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An organization's promotion decision between two workers is modelled as a problem of 
boundedly-rational learning about ability. The decision-maker can bias noisy rank-order contests 
sequentially, thereby changing the information they convey. The optimal final-period bias favours 
the "leader", reinforcing his likely ability advantage. When optimally biased rank-order informa- 
tion is a sufficient statistic for cardinal information, the leader is favoured in every period. In 
other environments, bias in early periods may (i) favour the early loser, (ii) be optimal even when 
the workers are equally rated, and (iii) reduce the favoured worker's promotion chances. 

1. INTRODUCTION 

This paper presents a model of boundedly-rational learning by an organization. The aims 
are to represent in a simple form the costs of gathering, processing, or transmitting 
information and to analyse their implications for the procedures selected to handle 
information, as well as for the decisions actually made. Like other recent work on the 
internal organization of firms, this work explores to what extent organizational structure 
and behaviour, as well as organizational performance, can be explained by adaptation 
to the costs associated with information.' 

In the learning model we formulate, the decision-maker not only selects a rule 
specifying what action to take as a function of his observations but also chooses, 
sequentially, the information partitions generating those observations. This general prob- 
lem is interpreted in the context of an organization which needs to make an important 
promotion decision and which attempts to maximize the value of the information generated 
during the observation periods that precede the decision. One of the motivations for this 
analysis was the finding by organizational sociologists that earnings and promotions in 
the later stages of a worker's career are strongly correlated with earnings and promotions 
in the early stages (Kanter (1977), Rosenbaum (1984)). Later success is positively 
associated with early success, even when one controls for the effect of observable charac- 
teristics likely to affect performance, such as education. One obvious source of this 
correlation is differences in ability that persist over time and that are not captured by the 
observable covariates. In this paper, we focus on differences in ability which are initially 
unobservable by organizations and their workers, as well as by researchers. We present 
a simple model of an organization trying to learn about differences in ability and show 

1. Influential discussions of these issues are in Arrow (1974) and Simon (1976). Recent analyses include 
Sah and Stiglitz (1986) and Geanakoplos and Milgrom (1988). 

15 
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16 REVIEW OF ECONOMIC STUDIES 

that the optimal learning strategy can reinforce the effects of these differences: early 
success can be even more strongly associated with later success under the optimal learning 
strategy than under a naive process of information accumulation. 

Other explanations for the observed correlations, also based on an organization's 
response to limitations on its information about workers, can be developed. Meyer (1986) 
assumes that the effort levels of risk-averse workers are private information and shows 
that an organization can benefit by designing promotion schemes that reward early success 
with an increased probability of success in later contests. Although the consequent 
asymmetry in later contests between those with good and bad early records reduces 
incentives at that point, this effect is outweighed by the increase in incentives in early 
contests due to the future rewards for winning. Thus, even when abilities are known and 
equal, a correlation between early success and later success may be induced by the 
organization in an attempt to limit the costs of moral hazard. 

In the learning model studied here, the effort decisions of workers are suppressed. 
Furthermore, workers are assumed to have no private information about their abilities. 
Because workers do not make any strategic decisions, the model is essentially a single- 
person decision problem, with the organization as the decision-maker. The organization's 
sole objective is to use the information generated during the fixed number of observation 
periods to identify and promote the more able of two workers. 

We view the limitations on the information that becomes available to the organization 
as limitations on its "rationality", and we will analyse how the organization optimally 
responds to these limitations. We distinguish between the individual who designs the 
rules according to which the organization operates (the "decision-maker") and the 
individuals who implement the rules on a day-to-day basis (the "observers"). The 
decision-maker must be quite sophisticated to solve the problem of optimal organization 
design subject to the informational constraints. The observers embody these constraints 
in their limited observational ability or their limited ability to communicate what they 
observe. 

In each period, an observer reports a signal from a very coarse partition of worker 
outputs: specifically, he reports only which of the two workers produced the larger output. 
In addition, output itself is affected by exogenous noise as well as by ability. Refining 
the coarse partition or reducing the exogenous noise is likely to be relatively costly for 
the organization. We focus instead on a means of changing the information structure 
which is relatively inexpensive and which can be accomplished through numerous com- 
monly observed practices: adjusting the rule that determines whether the observer reports 
a "win" for one worker or the other. Instead of worker i being declared the winner 
whenever i's output exceeds j's output, i is declared the winner as long as his output 
does not fall short of j's by more than some amount c, and c is freely chosen by the 
decision-maker. We refer to c as the level of bias in i's favour. 

Bias can be implemented in two different ways, depending upon the explanation for 
the coarseness of the observers' reports. When observers obtain cardinal information 
about outputs but, because of the costs of communication, report only ordinal information, 
the decision-maker can instruct observers to change the critical cutoff that determines 
whether they report a win by i or j, i.e. to use asymmetric evaluation criteria. On the 
other hand, when observers can identify only which of two output levels is larger, the 
level of bias can be controlled by the decision-maker by differentiating workers' tasks or 
work environments or by providing different amounts of training or equipment. Examples 
of the latter form of bias include the assignment of workers to clients with different needs 
or attitudes and the provision by senior colleagues of different levels of guidance. 
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MEYER LEARNING FROM COARSE INFORMATION 17 

Whatever the method of implementing bias, changes in its level change the informa- 
tion content of the observers' reports and hence affect the quality of the promotion 
decision. The problem facing the decision-maker is to choose the level of bias sequentially 
during the observation stage, along with a promotion rule specifying whom to select as 

a function of the biased observations.2 Since the levels of bias will affect the probabilities 
with which workers win and lose each contest, the use of bias will have implications for 
the career profiles of workers within the organization. 

Overview of the Paper 

Section 2 uses a simple example to explain how biasing coarse and noisy observations 
can increase the value of the information they provide. Section 3 describes the model of 
learning in organizations. Section 4 shows that it is always optimal for the organization 

to bias the final contest before the promotion decision in favour of the current "leader", 
the worker with the better cumulative performance record. Thus, with respect to promotion 
chances, the advantage the leader derives from his likely edge in ability is reinforced by 
the organization's optimal learning strategy. The optimal bias in favour of the leader 

equals the smallest margin of victory by his rival which (if actually observed) would 

outweigh the leader's better record: in the final period, therefore, the bias allows the 
decision-maker to choose between the workers exactly as he would if he had cardinal 
information on the difference in outputs. 

Section 5 studies the use of bias in early periods. We present a necessary condition 
for optimality (Section 5.1) and contrast it to the characterization of the optimal final- 

period bias. In early periods, optimally biased rank-order information is not in general 
as valuable as cardinal information, because the former is not in general a sufficient 
statistic for the latter with respect to decisions about future levels of bias. In Section 5.2, 
we characterize the stochastic environments in which the sufficient statistic property does 
hold and show that in these environments, the optimal strategy for setting bias is myopic: 
in each period, the bias should be set as if that period were the last, so success in the 
current contest is always reinforced through bias in the next one. 

In stochastic environments in which the sufficient statistic property does not hold, 
bias may be used differently in early periods than in the final period. Section 6.1 presents 
an example in which an organization with three periods before the promotion benefits 
by rewarding in the second period the worker who performed worse in the first period. 
After explaining this possibility, we note that the desirability of favouring the leader in 

early contests would be increased if the model were changed to include not only the 

"major" promotion decision but also "minor" job assignment decisions during the 

observation phase: by increasing the importance, at each stage, of identifying the better 

worker, this change would make each period's problem more closely resemble the 

final-period problem. 
Section 6.2 shows that an organization may improve its promotion decision by using 

bias in the first contest, before any differences in ability have been revealed. While notions 

of fairness would dictate the random assignment of first-period bias, there would be no 

loss in efficiency from assigning the bias according to economically irrelevant, but socially 
meaningful, criteria such as race, sex, or family background. Treating the workers 

asymmetrically in the initial contest is more likely to help the organization, the more 

2. In the terminology of statistical decision theory (see, e.g. Raiffa and Schlaifer (1961)), the promotion 
choice is a "terminal act" and the biased contests are "experiments" which the decision-maker can adaptively 
design, according to previous observations. 
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18 REVIEW OF ECONOMIC STUDIES 

sensitive are future biases to changes in first-period bias and the less costly it would be 
to introduce bias in a one-period choice problem. 

Section 6.3 demonstrates that the introduction of bias in a worker's favour in an 
early period may reduce his overall chance of promotion, even when it benefits the 
organization. Introducing bias in a worker's favour lowers the decision-maker's degree 
of confidence in him whether he wins or loses the current contest. If this change in beliefs 
alters future levels of bias in a sufficiently adverse way, this future handicap can outweigh, 
in terms of its effect on promotion chances, the benefits from the increased likelihood of 
winning the current contest. 

Section 7 considers the use of bias when, after the observation phase, the decision- 
maker is not restricted to the binary choice of which worker to promote. This extension 
introduces the same possibilities in the final period as arise in the original model in early 
periods, since later choices about levels of bias are not restricted to be binary. In an 
example in which the decision-maker has the option of making no promotion, we show 
that even in the final period, it can be optimal to treat symmetrically rated workers 
asymmetrically and, when there is a leader, to set the bias against him. When the 
decision-maker can choose only which worker to promote, he maximizes his expected 
degree of coinfidence in the promoted worker; adding the option of promoting no one 
if he is not sufficiently confident makes him prefer strategies which produce a very variable 
degree of confidence, even at the expense of some reduction in the mean. 

Related Work 

Statisticians have studied sequential sampling rules in problems such as whether to accept 
or reject a consignment of goods or which of two medical treatments to adopt (Kulkarni 
(1982), Armitage (1985)). In clinical trials, adaptive sequential procedures allow not only 
the stopping decision but also the choice of which treatment to use at any stage to be a 
function of past observations.3 Evaluations of procedures consider not only the probability 
of selecting the better treatment but also the length of the trial and the number of volunteers 
given the inferior treatment. One formulation of the problem is as a two-armed bandit 
problem (Berry and Fristedt (1985)). In economics, related models have been used to 
analyse a firm trying to learn about its demand curve (Rothschild (1974), Aghion et al. 
(1990), Alpern and Snower (1990), and Balvers and Cosimano (1990)). 

