation

rules. However, they have major disadvantages. It is

extremely awkward to use a pair of ROC curves to see for

which cost pairs one classi"er is superior to another,

requiring a sophisticated projection operation. Only in

the case that one classi"er dominates another will the

AUC be universally valid in a comparison of classi"ers.

In general, the AUC aggregates over all possible values of

the ratio of the costs of the two kinds of misclassi"cation.

This is unrealistic, since almost always something will be

known about the relative costs, even if they are not

known precisely. We have proposed an alternative, the

LC index, which makes use of what can be said about the

relative sizes of the costs. In some situations this know-

ledge will include the fact that the interval of feasible

values for the cost ratio is such that, within this interval,

one classi"er dominates (even though it may not domin-

ate over the entire range of cost ratios). When this occurs

there will be no doubt about which classi"er is superior

} and the LC index will take value #1 or !1. In other

cases the feasible interval will include segments where

each of the classi"ers is superior, and in such cases the LC

index will indicate which classi"er is most likely to be

better } and which should therefore be chosen. The size of

the LC index will also indicate how much con"dence one

should have in the conclusions. A value near zero, though

indicating preference for one classi"er or the other, is an

indication that departures from the assumptions neces-

sarily made in constructing the index may lead to a rever-

sal of the conclusion.

The LC index is a comparative and not an absolute

index of performance. An absolute index is impossible

because of the meaninglessness of combining losses cor-

responding to di!erent cost pairs. That is, it does not

make sense to argue that the cost pair (c
0
, c

1
)"(0.1, 0.9)
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is better or worse than the cost pair (c
0
, c

1
)"(0.2, 0.8).

For the same reason, the LC index should not be inter-

preted as an expected loss. Although we have used

a &probability' distribution over likely values of the costs,

the losses at these di!erent values cannot be compared

and hence cannot be combined to yield an expected

value. The best that can be done is as we have done here

and determine whether classi"er A, say, is more likely to

be favoured than classi"er B.

Although the LC index is an improvement on the ROC

plot and AUC, further improvements are possible. In

particular, our model assumes that the costs of misclas-

sifying individuals from any one class are all the same.

This is unlikely to be the case in practice and problems in

which misclassi"cation costs vary from object to object,

even for objects in the same class, is the focus of our

current work.

Other workers have also recognised the importance of

e!ective criteria for comparing classi"cation rules. For

example, Bradley [7] discusses the use of the area under

the ROC curve as a performance measure in some detail.

He presents an extensive series of applications to real

data, in which he compares "ve di!erent forms of classi-

"cation rule. He notes the danger of extrapolating the

results to di!erent kinds of problems, and also avoids

&expert bias' by deliberately not tuning the algorithms to

the speci"c problems. Analysis of variance and multiple

range tests are used to summarise the performance di!er-

ences between the methods. Provost and Fawcett [8]

have also considered the problem of unknown costs.

They de"ned the convex hull of a set of ROC curves in

terms of the projection described in Section 1, so that the

curve(s) producing minimum cost could be identi"ed for

any values of the costs. Wieand et al. [9] and McClish

[10] also used a probability distribution or interval

through which to weight di!erences between rules. How-

ever, they were interested in a rather di!erent problem

and de"ned their distribution over f (pL D1) rather than the

cost ratio.

This paper has focused on measures of performance

and has not discussed estimating the standard deviation

of those measures, and yet such indicators of precision

are clearly important if con"dence is to be placed in

comparative statements about classi"cation rules. This

is the subject of current work. It is complicated by the

fact that there are two sources of variation in the distri-

bution of pL "pL (0 Dx). One is that arising due to the fact

that the test set is sampled. The other is that arising from

the fact that the estimates are based on a design set which

is itself sampled. For classi"ers built using a given data

set only the "rst source is relevant, but for studies aimed

at general recommendations about which methods to

use, both are relevant.

The fact that, in any real study, something will gener-

ally be known about the relative severity of the di!erent

kinds of costs indicates the limited value of many of the

theoretical comparisons which have been conducted out-

side any practical context. Such studies tend to use AUC

(or, perhaps worse, error rate) because they have no

context from which to produce sensible (ranges of) cost

ratios. But this very fact makes their conclusions of

limited value. It does not make sense to ask &which is the

better/best rule' in general. It only makes sense to ask

such a question in a particular problem context. The LC

index has weaknesses, but these are perhaps not as severe

as those of the popularly used alternatives.

7. Summary

Receiver operating characteristic, or ROC curves are

popular ways of summarising the performance of two

class classi"cation rules, and are widely used in pattern

recognition, epidemiology, and signal detection theory.

The area under such curves (AUC) is often used as

a measure of quality of the associated classi"cation rule.

This measure is equivalent to the Gini coe$cient, and

also to the Wilcoxon two sample test statistic. However,

both ROC curves and the AUC measure have major

disadvantages. In particular, deducing the relative per-

formance of two classi"cation rules for a given ratio of

misclassi"cation costs requires that an awkward projec-

tion operation be applied to the ROC curve, while the

AUC integrates performance over all possible values of

this ratio. This latter is generally inappropriate since, in

any real problem, something will be known about the

relative misclassi"cation costs } even if it is only that one

type of misclassi"cation is more serious than the other.

To overcome these problems we present an alternative

plot which permits comparison between two classi"ers,

directly showing the values of the costs for which each is

superior. Associated with this, we de"ne a comparative

measure of classi"er performance, de"ned in terms of

a feasible cost interval and the most likely value of the

cost ratio. This measure, the LC index, takes values

between #1 and !1, according to which of two classi-

"cation rules is to be preferred. We illustrate with some

real examples, showing that the conclusions reached us-

ing the LC index can be opposite to those reached using

the common AUC measure.
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