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Summary 

The observed level of milk yield of a dairy cow or the litter size of a sow is 

only partially the result of a permanent characteristic of the animal; temporary 

effects are also involved. Thus, we face a problem concerning the proper 

definition and measurement of the traits in order to give the best possible 

prediction of the future revenues from an animal considered for replacement. 

A trait model describing the underlying effects is built into a model combining 

a Bayesian approach with a hierarchic Markov process in order to be able to 

calculate optimal replacement policies under various conditions. 

Keywords: replacement, animal, Bayesian updating, Markov decision 

programming. 

1. Introduction 

In any production based on the operation of an asset of significant value, 

the determination of an optimal lifetime of the asset is important in order 

to maximise the profit from the production, which in this paper is assumed 

to be the overall objective of the manager. The considerations are relevant 

no matter whether the asset is a dairy cow, a farm building or some kind 

of industrial equipment, but the way of solving the problem may vary 

considerably, depending on the individual situation. Most often the asset 

will be replaced by a new asset of the same or at least a similar kind. In 

that case the present asset is only a link in a chain of assets. Then we have 
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to consider what kind of objective function to use in order to meet the 

overall objective of profit maximisation. 

In some cases it is relevant to maximise the total profit of the asset during 

the entire lifetime. That applies, for instance, when the asset itself is a scarce 

resource. A case in point is the determination of the optimal age at slaughter 

of fattening bulls in a dairy herd, where the main activity is milk production. 

If the dairy farmer does not buy bull calves at the market (for instance 

because of infection risk) he will only have the bull calves provided by the 

dairy cows of the herd. If the housing capacity is sufficient, the bull calves 

are a scarce resource, and the total profit is maximised if the net returns per 

animal during its whole lifetime are maximised. We shall refer to this situation 

as the single asset situation. 

Another situation is when new assets are permanently available at the 

market. In that case the total profit is not maximised by maximising total 

net returns per asset. A more relevant criterion is here the maximisation of 

either average net returns over time or the total discounted net returns (i.e. 

the present value) of the entire chain of assets. In both cases the time horizon 

may be finite or infinite, whichever is relevant. An infinite horizon is just an 

abstraction indicating that the time of termination (the last link of the chain) 

is unknown, but at least ‘far’ ahead. We shall refer to this situation as the 

asset chain situation. 

Finally, we shall consider a situation where a restriction is imposed on 

the production. It may be in the form of either a production quota or a 

limited supply of an input factor. In that case the total profit is maximised 

by the maximisation of average net returns per product or factor unit. We 

shall refer to this situation as the quota situation. 
A more formal discussion of possible objective functions is given by 

Kristensen (1992a). The choice of objective function depends only on the 

conditions of production. It does not matter what kind of asset we are 

dealing with. If we turn to the method used in the maximisation of the 

objective function, it will depend very much on the nature of the asset. The 

classical replacement theory developed by pioneers like Preinrich (1940) and 

Terborgh (1949) typically assumes that all functions and parameters describ- 

ing the problem are completely known in advance, and that no random 

variation is involved. The implicit items considered comprise machinery and 

other kinds of industrial equipment. The functions and parameters represent- 

ing the problem are used for deduction of general replacement rules based 

on variants of the marginal net revenue approach. 

As opposed to machinery or industrial equipment, the present study is 

part of a larger research project dealing with the animal replacement problem 

in agricultural production. A relevant question to ask is, therefore, in what 

way the animal problem differs from the general set-up. Based on a study 

by Ben-Ari et al. (1983) the main difficulties of the animal replacement 

problem may be summarised as:
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(1) Uniformity. The traits of an animal are difficult to define and measure. 

(2) Variability. The random variation of each trait is relatively large. 

(3) Reproductive cycle. The production of for instance cows and sows is 

cyclic. It has to be decided in which cycle to replace as well as when to 
replace inside a cycle. 

(4) Herd restraints. Animal production is performed in herds. There may 

be restraints that apply to the herd as a whole and not to the individual 

animal. Examples are a limited supply of heifers or gilts, limited housing 

capacity or a milk quota. 