Two features differentiate our analysis from those above. First and most important, 
we stress that when observations are coarse (win/lose, succeed/fail), it is valuable for 
the decision-maker to adapt to past observations by altering his information partitions 
over outcomes (through bias), thereby altering the information content of the different 
coarse reports. In clinical trials, the analogue would be changing the criteria distinguishing 
success from failure, but such a possibility seems not to have been studied. 

Second, we suppress both the direct and the opportunity costs of learning; bias is 
costlessly adjustable and has no effect on total output during the observation stage. 
Hence, in contrast to the analyses above, there is no tradeoff between short-run payoff 
maximization and the generation of information valuable for the future.4 

3. For example, the "play the winner" rule (Zelen (1969)) tests the treatment used last period if it produced 
a success and the other treatment otherwise. 

4. The opportunity cost of learning is crucial to the four economics papers on learning cited above, which 
investigate whether the firm's price converges to the full-information optimum and how the learning motive 
distorts decisions away from the myopic profit-maximizing ones. 
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MEYER LEARNING FROM COARSE INFORMATION 19 

Several recent models of decision-making in economics and political science share 

with ours the feature that information partitions or information sources are themselves 

choice variables. 
Dow (1991) studies a boundedly-rational consumer who visits two stores in succes- 

sion, searching for a low price. When deciding where to buy, the consumer cannot 

perfectly recall the first store's price, but only in which element of an n-element partition 

of the set of possible prices it lay. Before starting his search, the consumer anticipates this 

memory limitation and chooses the partition optimally. This problem of the optimal design 

of limited memory is formally similar to the choice of bias in early periods in our model. 

Sah and Stiglitz (1986) analyse an organization deciding whether to undertake a 

project of uncertain value. Each of two evaluators observes a noisy signal of the value 

but reports only whether his signal exceeds a specified standard, which is freely adjustable 

by the organization. Sah and Stiglitz assume that the passing standards must be chosen 

simultaneously and focus on the resulting choice between requiring only one "pass" for 

acceptance (polyarchy) or two (hierarchy). Since we allow sequential adjustment of 

biases, neither the hierarchical nor the polyarchical decision rule is optimal in the 

two-period version of our problem; a worker will be promoted if and only if he wins the 

final contest. 
Fishman and Hagerty (1990) study how much discretion an entrepreneur should be 

allowed in choosing what information to report to potential investors. At a formal level, 

changes in the permitted amount of discretion alter investors' information partitions in 

a manner very similar to bias in our model. The finding that the more likely a project is 

to be good, the more discretion the entrepreneur should be given parallels our final-period 

result that the greater the degree of confidence in the leader, the larger should be the 

bias in his favour. 
Calvert (1985) analyses how a rational political decision-maker will choose among 

advisors who provide imperfect, binary recommendations about two policy options. When 

the decision-maker is predisposed towards one option, it is optimal to seek advice from 

a source who is biased in favour of that option: only with an advisor biased in this way 

can a negative recommendation about the initially preferred option be sufficiently convinc- 

ing to induce the decision-maker to choose the other one. Thus a preference for informa- 

tion likely to confirm one's beliefs, a phenomenon of great interest to experimental 

psychologists (see Wicklund and Brehm (1976)), may be rational. Though Calvert uses 

a different formalization of bias, his finding, too, parallels our result on the optimality 

of final-period bias in favour of the leader. 
In contrast to our analysis of bias in a sequence of contests, none of these models 

focuses on how information-gathering strategies will vary over time.5 We emphasize that 

the quality of decisions can be improved by sequentially adjusting information partitions 

according to previous observations. Such adjustments cause the interpretations of coarse 

reports to change over time, even if the labels they are given (win/lose, succeed/fail) 

remain the same. 

2. THE VALUE OF BIAS: AN EXAMPLE 

A decision-maker, D, will win one dollar if he bets correctly on the outcome of a spinner 

that is coloured red and green. He knows that either (case R) two-thirds of the spinner's 

area (2400) is red and the rest (1200) green, or (case G) two-thirds (2400) is green and 

one-third (1200) red. These two configurations are equally likely. 

5. See, however, Calvert's reference to choosing which of two advisors to consult first (p. 551). 

This content downloaded from 163.1.41.70 on Wed, 19 Jun 2013 08:54:13 AM
All use subject to JSTOR Terms and Conditions



20 REVIEW OF ECONOMIC STUDIES 

An observer, 0, conducts a test spin, reporting the colour on which the needle lands. 
The information thus provided about the true configuration is noisy: the final position 
of the needle is random, so it is likely, but not certain, to land on the colour occupying 
the larger area. The information is also coarse: 0 reports only "red" or "green", nothing 
more about the position of the needle. Despite its noisiness and coarseness, O's report 
is valuable to D: without the report, the probability that D bets in accord with the true 
configuration is 2, whereas with the report, this probability is 2. 

Does D's expected payoff increase if 0 carries out a second test spin, identical to 
the first, before D places his bet? No. If the spins produce different results, D is indifferent 
between betting on red and green. Therefore, one of D's optimal strategies is to ignore 
the result of the second spin and to bet on the colour that turns up on the first spin. 

However, a simple alteration to the spinner by 0 will make O's report on the second 
spin valuable, even if the needle continues to come to rest randomly and 0 continues to 
report only the colour on which the needle lands. This alteration is to enlarge the sector 
covered by the colour reported on the first spin. (The spinner is returned to its original 
configuration before D places his bet.) Suppose, for example, that the outcome of the 
first spin is red. Before the second spin, 0 converts a green sector of c degrees to red, 
whatever the true configuration, and then spins the needle and reports the colour on 
which it lands. With this change, the unique optimal betting strategy for D is to bet on 
the colour which 0 reports on the second spin: 

P (true configuration is GI red on 1st, green on 2nd) 

P (true configuration is Rired on 1st, green on 2nd) 

P(green on 2ndltrue configuration is G) P(true configuration is Gired on 1st) 

P(green on 2nd true configuration is R) P(true configuration is RIred on 1st) 

(240-c\ 1/3 > I for c > 0. 
\120-cJ 2/3 

Since D's optimal bet depends on the outcome of the second spin when 0 modifies the 
spinner, the information from the second spin has strictly positive expected value for D. 

To determine the optimal value of c, calculate the probability (as a function of c) 
that D bets in accord with the true configuration, when he bets on the colour reported 
on the second spin: 

P(red on 2ndltrue configuration is R, red on lst)P(true configuration is Rired on 1st) 

+P(green on 2ndltrue configuration 

is G, red on lst)P(true configuration is Gired on 1st) 

(240+ 2 + ?240- 
1 

for 0' c-' 120. 
360 /\3/\ 360 3 

This probability is linearly increasing in c, so the optimal c in the range [00, 1200] is 1200. 

As c is increased beyond 1200, D's expected payoff falls, because the probability that red 
comes up on the second spin in state R stays at 1 (the red sector can get no larger than 
3600), but the probability that green comes up in state G is reduced. Therefore, the 
optimal alteration to the spinner makes it completely red if the true configuration is R 
(and two-thirds red if the true configuration is G). With this change, if 0 reports green 
on the second spin, D knows with certainty that the state is G. D's probability of betting 

is . in accord with the true state is . 
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MEYER LEARNING FROM COARSE INFORMATION 21 

The lesson of this example is that by changing the information partition that deter- 
mines what 0 reports on the second spin, according to the outcome of the first spin, D 

can increase the expected value of O's reports. The change that benefits D increases the 
likelihood that the colour that turns up on the first spin turns up again on the second. 

3. A MODEL OF LEARNING BY AN ORGANIZATION 

3.1. Assumptions 

An organization employs a pair of workers (labelled i and j) for T periods, after which 

it selects one of the workers for promotion to a different job. In each period t before 

the promotion decision, worker k's output, xk, is the sum of his time-invariant ability, 

7k, and a time-dependent noise term, 4: 

X k = 
'q + E 'k, k = i,j, t =1 , . .. , T. 

We assume that the promoted worker's output in the new job is more sensitive to his 
ability than is his output in the original job, so the organization wants to promote the 
more able worker. 

The number of periods before the promotion decision is fixed at T. No change in 

job assignment is possible after the promotion decision. It is irrelevant for our analysis 
whether the worker who is not promoted continues to perform the original job or leaves 

the organization. 
With the technology above, the quality of the promotion decision is constrained by 

the fact that in each period output is a noisy indicator of ability. We assume that it is 
also constrained by the fact that in each period, only rank-order information about the 
workers' outputs is available to the decision-maker. However, the decision-maker can, 
at the start of each period, costlessly adjust the criterion that determines which worker 
is labelled the winner in that period. Formally, the worker declared the winner in period 
t will be i if x;+ c' > xJ and ] if xi+ c' < x, where c', the "bias' in period t, is a choice 
variable which can depend on the biased rank-order information available from all 

previous periods.6 
Before discussing two interpretations of the bias c', we make assumptions on the 

probability distributions of workers' abilities, ilk, and the exogenous noise terms, ?k 

Since only rank-order information about outputs is available, it is sufficient to focus on 
the distributions of the difference in abilities, Aiq -i - qj, and the difference in noise 
terms in each period, AEr'=E-- . Define Ax'=x-x'=An +At'. 

The workers are assumed to be ex ante indistinguishable, so the prior distribution 
of Aij is symmetric about 0. For simplicity, we assume that Aij can take on only two 

(equally likely) values, N and -N. We refer to the state Arq = N (Arq = -N) as the state 
in which i (j) is the better worker. With a symmetric two-point support for A77, the 

organization's objective of maximizing the expectation of output after the promotion 
decision is equivalent to maximizing the probability of promoting the better worker. The 

extension to an arbitrary (symmetric) distribution for AX is briefly discussed in Section 4. 

The (differences in) exogenous shocks AE' are distributed independently across time 

and, for each t, symmetrically about 0. (We place no restrictions on the correlation, for 
a given t, between r' and E5.) Let AE' have a density, denoted g'(-), that is continuous 

and strictly positive everywhere on the interior of its support [-E', E'], where E' may 
be infinite. We assume that E'> N, for all t. (If, for some t, E' < N, the organization's 

6. Under our assumptions below, the event x' + c' = x' will have zero probability. 
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22 REVIEW OF ECONOMIC STUDIES 

decision problem would be trivial: in this period the effect of the noise would be so small 

that an unbiased rank-order observation would conclusively reveal which worker was 

more able.) We define H'(a) P(AE' - a) =E g'(z)dz. 
Finally, we assume that a monotone likelihood-ratio condition (MLRC) holds for 

inferences about Aiq from realized values of Ax'. Formally, we assume that 

P(A,q = N lAx'= -c) is decreasing in c, 

which is equivalent to the condition that the likelihood ratio for the observation Ax' = -- c 
in the two states Aq = N and Aiq =-N is a decreasing function of c: 

P(Ax'= -c Aq= N) g'(-c -N) 
. 

P(Ax'=-cA|l =-N) g'(-c+N) i d 

Condition (1) says that, in the hypothetical case in which the decision-maker observed 
that i and j "tied" in period t with bias c in i's favour (x'+ c = x,), this news would be 
worse news about i's ability, the larger was c. Condition (1) implies that 

H'-c- N) 
H,(+-c N) is decreasing in c. (2) 

Condition (2) says that the news that i won in period t with bias c in i's favour becomes 

worse news about i as c increases. 

3.2. Interpretations of bias 

The choice of the bias c' can be interpreted in two ways, depending upon the explanation 

for why the decision-maker receives only ordinal information. 
The first interpretation applies when the observer learns the actual values of outputs 

but can transmit ordinal information to the decision-maker far more cheaply than cardinal 

information.7 The decision-maker can implement a level of bias c' by instructing the 

observer to report that j is the winner in period t if and only if j's output exceeds i's by 
at least c'. 

The second interpretation applies when ordinal information about outputs is far less 

costly for the observer to gather than cardinal information.8 In this setting, the decision- 

maker can control the level of bias by providing different inputs to the two workers' 

production functions or by differentiating the production functions themselves. The 

observer continues to observe and report only whether i's output is larger or smaller than 

j's, but these output values are perturbations on the x's above, which reflect only ability 
and exogenous noise: the observer compares x'+ v' with x + v', where v' and v', are 

chosen by the decision-maker so that v' - v', equals the desired c'. 

Asymmetric treatment of workers, producing bias of the second type, takes numerous 

forms in practice. Workers may be assigned different tasks, placed in different environ- 

ments, given different amounts of training or supervision, or supplied with different 

amounts of capital. For example, assistant professors being evaluated on their research 

can be burdened with different levels of administrative responsibility, junior lawyers can 

be given different amounts of guidance, and secretaries can be assigned equipment of 

different vintages. Furthermore, asymmetries often arise because jobs are not identical, 

7. The costs of communication in organizations are stressed by Arrow (1974) and Stiglitz (1987). 
8. An observer may, for example, be responsible for monitoring several pairs of workers and, given the 

overall limit on his attention, it may not be possible for him to acquire finer information about each pair. 
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and it would be difficult or costly to make them so (or to correct for the differences, given 
only coarse performance evaluations). For example, the needs of clients of a service firm 
may differ, but having employees split their time between different clients may incur high 
set-up costs. Or collaboration with senior colleagues may be essential and the personalities 
or talents of these individuals may differ, but frequent rotation of employees may be 
costly to organize.9 

As these examples indicate, at least three complicating factors are ignored in the 
simple formalization of bias above. First, the decision-maker may not have complete 
control over the extent to which he differentiates the workers' production processes; the 
level of bias may, for example, be a random variable, with adjustable mean, and its 
realized value may not be observable. Second, adjusting bias by providing training or 
capital, or by having workers share different tasks, can be costly. Third, the levels of 
training and capital may interact multiplicatively, rather than additively, with ability (the 
marginal product of training or capital may be higher for a high-ability than for a 
low-ability worker), so the allocation of these resources between workers may affect total 
output even before the promotion decision. However, none of these factors would 
fundamentally alter the role of bias as a means of changing the decision-maker's coarse 
information partition on workers' outputs. The insights derived below into how the use 
of bias improves the promotion decision would remain valid even if we relaxed the 
assumptions that the level of c' is deterministic, is costlessly adjustable, and interacts 
additively with ability. 

More generally, when asymmetries in the treatment of workers arise from several 
sources and serve several functions, our analysis can be interpreted as showing the benefits 
of such asymmetries with respect to one particular problem faced by the organization-the 
selection of workers for promotion. 

These benefits suggest an explanation for the finding by the organizational sociologists 
Baron and Bielby (1986) of a tendency of organizations to "fragment" work to a significant 
extent through the proliferation of job titles, "making finer distinctions among work roles 
than are required simply on the basis of job content". These small differences in job 
titles may be the organization's way of formally identifying the use of bias. This hypothesis 
is consistent with Baron and Bielby's finding that the proliferation of job titles is more 
extreme in firms in which workers' skills are highly firm-specific. The more firm-specific 
are the skills workers develop, i) the easier it is for a firm to introduce bias without driving 
away those whom the bias disadvantages and ii) the greater the firm's initial uncertainty 
about relative abilities, so the more heavily it will weight the learning motive in the design 
of job structures and promotion policies. 

4. OPTIMAL BIAS IN THE FINAL PERIOD: FAVOUR THE LEADER 

This section analyses the decision-maker's optimal choice of bias in the final period, T, 
before the promotion decision. 

Suppose, to begin, that T = 2, that the distributions of the noise terms are identical 
in the two periods (g1(-)=g2( )), and that no bias is used in the first period (c'= 0). 

Then by analogy with the spinner example in Section 2, if we use no bias in the second 

9. Bias could also arise from different actions taken by the workers themselves, whether these actions 
were subject to the control of the firm or privately chosen by the workers. In Rosen's (1986) analysis of 
incentives in elimination tournaments, for example, in pairings involving heterogeneous contestants, the 
individual (likely to be) of higher ability exerts more effort than his opponent. Such differences in efforts would 
affect the information about abilities that was conveyed by rank-order observations on outputs. 
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period, the rank-order report from the second period has no value for the promotion 
decision: it is an optimal strategy to ignore the second-round result and promote the 
winner of the first round. Similarly, if we introduce bias in the second period in favour 
of the loser of the first round (say j), then the optimal promotion rule selects i, whatever 
the second-round result: even if j wins the second round, condition (2) implies that the 
posterior probability that i is the better worker exceeds one-half. Hence, in this case, 
too, the information from the second round has no value. In contrast, with bias in the 
second round in favour of the first-round winner, i, the unique optimal promotion rule 
selects the winner of the second round: if j wins the second round, (2) implies that j is 
more likely to be better. In this case, as long as j has positive probability of winning the 
second round, the expected value of the second-round report is strictly positive.'0 Thus, 
with identical distributions of exogenous noise in the two periods, the organization can 
benefit by changing the partition on second-period output pairs to increase the likelihood 
that the first-period winner is declared the second-period winner as well. 

We now generalize this conclusion. We consider the optimal choice of bias in period 
T, given an arbitrary history RT-1 of biases and rank-order observations in periods 
1, .. ., T- 1. Define the "leader" in period T as the worker the decision-maker would 
promote if forced to choose at the beginning of period T, and let aT ! 2 be the posterior 
probability, given the history RT-1, that the period-T leader, say i, is better. With CT 

freely variable, we can solve for the optimal CT by assuming that the decision-maker uses 
the strategy of promoting the winner of round T; even the strategy of promoting the 
period-T leader can be expressed in this form by setting an infinite period-T bias in 
favour of the leader. The probability QT(CT) that the more able worker is promoted, 
when bias CT is used in favour of the leader, i, is 

Q T(cT = P(i wins round T with bias c TAq = N, R TI)P(pXr = NI R Ti) 

+P(j wins round T against bias C TIA = -N, RT-')P(zAX =-NIRT-') 

=H T(_cT - N)a T + HT(CT - N)(1 - aT). 

Taking the hypothesis that the leader is more able as the null hypothesis, maximizing 
QT(CT) is equivalent to minimizing the expected total cost of Type I and Type 11 errors 
(which under our assumptions are equally costly). 

Since gT(_) is assumed continuous on (-ET, ET), QT(CT) is differentiable for 
cT E (-(ET - N), ET - N). For CT in this range, the first-order condition can be 

rearranged to 

gT(_CT-N) 1-a 
T 

gT(_CT + N) aT 

The left-hand side, the likelihood ratio for the observation AxT = CT I equals 1 at CT = 0, 
is continuous for CT E -(ET- N), ET - N), and by the MLRC (condition (1)) is 

decreasing in CT . Hence, as long as T > r, an optimal CT must be strictly positive. If 

the MLRC is strict, the optimal CT is unique and strictly increasing in a T. (If uniqueness 
does not hold, the optimal cT values are an interval.) 

10. The decision-maker's payoff as a function of cL fails to be concave at c2 = 0. This is not strictly an 
example of the Radner-Stiglitz (1984) nonconcavity in the value of information, however, since c2 is not a 
measure of the informativeness of the second contest: the payoff function is typically decreasing for c2 sufficiently 
large. 
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When we allow for the possibility of a corner solution (CT = ET - N), an optimal 
CT given the MLRC, is characterized by" 

gT( -a -N):~ 1-aT C Tg9T(-a -N) <1-a T 
C 

gT( a+N)'- aT Va<cT and aT( ) ' Va> cT (3) 

To interpret the optimal level of bias, imagine that in the final period the decision- 
maker could base his promotion decision on the actual value of Ax. An optimal 
promotion strategy, which minimized the expected total cost of Type I and Type II errors, 
would, by the MLRC, be described by a cutoff value -d T: if AXT> -d T, select i and if 
AXT < -d T, selectj. 12 As long as a T > ', any optimal cutoff -d T would be strictly negative: 
even if i lost the final round, the decision-maker would still choose to promote i if the 
margin of j's victory were sufficiently small.'3 When the decision-maker receives only 
rank-order information in the final period but can adjust the bias, a small bias in favour 
of i must improve the promotion choice relative to zero bias, because it causes i, rather 
than j, to be promoted for small, negative values of x'. Setting CT = dT is optimal, 
because it ensures that i is promoted if AxT> _dT and j if AxT< -d', so the decision- 
maker makes the same decision as if he could observe AxT directly. 