Because of the variability, Markov decision programming had already 

been applied to the dairy cow replacement problem by Giaever (1966). In 

an evaluation of techniques van Arendonk (1984) concluded that in dairy 

cow replacement this method should be used in preference to the marginal 

net revenue approach. Also, the method directly solves the problems caused 

by the reproductive cycle as shown by Kristensen and Ostergaard (1982) as 

well as van Arendonk (1985b). The only problem concerning variability and 

cyclic production is that in order to cover the variability in traits, the state 

variables (traits) have to be represented by many levels, and to deal with the 

cyclic production, a state variable representing the stage of the cycle has to 

be included. Both aspects contribute significantly to an explosive growth of 

the state space. Therefore, we face a dimensionality problem. Though all 

necessary conditions of a Markov decision process are met, the solution is 
prohibitive in practice even on modern computers. 

The problem of herd restraints is important. In dairy cattle two particular 

restraints should be considered. One is a limited supply of heifers when the 

dairy farmer only uses home-grown heifers as replacements. In that case a 

simple comparison of the animal in production with a replacement is no 

longer valid. Instead we face a much more difficult problem of choosing the 

optimal composition of animals from the available population of cows in 

production and heifers for replacement. The other restraint is the milk quota 
which is imposed on all dairy herds of the EC. 

The overall objective of the animal replacement research project is to 

adapt the Markov decision programming techniques in order to be able to 

cope with the problem in a satisfactory way. The problems to be solved 

(totally or partially) have been identified as the dimensionality problem, 

herd restraints and uniformity. In order to circumvent the dimensionality 

problem, a new notion of a hierarchic Markov process was introduced by 

Kristensen (1988) and applied to the dairy cow replacement problem by 

Kristensen (1987, 1989). The technique may be applied in the single asset 

situation, the asset chain situation and the quota situation. 

Both herd restraints mentioned above have been studied in the project. 

The milk quota restraint was discussed by Kristensen (1989) based on a 

technique described in Kristensen (1991) of maximising average net returns 

per kg milk produced. A limited supply of replacement heifers was discussed 
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by Ben-Ari and Gal (1986), who developed a technique called parameter 

iteration. The method was modified and further developed by Kristensen 

(1992b). In both studies on the latter restraint, a herd model was based on 

an underlying single animal model, which in the study by Ben-Ari and Gal 

(1986) was an ordinary Markov decision process and in the study by 

Kristensen (1992b) was a hierarchic Markov process. 

Only a solution of the uniformity problem concerning the definition and 

measurement of traits remains to complete the project. The solution of that 

problem is the objective of the present study. In any replacement problem 

a good prediction of the future net revenues (or rewards as they are called 

in Markov decision programming) is essential. This prediction is based on 

the observed traits of the animal, but since the traits are subject to random 

variation, we do not know to what extent the observed value represents a 

permanent characteristic of the animal or just a temporary fluctuation. In 

order to be able to give the best possible prediction of future rewards, a 

method has been designed which combines the ability of knowledge updating 

known from causal probabilistic nets, as described for example by Pearl 

(1988), and hierarchic Markov processes. In order to keep the presentation 

simple we shall only consider examples where the animal in production is 

compared to a standard replacement. However, the technique may just as 

well be applied in a herd model under some restraint as discussed above. 

For an empirical application of the updating technique in a sow replace- 

ment study, reference is made to Jorgensen (1992). 

2. A model describing a trait of an animal 

In this section we shall describe a general model of an animal trait to be 

used in replacement studies. The model will form the basis of the further 
considerations of the paper. 

Assume that the state of an animal is observed at regular intervals called 

stages. The state is defined by the values of a number of state variables each 

representing a trait of the animal. We assume that one of the traits (Y,) is 
described by the following relation at stage n: 

Y,=m(-)+X +e,, n=0,..., N, (1) 

where m is a known function expressing the expected value of Y, under the 

circumstances in question. The circumstances are represented by the argu- 

ments of m which may be the value of other state variables (e.g. the age of 

the animal, the season, etc.) and/or the average herd level concerning the 

trait. The trait itself may, for instance, be the milk yield of a dairy cow or 

the litter size of a sow. The syrnbol X is the combined effect of genetic level 

and permanent environment. We assume X to be normally distributed with 

the expected value zero and a certain variance o2 representing the variation
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across the population. The symbol e, represents the random variation caused 

by temporary environmental effects. We assume that e, is normally distrib- 

uted with the expected value zero and a certain variance o?. The random 

variables X and e, are assumed to be independent. Furthermore, the variables 

€;,-..,@y Of a particular animal are assumed to be independent of the 

corresponding variables of the other animals of the herd. Thus all systematic 

effects influencing all animals of the herd (e.g. seasonal effects) are assumed 

to be included in the function m(-). The sum I,, = X + e, forms the value of 

a state variable. 