Thus, the optimal final-period bias in favour of the leader (when unique) is the 
smallest margin of victory by the other worker which, if actually observed by the 
decision-maker in period T, would outweigh the leader's superior record and induce the 
decision-maker to promote the other worker. The greater the weight of the evidence from 
periods 1, . .., T- 1 in favour of the leader, the larger this critical margin of victory and 
therefore the larger the optimal final-period bias in the leader's favour. 

This discussion is summarized in: 

Proposition 1. (a) By using bias optimally in the final contest, the decision-maker can 
make the same promotion decision, for each realization of AXT, as if cardinal information 
on lX were available. 

(b) Any optimal value of final-period bias favours the final-period leader by a strictly 
positive amount. 

(c) For cT in the range where QT(cT) is differentiable, a necessary and sufficient 
condition for optimality is: If a tie occurred and were observed by the decision-maker 

(x,+ c' = xT), he would be indifferent as to which worker to promote. 
(d) When the optimal final-period bias is unique and characterized by (c), it is strictly 

increasing in a T, the probabiity that the final-period leader is more able. 

It is easy to show that (a), (b), and (c) (as well as Proposition 2) remain valid if the 
difference in workers' abilities, A-q. has an arbitrary, rather than a two-point, (symmetric) 
distribution: in this more general setting, though, the maximization of expected post- 
promotion output does not reduce to the maximization of the probability of promoting 
the better worker, so the indifference condition in (c) above must be interpreted in terms 
of expected output. 

11. We would need to work with (3) even for cTE (-(ET- N), ET- N) if we relaxed the assumption 
of continuity of gT(_.* In this case, the optimal bias when a T > Iwould never be negative, but could be 0, if 
the likelihood ratio were discontinuous at cT =0 and T were sufficiently close to 2. 

12. If the MLRC were strict, the optimal _dT would be unique. If uniqueness did not obtain, the set of 
optimal cutoff values would be an interval. 

13. Strict negativity of -dT follows from the continuity of the likelihood ratio, gT(AXT - N)/gT(AxT+ 

N), at AxT=O. 
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Asymmetric treatment of competitors according to recent performance is a common 

feature of sports contests. In tennis tournaments, for example, players with strong records 

are favoured by being seeded, which prevents them from competing in early rounds 

against others with strong records. Furthermore, among the seeds, those seeded higher 

are more advantaged, because they are further in the draw from other highly seeded 

players. In motor races, more favourable starting positions are allocated to drivers who 

have performed well in preliminary heats. Organizers of sports contests may have 

numerous objectives in addition to identifying the ablest contestants (either in the short 

run or in the long run). Nevertheless, the analysis in this section suggests that, as long 

as the advantages given to recent strong performers are not too large, one of their effects 

is to enhance the likelihood that the current contest is won by the competitor of the 

highest ability. 

5. CHARACTERIZATION OF OPTIMAL BIAS IN EARLY PERIODS 

Section 4 established that an optimal learning strategy for the organization employs bias 

in the final period that increases the leader's likelihood of promotion. The optimal bias 

ensures that the organization makes the same decision, given only ordinal information 

on AxT, as if it had access to cardinal information on AxT. This section contrasts the 

considerations governing the use of bias in early periods with those in the final period. 

By deriving a necessary condition for optimality (Section 5.1), we show why the bias in 

an arbitrary period t < T will typically differ from the level that would be chosen if t 

were the final period. We also explain why the sequentially optimal use of bias cannot 

typically render ordinal information as valuable to the decision-maker as cardinal informa- 

tion on Ax' in all periods t. In Section 5.2, however, we characterize the stochastic 

environments in which optimally biased rank-order information is a sufficient statistic 

for cardinal information, and we show that in these environments, it is optimal to compute 

the bias in each period as if that period were the last. 

5.1. A necessary condition for optimal bias in period t 

In an arbitrary period t < T, denote the history of biases and rank-order observations by 

R''. Given R'-', define the leader in period t as the worker the decision-maker would 

promote if forced to choose at the beginning of period t, and let a' denote the probability 

that the period-t leader is better. The decision-maker's choice of c' affects not only the 

manner in which Ax' values are partitioned into the sets for which i and j are declared 

the winner of round t but also the future beliefs for each of the two possible period-t 
observations, hence the choices of bias in future periods r > t. This latter effect is absent 

in period T, when the choice of CT affects only which worker is declared the winner and 

thereby promoted. 
The following proposition uses dynamic programming to extend the optimality 

condition for final-round bias to an arbitrary period t < T. 

Proposition 2. Consider an arbitrary t < T and assume that for r = t + 1, . . ., T, the 

bias ct will be chosen optimally, given the history R '-. For c' in the range where the objective 

function is differentiable, a necessary condition for optimality is: If a tie occurred and were 

observed by the decision-maker (x' + c' = x',), he would be indifferent as to which worker to 
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declare the winner in period t, given how the values of cT, r = t + 1,..., T, would depend on 
c' and on who was declared the period-t winner.14 

Proof. See Appendix. 11 

The necessary condition for optimality of c' in an early period t < T is not identical 
to the final-period condition: the requirement in Proposition 2 that (if the decision-maker 
were to observe that l\x'= -c') he be indifferent as to whom to declare the winner of 
round t is not equivalent to the requirement in (c) of Proposition 1 that, after period t, 
he assign equal likelihood to each of the two workers being better. These two requirements 
would be equivalent in the special case in which the optimal future treatment of the 
round-t winner was independent of whether he was i or j. In this case, the optimal c' 
would maximize the probability that the round-t winner was better, so c' would be chosen 
as if the promotion were to occur immediately after round t (see Section 5.2). In general, 
however, the decision-maker will hold different beliefs in period t+ 1 about the period-t 
winner, depending upon whether he was i or j, and with different beliefs, the decision- 
maker will in general prefer to set different biases in periods t+ 1,..., T (see Section 
6.1). Therefore, the optimal level of bias in period t < T will typically differ from the 
level that would be chosen by a myopic strategy, i.e. one which set the bias as if t were 
the final period. 

To gain further insight into Proposition 2, recall that we identified the optimal bias 
in the final period by imagining that the decision-maker could base his promotionl decision 
on the actual value of AxT. In this case, for some d T, he would wish to promote i (j) if 
AXTT> -dT(AXT <-dT). Setting a bias CT = d T was optimal, because it implemented 
the optimal cardinal-information strategy. In an arbitrary period t < T, the analogous 
procedure is to imagine that the decision-maker could base the choice of the round-t 
winner on the actual value of Ax' but that his future actions could depend only on the 
period-t bias and rank-order result (as well as on the history R'`). Then by the MLRC, 
his preferences could again be described by a cutoff value, now denoted -d'(c'): he 
would wish to declare i (j) the period-t winner if Ax' > -d'(c')(Ax' < -d '(c')). Crucially, 
an optimal cutoff value -d'(c') would now depend not only on R'-1 but also on c' itself, 
since c' would affect the ultimate promotion decision through its influence on future 
beliefs and therefore on future optimal choices of bias.'5 An optimal value of c' must 
satisfy the fixed-point property c' = d'(c'). That is, in determining the winner of round 
t, c' must partition the values of Ax' exactly as the decision-maker would wish to partition 
them, if the choice of the period-t winner, but not future choices, could be based on 
cardinal information about Ax'. 

To confirm that c' = d'(c') is necessary for optimality, note that if future biases are 
set optimally given c', then by the envelope theorem, the first-order effect on the decision- 
maker's objective function of a small change in c' can be identified by treating d' as 
unchanged. Therefore, if c' = d'(c'), a small change in c' has no first-order effect, whereas 
if c' # d'(c'), then a first-order improvement results from a small adjustment of c' in the 
direction of d'(c'). 

The first-order condition for c', stated in words in Proposition 2 and represented by 
c'= d'(c'), is necessary, but not sufficient, for optimality: because of the dependence of 

14. If differentiability fails, an optimal c' must be such that, if Ax'> -c' (Ax' < -c'), the decision-maker 
would be willing to declare i (j) the winner. 

15. In this discussion, we assume for simplicity that for each c', the optimal d' is unique (as is true if 
the MLRC is strict). 
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the decision-maker's preferred cutoff value, d'(c'), on the value of c' itself, there may 

be multiple, isolated solutions to c'=d'(c'). A solution is a local maximizer (local 

minimizer) if a small change in c' causes a smaller (larger) change in d'(c'). To check 

this, note that from the new value of c', a first-order improvement can be achieved in the 

former (latter) case by moving c' towards (away from) its original value. In the final 
period, the preferred cutoff d Tdoes not depend on CT, so the first-order condition CT = d T 

(stated in Proposition 1) is both necessary and sufficient for optimality. 
In an arbitrary period t < T, the ability to adjust the bias freely allows the decision- 

maker to overcome the limitation to ordinal information on Ax' only with respect to the 

determination of the period-t winner, not with respect to future choices about biases and 

promotion. If future choices of bias would in fact assume more than two values in some 

period if they could vary with the actual value of Ax', then optimally biased rank-order 
information in period t is not a sufficient statistic for, and so is strictly less valuable than, 

cardinal information on Ax'. Proposition 4 in the next subsection characterizes such 

situations. In these cases, the decision-maker would benefit from the ability to choose a 

partition of Ax' values into n, rather than just 2, intervals.'6 Proposition 2 generalizes to 
this case as follows: for a boundary between two intervals to be optimal, it must be that 

if the decision-maker actually observed a realization of Ax' on the boundary, he would 

be indifferent as to which of the adjacent intervals to classify the outcome in, given how 

the partitions chosen in future periods would depend on how the current value of Ax' 

was classified.'7 
When biases can be freely and sequentially adjusted, the value of a given contest 

outcome and its effect on beliefs depend on the history of biases and rank-order results, 
because this history influences the choice of bias in the current contest. One implication 
is that if the tasks performed by the workers vary from contest to contest, so contests 

involve different distributions of exogenous noise, then the quality of the optimal promo- 
tion decision may depend on the order in which the tasks are performed. Corollary 1 of 
Proposition 4 in the next subsection illustrates this possibility. (In contrast, if cardinal 

information on Ax' is available in all periods, or if only unbiased rank-order information 

can be obtained, then the quality of the optimal decision will be independent of the order 

of the observations.) 
A second implication of the dependence noted above is that, unlike the case where 

bias is unavailable, the decision-maker's degree of confidence in the worker he ultimately 

promotes is not necessarily higher if this worker was the winner of a given early contest 

than if he was the loser. For example, if T = 2 and bias is used optimally, a loss in the 

first contest followed by a win in the second may be a more favourable signal about 

ability than wins in both contests: those who overcome the obstacles placed in the way 
of slow starters may prove themselves more effectively than those who succeed at both 

stages. This possibility, too, is illustrated in Section 5.2. 

5.2. When are optimally biased contests as valuable as cardinal information? 

This subsection analyses the optimal use of bias in the special case in which in each 

period, AE' is uniformly distributed on [-E', E'].'8 In this case, the model takes the 

16. The MLRC ensures that even if the decision-maker were allowed to choose arbitrary n-element 

partitions of Ax' values, the optimal partitions would consist of intervals. 
17. A similar interpretation can be given to the optimality condition derived by Dow (1990) for the 

partition representing limited memory. 
18. This case arises when the shocks -' and rt to workers' outputs are uniformly distributed and prefectly 

negatively-correlated. 
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same mathematical form as the spinner example in Section 2. We show that for this case, 
it is optimal, in any period t, for any history R'-', to compute the bias as if period t were 

the final period, and we demonstrate that T periods of optimally biased rank-order 

observations are as valuable to the decision-maker as cardinal information on l\x' in 

every period. We also show that the latter result holds if and only if the noise terms A\' 

are uniformly distributed in all periods after the first. 
For the uniform distribution, the likelihood ratio for the observation l\x' in the two 

states Aq = N and Aq = -N, g'(zAx' - N)/g'(Ax' + N), assumes only three values as l\x' 

varies (see Figure 1). For l\x' E I2[-(E' - N), E' - N], the likelihood ratio equals 1, 

so observing lx' E I would leave beliefs about relative abilities unchanged. For lx' E V 

[-(E' + N), -(E' - N)), the likelihood ratio equals 0: a value of l\x' E IV cannot arise if 

A,q = N, so such an observation would reveal conclusively that Aq = -N. Correspond- 

ingly, for A\x' c I =(E' - N, E'+ N], the likelihood ratio equals oo: observing Ax' t 

would reveal conclusively that Aq = N. 

g'(-c'- N) 

g'(a) g'(-c'+ N) 

i L -~ ___ 

__ ___ _ 

Et-NC 

FIGURE 1 

The uniform example 

It follows, then, from condition (3) that in the final period, T, the bias should be set 

according to: 

* If a T E (I, 1), favour the leader in period T by E T - N. 
* If aT = 1, favour the leader in period T by any amount greater than or equal to 

ET_N. 
* If aT =, use any bias in the interval [-(ET-N), ET-N]. 

Thus a bias of ET - N in favour of the leader is optimal, whatever the decision-maker's 

degree of confidence in the leader. Note that this level of bias makes the leader certain 

to win if he is in fact the more able worker. 

Proposition 3 Assume that for each t = 1, . . ., T, the exogenous noise term A ' is 

uniformly distributed on [-E', E']. 
(a) By using bias optimally, the decision-maker can achieve the same probability of 

promoting the better worker, for all realizations of (Ax',.. ., Ax T), as if cardinal information 

on A\x' were available in all periods. 
(b) It is an optimal strategy to promote the winner of round T, to set the bias in period 

t, t 2, to favour the leader by E' - N, and to choose any first-period bias in the interval 

[-(E N), E1 _ N]. With this strategy, the leader in period t is the winner of round t - 1, 

and for all t _ 2 and all histories R'- 1, a' > . 
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(c) Any strategy which sets the bias myopically, i.e. as if period t were the final period, 
is optimal. 

(d) Suppose that when the workers compete at task k, k = 1,..., T, the support of the 
exogenous noise is [-Ek, Ek], regardless of when in the T periods this task is actually 
performed. Then the decision-maker's probability of promoting the better worker after T 
periods, when bias is used optimally, is independent of the order in which the tasks are 
performed. 

Proof. (a) and (b) Since the likelihood ratio for the observation l\x' equals 0 if 
l\x' E IV and equals oo if l\x' E I3, a necessary condition for an optimal promotion policy 
when cardinal information on l\x' is available in all periods is 

(A) j is promoted if for some t, Ax' E I', and i is promoted if for some t, /x' E I?. 
Since the likelihood ratio equals 1 if ?\x't (I' u I3), condition (A) is also sufficient for 
optimality, given that the decision-maker has symmetric prior beliefs about the workers. 

The strategy described in (b) implements a promotion policy satisfying condition 
(A): if, for some t, A\x' E I' (A\x' E I?), j (i) is certain to be declared the winner of round 
t and of all subsequent rounds, and is therefore certain to be promoted. Since the 
decision-maker cannot do strictly better by using biased rank-order observations than by 
optimally using cardinal information, the rules in (b) are an optimal strategy. This proves 

(a) and (b). 
(c) Inspection of the optimal rules for final-period bias shows that any strategy 

satisfying them in each period implements a promotion policy satisfying condition (A). 
(d) Since Part (a) holds whatever the order of the tasks and since the probability 

of promoting the better worker is independent of the order when cardinal information 
is used optimally, this probability is also independent of the order when bias is used 
optimally. 11 

The analogue, in the spinner example of Section 2, of receiving cardinal information 
on l\x' is learning the angular position of the needle (relative to a specified origin), as 
well as the colour on which it landed. Three regions can be identified on the spinner: 
AR which is known to be red; AG, which is known to be green; and B, which is either 
red or green, depending on the true state. Because all angular positions are equally likely, 
whatever the state, learning that the needle landed in AR or AG is uninformative. However, 
learning that it landed in B and on what colour is conclusive. By Proposition 3, the 
optimal strategy for biasing the test spins when only the colour is reported is to convert 
all of AG (AR) to red (green) when state R (state G) is believed more likely; this strategy 
does as well as when both the angular position and the colour are reported. 

For the uniform example, under an optimal strategy in which the bias is computed 
myopically, the outcome of the first contest establishes an initial leader and, for t -2, 
the bias partitions the values of l\x' into those which, if actually observed by the 
decision-maker, would leave the identity of the leader unchanged and those which would 
conclusively establish that the leader was less able. The bias does not allow the decision- 
maker to distinguish between those values of l\x', for t _ 2, which reveal nothing about 
relative abilities and those which conclusively establish that the leader is more able. 
However, this additional information would never induce the decision-maker to alter his 
promotion choice and so is of no value for his decision. 

With bias set optimally, the leader in any period after the first is certain to win if he 
is the more able worker, so if the leader loses, he is conclusively identified as less able.'9 

19. If the leader loses, there is no informational benefit from waiting until after period T to make the 
promotion. 
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Thus, the identity of the leader can change at most once during the T periods, and the 

only type of error the organization ever makes is to promote the less able worker when 
he wins the first and every subsequent contest (Type II error). The uniform example 

demonstrates that overcoming the bias which disadvantages slow starters can provide 
more convincing evidence of high ability than early and continued success. 

In principle, the organization could undertake costly investments, in monitoring or 
communication technology, to refine the information available to the decision-maker 
about the difference in outputs, I\x'. The following proposition generalizes (a) of Proposi- 
tion 3 to characterize the environments in which such refinements would not improve 
the quality of the promotion decision. 

Proposition 4. If and only if the noise term AE' is uniformly distributed in each period 
after the first, the decision-maker can, by using bias optimally, achieve the same probability 

of promoting the better worker, for all realizations of (x', . . . , AxT), as if cardinal informa- 
tion on Ax' were available in all periods. 

Proof See Appendix. 11 

The key to the proposition is the fact that the uniform distribution is the only 

distribution for which every value of l\x' either reveals conclusively which worker is 

better or reveals nothing about relative abilities. 
Proposition 4 provides a simple example of when a decision-maker who uses bias 

optimally can influence the quality of his promotion choice by adjusting the order in 
which the workers perform a given sequence of tasks: 

Corollary 1. If the noise terms are uniformly distributed for all except one task, k, 
then the ex ante probability of promoting the better worker is strictly higher when task k is 

performed first than when it is performed later in the sequence. 

Corollary 2. If the noise term AET is uniformly distributed for all r> t, then for any 
beliefs at the start of period t, it is optimal to set the period-t bias as if t were the final period. 

Proof. See Appendix. 11 

When the noise terms in all future periods are uniformly distributed, the decision- 

maker will in future periods favour the leader by an amount that is independent of his 

degree of confidence. In this case, his objective in the current period reduces to maximizing 
the probability that the better worker wins the current contest (and so becomes next 

period's leader). This is the same objective as he would have if the current round were 

the final one. 
Corollaries 3 and 4 analyse the benefits of improving the information about l\x' in 

a single period, when optimally biased rank-order contests are used in all subsequent 

periods. 