The relation over time of e,, ..., éy is described by a first order autoregres- 

sive process, i.e. 

Cy = €,—-1 + En, n=l,...,N, (2) 

where 0<a< land &,..., éy are independent and normally distributed with 

the expected value zero and the variance (1 —a?)o2. Furthermore, ¢, is 
assumed to be independent of e,_, and X forn=1,..., N. 

As appears from equations (1) and (2), the permanent effect X varies only 

between animals, whereas the temporary random effect e, varies over time 

for the same animal. It is obvious that the value of the permanent effect is 

very important in the decision of which animals to keep in the long run (e.g. 

whether a cow should be kept for an additional lactation) and that the 

current value of the random effect e, is important in the decision concerning 

the optimal replacement time in the short run (e.g. when to replace a cow 

inside a lactation). Thus, if the value of X is high, we would probably ignore 

a low current value of e, which just represents a temporary crisis. On the 

other hand, a sufficiently high current value of e, might lead to postponed 

replacement of an animal of low permanent value X. 

These fundamental observations illustrate that the differentiation of varia- 
tion between animals and over time for the same animal is important for 

the replacement decision, because it directly influences our expectations 

concerning the future net revenues from the animal. The only problem is 

that neither the permanent effect X nor the current random effect e, are 

directly observable. What we observe are the resulting numerical values 

Y,,..., Yy of the trait in question, but since the systematic effect m is assumed 

to be known, this is equivalent to the sums I,,..., /y, where J, = X +e,. On 

the other hand we may have a prior belief in X based on an estimated 

variance among animals and possible observations concerning the animal 

of characteristics correlated with X. Further, as observations of the sums I, 

are gathered they will increase our knowledge of X. If, for instance, all sums 

are relatively large for an animal, it implicitly indicates a high value of X 

and vice versa. 

The trait model (1) and (2) may easily be extended to cover several traits, 

each being influenced by several unobservable effects. Assume for instance 

that Y,,, and Y,, are the milk yield and weight of a dairy cow at stage n and 
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that each trait is influenced by two unobservable effects. In matrix notation 

we may express the relations as follows: 

_ m,(*) Xi, Xy\f1 Cin 

a 3) r Ce “) (') t (2 °) 

where 4, = (Yin, Yon)’, and 

e a a Cine & ( "= ( 1 )( Ln ) +( ) (4) 
C2n G21 422) \Can-1 E2n 

If, at a previous stage, the cow has been suffering from a specific disease 

(e.g. mastitis) that permanently influences the milk yield and weight, the 

value of c, is —1. Otherwise it is zero. Equation (3) expresses that the 

observed milk yield and the weight of the cow are determined partly by 

permanent animal-specific effects (X,, and X,,) as in the single trait model 

(1), partly by possible permanent negative effects of a previous disease (X ,, 

and X,,) and finally by temporary random effects (e,,, and €,). The variables 

X11, X42, X2, and X,, may be mutually correlated, and e,,, e>, may be 

correlated, whereas (X1,,X19,X21;,X 2) and (e,,, €2,)' are assumed to be 
independent. 

In the following, only the single-trait model of equations (1) and (2) will 

be discussed, but all results may be directly extended to cover the multi- 

trait model of equations (3) and (4). For the derivation of the extended 

results, a Kalman filter approach as described by, for example, Harrison 

and Stevens (1976) is a relevant tool. 

We refer to X in equation (1) as the basic state of the animal and to the 

sum I,, as the current state. Thus the current state is directly observable and 

therefore known at any stage, whereas the basic state is unknown. In accor- 

dance with common practice in dynamic programming we shall consider 

both kinds of states to be discrete, ic. only a finite number of levels are 

considered for each kind. Both X and I, are random variables, which will 

be referred to in upper-case letters. Transformed realisations of X and I,, 

on the other hand, will be denoted by lower-case letters x € Q, and ie Q,, 

respectively, where Q, and Q, are finite sets. In other words, if the basic 

state is x, it means that X is in the interval ]x ;x*] defined as 

{y|x” <y<x"}, where x” and x* are the lower and higher limit, respec- 

tively, of the x’th level of X. In addition to the states defined by levels of I,,, 

the state space Q, includes a replacement state representing a situation where 
the animal has been culled. 