Corollary 3. A refinement in the decision-maker's information partition on Ax' can 

increase his ex ante probability of promoting the better worker only if, in some period r, r > t, 
the noise term AET is not uniformly distributed. 
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Proof See Appendix. 11 

The converse of Corollary 3 is not valid.2" However, a partial converse is given by: 

Corollary 4. Suppose that T=2 and that the bias in the second contest is adjusted 
optimally given the information from period 1. If A2 is not uniformly distributed, then the 
decision-maker's ex ante probability of promoting the better worker is strictly increased when 
he is allowed to partition the values of Ax' into three intervals of his own choosing, rather 
than just two. 

Proof. See Appendix. 

6. FEATURES OF BIAS IN EARLY PERIODS 

Section 4 showed that the optimal bias in the final period makes ordinal information as 
valuable as cardinal information on AxT and favours the leader. Section 5.2 proved that 
when T periods of biased rank-order observations are as valuable as T periods of cardinal 
information, then the bias should favour the leader in every contest after the first, and 
in the first, symmetric treatment of ex ante identical workers is optimal. We now 
demonstrate how the role of bias in early periods can differ when optimally biased 
rank-order information is not a sufficient statistic for cardinal information. 

6.1. Favouring the early loser may be beneficial 

Let Ar' be distributed in each period as the difference of two independent and identically 
distributed exponential random variables, each having parameter A' (see Figure 2): 

- exp(-A'a) if a_O 

g'(a) 

2 

H 
2exp(A'a) if a<O 

H' (a) ={l_-exp (-A'a ) if a <_: 0. 
1a- l-exp (A'a) if a<O. 

We show for a three-period problem that introducing a small bias in the second period 
in favour of the first-period loser may improve the promotion decision. Hence, in early 
periods, the organization may benefit (locally) from qualitatively different behaviour 
(rewarding early failure) than is optimal in the final period and, in the uniform case, 
optimal in every period (rewarding cumulative past success). 

Lemma 1. Assume that T= 3, A' = A2, and i won the first round. Let cl = c2=0. If 
j is declared the winner of the second round, the optimal value of C3, denoted CWL, is 0. If 

j is declared the winner of the second round, the optimal value of c3, denoted c~,w, is infinite 
(so i is promoted with certainty), as long as A3 is not too much larger than A ' (as long as 
A3 <(1/N) ln (2 exp (A'N)- 1)-A3(A'), where X3(A')> A'). 

20. To construct a counterexample, let the noise terms be uniformly distributed in all periods except r, 
for some r> t. If AE' has the exponential distribution of Section 6.1 and if biased contests are used in all 
periods other than t, it can be optimal to ignore the information from period r, whatever the history of 
observations. Since with period r ignored, the situation is equivalent to one in which the noise term is uniformly 
distributed in all periods after t, Corollary 3 implies that there is no benefit to refining the partition on Ax'. 
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FIGURE 2 

The exponential example 

Proof. See Appendix. 11 

Lemma 1 shows that the optimal treatment of the winner of the second contest is 
very sensitive to whether or not this worker also won the first contest. 

Lemma 2. Under the assumptions of Lemma 1, if A' < A3 < A3(A), the organization 
benefitsfrom a small reduction in C2, favouring thefirst-period loserj, startingfrom cl = c2 = 0. 
If A3< A', the organization benefits from a small increase in c2, favouring thf first-period 
winner i, starting from c' = c2= 0. 

Proof See Appendix. 

Since c'=0, c3w =??, and CWL =0, Lemma 2 shows that the beneficial adjustment 
to c2 increases the likelihood that the promotion is awarded to the winner of the unbiased 
contest in whichever of periods 1 and 3 is less noisy. Note that when a small bias in 
favour of the first-period loser is beneficial, this worker will not become the leader in 
period 3 even if he wins the second round; nevertheless, direct calculation shows that 
the bias increases his overall probability of promotion as well as his probability of winning 
the second round. 

The possibility that the organization may benefit (locally) from disadvantaging the 
early leader arises because the size of the third-period bias is sensitive to the past 
performance of the second-round winner. If the optimal values of CWL and ciww satisfied 

3 3 i 6 CwWL= cww, as they would if /X? were uniformly distributed, the decision-maker would 

prefer to declare as winner of the second round whichever worker was more likely to be 
better, so he would set the second-period bias as if T= 2: he would favour the first-period 
winner. The very large difference in this example between the magnitudes of C3L = 0 and 
c w = ?? is the reason why the decision-maker may prefer to disadvantage, rather than 
favour, the early leader. 

The contrast between this example and the uniform case of Section 5.2 suggests that 
the less sensitive is the optimal future treatment of the winner of a given early contest to 
his previous history (when no bias is used in that contest), the more likely that the 
organization gains by introducing bias in that contest in favour of the current leader. 
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The desirability of favouring the leader in early contests would also be increased if 
the decision-maker faced, in addition to the "major" promotion decision after period T, 
"minor" job assignment decisions during the observation phase. These "minor" decisions 
would increase the importance, at each stage, of identifying the better worker, thereby 
making the decision-maker's problem at each stage more closely resemble his problem 
in the final period. 

6.2. Unequal treatment of equals may be optimal in an early period 

In the final period, a decision-maker with symmetric beliefs (a T= 1) will never strictly 
prefer to treat the workers asymmetrically rather than symmetrically (see condition (3)). 
Moreover, in an early period t < T, if the noise terms in all future periods are uniformly 
distributed, then Corollary 2 implies that if a' =, c' =0 is optimal. We now show that 
the quality of the promotion decision will in some environments be increased by introduc- 
ing bias in period t< T, even if at'='. This possibility arises because in general (unlike 
the uniform case), optimal levels of bias in the future are sensitive to the current level. 
An interesting implication is that the organization may benefit from treating workers 
asymmetrically at the start of their careers, before any productive differences have been 
revealed. While the choice of individual to favour in the initial period could be made 
randomly, there would be no loss in efficiency from assigning the bias according to 
economically irrelevant demographic characteristics. 

We analyse below the choice of first-period bias, but the results carry over to any 

period t when a= 2 

If T= 1, it is immediate from condition (3) that c' =0 is optimal. In terms of the 
objective function Q'(c'), which is the ex ante probability that the worker who wins the 
single contest is the more able, Q"(0) = 0. If the likelihood ratio g'(-c' - N)/g'(-c' + N) 
is strictly decreasing at c' = 0, then c' = 0 is the unique optimum and Q"'(0) <0. If the 
likelihood ratio is constant at 1 for c' E [-b', b'], then any c' in this interval is optimal 
and Q "'(0)=0. 

For any T ?2, the symmetric positions of the workers make the objective function 
symmetric about c' =0, so c' =0 must be a stationary point. Whether c' =0 is a local 
minimizer or a local maximizer depends on the second-order effects of changes in c'. 

Consider the probability, a, assessed after the first period, that the winner of the 
first contest is better.2' The larger is a, the more informative (ex post) was the first-round 
result. If c' = 0, the realized value of a is the same whoever wins the first round, whereas 
if c' >0 (so i is favoured), the MLRC implies that a is larger if j wins than if i wins. 
Before the first contest, a is a random variable, whose mean and variance depend on cl. 
Increasing 1c1l from 0 (weakly) reduces the mean of a, since the mean of a is simply 
Q'(c'), and Q"'(0)-' 0. But raising Ic'l also increases the variability of a, and this change, 
ceteris paribus, is beneficial: the probability (labeled V(a)) that the better worker is 
ultimately promoted, assessed at the beginning of period 2 and given that the biases in 
periods 2,.. ., T are chosen optimally as functions of a, is a convex function of a. V(a) 
is strictly convex somewhere as long as the optimal levels of c2,..., CT, given previous 
rank-order outcomes, are not independent of a. (V(a) is linear if AE' is uniformly 
distributed for t _ 2.) There are thus two opposing second-order effects of introducing 
bias in the first period. The negative effect is to reduce the mean level of informativeness 
of the first contest; this would be the only effect if the first period were also the last. The 

21. The time superscript 2 is omitted for convenience. 
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positive effect is to make the informativeness of the first contest variable, since the 
decision-maker's flexibility to adjust future biases according to first-period informativeness 
induces a preference for such variability. 

To compare these positive and negative effects, define the function ac(z) as the 
probability that the winner of the first round is better, given that the bias "advantaged" 
him by z. (With first-period bias c1 in favour of i, a = a (c1) if i wins and a = a (- c 1) if 

j wins.) The function a(z) is decreasing, by (2), and is strictly decreasing at z = 0. Also 
define Ai(c1) as the probability that i wins the first round, given that the bias advantages 
i by c'. The probability that, after period T, the decision-maker promotes the more able 
worker is 

QT(c') = A (c') V(a (c')) + (1 - Ai(c')) V(a(-c')). 

Differentiating twice (assuming sufficient differentiability) and evaluating at c =0 gives 

QT"(0) = V'(a(0))(4A'(0)a'(0) + a"(0)) + V"(a(0))(a'(0))2. (4) 

We can express Q'(c1) as 

Q'(c') = Ai(c1)a(c') + (1 - Ai(c'))a(-c'), so Q "'(0) = 4A(0) a'(0) + a "(0). (5) 

Substitution of (5) into (4) shows that 

Proposition 5. c' =0 is a local minimizer of the objective function for a T-period 
problem if and only if 

V"(a(O)) (a(O))2> Q1,,(0). (6) 
V'(a (O)) 

The right-hand side of (6) represents the (second-order) cost of the reduction in the 
mean level of first-period informativeness that accompanies an increase in 1c11 from 0, 
and the left-hand side represents the (second-order) benefit from the increase in the 
variability of informativeness. Note the resemblance of the left-hand side to the Arrow- 
Pratt formula for a risk premium. Introducing bias in the initial contest is more likely 
to benefit the organization the larger the effect this would have on first-period informative- 
ness, the more sensitive future optimal biases are to a change in informativeness, and the 
smaller the cost of bias in a single-period setting. The example in the next subsection is 
one in which biasing the first contest is optimal. 

6.3. Favouring a worker in an early period may reduce his promotion chances 

In the final period, the introduction of bias in favour of the leader always increases (at 
least weakly) the leader's chances of promotion, given an optimal promotion rule for the 
decision-maker. In an early period, however, the introduction of bias may reduce the 
promotion chances of the worker whom it favours in the short run, even when this bias 
improves the organization's decision. To understand this, note that, by the MLRC, 
introducing bias in the first period in i's favour lowers the decision-maker's degree of 
confidence in i whether he wins or loses the first contest. Therefore, if T = 2, Proposition 
1 implies that the optimal second-period bias becomes less favourable to i, whatever the 
first-period outcome. If these adverse shifts in the second-period bias are sufficiently 
severe then, with respect to i's overall chance of promotion, they can outweigh the benefit 
from the increased likelihood of winning the first contest. 
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FIGURE 3 

A two-period example in which introducing a small bias in favour of i in period I benefits the organization 
but reduces i's chances of promotion 

Example 1. We present a two-period example in which the introduction of bias in 

i's favour in the first period benefits the organization but reduces i's promotion chances. 
Let the density functions g'(-) and g2(. have exponential tails but flat centres (see 

Figure 3): 

[k' exp (- A'a) if a > O' 

g'(a) =k' exp (-A 'O') if a E: [ - ', 0'] 

kgexpI(A'a) if a<-'. 

Given (A', 0'), k' is chosen to make g'(-*) a density. We confirm in the Appendix that 
there exists a set of parameters (A', O', A 2, 02) such that the following properties are 
satisfied: (1) a small increase in cl from 0 has no second-order effect (as well as no 

first-order effect) on the mean of a: Q"'(0) =0; (2) V(a) is continuous, strictly convex 

for a < a (0), and linear for a > ax(0); (3) when cl = 0, the optimal second-period bias in 

favour of the first-period winner is any value in [ 02 + N, oo), whereas when cl is increased 

slightly, the optimal bias in i's favour if i wins is slightly less than 02 + N and the optimal 
bias in j's favour if j wins is infinite. Properties (1) and (2) ensure that a small, though 

not infinitesimal, increase in cl from 0 benefits the organization, and property (3) implies 

that such a change reduces i's chance of promotion below 2, the value that results from 

symmetric treatment of the workers when c'l= 0. 

7. THE USE OF BIAS WHEN THERE ARE MORE THAN TWO OPTIONS 

AFTER THE FINAL PERIOD 

The analysis so far has assumed that, after the observation phase, the decision-maker 

faces only the binary choice of which worker to promote. What happens if he can also 

choose how much extra capital or responsibility to give the promoted worker? (In the 

spinner example, what if he can choose how much to bet, as well as on which colour?) 

Introducing a non-binary terminal decision raises the same issues for the choice of 

final-period bias as arise in the original model in choosing bias in early periods, since 

later decisions about levels of bias are not restricted to be binary. 
When the decision-maker is restricted to choosing only which worker to promote, 

he sets the final-period bias to maximize his expected degree of confidenc thheA promoted 
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worker, that is, his expected posterior probability that the promoted worker is better. On 

the other hand, in an early period, the flexibility to adjust future biases according to the 

informativeness of the current result means that he maximizes the expectation of a convex 

function of his degree of confidence in next period's leader. Similarly, when he is allowed 

to vary the treatment of the promoted worker according to his beliefs, he chooses the 

final-period bias to maximize the expectation of a convex function of his degree of 

confidence in this worker. In the latter two cases, the payoff is increasing in both the 
mean and the variability of the resulting degree of confidence. 

Consequently, when the decision-maker is not restricted to a binary decision after the 

observation phase, then even in thefinal period, i) he may strictly prefer to treat symmetrically 
rated workers asymmetrically and ii) when there is a leader, it may be optimal to set the 

bias against him. 

Example 2. Suppose that the decision-maker has three options after period T- 

promote 4 promote j, or promote neither-and that, relative to making no promotion, 
the loss from promoting the less able worker exceeds the gain from promoting the more 
able one. Then there exists a critical value, a E (4, 1), of the degree of confidence after 

period T, a T?, above which the decision-maker will promote the worker with the better 

record and below which he will make no promotion. The objective function in period T 

is thus the expectation, with respect to E T, of W(a T? I), where W is constant for a T+1 <a 

and linearly increasing for a T+ V.> t. 

First let T -1 and suppose that Ae' is uniformly distributed. Assume that cv is 

sufficiently large that, if Ic'l = E'- N and the favoured worker wins, the decision-maker 

strictly prefers to make no promotion. Then the unique optimal magnitude of c' is 

tc'l = E' - N. By Proposition 3, E(a2) (the objective function in the original model when 
T=1) is constant for c' I[-(E'-N),E'-N]. However, by the MLRC, as |c'| is 

increased from 0 to E' - N, the value of a2 if the favoured worker wins decreases, to a 

value less than c (by assumption), while the value of a2 if the disadvantaged worker 

wins increases, to 1. Given the shape of W(.), EW(a2) is non-decreasing in |c'j and 

strictly increasing for |c'| less than but sufficiently close to E' - N. Increasing |c'| beyond 

El - N lowers EW(a2), since the value of a2 if the disadvantaged worker wins remains 
at 1, while the probability of this outcome falls. 

Now let T = 2 and suppose that iE' and Ar2 are uniformly distributed, with E' = E2. 

Fix c' = 0 and suppose that i won the first round. Assume that cy is sufficiently large that, 
if c2 =0 , then whatever the period-2 outcome, the decision-maker strictly prefers to make 

no promotion. Then the optimal strategy is to set c2 to disadvantage the leader, i, and, if 

i wins in period 2, to promote him, whereas if j wins, to promote neither. To prove this, 

observe that, starting from c2 = 0, the objective function can be increased by introducing 
a sufficiently large bias in favour of either i or j: a bias in i's (j's) favour can produce 
a sufficient increase in the degree of confidence in j (i) if j (i) wins to induce the 
decision-maker to promote j (i) (while promoting neither if i (j) wins). Favouring i by 
c2 = E2- N is strictly preferred to any other c2 ' 0: as c2 is increased from 0, EW(a3) is 

constant until the decision-maker first becomes willing to promotej ifj wins, and thereafter 

is increasing until c2 = E)2-N since E(a3) is increasing, W(-) is convex, and the value 

of a 3 if i (j) wins is decreasing (increasing). Exactly as for T= 1, EW(a3) falls as c2 is 

raised above E2- N. However, favouring j by E2- N is strictly preferred to favouring 

i by E2- N: in both cases, the decision-maker will make a promotion if and only if the 

disadvantaged worker wins, and will be certain that worker is better, but this outcome is 

more likely when the disadvantaged worker is the leader, i. Hence, the optimal strategy 
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will use bias against the leader in the final round, but will promote him if he wins and 
no one otherwise. 

APPENDIX 

Proof of Proposition 2. Suppose i is the leader in period t, given the history R'-'. The decision-maker's 

objective function is 

P(promoting the better worker after T periods I RI-I 

= P(ArB = N, i wins round t with bias c', i is promoted IR'-') 

+P(AI -q=-N, i wins round t with bias c', j is promotedIR'I') 

+P(A,q = N, j wins round t against bias c', i is promotedIR''-) 

+ P(lq = -N, j wins round t against bias c', j is promoted I R t 

= a'H'(-c'-N)P(i is promotedIR'`', i wins round t, Aij=N) 

+(I - a')H'(-c'+N)P(j is promotedIR'-', i wins round t, A1-=-N) 

+a 'H'(c'+ N)P(i is promoted I R'-', j wins round t, Aij = N) 

+(I- a')H'(c'-N)P(j is promotedIR'-',j wins round t, Ai'=-N). 

Since the values of cT, T = t+ 1.., T, will be set optimally, given c', the first-order condition with respect 

to c' is: 

a 'g'(-c' - N)P(i is promoted I R''-, i wins round t, Az = N) 

+(I - a')g'(-c' + N)P(j is promoted IR'`, i wins round t, A7= -N) 

=a t'g'(c' + N) P(i is promoted I R`'-, j wins round t, Ai - = N) 

+(I- a')g'(c' - N)P(j is promoted IR'-',j wins round t, A = -N). 

Since 

a 'g'(-c' - N) P(A-q = N I R'-', Ax'= -c') 

(1- a')g'(-c' + N) P(A-q =-N R'-', Ax' =-c') 

the first-order condition can be written as 

P(i is promotedj R'-', i wins round t, A-q = N)P(As = N IR'', Ax' = -c') 

+P(j is promoted I R'-', i wins round t, A7 = -N)P(A& = -N R'-', Ax' = -c') 

=P(i is promotedIR'',j wins round t, A j = N)P(Aq = N R', Ax' =-c') 

+P(j is promoted I R'-',j wins round t, AY7 = -N)P(Aq =-N R'-', Ax' =-c), 

or, equivalently, 

P(better worker is promoted| R''-, i declared winner of round t, Ax' = -c') 

=P(better worker is promotedIR R''i,j declared winner of round t, A'x' =-c'). 

Proof of Proposition 4. Sufficiency: Let AE' be uniformly distributed on [-E', E'] for each t 2. If 

cardinal information on Ax' is available in all periods, necessary and sufficient conditions for an optimal 

promotion policy are (Bi), (1B2), and (1B3): 

(B1) If for some t-' 2, Ax' E I, promote j. 
(B2) If for some ti_ 2, Ax' E I', promote i. 

Let b' be the largest value of c' solving g'(-c'- N)/g'(-c'+ N) = 1, the first-order condition for c' 

when T = I and a' =2. By the symmetry of g'(*), -b' is the smallest solution to this equation. 

(B3) If for all t 2, Ax' E 12, promote i if Ax' > b' and promote j if Ax' < -b'. 
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A promotion policy satisfying (Bi), (B2), and (B3) can be implemented, using only biased rank-order 

observations, by choosing c' E [-b', b'] and for t _ 2 favouring the leader by E' - N, where the leader is the 

winner of the previous round. 
Necessity: Suppose first that the noise terms are uniformly distributed in all periods except r, for some 

r -: 2. The optimal policies for aggregating cardinal observations on Ax' are independent of the order of the 

observations, so they must satisfy (Bi), (B2), and (B3) (with the time superscripts appropriately modified). 