From the assumptions made concerning the normal distribution of X, we 

are able to calculate the prior probability p,(0) of any basic state x. At any 

stage n we may select an action de {1, 2} that influences the system. We shall 

interpret d= 1 as ‘keep’ and d=2 as ‘replace’. For given basic state x and 

current state i at stage n, we know the conditional probability p%,;(n) of the
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current state to be j at stage n+ 1 if action d is taken. For d=1 we have 

approximately: 

Pu(M=Pijeli-si*]|xe]x°,x*] aieli ;i*)) 

=~ PIx™+e.4,E]7 377 || X =x" a 1=i") 

= Pens, €] jf —x™ j* —x™] |X =x™ ae, =i"—x™) 

= &((j* —x"—ali"—x™))/(1 —a’)*"9,) (5) 

— &(j> —x™—ali™ — x™)/(1 — a’) 0,), 

where @ is the distribution function of the standard normal distribution. 

The symbol x” denotes the conditional expectation E(X | X € ]x~; x ]), and 

analogously for i”. If d = 2, the process transfers to an absorbing replacement 

state with probability 1. 

At stage 0, the marginal probability of a transition from current state i to 

j at stage | under the action d is calculated as 

Pij(0)= >) prijO)p.(0). (6) 
xeQy, 

At each stage the current state i is observed, each time increasing our 

knowledge of the basic state x. Our current belief at stage n concerning the 

basic state is represented by the probability distribution given by p,(n). If 

the current state is i and at stage n+ 1 we have observed a transition from 

state i té state j following the action d, we may use Bayes’ theorem to update 

our belief concerning the basic state. The new probability distribution at 

stage n+ 1 is calculated as 

p(n + 1) = p,(n)p%i;(n)/pi(n), xEQy, n=0,...,N— I. (7) 

If the current state i is observed at stage n, and the action d is taken, a 

reward depending on the basic state x is gained. This reward is denoted as 

r2,(n). We also assume that some kind of physical output m?;(n) is produced 

during the stage. In a replacement model, the reward is usually defined as 

the net revenue, and the physical output may be defined as the amount of 

milk produced by a cow, the litter size of a sow, etc. 

3. Causal probabilistic nets 

A trait described as in section 2 may be modelled by a causal probabilistic 

net (sometimes also referred to as an inference diagram or a Bayes belief net) 

as shown in Figure |. Using the terminology of Tatman and Shachter (1990), 

the elements of the net are decision nodes representing variables under the 

control of the decision maker, chance nodes corresponding to random vari- 

ables or random events, value nodes together representing the arguments of 
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@ Chance node a Decision node ¢ Result node 

Figure |. The animal model described as a causal probabilistic net 

X = basic state 

in = observable state at stage n 

dn = action at stage n 

rn = reward at stage n 

mn = physical output at stage n 

the objective function of the model and, finally, directed arcs representing 

the causal relationships among the nodes. Arcs into a decision node indi- 

cate the information which will be known to the decision maker at the time 

of decision. Arcs into a chance node indicate which variables condition the 

probability distribution of the associated random variable. Arcs into a value 

node indicate which variables condition the associated expected value (arcs 

from a value node to another node are not allowed). 

An advantage of causal probabilistic nets is that they provide a graphical 

modelling language very close to ordinary human reasoning, and at the same 

time they are mathematically well defined and, therefore, suitable for analyses 

derived from traditional probabilistic theory. The main idea is that the knowl- 

edge of unobservable nodes (state variables) is updated each time the value 

of any other node is observed. Thus, in the example, the model is learning 

by successive observations, and step by step knowledge concerning the value 

of X is increased. By assuming a decision policy describing which decision 

to make for given values of the chance nodes it is possible to calculate the 

expected value of the objective function under the policy. This value may be 

compared to the expected values under alternative policies, making possible 

the identification of an optimal (or at least a satisfactory) policy. During the 

last few years there has been extensive research into causal probabilistic nets, 

and many results have been obtained on how to collect and distribute evi- 

dence over the net (e.g. Pearl, 1988; Jensen et al., 1990). 

Possible objective functions are the expected sum. of all rewards under a 

policy (ignoring the physical output) or the expected sum of all discounted 

rewards under a policy (if the physical output is defined to be the stage 

length). Thus, the causal probabilistic net of Figure 1 may be used directly



Bayesian updating in Markov processes 

for solving the problem described above, as long as the time horizon is 

restricted to the N stages. In other words, the causal probabilistic net directly 

solves the problem of determining the optimal lifetime of an animal in the 

single asset situation as defined in section 1. If, on the other hand, the system 

at the end of the N stages is replaced by a new system described in the same 

way (and a third system will ultimately replace the second one and so on) 

the causal probabilistic net approach will run into trouble, because all time 

steps explicitly have to be in the model. Thus, the method does not cover 

the asset chain and quota situations mentioned in section 1. 

The infinite stage problem is dealt with appropriately by a hierarchic 

Markov process, but the problem of that method in relation to the current 

problem is that all states must be observable and all parameters must be 

known. The possibility of learning from the successive observations is not 

directly present. Therefore, a hybridisation of a hierarchic Markov process 

and a causal probabilistic net is desirable in order to cover the asset chain 

and quota situations as described in section 1. 

4. Hierarchic Markov processes 

If we want to describe the system by a Markov decision process instead of 

a causal probabilistic net, we may take at least two different views. One 

possibility is to define it as a Markov decision process with unobservable 

states. Such processes are called partially observable Markov decision pro- 

cesses, and they have been discussed by Monahan (1982). Another view to 

take is to define the process in such a way that the state space is directly 

observable, but with unknown parameters. This kind of process is called an 

adaptive Markov decision process. It has been discussed in detail by Wessels 

(1968) and later by van Hee (1978). 

However, in this paper we shall consider the system in the context of a 

hierarchic Markov process. A hierarchic Markov process is a series of finite 

stage Markov decision processes called subprocesses built together in one 

Markov decision process called the main process. The basic formulation, 

including an optimisation cycle for the discounting (present value) criterion, 
is given by Kristensen (1988). This criterion covers the asset chain situation. 

A similar cycle intended for the quota situation, using a criterion maximising 

the average rewards/output ratio, is described by Kristensen (1991). The 

hierarchic technique has been developed as a way of circumventing the 

dimensionality problem of Markov decision programming, i.e. that practical 

problems have a tendency to become very large and, therefore, difficult to 

analyse by the usual techniques as mentioned in section 1. In the description 

of hierarchic Markov processes it has been assumed that all parameters of 

the model are known and that all states in the subprocesses as well as in 

the main process are directly observable. 
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If, in the specification of traits in section 2, the basic state X had been 

directly observable, the formulation as a hierarchic Markov process would 

have been straightforward. In that case the state space of the main process 

would have been the finite set Q,, and the state space of the subprocesses 

would be Q,. The parameters of the x’th subprocess would be p4,,(n), r4;(n) 

and m{,(n). Finally, the x’th element ‘of the y’th row of the main process 

transition matrix would be p,(0)= @(x*/o,)— @(x~ /o,). Under these 

assumptions we would be able to determine an optimal solution for the 

asset chain situation as well.as for the quota situation. 
Since, however, the basic state x is unobservable, we may conclude that 

we have a hierarchic Markov process with unobservable main state. But at 

each stage we observe the state transition in the subprocess and use the 

observation for updating our knowledge of the state of the main process. At 

the end of the subprocess, however, the learning stops, because the knowledge 

of the old system cannot be used on the new one. In other words, the specific 

traits of the present animal will not improve our ability to predict the future 

revenues from the replacement. 

In the following we shall describe how the updating of knowledge may 

be incorporated into the hierarchic process. First, we should notice that, for 

a given transition from state i to j in a subprocess, the new probability 

distribution of the main stage x is uniquely defined according to equation (7). 

Therefore, the imperfect knowledge of the main state does not add any 

further random elements to the transitions of the subprocesses. Next, we 

should consider whether we know that the distribution of x always belongs 

to a certain class of distributions so that it may be sufficiently described by 

one or a few parameters. In that case we may replace p,(n), ..., p,(n), where 

v is the number of elements in Q,, by these few parameters without losing 

any information. The prior distribution of X is normal with known mean 

and variance. In the following we shall investigate the posterior distribution 

after observations of current states in the subprocesses. 