Therefore, if the decision-maker could implement one of these policies using bias, he would have to set 

c'E [-bT, bV] (where bT is defined analogously to b' above). No matter how he sets the biases in other periods, 

there are realizations of (Ax',. .A.,AxT) such that the biased rank-order observations in periods t ? T suggest, 

but do not conclusively establish, that the worker who lost the period-r contest is more able. (When r = 1, this 

possibility never arises when biases are chosen optimally: if the observations in periods t > 2 are not conclusive, 

they suggest that the period-I winner is better.) The decision-maker with access only to biased rank-order 

observations cannot make the same promotion choice, for each such realization of (Ax',..., AxT), as when 

cardinal information on Ax' is available; the optimal choice given cardinal information varies according to 

whether the realizations of Ax' for t ? r are conclusive or uninformative. 

Now suppose that there are at least two periods in which the noise terms have non-uniform distributions. 

We explicitly analyse the case T =2. The argument extends in a straightforward manner to any T> 2. An 

optimal policy given cardinal information on Ax' and Ax2 specifies, for each Ax', a cutoff value of Ax2, above 

(below) which i (j) should be promoted. Given that AE' and AE2 are not uniformly distributed and 

that the likelihood ratios in periods 1 and 2 are continuous for Axl E (-(E' - N), E' - N) and Ax2 E 

(-(E2- N), E2- N), respectively, there must exist an interval of Ax' values on which the cutoff value for Ax2 

is a continuous, strictly-decreasing function of Ax'. However, when only a biased rank-order observation is 

available in the first period, a small change in Ax' either has no effect on the rank-order classification of the 

first-round outcome, and so has no effect on the second-period bias, or it changes the identity of the first-round 

winner, and so causes a discontinuous change in the second-period bias. Therefore, for Ax' values in this 

interval, the promotion choice when only biased rank-order observations are used cannot depend on Ax2 in 

the same way as if cardinal information on Ax' and Ax2 were available. 11 

Proof of Corollary 2. First we establish that the sufficiency part of Proposition 4 holds for a1 >' (as well 

as for a'='). Let i be the period-I leader. In the proof of Proposition 4, (B3) must be replaced by 

(B3') If for all t _ 2, Ax' E I2, promote i if Ax'> -d' and promote j if Ax' < -d', where [d1', d'] is the 

(possibly degenerate) interval of values of cl solving gl(-c'-N)/g'(-cl+N)=(l-a')/al, the first-order 

condition for c' when T = 1 and a'1 > . A promotion policy satisfying (B1), (B2), and (B3') can be implemented, 

using only biased rank-order observations, by choosing c' E [dI, d' ] and for t 2 favouring the leader by E' - N, 

where the leader is the winner of the previous round. Thus the sufficiency part of Proposition 4 generalizes to 

a' 2. The strategy for setting bias just described is therefore optimal, for any T. 

Now relabel period 1 as period t, period 2 as period t+ 1, etc. The previous argument then yields an 

optimal strategy from period t onwards, for any a' _ and any T, and therefore by condition (3), it is optimal 

to choose c' as if t were the final period. 11 

Proof of Corollary 3. From the proof of Corollary 2, if AeT is uniformly distributed for all r> t, then 

for any a' ' 2, the decision-maker can achieve as high a probability of promoting the better worker, by using 

bias optimally in periods t, t+ 1, . T, as if he had access to cardinal information on Ax' but only biased 

rank-order observations on AxT for 7> t. Therefore, a refinement in the information partition on Ax' cannot 

increase the ex ante probability of promoting the better worker. 11 

Proof of Corollary 4. Let cl be an optimal value of c' when biased rank-order contests are used in both 

periods. Now let the decision-maker partition either of the two intervals of Ax' values, (-oo, -cl) or (-J', oo), 

into two subintervals. We will show that for some choice of subintervals, the optimal value of c2 must vary 

according to which subinterval Ax' was in. Therefore this refinement of the first-period partition is of strictly 

positive expected value. Since the optimal partition into three intervals must be at least as good as this refinement, 

the conclusion follows. 

Case (a): Suppose & >0 is an optimal first-period bias. (If a non-zero value of e' is optimal, then by 

symmetry there is an optimal value that is positive.) Suppose the decision-maker partitions the interval (-c , oo) 

into S1 (-', cl) and S2 (cl, oo). If Ax' E S1, then his period-2 beliefs area2 =a . If Ax' E S2, then he assigns 

probability a2>4 to i being better. Since Ac2 is not uniformly distributed, the set of optimal c2 values when 

a 2 = Iis a (possibly degenerate) interval [-b2, b2], where 0 b' < E2 - N. Since the likelihood ratio in period 

2 is continuous and decreasing for c2E (-(E2- N), E2- N), any value of c2 that is optimal for a2>I must be 

strictly greater than b2. 
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Case (b): Suppose c' = 0 is the unique optimal first-period bias. Suppose the decision-maker partitions 
the interval (0, oo) into U1= (0, y) and U2 (y, oo). By the MLRC, he will assign a strictly higher probability 
to i being better if Ax' E U2 than if Ax' E U1: a(A' IEU,) > ax\'EU)- Since Ac2 is not uniformly distributed, the 
decision-maker can choose y sufficiently close to 0, and therefore a EU1) sufficiently close to 2, SO that the 
largest optimal value of c2 for a(2A'U1) (call this value b,.) is strictly less than E2- N. Since the likelihood 
ratio in period 2 is continuous and decreasing for c2 (-(E2 - N), E 2- N), any value of c2 that is optimal for 

2 be 
a(Ax'I U2) 

must be strictly greater than b-1, 

Proof of Lemma 1. If j is declared the winner of the second round, then period-3 beliefs are a3 =2, and 
by condition (3), the optimal value of c3 is 0. If i is declared the winner of the second round, then a 3 >. 

Since the likelihood ratio for Ax3 = -c3 never falls below exp (-2A3N), condition (3) implies that the optimal 
value of c3 is infinite if ((1 -a 3)/a 3) < exp (-2A3 N). Explicit calculation of a 3 for this case shows that as 
long as A3<(1/N)ln(2exp(A'N)-1) - 3(AA), where A3(A')>A', the above inequality holds. 

Proof of Lemma 2. Section 5.1 shows that the sign of the first derivative of the objective function, at 
c2 = 0, can be determined by identifying which worker the decision-maker, if he could observe a value AX2 = 0, 

would wish to declare the winner of round 2, given how the period-3 bias would depend on his period-2 report. 
If he would strictly prefer to declare j (i) the winner, then a first-order improvement can be achieved by a 
small reduction (increase) in c2, favouring j (i). 

Suppose that he observed Ax2 = 0. If j were declared the winner of round 2, then since C3WL = 0, the 
probability that the better worker was ultimately promoted would be the probability that the better worker won 
the (unbiased) third round. If i were declared the second-round winner, then since C3 W = (for A 
i would be certain to be promoted; the probability of promoting the more able worker would thus be the 
probability that i was better, given Ax' >0 and AX2 =0, which equals the probability that the better worker 
won the (unbiased) first round. Hence, given C3 L and C3 W, the decision-maker's preference of which worker 
to declare the second-round winner, if Ax' > 0 and AX2 = 0, would depend on the relative noisiness of the first- 
and third-round contests. If A 3 > A' (if A3 < A'), an unbiased contest in the third (first) round is more informative. 
Therefore, if A 3(A) > A3 > A' (if A3 <A' 1), the decision-maker would strictly prefer to declare j (i) the second- 
round winner, when Ax' > 0 and AX2 = 0. 11 

Analysis of Example 1. We show the existence of a set of parameters (A 1, 01, A2, 02) such that properties 
(1), (2), and (3) in the text hold. If 01 > N, the likelihood ratio in period 1 is constant at 1 for cl E 

[-(01-N), 01-N], so Q"'(0) = 0 and property 1) is satisfied. 
Now suppose that 0' is such that H'(N)/ H'(-N) )( 1- a (0))/ a (0) = exp (-2A2 N). From Figure 3, if 

cl = 0, the optimal second-period bias in favour of the first-period winner is any value in [ 02 + N, oo). As long 
as the same size bias is used whichever worker wins, the ex ante probability that i is promoted is 2 (by symmetry). 
Let c l be increased to a small positive value, &. Since (1 - a (5))/ a ( ) > (1 - a (0))/ a (0) > (1 - a (- 5))/ a (- 5), 
the optimal second-period bias in i's favour if i wins will be slightly less than 02+ N, whereas the optimal bias 
in j's favour if j wins will be infinite (so j will be promoted with certainty). Property (3) is thus satisfied. When 
cl = 5, the ex ante probability that i is promoted equals the probability that i wins both contests, which as 5 -> 0 

approaches 

2[[HI(-N)H 2(-2N - 02) + H'(N)H2(_02)] < l 

Therefore for 5 > 0 sufficiently small, i's probability of promotion is lower when cl = 5 than when cl = 0. 
From Figure 3, for a E (2, a (0)), the optimal Ic21 is continuously increasing in a, so V(a) is continuous 

and strictly convex in this range. For a > a(O), the optimal Ic is infinite, so V(a) is linear in this range. V(a) 
is continuous at a(O) by the Theorem of the Maximum. Property (2) is thus satisfied. Properties (1) and (2) 
imply that a small, though not infinitesimal, increase in cl from 0 increases the decision-maker's objective 
function. 

The above arguments are valid for any 02> 0. However, we must ensure that the conditions 01 > N and 
H l (N)/ H l (-N) = exp (-2A 2 N) are compatible. Expressing H l (N)/ H l (-N) in terms of A ', 0 1 and N, 
equating to exp(-2A2N), and solving for 0' shows that 0'>N and H'(N)/H'(-N)=exp(-2A2N) are 

compatible if 2Ak'N+1>exp(2A2N). Thus for any (A ', A2) satisfying 2A l N + 1 > exp (2A2N), there exist 

(01, 02) such that properties (1), (2), and (3) hold. 11 
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