Having observed state i through the sum I, = X +e, at stage n, we are 

ready to observe the state j defined by the sum I,,,, = X +e,4, at the next 

stage. Recalling that X has a fixed (but unknown) value, we find that the 

distribution of I,,;, 1s normal, having the expected value 

E41 |X, I.) = E(X + al, — X) + €n 44 |X, [,)=X + aI, —X) (8) 

and variance 

VUn+1 |X, Ln) = W(X + al, — X) + &n41 |X, 1,) = (1 — a7 )o?. (9) 

From equations (8) and (9) we observe that I,,,, has unknown mean but 

known variance. Our prior knowledge of the mean is that it is normally 

distributed with the expected value 

Un+1 = E(X + al, — X))=(1 — QE, (X) + al, (10)
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and the variance 

On+1 = V(X + al, — X)) =(1 — a)’ V,(X), (11) 

where the index n on the expectation and variance of X refer to the distribu- 

tion of X at stage n. 

Having taken the observation of J,,, we may update the distribution of 

the mean according to the following equations taken from DeGroot (1970): 

Un+1 =(Un41On41 + Ini 0 —a*) tas? Von, +(1- a’) *o,*) 

(12) 

and 

Orv = On41(1 — a’)o2 /(o2,, + (1 — a”)o?). (13) 

Furthermore, the posterior distribution of I,,,, is still normal according to 

DeGroot (1970). By combining equations (10) and (11) with (12) and (13) we 

are able to calculate the parameters of the new distribution of X at stage 
n+: 

Ey, +1(X) =(n+1 — al) — a) = (1 — a? )o2 E, (x) 

+ Un+1 — aly) = a)V,())/(1 — a*)oe + (1 — a)’ V(x) (14) 

and 

Viti) = Ore /( _ a) 

= (1 —a’)o2V,(x)/((1 — a)? V,(x) + (1 — a?)o2). 

Under the assumptions made we find that if the prior distribution of X is 

normal, it will remain normal at all stages. Only the expectation and variance 

change over stages, and furthermore the change in variance does not depend 

on the observed value of J,,,! For given prior variance V(x) = 02 we are 

able to calculate the variance at all future stages in advance according to 

the recurrent equation (15). If instead of the variance we consider the recipro- 

cal value (sometimes referred to as the precision), we easily have 

1/V,,(x) = n(1 — a)? (1 — a? oe + 1/Vo(x) (16) 

showing that the precision increases linearly with n. Thus the variances 

should be considered as known in advance, and only the changes in expected 

value depend on the observations made. It will not be necessary to keep the 

probabilities p,(n). It is sufficient to keep the expected value of X, and the 

probabilities p,(n) may at any stage be reproduced by the relation 

Px(n) = ® ((x* — E,(x))/(Vn(e))"7) — ® ((x~ —E, (x) (Vn (0))"). (17) 

As a consequence of this finding, we now redefine the state spaces of the 

hierarchic Markov process so that the state space of the main process holds 

(15) 
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only one element, and the state space of the only possible subprocess becomes 

Qs = (Ly, «+5 Um} X Qy, where the set {11,, ..., Uy, } represents alternative values 

of the expectation of X. In the following p(i) will denote the expected value 

belonging to state ie Q,. 
Put E,(x) = u(i) and E,,. ,(x) = w(j) for any i, je Q,. If E,(x) and E,, 4 ;(x) 

satisfy equation (14), the transition probabilities of the subprocess are calcu- 

lated as 

pij(n) = > pxij(n)p.x(n) (18) 

and otherwise 

pij(n) = 0. (19) 

The expected production and reward given stage, state and action are 

calculated as 

mi (n) = ¥) mi,(n)p.(n), (20) 

and 

ri(n) = Yo rii(n)p,(n). (21) 

We have now arrived at an ordinary hierarchic Markov process that may 

be solved by usual methods as described by Kristensen (1988, 1991). Thus 

we are able to solve the asset chain situation as well as the quota situation. 

5. Benefits from updating: a numerical example 

In order to illustrate the benefits of updating, we shall consider a numerical 

example. Suppose that the expected production of an animal decreases 

linearly with age from an initial level at stage 0 according to the following 

relation: 

m(n) = C, — CpN. (22) 

The observed total production of an animal during stage n is calculated as 

Y, in equation (1), and we define the physical output as m{,(n) = Y, for 

deé{l, 2}, since a replacement is assumed to take place (and to be decided) 

at the end of a stage. In the replacement state, the physical output is zero. 

The reward gained at stage n is defined as 

r4i(n) = cgm%,(n) — c4(n) + c5(n), (23) 

where c, is the unit price of the product, c,(0) is the price of a new animal 

for replacement and ¢,(n)=0 for n>0, c$(n)=0 for all n, and c3(n) is the
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value of an animal being replaced at stage n. In the replacement state, 

however, the reward is zero. We shall assume the value of an animal to 

decrease linearly over stages from an initial carcass value c, at stage 0 
according to the relation 

C3(n) = cg — con. (24) 

A set of numerical values were chosen for o,, ¢,, a, N and the c-constants 

of equations (22) to (24). The selected values are summarised in Table 1. For 

X, the nine levels ]—co; —3.5], ]—3.5; —2.5], ..., ]3.5; oof were distin- 

guished. The levels are referred to as 1,..., 9, respectively. For the sums I, = 

X +é,, the 13 levels ]— 00; —5.5], ]—5.5; —4.5], ..., ]5.5; oof, referred to as 

1,..., 13, were considered. For the current expected value of X, the same 

levels are used as for X. Thus the total number of states in the subprocess 

becomes 9 x 13+ 1 = 118 (the last state added is the replacement state). 

In order to be able to evaluate the benefit of updating, two alternative 

hierarchic models were formulated. In one model it was assumed that X 

was directly observable. In that case the nine levels of X were defined as 

states of the main process, and the 13 levels of J, plus the replacement state 
were defined as 14 states in the subprocesses. 

The second alternative represents a situation where X is not observable, 

and no updating of the belief in X is performed. In other words, the prior 

distribution of X is used during the whole lifetime of the animal. The same 

hierarchic design was used as in the updating situation, but in equations 

(18), (20) and (21) the initial state distribution p, (0), ..., po(0) of x was used 

at all stages instead of p(n), ..., po(n). In all three models, optimal policies 

under the discounting criterion referring to the asset chain situation were 

calculated using the optimisation cycle of Kristensen (1988), and the eco- 

nomic results were measured by the present value of the entire infinite 

process calculated just before purchase of a new animal. The results are 
compared in Table 2. 

Table 1. Selected values for the parameters of the numerical example in section 5 

  

  

Parameter description Symbol Value 

Standard deviation of basic state X Ox 2 

Standard deviation of temporary effect e, CO. 2 

Autoregression coefficient a 0.5 

Maximum age (stages) of an animal N 10 

Expected production of an animal at stage 0 Cy 20 

Expected reduction per stage in production Cy 0.5 

Unit price of product C3 10 

Price of new animal for replacement c4(0) 200 

Carcass value of an animal at stage 0 C6 120 

Reduction per stage in carcass value Cy 4 

Discount factor per stage 0.95 
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Table 2, Present values under optimal policies in three alternative situations, representing 

different levels of knowledge on the basic state X 
  

  

Level of knowledge Present value Relatively 

Only prior knowledge available 3120 {00 

Updating of knowledge as observations are done 3435 110 

Complete knowledge of the value of X 3449 ltt 
  

As it appears, the updating of knowledge increases the economic result 

by 10% compared to a situation with no updating. Furthermore, the result 

under updating is very close to the result under complete knowledge. The 

autoregression coefficient a is a measure of the constancy of the random 

effect e,. In the extreme case a=0, the variation of e, is just noise in the 

observation of X, whereas in the opposite situation with a= 1, e, will be 

constant over time, making X and e, measure exactly the same, namely a 

permanent characteristic of the animal. In order to study the effect of a on 

the benefit of updating the value was varied from 0.1 in steps of 0.1 to a 

value very close to 1. 

It appears from the results that there is practically no benefit of updating 

when a is close to 1, whereas the benefit is considerable for small values of 

a. The reason is that for values of a close to 1, X and e, express almost the 

same, and in that case only the directly observable sum is of interest. Further, 

it appears from equation (16) that the precision of the belief concerning X 

increases only very little over stages when a is close to 1, since the increase 

per stage is proportional to the factor (1 — a)? /(1 — a?) which decreases for 

a increasing towards 1. Therefore, the benefit from updating is very small 

for such high values of a. 

In the consideration of the influence of a on the benefit of updating, two 

arguments lead in the same direction: (1) the precision increases only a little 

for values of a close to one, and (2) the economic significance of distinguishing 

X and e, vanishes as a converges towards 1. We shall now consider the 
influence of combined values of the standard deviations o, and «,. 

Concerning this question we are less fortunate than when we considered the 

influence of a. On the one hand, we know from equation (16) that the 

increase in precision concerning the belief in X is small when o, is big. On 

the other hand, if o, is small compared to o,, the directly observed sum 

I, = X +e, expresses almost the same as X. Therefore, we must expect the 

benefit of updating to be relatively small, since we are told something that 
we (almost) knew in advance. Thus, we have conflicting views, and only the 

results may show us the true influence of o,. 

It was found that for a fixed value of o,, the benefit increases with o,. We 
may therefore conclude that even though the information acquired is rather 

vague for high values of o,, it is at least new and therefore more valuable
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than for low values of o,. It also appeared that the benefit from updating 

increases even more with o,. This is not surprising, since a great variation 

in a variable automatically increases the economic value of information 
concerning the true level of the variable. 

6. Discussion 

The numerical example in section 5 has shown that the benefit of updating 

may be considerable. In order to evaluate the method more carefully, we 

shall now compare it to the methods typically used for modelling trait 

variations in replacement studies in the literature. In most cases the state 

variables have been defined from the directly observable variables I,, ..., Iy, 

but the variables have typically not been regarded as sums of underlying 

unobservable effects. Examples in dairy cattle are Giaever (1966), Smith 

(1971), McArthur (1973), Kristensen and Ostergaard (1982), van Arendonk 

(1985a, 1985b) and Kristensen (1986, 1987). An example in sows is the work 
of Huirne et al. (1988). 

All authors mentioned have been aware that part of the observed value 

of I, is due to a permanent property of the animal, even though it has not 

been formulated directly as is done in equations (1) and (2). Without such a 

model, the ideal way to take the permanent effect into account is to use all 

previous observations I,,..., J, in the prediction of I,,,,. Thus all observed 

values should be kept as state variables in the model. Therefore, the size of 

the state space becomes prohibitive if an appropriate number of levels is 
defined for each of them. 

The most common way of dealing with this problem in the literature is 

to assume that the last two or three observations (J,,_ >) I, ,, I, are sufficient 

in the prediction of I,,,,. Thus we only have to keep two or three state 

variables instead of all n observations. This method was used in dairy cows 

by Smith (1971), van Arendonk (1985b) and Kristensen (1986, 1987), all 

keeping two observations of I,,. In sows, Huirne et al. (1988) used the same 
approach keeping three observations of litter size. 

In the approach taken in this paper, J, is assumed to be the sum of two 

(or more) underlying unobservable effects as defined in equation (1). Under 

these conditions, it is easily shown that the expected value and variance of 
T,+1 given I,,..., 1, are calculated as 

ECnai tli, 1.) = (1 —a@E(X |I,,...,1,)+ al, (25) 

and 

Vln t Hise ty) = (1 = a? V(X Ty, I, + (1 a2)02. (26) 

From equations (25) and (26) we are able to conclude that by keeping only 

the current expectation of X and the most recent observation I,,, the predic- 

101



102 

Anders R. Kristensen 

tion of J,,,, 1s exactly the same as if all previous values /,,..., J, were kept 

and used in the prediction! As shown in equation (16), the conditional 

variance of X is independent of the observations made and known in 

advance. 

We are able to conclude that if the model represented by equations (1) 

and (2) is true, we only need two state variables in the model to obtain the 

same precision as if all previous observations of the trait in question were 

kept as state variables. Since the dimension of the model is the more limiting 

restriction in practical applications of Markov decision processes, this is an 

important contribution to the problem of reducing the state space without 

loss of precision. The generalisation of this conclusion to the multi-trait 

model sketched in section 2, equations (3) and (4), is that the number of 

necessary state variables equals the sum of directly observed traits and the 

number of unobservable permanent effects. 

It must be emphasised that the multi-trait formulation in equations (3) 

and (4) is not necessary in all cases where several.random traits are observed. 

If, an addition to Y,, another trait Z,, is observed, and this trait only affects 

Y, through the function m(-) so that I,, and Z,, are independent there is no 

problem in treating such a case within the single-trait model. The transition 

probabilities concerning I, described in this paper simply have to be 

multiplied by those of Z,,. 

The definition of a directly observable trait as a sum of underlying unob- 

servable effects provides a framework for prediction of the future revenues 

in an optimal way given the information available at the time of decision. 

Thus the conclusion of the present study is that the developed knowledge 

updating technique seems to be an appropriate solution to the uniformity 

problem of defining and measuring the traits of an animal considered for 

replacement in the asset chain situation as well as in the quota situation. 
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